SurfaceFlinger.cpp revision 3b1d2b6b2bbfb5df46b1059ec52360974e6f1428
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdlib.h>
20#include <stdio.h>
21#include <stdint.h>
22#include <unistd.h>
23#include <fcntl.h>
24#include <errno.h>
25#include <math.h>
26#include <limits.h>
27#include <sys/types.h>
28#include <sys/stat.h>
29#include <sys/ioctl.h>
30
31#include <cutils/log.h>
32#include <cutils/properties.h>
33
34#include <binder/IPCThreadState.h>
35#include <binder/IServiceManager.h>
36#include <binder/MemoryHeapBase.h>
37#include <binder/PermissionCache.h>
38
39#include <gui/IDisplayEventConnection.h>
40
41#include <utils/String8.h>
42#include <utils/String16.h>
43#include <utils/StopWatch.h>
44#include <utils/Trace.h>
45
46#include <ui/GraphicBufferAllocator.h>
47#include <ui/PixelFormat.h>
48
49#include <GLES/gl.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayHardware.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/HWComposer.h"
63
64#include <private/android_filesystem_config.h>
65#include <private/gui/SharedBufferStack.h>
66#include <gui/BitTube.h>
67#include <gui/SurfaceTextureClient.h>
68
69#define EGL_VERSION_HW_ANDROID  0x3143
70
71#define DISPLAY_COUNT       1
72
73namespace android {
74// ---------------------------------------------------------------------------
75
76const String16 sHardwareTest("android.permission.HARDWARE_TEST");
77const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
78const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
79const String16 sDump("android.permission.DUMP");
80
81// ---------------------------------------------------------------------------
82
83SurfaceFlinger::SurfaceFlinger()
84    :   BnSurfaceComposer(), Thread(false),
85        mTransactionFlags(0),
86        mTransationPending(false),
87        mLayersRemoved(false),
88        mBootTime(systemTime()),
89        mVisibleRegionsDirty(false),
90        mHwWorkListDirty(false),
91        mElectronBeamAnimationMode(0),
92        mDebugRegion(0),
93        mDebugDDMS(0),
94        mDebugDisableHWC(0),
95        mDebugDisableTransformHint(0),
96        mDebugInSwapBuffers(0),
97        mLastSwapBufferTime(0),
98        mDebugInTransaction(0),
99        mLastTransactionTime(0),
100        mBootFinished(false),
101        mExternalDisplaySurface(EGL_NO_SURFACE)
102{
103    init();
104}
105
106void SurfaceFlinger::init()
107{
108    ALOGI("SurfaceFlinger is starting");
109
110    // debugging stuff...
111    char value[PROPERTY_VALUE_MAX];
112
113    property_get("debug.sf.showupdates", value, "0");
114    mDebugRegion = atoi(value);
115
116#ifdef DDMS_DEBUGGING
117    property_get("debug.sf.ddms", value, "0");
118    mDebugDDMS = atoi(value);
119    if (mDebugDDMS) {
120        DdmConnection::start(getServiceName());
121    }
122#else
123#warning "DDMS_DEBUGGING disabled"
124#endif
125
126    ALOGI_IF(mDebugRegion,       "showupdates enabled");
127    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    glDeleteTextures(1, &mWormholeTexName);
144}
145
146void SurfaceFlinger::binderDied(const wp<IBinder>& who)
147{
148    // the window manager died on us. prepare its eulogy.
149
150    // reset screen orientation
151    Vector<ComposerState> state;
152    setTransactionState(state, eOrientationDefault, 0);
153
154    // restart the boot-animation
155    startBootAnim();
156}
157
158sp<IMemoryHeap> SurfaceFlinger::getCblk() const
159{
160    return mServerHeap;
161}
162
163sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
164{
165    sp<ISurfaceComposerClient> bclient;
166    sp<Client> client(new Client(this));
167    status_t err = client->initCheck();
168    if (err == NO_ERROR) {
169        bclient = client;
170    }
171    return bclient;
172}
173
174sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
175{
176    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
177    return gba;
178}
179
180void SurfaceFlinger::bootFinished()
181{
182    const nsecs_t now = systemTime();
183    const nsecs_t duration = now - mBootTime;
184    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
185    mBootFinished = true;
186
187    // wait patiently for the window manager death
188    const String16 name("window");
189    sp<IBinder> window(defaultServiceManager()->getService(name));
190    if (window != 0) {
191        window->linkToDeath(this);
192    }
193
194    // stop boot animation
195    // formerly we would just kill the process, but we now ask it to exit so it
196    // can choose where to stop the animation.
197    property_set("service.bootanim.exit", "1");
198}
199
200static inline uint16_t pack565(int r, int g, int b) {
201    return (r<<11)|(g<<5)|b;
202}
203
204status_t SurfaceFlinger::readyToRun()
205{
206    ALOGI(  "SurfaceFlinger's main thread ready to run. "
207            "Initializing graphics H/W...");
208
209    // we only support one display currently
210    int dpy = 0;
211
212    {
213        // initialize the main display
214        // TODO: initialize all displays
215        DisplayHardware* const hw = new DisplayHardware(this, dpy);
216        mDisplayHardwares[0] = hw;
217    }
218
219    // create the shared control-block
220    mServerHeap = new MemoryHeapBase(4096,
221            MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
222    ALOGE_IF(mServerHeap==0, "can't create shared memory dealer");
223
224    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
225    ALOGE_IF(mServerCblk==0, "can't get to shared control block's address");
226
227    new(mServerCblk) surface_flinger_cblk_t;
228
229    // initialize primary screen
230    // (other display should be initialized in the same manner, but
231    // asynchronously, as they could come and go. None of this is supported
232    // yet).
233    const DisplayHardware& hw(getDefaultDisplayHardware());
234    const uint32_t w = hw.getWidth();
235    const uint32_t h = hw.getHeight();
236    const uint32_t f = hw.getFormat();
237    hw.makeCurrent();
238
239    // initialize the shared control block
240    mServerCblk->connected |= 1<<dpy;
241    display_cblk_t* dcblk = mServerCblk->displays + dpy;
242    memset(dcblk, 0, sizeof(display_cblk_t));
243    dcblk->w            = w; // XXX: plane.getWidth();
244    dcblk->h            = h; // XXX: plane.getHeight();
245    dcblk->format       = f;
246    dcblk->orientation  = ISurfaceComposer::eOrientationDefault;
247    dcblk->xdpi         = hw.getDpiX();
248    dcblk->ydpi         = hw.getDpiY();
249    dcblk->fps          = hw.getRefreshRate();
250    dcblk->density      = hw.getDensity();
251
252    // Initialize OpenGL|ES
253    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
254    glPixelStorei(GL_PACK_ALIGNMENT, 4);
255    glEnableClientState(GL_VERTEX_ARRAY);
256    glShadeModel(GL_FLAT);
257    glDisable(GL_DITHER);
258    glDisable(GL_CULL_FACE);
259
260    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
261    const uint16_t g1 = pack565(0x17,0x2f,0x17);
262    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
263    glGenTextures(1, &mWormholeTexName);
264    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
265    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
266    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
267    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
268    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
269    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
270            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
271
272    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
273    glGenTextures(1, &mProtectedTexName);
274    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
275    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
276    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
277    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
278    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
279    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
280            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
281
282    glViewport(0, 0, w, h);
283    glMatrixMode(GL_PROJECTION);
284    glLoadIdentity();
285    // put the origin in the left-bottom corner
286    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
287
288
289    // start the EventThread
290    mEventThread = new EventThread(this);
291    mEventQueue.setEventThread(mEventThread);
292
293    /*
294     *  We're now ready to accept clients...
295     */
296
297    mReadyToRunBarrier.open();
298
299    // start boot animation
300    startBootAnim();
301
302    return NO_ERROR;
303}
304
305void SurfaceFlinger::startBootAnim() {
306    // start boot animation
307    property_set("service.bootanim.exit", "0");
308    property_set("ctl.start", "bootanim");
309}
310
311// ----------------------------------------------------------------------------
312
313bool SurfaceFlinger::authenticateSurfaceTexture(
314        const sp<ISurfaceTexture>& surfaceTexture) const {
315    Mutex::Autolock _l(mStateLock);
316    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
317
318    // Check the visible layer list for the ISurface
319    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
320    size_t count = currentLayers.size();
321    for (size_t i=0 ; i<count ; i++) {
322        const sp<LayerBase>& layer(currentLayers[i]);
323        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
324        if (lbc != NULL) {
325            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
326            if (lbcBinder == surfaceTextureBinder) {
327                return true;
328            }
329        }
330    }
331
332    // Check the layers in the purgatory.  This check is here so that if a
333    // SurfaceTexture gets destroyed before all the clients are done using it,
334    // the error will not be reported as "surface XYZ is not authenticated", but
335    // will instead fail later on when the client tries to use the surface,
336    // which should be reported as "surface XYZ returned an -ENODEV".  The
337    // purgatorized layers are no less authentic than the visible ones, so this
338    // should not cause any harm.
339    size_t purgatorySize =  mLayerPurgatory.size();
340    for (size_t i=0 ; i<purgatorySize ; i++) {
341        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
342        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
343        if (lbc != NULL) {
344            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
345            if (lbcBinder == surfaceTextureBinder) {
346                return true;
347            }
348        }
349    }
350
351    return false;
352}
353
354// ----------------------------------------------------------------------------
355
356sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
357    return mEventThread->createEventConnection();
358}
359
360void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
361    const DisplayHardware& hw(getDefaultDisplayHardware());
362    EGLSurface result = EGL_NO_SURFACE;
363    EGLSurface old_surface = EGL_NO_SURFACE;
364    sp<SurfaceTextureClient> stc;
365
366    if (display != NULL) {
367        stc = new SurfaceTextureClient(display);
368        result = eglCreateWindowSurface(hw.getEGLDisplay(),
369                hw.getEGLConfig(), (EGLNativeWindowType)stc.get(), NULL);
370        ALOGE_IF(result == EGL_NO_SURFACE,
371                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
372                display.get());
373    }
374
375    { // scope for the lock
376        Mutex::Autolock _l(mStateLock);
377        old_surface = mExternalDisplaySurface;
378        mExternalDisplayNativeWindow = stc;
379        mExternalDisplaySurface = result;
380        ALOGD("mExternalDisplaySurface = %p", result);
381    }
382
383    if (old_surface != EGL_NO_SURFACE) {
384        // Note: EGL allows to destroy an object while its current
385        // it will fail to become current next time though.
386        eglDestroySurface(hw.getEGLDisplay(), old_surface);
387    }
388}
389
390EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
391    Mutex::Autolock _l(mStateLock);
392    return mExternalDisplaySurface;
393}
394
395// ----------------------------------------------------------------------------
396
397void SurfaceFlinger::waitForEvent() {
398    mEventQueue.waitMessage();
399}
400
401void SurfaceFlinger::signalTransaction() {
402    mEventQueue.invalidate();
403}
404
405void SurfaceFlinger::signalLayerUpdate() {
406    mEventQueue.invalidate();
407}
408
409void SurfaceFlinger::signalRefresh() {
410    mEventQueue.refresh();
411}
412
413status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
414        nsecs_t reltime, uint32_t flags) {
415    return mEventQueue.postMessage(msg, reltime);
416}
417
418status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
419        nsecs_t reltime, uint32_t flags) {
420    status_t res = mEventQueue.postMessage(msg, reltime);
421    if (res == NO_ERROR) {
422        msg->wait();
423    }
424    return res;
425}
426
427bool SurfaceFlinger::threadLoop() {
428    waitForEvent();
429    return true;
430}
431
432void SurfaceFlinger::onMessageReceived(int32_t what) {
433    ATRACE_CALL();
434    switch (what) {
435    case MessageQueue::INVALIDATE:
436        handleMessageTransaction();
437        handleMessageInvalidate();
438        signalRefresh();
439        break;
440    case MessageQueue::REFRESH:
441        handleMessageRefresh();
442        break;
443    }
444}
445
446void SurfaceFlinger::handleMessageTransaction() {
447    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
448    uint32_t transactionFlags = peekTransactionFlags(mask);
449    if (transactionFlags) {
450        Region dirtyRegion;
451        dirtyRegion = handleTransaction(transactionFlags);
452        // XXX: dirtyRegion should be per screen
453        mDirtyRegion |= dirtyRegion;
454    }
455}
456
457void SurfaceFlinger::handleMessageInvalidate() {
458    Region dirtyRegion;
459    dirtyRegion = handlePageFlip();
460    // XXX: dirtyRegion should be per screen
461    mDirtyRegion |= dirtyRegion;
462}
463
464void SurfaceFlinger::handleMessageRefresh() {
465    handleRefresh();
466
467    if (mVisibleRegionsDirty) {
468        Region opaqueRegion;
469        Region dirtyRegion;
470        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
471        computeVisibleRegions(currentLayers, dirtyRegion, opaqueRegion);
472        mDirtyRegion.orSelf(dirtyRegion);
473
474        /*
475         *  rebuild the visible layer list per screen
476         */
477
478        // TODO: iterate through all displays
479        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(0)));
480
481        Vector< sp<LayerBase> > layersSortedByZ;
482        const size_t count = currentLayers.size();
483        for (size_t i=0 ; i<count ; i++) {
484            if (!currentLayers[i]->visibleRegion.isEmpty()) {
485                // TODO: also check that this layer is associated to this display
486                layersSortedByZ.add(currentLayers[i]);
487            }
488        }
489        hw.setVisibleLayersSortedByZ(layersSortedByZ);
490
491
492        // FIXME: mWormholeRegion needs to be calculated per screen
493        //const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: we can't keep that here
494        mWormholeRegion = Region(hw.getBounds()).subtract(
495                hw.getTransform().transform(opaqueRegion) );
496        mVisibleRegionsDirty = false;
497        invalidateHwcGeometry();
498    }
499
500
501    // XXX: dirtyRegion should be per screen, we should check all of them
502    if (mDirtyRegion.isEmpty()) {
503        return;
504    }
505
506    // TODO: iterate through all displays
507    const DisplayHardware& hw(getDisplayHardware(0));
508
509    // XXX: dirtyRegion should be per screen
510    // transform the dirty region into this screen's coordinate space
511    const Transform& planeTransform(hw.getTransform());
512    mDirtyRegion = planeTransform.transform(mDirtyRegion);
513    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
514    mDirtyRegion.andSelf(hw.bounds());
515
516
517    if (CC_UNLIKELY(mHwWorkListDirty)) {
518        // build the h/w work list
519        handleWorkList(hw);
520    }
521
522    if (CC_LIKELY(hw.canDraw())) {
523        // repaint the framebuffer (if needed)
524        handleRepaint(hw);
525        // inform the h/w that we're done compositing
526        hw.compositionComplete();
527        postFramebuffer();
528    } else {
529        // pretend we did the post
530        hw.compositionComplete();
531    }
532
533    // render to the external display if we have one
534    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
535    if (externalDisplaySurface != EGL_NO_SURFACE) {
536        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
537        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
538                externalDisplaySurface, externalDisplaySurface,
539                eglGetCurrentContext());
540
541        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
542
543        if (success) {
544            // redraw the screen entirely...
545            glDisable(GL_TEXTURE_EXTERNAL_OES);
546            glDisable(GL_TEXTURE_2D);
547            glClearColor(0,0,0,1);
548            glClear(GL_COLOR_BUFFER_BIT);
549            glMatrixMode(GL_MODELVIEW);
550            glLoadIdentity();
551
552            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
553            const size_t count = layers.size();
554            for (size_t i=0 ; i<count ; ++i) {
555                const sp<LayerBase>& layer(layers[i]);
556                layer->drawForSreenShot(hw);
557            }
558
559            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
560            ALOGE_IF(!success, "external display eglSwapBuffers failed");
561
562            hw.compositionComplete();
563        }
564
565        success = eglMakeCurrent(eglGetCurrentDisplay(),
566                cur, cur, eglGetCurrentContext());
567
568        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
569    }
570
571}
572
573void SurfaceFlinger::postFramebuffer()
574{
575    ATRACE_CALL();
576    // mSwapRegion can be empty here is some cases, for instance if a hidden
577    // or fully transparent window is updating.
578    // in that case, we need to flip anyways to not risk a deadlock with
579    // h/w composer.
580
581    const DisplayHardware& hw(getDefaultDisplayHardware());
582    HWComposer& hwc(hw.getHwComposer());
583    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
584    size_t numLayers = layers.size();
585    const nsecs_t now = systemTime();
586    mDebugInSwapBuffers = now;
587
588    if (hwc.initCheck() == NO_ERROR) {
589        HWComposer::LayerListIterator cur = hwc.begin();
590        const HWComposer::LayerListIterator end = hwc.end();
591        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
592            if (cur->getCompositionType() == HWC_OVERLAY) {
593                layers[i]->setAcquireFence(*cur);
594            } else {
595                cur->setAcquireFenceFd(-1);
596            }
597        }
598    }
599
600    hw.flip(mSwapRegion);
601
602    if (hwc.initCheck() == NO_ERROR) {
603        HWComposer::LayerListIterator cur = hwc.begin();
604        const HWComposer::LayerListIterator end = hwc.end();
605        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
606            layers[i]->onLayerDisplayed(&*cur);
607        }
608    } else {
609        for (size_t i = 0; i < numLayers; i++) {
610            layers[i]->onLayerDisplayed(NULL);
611        }
612    }
613
614    mLastSwapBufferTime = systemTime() - now;
615    mDebugInSwapBuffers = 0;
616    mSwapRegion.clear();
617}
618
619Region SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
620{
621    ATRACE_CALL();
622
623    Region dirtyRegion;
624
625    Mutex::Autolock _l(mStateLock);
626    const nsecs_t now = systemTime();
627    mDebugInTransaction = now;
628
629    // Here we're guaranteed that some transaction flags are set
630    // so we can call handleTransactionLocked() unconditionally.
631    // We call getTransactionFlags(), which will also clear the flags,
632    // with mStateLock held to guarantee that mCurrentState won't change
633    // until the transaction is committed.
634
635    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
636    transactionFlags = getTransactionFlags(mask);
637    dirtyRegion = handleTransactionLocked(transactionFlags);
638
639    mLastTransactionTime = systemTime() - now;
640    mDebugInTransaction = 0;
641    invalidateHwcGeometry();
642    // here the transaction has been committed
643
644    return dirtyRegion;
645}
646
647Region SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
648{
649    Region dirtyRegion;
650    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
651    const size_t count = currentLayers.size();
652
653    /*
654     * Traversal of the children
655     * (perform the transaction for each of them if needed)
656     */
657
658    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
659    if (layersNeedTransaction) {
660        for (size_t i=0 ; i<count ; i++) {
661            const sp<LayerBase>& layer = currentLayers[i];
662            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
663            if (!trFlags) continue;
664
665            const uint32_t flags = layer->doTransaction(0);
666            if (flags & Layer::eVisibleRegion)
667                mVisibleRegionsDirty = true;
668        }
669    }
670
671    /*
672     * Perform our own transaction if needed
673     */
674
675    if (transactionFlags & eTransactionNeeded) {
676        if (mCurrentState.orientation != mDrawingState.orientation) {
677            // the orientation has changed, recompute all visible regions
678            // and invalidate everything.
679
680            const int dpy = 0; // TODO: should be a parameter
681            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
682            const int orientation = mCurrentState.orientation;
683            hw.setOrientation(orientation);
684
685            // update the shared control block
686            volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
687            dcblk->orientation = orientation;
688            dcblk->w = hw.getUserWidth();
689            dcblk->h = hw.getUserHeight();
690
691            // FIXME: mVisibleRegionsDirty & mDirtyRegion should this be per DisplayHardware?
692            mVisibleRegionsDirty = true;
693            mDirtyRegion.set(hw.bounds());
694        }
695
696        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
697            // layers have been added
698            mVisibleRegionsDirty = true;
699        }
700
701        // some layers might have been removed, so
702        // we need to update the regions they're exposing.
703        if (mLayersRemoved) {
704            mLayersRemoved = false;
705            mVisibleRegionsDirty = true;
706            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
707            const size_t count = previousLayers.size();
708            for (size_t i=0 ; i<count ; i++) {
709                const sp<LayerBase>& layer(previousLayers[i]);
710                if (currentLayers.indexOf( layer ) < 0) {
711                    // this layer is not visible anymore
712                    // TODO: we could traverse the tree from front to back and compute the actual visible region
713                    // TODO: we could cache the transformed region
714                    Layer::State front(layer->drawingState());
715                    Region visibleReg = front.transform.transform(
716                            Region(Rect(front.active.w, front.active.h)));
717                    dirtyRegion.orSelf(visibleReg);
718                }
719            }
720        }
721    }
722
723    commitTransaction();
724    return dirtyRegion;
725}
726
727void SurfaceFlinger::commitTransaction()
728{
729    if (!mLayersPendingRemoval.isEmpty()) {
730        // Notify removed layers now that they can't be drawn from
731        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
732            mLayersPendingRemoval[i]->onRemoved();
733        }
734        mLayersPendingRemoval.clear();
735    }
736
737    mDrawingState = mCurrentState;
738    mTransationPending = false;
739    mTransactionCV.broadcast();
740}
741
742void SurfaceFlinger::computeVisibleRegions(
743    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
744{
745    ATRACE_CALL();
746
747    Region aboveOpaqueLayers;
748    Region aboveCoveredLayers;
749    Region dirty;
750
751    dirtyRegion.clear();
752
753    size_t i = currentLayers.size();
754    while (i--) {
755        const sp<LayerBase>& layer = currentLayers[i];
756
757        // start with the whole surface at its current location
758        const Layer::State& s(layer->drawingState());
759
760        /*
761         * opaqueRegion: area of a surface that is fully opaque.
762         */
763        Region opaqueRegion;
764
765        /*
766         * visibleRegion: area of a surface that is visible on screen
767         * and not fully transparent. This is essentially the layer's
768         * footprint minus the opaque regions above it.
769         * Areas covered by a translucent surface are considered visible.
770         */
771        Region visibleRegion;
772
773        /*
774         * coveredRegion: area of a surface that is covered by all
775         * visible regions above it (which includes the translucent areas).
776         */
777        Region coveredRegion;
778
779
780        // handle hidden surfaces by setting the visible region to empty
781        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
782            const bool translucent = !layer->isOpaque();
783            Rect bounds(layer->computeBounds());
784            visibleRegion.set(bounds);
785            if (!visibleRegion.isEmpty()) {
786                // Remove the transparent area from the visible region
787                if (translucent) {
788                    Region transparentRegionScreen;
789                    const Transform tr(s.transform);
790                    if (tr.transformed()) {
791                        if (tr.preserveRects()) {
792                            // transform the transparent region
793                            transparentRegionScreen = tr.transform(s.transparentRegion);
794                        } else {
795                            // transformation too complex, can't do the
796                            // transparent region optimization.
797                            transparentRegionScreen.clear();
798                        }
799                    } else {
800                        transparentRegionScreen = s.transparentRegion;
801                    }
802                    visibleRegion.subtractSelf(transparentRegionScreen);
803                }
804
805                // compute the opaque region
806                const int32_t layerOrientation = s.transform.getOrientation();
807                if (s.alpha==255 && !translucent &&
808                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
809                    // the opaque region is the layer's footprint
810                    opaqueRegion = visibleRegion;
811                }
812            }
813        }
814
815        // Clip the covered region to the visible region
816        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
817
818        // Update aboveCoveredLayers for next (lower) layer
819        aboveCoveredLayers.orSelf(visibleRegion);
820
821        // subtract the opaque region covered by the layers above us
822        visibleRegion.subtractSelf(aboveOpaqueLayers);
823
824        // compute this layer's dirty region
825        if (layer->contentDirty) {
826            // we need to invalidate the whole region
827            dirty = visibleRegion;
828            // as well, as the old visible region
829            dirty.orSelf(layer->visibleRegion);
830            layer->contentDirty = false;
831        } else {
832            /* compute the exposed region:
833             *   the exposed region consists of two components:
834             *   1) what's VISIBLE now and was COVERED before
835             *   2) what's EXPOSED now less what was EXPOSED before
836             *
837             * note that (1) is conservative, we start with the whole
838             * visible region but only keep what used to be covered by
839             * something -- which mean it may have been exposed.
840             *
841             * (2) handles areas that were not covered by anything but got
842             * exposed because of a resize.
843             */
844            const Region newExposed = visibleRegion - coveredRegion;
845            const Region oldVisibleRegion = layer->visibleRegion;
846            const Region oldCoveredRegion = layer->coveredRegion;
847            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
848            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
849        }
850        dirty.subtractSelf(aboveOpaqueLayers);
851
852        // accumulate to the screen dirty region
853        dirtyRegion.orSelf(dirty);
854
855        // Update aboveOpaqueLayers for next (lower) layer
856        aboveOpaqueLayers.orSelf(opaqueRegion);
857
858        // Store the visible region is screen space
859        layer->setVisibleRegion(visibleRegion);
860        layer->setCoveredRegion(coveredRegion);
861    }
862
863    opaqueRegion = aboveOpaqueLayers;
864}
865
866Region SurfaceFlinger::handlePageFlip()
867{
868    ATRACE_CALL();
869    Region dirtyRegion;
870
871    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
872
873    bool visibleRegions = false;
874    const size_t count = currentLayers.size();
875    sp<LayerBase> const* layers = currentLayers.array();
876    for (size_t i=0 ; i<count ; i++) {
877        const sp<LayerBase>& layer(layers[i]);
878        dirtyRegion.orSelf( layer->latchBuffer(visibleRegions) );
879    }
880
881    mVisibleRegionsDirty |= visibleRegions;
882
883    return dirtyRegion;
884}
885
886void SurfaceFlinger::invalidateHwcGeometry()
887{
888    mHwWorkListDirty = true;
889}
890
891void SurfaceFlinger::handleRefresh()
892{
893    bool needInvalidate = false;
894    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
895    const size_t count = currentLayers.size();
896    for (size_t i=0 ; i<count ; i++) {
897        const sp<LayerBase>& layer(currentLayers[i]);
898        if (layer->onPreComposition()) {
899            needInvalidate = true;
900        }
901    }
902    if (needInvalidate) {
903        signalLayerUpdate();
904    }
905}
906
907
908void SurfaceFlinger::handleWorkList(const DisplayHardware& hw)
909{
910    mHwWorkListDirty = false;
911    HWComposer& hwc(hw.getHwComposer());
912    if (hwc.initCheck() == NO_ERROR) {
913        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
914        const size_t count = currentLayers.size();
915        hwc.createWorkList(count);
916
917        HWComposer::LayerListIterator cur = hwc.begin();
918        const HWComposer::LayerListIterator end = hwc.end();
919        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
920            currentLayers[i]->setGeometry(hw, *cur);
921            if (mDebugDisableHWC || mDebugRegion) {
922                cur->setSkip(true);
923            }
924        }
925    }
926}
927
928void SurfaceFlinger::handleRepaint(const DisplayHardware& hw)
929{
930    ATRACE_CALL();
931
932    // compute the invalid region
933    mSwapRegion.orSelf(mDirtyRegion);
934
935    if (CC_UNLIKELY(mDebugRegion)) {
936        debugFlashRegions(hw);
937    }
938
939    // set the frame buffer
940    glMatrixMode(GL_MODELVIEW);
941    glLoadIdentity();
942
943    uint32_t flags = hw.getFlags();
944    if (flags & DisplayHardware::SWAP_RECTANGLE) {
945        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
946        // takes a rectangle, we must make sure to update that whole
947        // rectangle in that case
948        mDirtyRegion.set(mSwapRegion.bounds());
949    } else {
950        if (flags & DisplayHardware::PARTIAL_UPDATES) {
951            // We need to redraw the rectangle that will be updated
952            // (pushed to the framebuffer).
953            // This is needed because PARTIAL_UPDATES only takes one
954            // rectangle instead of a region (see DisplayHardware::flip())
955            mDirtyRegion.set(mSwapRegion.bounds());
956        } else {
957            // we need to redraw everything (the whole screen)
958            mDirtyRegion.set(hw.bounds());
959            mSwapRegion = mDirtyRegion;
960        }
961    }
962
963    setupHardwareComposer(hw);
964    composeSurfaces(hw, mDirtyRegion);
965
966    // update the swap region and clear the dirty region
967    mSwapRegion.orSelf(mDirtyRegion);
968    mDirtyRegion.clear();
969}
970
971void SurfaceFlinger::setupHardwareComposer(const DisplayHardware& hw)
972{
973    HWComposer& hwc(hw.getHwComposer());
974    HWComposer::LayerListIterator cur = hwc.begin();
975    const HWComposer::LayerListIterator end = hwc.end();
976    if (cur == end) {
977        return;
978    }
979
980    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
981    size_t count = layers.size();
982
983    ALOGE_IF(hwc.getNumLayers() != count,
984            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
985            hwc.getNumLayers(), count);
986
987    // just to be extra-safe, use the smallest count
988    if (hwc.initCheck() == NO_ERROR) {
989        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
990    }
991
992    /*
993     *  update the per-frame h/w composer data for each layer
994     *  and build the transparent region of the FB
995     */
996    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
997        const sp<LayerBase>& layer(layers[i]);
998        layer->setPerFrameData(*cur);
999    }
1000    status_t err = hwc.prepare();
1001    ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
1002}
1003
1004void SurfaceFlinger::composeSurfaces(const DisplayHardware& hw, const Region& dirty)
1005{
1006    HWComposer& hwc(hw.getHwComposer());
1007    HWComposer::LayerListIterator cur = hwc.begin();
1008    const HWComposer::LayerListIterator end = hwc.end();
1009
1010    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
1011    if (cur==end || fbLayerCount) {
1012        // Never touch the framebuffer if we don't have any framebuffer layers
1013
1014        if (hwc.getLayerCount(HWC_OVERLAY)) {
1015            // when using overlays, we assume a fully transparent framebuffer
1016            // NOTE: we could reduce how much we need to clear, for instance
1017            // remove where there are opaque FB layers. however, on some
1018            // GPUs doing a "clean slate" glClear might be more efficient.
1019            // We'll revisit later if needed.
1020            glClearColor(0, 0, 0, 0);
1021            glClear(GL_COLOR_BUFFER_BIT);
1022        } else {
1023            // screen is already cleared here
1024            if (!mWormholeRegion.isEmpty()) {
1025                // can happen with SurfaceView
1026                drawWormhole();
1027            }
1028        }
1029
1030        /*
1031         * and then, render the layers targeted at the framebuffer
1032         */
1033
1034        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1035        const size_t count = layers.size();
1036        const Transform& tr = hw.getTransform();
1037        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1038            const sp<LayerBase>& layer(layers[i]);
1039            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1040            if (!clip.isEmpty()) {
1041                if (cur->getCompositionType() == HWC_OVERLAY) {
1042                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1043                            && layer->isOpaque()) {
1044                        // never clear the very first layer since we're
1045                        // guaranteed the FB is already cleared
1046                        layer->clearWithOpenGL(hw, clip);
1047                    }
1048                    continue;
1049                }
1050                // render the layer
1051                layer->draw(hw, clip);
1052            }
1053        }
1054    }
1055}
1056
1057void SurfaceFlinger::debugFlashRegions(const DisplayHardware& hw)
1058{
1059    const uint32_t flags = hw.getFlags();
1060    const int32_t height = hw.getHeight();
1061    if (mSwapRegion.isEmpty()) {
1062        return;
1063    }
1064
1065    if (!(flags & DisplayHardware::SWAP_RECTANGLE)) {
1066        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1067                mDirtyRegion.bounds() : hw.bounds());
1068        composeSurfaces(hw, repaint);
1069    }
1070
1071    glDisable(GL_TEXTURE_EXTERNAL_OES);
1072    glDisable(GL_TEXTURE_2D);
1073    glDisable(GL_BLEND);
1074
1075    static int toggle = 0;
1076    toggle = 1 - toggle;
1077    if (toggle) {
1078        glColor4f(1, 0, 1, 1);
1079    } else {
1080        glColor4f(1, 1, 0, 1);
1081    }
1082
1083    Region::const_iterator it = mDirtyRegion.begin();
1084    Region::const_iterator const end = mDirtyRegion.end();
1085    while (it != end) {
1086        const Rect& r = *it++;
1087        GLfloat vertices[][2] = {
1088                { r.left,  height - r.top },
1089                { r.left,  height - r.bottom },
1090                { r.right, height - r.bottom },
1091                { r.right, height - r.top }
1092        };
1093        glVertexPointer(2, GL_FLOAT, 0, vertices);
1094        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1095    }
1096
1097    hw.flip(mSwapRegion);
1098
1099    if (mDebugRegion > 1)
1100        usleep(mDebugRegion * 1000);
1101}
1102
1103void SurfaceFlinger::drawWormhole() const
1104{
1105    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1106    if (region.isEmpty())
1107        return;
1108
1109    glDisable(GL_TEXTURE_EXTERNAL_OES);
1110    glDisable(GL_TEXTURE_2D);
1111    glDisable(GL_BLEND);
1112    glColor4f(0,0,0,0);
1113
1114    GLfloat vertices[4][2];
1115    glVertexPointer(2, GL_FLOAT, 0, vertices);
1116    Region::const_iterator it = region.begin();
1117    Region::const_iterator const end = region.end();
1118    while (it != end) {
1119        const Rect& r = *it++;
1120        vertices[0][0] = r.left;
1121        vertices[0][1] = r.top;
1122        vertices[1][0] = r.right;
1123        vertices[1][1] = r.top;
1124        vertices[2][0] = r.right;
1125        vertices[2][1] = r.bottom;
1126        vertices[3][0] = r.left;
1127        vertices[3][1] = r.bottom;
1128        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1129    }
1130}
1131
1132status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1133{
1134    Mutex::Autolock _l(mStateLock);
1135    addLayer_l(layer);
1136    setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1137    return NO_ERROR;
1138}
1139
1140status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1141{
1142    ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1143    return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1144}
1145
1146ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1147        const sp<LayerBaseClient>& lbc)
1148{
1149    // attach this layer to the client
1150    size_t name = client->attachLayer(lbc);
1151
1152    Mutex::Autolock _l(mStateLock);
1153
1154    // add this layer to the current state list
1155    addLayer_l(lbc);
1156
1157    return ssize_t(name);
1158}
1159
1160status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1161{
1162    Mutex::Autolock _l(mStateLock);
1163    status_t err = purgatorizeLayer_l(layer);
1164    if (err == NO_ERROR)
1165        setTransactionFlags(eTransactionNeeded);
1166    return err;
1167}
1168
1169status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1170{
1171    sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1172    if (lbc != 0) {
1173        mLayerMap.removeItem( lbc->getSurfaceBinder() );
1174    }
1175    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1176    if (index >= 0) {
1177        mLayersRemoved = true;
1178        return NO_ERROR;
1179    }
1180    return status_t(index);
1181}
1182
1183status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1184{
1185    // First add the layer to the purgatory list, which makes sure it won't
1186    // go away, then remove it from the main list (through a transaction).
1187    ssize_t err = removeLayer_l(layerBase);
1188    if (err >= 0) {
1189        mLayerPurgatory.add(layerBase);
1190    }
1191
1192    mLayersPendingRemoval.push(layerBase);
1193
1194    // it's possible that we don't find a layer, because it might
1195    // have been destroyed already -- this is not technically an error
1196    // from the user because there is a race between Client::destroySurface(),
1197    // ~Client() and ~ISurface().
1198    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1199}
1200
1201status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1202{
1203    layer->forceVisibilityTransaction();
1204    setTransactionFlags(eTraversalNeeded);
1205    return NO_ERROR;
1206}
1207
1208uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1209{
1210    return android_atomic_release_load(&mTransactionFlags);
1211}
1212
1213uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1214{
1215    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1216}
1217
1218uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1219{
1220    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1221    if ((old & flags)==0) { // wake the server up
1222        signalTransaction();
1223    }
1224    return old;
1225}
1226
1227
1228void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1229        int orientation, uint32_t flags) {
1230    Mutex::Autolock _l(mStateLock);
1231
1232    uint32_t transactionFlags = 0;
1233    if (mCurrentState.orientation != orientation) {
1234        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1235            mCurrentState.orientation = orientation;
1236            transactionFlags |= eTransactionNeeded;
1237        } else if (orientation != eOrientationUnchanged) {
1238            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1239                    orientation);
1240        }
1241    }
1242
1243    const size_t count = state.size();
1244    for (size_t i=0 ; i<count ; i++) {
1245        const ComposerState& s(state[i]);
1246        sp<Client> client( static_cast<Client *>(s.client.get()) );
1247        transactionFlags |= setClientStateLocked(client, s.state);
1248    }
1249
1250    if (transactionFlags) {
1251        // this triggers the transaction
1252        setTransactionFlags(transactionFlags);
1253
1254        // if this is a synchronous transaction, wait for it to take effect
1255        // before returning.
1256        if (flags & eSynchronous) {
1257            mTransationPending = true;
1258        }
1259        while (mTransationPending) {
1260            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1261            if (CC_UNLIKELY(err != NO_ERROR)) {
1262                // just in case something goes wrong in SF, return to the
1263                // called after a few seconds.
1264                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1265                mTransationPending = false;
1266                break;
1267            }
1268        }
1269    }
1270}
1271
1272sp<ISurface> SurfaceFlinger::createSurface(
1273        ISurfaceComposerClient::surface_data_t* params,
1274        const String8& name,
1275        const sp<Client>& client,
1276        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1277        uint32_t flags)
1278{
1279    sp<LayerBaseClient> layer;
1280    sp<ISurface> surfaceHandle;
1281
1282    if (int32_t(w|h) < 0) {
1283        ALOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1284                int(w), int(h));
1285        return surfaceHandle;
1286    }
1287
1288    //ALOGD("createSurface for (%d x %d), name=%s", w, h, name.string());
1289    sp<Layer> normalLayer;
1290    switch (flags & eFXSurfaceMask) {
1291        case eFXSurfaceNormal:
1292            normalLayer = createNormalSurface(client, d, w, h, flags, format);
1293            layer = normalLayer;
1294            break;
1295        case eFXSurfaceBlur:
1296            // for now we treat Blur as Dim, until we can implement it
1297            // efficiently.
1298        case eFXSurfaceDim:
1299            layer = createDimSurface(client, d, w, h, flags);
1300            break;
1301        case eFXSurfaceScreenshot:
1302            layer = createScreenshotSurface(client, d, w, h, flags);
1303            break;
1304    }
1305
1306    if (layer != 0) {
1307        layer->initStates(w, h, flags);
1308        layer->setName(name);
1309        ssize_t token = addClientLayer(client, layer);
1310
1311        surfaceHandle = layer->getSurface();
1312        if (surfaceHandle != 0) {
1313            params->token = token;
1314            params->identity = layer->getIdentity();
1315            if (normalLayer != 0) {
1316                Mutex::Autolock _l(mStateLock);
1317                mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1318            }
1319        }
1320
1321        setTransactionFlags(eTransactionNeeded);
1322    }
1323
1324    return surfaceHandle;
1325}
1326
1327sp<Layer> SurfaceFlinger::createNormalSurface(
1328        const sp<Client>& client, DisplayID display,
1329        uint32_t w, uint32_t h, uint32_t flags,
1330        PixelFormat& format)
1331{
1332    // initialize the surfaces
1333    switch (format) { // TODO: take h/w into account
1334    case PIXEL_FORMAT_TRANSPARENT:
1335    case PIXEL_FORMAT_TRANSLUCENT:
1336        format = PIXEL_FORMAT_RGBA_8888;
1337        break;
1338    case PIXEL_FORMAT_OPAQUE:
1339#ifdef NO_RGBX_8888
1340        format = PIXEL_FORMAT_RGB_565;
1341#else
1342        format = PIXEL_FORMAT_RGBX_8888;
1343#endif
1344        break;
1345    }
1346
1347#ifdef NO_RGBX_8888
1348    if (format == PIXEL_FORMAT_RGBX_8888)
1349        format = PIXEL_FORMAT_RGBA_8888;
1350#endif
1351
1352    sp<Layer> layer = new Layer(this, display, client);
1353    status_t err = layer->setBuffers(w, h, format, flags);
1354    if (CC_LIKELY(err != NO_ERROR)) {
1355        ALOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1356        layer.clear();
1357    }
1358    return layer;
1359}
1360
1361sp<LayerDim> SurfaceFlinger::createDimSurface(
1362        const sp<Client>& client, DisplayID display,
1363        uint32_t w, uint32_t h, uint32_t flags)
1364{
1365    sp<LayerDim> layer = new LayerDim(this, display, client);
1366    return layer;
1367}
1368
1369sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1370        const sp<Client>& client, DisplayID display,
1371        uint32_t w, uint32_t h, uint32_t flags)
1372{
1373    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1374    return layer;
1375}
1376
1377status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1378{
1379    /*
1380     * called by the window manager, when a surface should be marked for
1381     * destruction.
1382     *
1383     * The surface is removed from the current and drawing lists, but placed
1384     * in the purgatory queue, so it's not destroyed right-away (we need
1385     * to wait for all client's references to go away first).
1386     */
1387
1388    status_t err = NAME_NOT_FOUND;
1389    Mutex::Autolock _l(mStateLock);
1390    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1391
1392    if (layer != 0) {
1393        err = purgatorizeLayer_l(layer);
1394        if (err == NO_ERROR) {
1395            setTransactionFlags(eTransactionNeeded);
1396        }
1397    }
1398    return err;
1399}
1400
1401status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1402{
1403    // called by ~ISurface() when all references are gone
1404    status_t err = NO_ERROR;
1405    sp<LayerBaseClient> l(layer.promote());
1406    if (l != NULL) {
1407        Mutex::Autolock _l(mStateLock);
1408        err = removeLayer_l(l);
1409        if (err == NAME_NOT_FOUND) {
1410            // The surface wasn't in the current list, which means it was
1411            // removed already, which means it is in the purgatory,
1412            // and need to be removed from there.
1413            ssize_t idx = mLayerPurgatory.remove(l);
1414            ALOGE_IF(idx < 0,
1415                    "layer=%p is not in the purgatory list", l.get());
1416        }
1417        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1418                "error removing layer=%p (%s)", l.get(), strerror(-err));
1419    }
1420    return err;
1421}
1422
1423uint32_t SurfaceFlinger::setClientStateLocked(
1424        const sp<Client>& client,
1425        const layer_state_t& s)
1426{
1427    uint32_t flags = 0;
1428    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1429    if (layer != 0) {
1430        const uint32_t what = s.what;
1431        if (what & ePositionChanged) {
1432            if (layer->setPosition(s.x, s.y))
1433                flags |= eTraversalNeeded;
1434        }
1435        if (what & eLayerChanged) {
1436            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1437            if (layer->setLayer(s.z)) {
1438                mCurrentState.layersSortedByZ.removeAt(idx);
1439                mCurrentState.layersSortedByZ.add(layer);
1440                // we need traversal (state changed)
1441                // AND transaction (list changed)
1442                flags |= eTransactionNeeded|eTraversalNeeded;
1443            }
1444        }
1445        if (what & eSizeChanged) {
1446            if (layer->setSize(s.w, s.h)) {
1447                flags |= eTraversalNeeded;
1448            }
1449        }
1450        if (what & eAlphaChanged) {
1451            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1452                flags |= eTraversalNeeded;
1453        }
1454        if (what & eMatrixChanged) {
1455            if (layer->setMatrix(s.matrix))
1456                flags |= eTraversalNeeded;
1457        }
1458        if (what & eTransparentRegionChanged) {
1459            if (layer->setTransparentRegionHint(s.transparentRegion))
1460                flags |= eTraversalNeeded;
1461        }
1462        if (what & eVisibilityChanged) {
1463            if (layer->setFlags(s.flags, s.mask))
1464                flags |= eTraversalNeeded;
1465        }
1466        if (what & eCropChanged) {
1467            if (layer->setCrop(s.crop))
1468                flags |= eTraversalNeeded;
1469        }
1470    }
1471    return flags;
1472}
1473
1474// ---------------------------------------------------------------------------
1475
1476void SurfaceFlinger::onScreenAcquired() {
1477    ALOGD("Screen about to return, flinger = %p", this);
1478    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1479    hw.acquireScreen();
1480    mEventThread->onScreenAcquired();
1481    // this is a temporary work-around, eventually this should be called
1482    // by the power-manager
1483    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1484    // from this point on, SF will process updates again
1485    repaintEverything();
1486}
1487
1488void SurfaceFlinger::onScreenReleased() {
1489    ALOGD("About to give-up screen, flinger = %p", this);
1490    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1491    if (hw.isScreenAcquired()) {
1492        mEventThread->onScreenReleased();
1493        hw.releaseScreen();
1494        // from this point on, SF will stop drawing
1495    }
1496}
1497
1498void SurfaceFlinger::unblank() {
1499    class MessageScreenAcquired : public MessageBase {
1500        SurfaceFlinger* flinger;
1501    public:
1502        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1503        virtual bool handler() {
1504            flinger->onScreenAcquired();
1505            return true;
1506        }
1507    };
1508    sp<MessageBase> msg = new MessageScreenAcquired(this);
1509    postMessageSync(msg);
1510}
1511
1512void SurfaceFlinger::blank() {
1513    class MessageScreenReleased : public MessageBase {
1514        SurfaceFlinger* flinger;
1515    public:
1516        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1517        virtual bool handler() {
1518            flinger->onScreenReleased();
1519            return true;
1520        }
1521    };
1522    sp<MessageBase> msg = new MessageScreenReleased(this);
1523    postMessageSync(msg);
1524}
1525
1526// ---------------------------------------------------------------------------
1527
1528status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1529{
1530    const size_t SIZE = 4096;
1531    char buffer[SIZE];
1532    String8 result;
1533
1534    if (!PermissionCache::checkCallingPermission(sDump)) {
1535        snprintf(buffer, SIZE, "Permission Denial: "
1536                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1537                IPCThreadState::self()->getCallingPid(),
1538                IPCThreadState::self()->getCallingUid());
1539        result.append(buffer);
1540    } else {
1541        // Try to get the main lock, but don't insist if we can't
1542        // (this would indicate SF is stuck, but we want to be able to
1543        // print something in dumpsys).
1544        int retry = 3;
1545        while (mStateLock.tryLock()<0 && --retry>=0) {
1546            usleep(1000000);
1547        }
1548        const bool locked(retry >= 0);
1549        if (!locked) {
1550            snprintf(buffer, SIZE,
1551                    "SurfaceFlinger appears to be unresponsive, "
1552                    "dumping anyways (no locks held)\n");
1553            result.append(buffer);
1554        }
1555
1556        bool dumpAll = true;
1557        size_t index = 0;
1558        size_t numArgs = args.size();
1559        if (numArgs) {
1560            if ((index < numArgs) &&
1561                    (args[index] == String16("--list"))) {
1562                index++;
1563                listLayersLocked(args, index, result, buffer, SIZE);
1564                dumpAll = false;
1565            }
1566
1567            if ((index < numArgs) &&
1568                    (args[index] == String16("--latency"))) {
1569                index++;
1570                dumpStatsLocked(args, index, result, buffer, SIZE);
1571                dumpAll = false;
1572            }
1573
1574            if ((index < numArgs) &&
1575                    (args[index] == String16("--latency-clear"))) {
1576                index++;
1577                clearStatsLocked(args, index, result, buffer, SIZE);
1578                dumpAll = false;
1579            }
1580        }
1581
1582        if (dumpAll) {
1583            dumpAllLocked(result, buffer, SIZE);
1584        }
1585
1586        if (locked) {
1587            mStateLock.unlock();
1588        }
1589    }
1590    write(fd, result.string(), result.size());
1591    return NO_ERROR;
1592}
1593
1594void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1595        String8& result, char* buffer, size_t SIZE) const
1596{
1597    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1598    const size_t count = currentLayers.size();
1599    for (size_t i=0 ; i<count ; i++) {
1600        const sp<LayerBase>& layer(currentLayers[i]);
1601        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1602        result.append(buffer);
1603    }
1604}
1605
1606void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1607        String8& result, char* buffer, size_t SIZE) const
1608{
1609    String8 name;
1610    if (index < args.size()) {
1611        name = String8(args[index]);
1612        index++;
1613    }
1614
1615    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1616    const size_t count = currentLayers.size();
1617    for (size_t i=0 ; i<count ; i++) {
1618        const sp<LayerBase>& layer(currentLayers[i]);
1619        if (name.isEmpty()) {
1620            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1621            result.append(buffer);
1622        }
1623        if (name.isEmpty() || (name == layer->getName())) {
1624            layer->dumpStats(result, buffer, SIZE);
1625        }
1626    }
1627}
1628
1629void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1630        String8& result, char* buffer, size_t SIZE) const
1631{
1632    String8 name;
1633    if (index < args.size()) {
1634        name = String8(args[index]);
1635        index++;
1636    }
1637
1638    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1639    const size_t count = currentLayers.size();
1640    for (size_t i=0 ; i<count ; i++) {
1641        const sp<LayerBase>& layer(currentLayers[i]);
1642        if (name.isEmpty() || (name == layer->getName())) {
1643            layer->clearStats();
1644        }
1645    }
1646}
1647
1648void SurfaceFlinger::dumpAllLocked(
1649        String8& result, char* buffer, size_t SIZE) const
1650{
1651    // figure out if we're stuck somewhere
1652    const nsecs_t now = systemTime();
1653    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1654    const nsecs_t inTransaction(mDebugInTransaction);
1655    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1656    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1657
1658    /*
1659     * Dump the visible layer list
1660     */
1661    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1662    const size_t count = currentLayers.size();
1663    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1664    result.append(buffer);
1665    for (size_t i=0 ; i<count ; i++) {
1666        const sp<LayerBase>& layer(currentLayers[i]);
1667        layer->dump(result, buffer, SIZE);
1668    }
1669
1670    /*
1671     * Dump the layers in the purgatory
1672     */
1673
1674    const size_t purgatorySize = mLayerPurgatory.size();
1675    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1676    result.append(buffer);
1677    for (size_t i=0 ; i<purgatorySize ; i++) {
1678        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1679        layer->shortDump(result, buffer, SIZE);
1680    }
1681
1682    /*
1683     * Dump SurfaceFlinger global state
1684     */
1685
1686    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1687    result.append(buffer);
1688
1689    const DisplayHardware& hw(getDefaultDisplayHardware());
1690    const GLExtensions& extensions(GLExtensions::getInstance());
1691    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1692            extensions.getVendor(),
1693            extensions.getRenderer(),
1694            extensions.getVersion());
1695    result.append(buffer);
1696
1697    snprintf(buffer, SIZE, "EGL : %s\n",
1698            eglQueryString(hw.getEGLDisplay(),
1699                    EGL_VERSION_HW_ANDROID));
1700    result.append(buffer);
1701
1702    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1703    result.append(buffer);
1704
1705    mWormholeRegion.dump(result, "WormholeRegion");
1706    snprintf(buffer, SIZE,
1707            "  orientation=%d, canDraw=%d\n",
1708            mCurrentState.orientation, hw.canDraw());
1709    result.append(buffer);
1710    snprintf(buffer, SIZE,
1711            "  last eglSwapBuffers() time: %f us\n"
1712            "  last transaction time     : %f us\n"
1713            "  transaction-flags         : %08x\n"
1714            "  refresh-rate              : %f fps\n"
1715            "  x-dpi                     : %f\n"
1716            "  y-dpi                     : %f\n"
1717            "  density                   : %f\n",
1718            mLastSwapBufferTime/1000.0,
1719            mLastTransactionTime/1000.0,
1720            mTransactionFlags,
1721            hw.getRefreshRate(),
1722            hw.getDpiX(),
1723            hw.getDpiY(),
1724            hw.getDensity());
1725    result.append(buffer);
1726
1727    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1728            inSwapBuffersDuration/1000.0);
1729    result.append(buffer);
1730
1731    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1732            inTransactionDuration/1000.0);
1733    result.append(buffer);
1734
1735    /*
1736     * VSYNC state
1737     */
1738    mEventThread->dump(result, buffer, SIZE);
1739
1740    /*
1741     * Dump HWComposer state
1742     */
1743    HWComposer& hwc(hw.getHwComposer());
1744    snprintf(buffer, SIZE, "h/w composer state:\n");
1745    result.append(buffer);
1746    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1747            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1748                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1749    result.append(buffer);
1750    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1751
1752    /*
1753     * Dump gralloc state
1754     */
1755    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1756    alloc.dump(result);
1757    hw.dump(result);
1758}
1759
1760status_t SurfaceFlinger::onTransact(
1761    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1762{
1763    switch (code) {
1764        case CREATE_CONNECTION:
1765        case SET_TRANSACTION_STATE:
1766        case SET_ORIENTATION:
1767        case BOOT_FINISHED:
1768        case TURN_ELECTRON_BEAM_OFF:
1769        case TURN_ELECTRON_BEAM_ON:
1770        case BLANK:
1771        case UNBLANK:
1772        {
1773            // codes that require permission check
1774            IPCThreadState* ipc = IPCThreadState::self();
1775            const int pid = ipc->getCallingPid();
1776            const int uid = ipc->getCallingUid();
1777            if ((uid != AID_GRAPHICS) &&
1778                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1779                ALOGE("Permission Denial: "
1780                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1781                return PERMISSION_DENIED;
1782            }
1783            break;
1784        }
1785        case CAPTURE_SCREEN:
1786        {
1787            // codes that require permission check
1788            IPCThreadState* ipc = IPCThreadState::self();
1789            const int pid = ipc->getCallingPid();
1790            const int uid = ipc->getCallingUid();
1791            if ((uid != AID_GRAPHICS) &&
1792                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1793                ALOGE("Permission Denial: "
1794                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1795                return PERMISSION_DENIED;
1796            }
1797            break;
1798        }
1799    }
1800
1801    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1802    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1803        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1804        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1805            IPCThreadState* ipc = IPCThreadState::self();
1806            const int pid = ipc->getCallingPid();
1807            const int uid = ipc->getCallingUid();
1808            ALOGE("Permission Denial: "
1809                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1810            return PERMISSION_DENIED;
1811        }
1812        int n;
1813        switch (code) {
1814            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1815            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1816                return NO_ERROR;
1817            case 1002:  // SHOW_UPDATES
1818                n = data.readInt32();
1819                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1820                invalidateHwcGeometry();
1821                repaintEverything();
1822                return NO_ERROR;
1823            case 1004:{ // repaint everything
1824                repaintEverything();
1825                return NO_ERROR;
1826            }
1827            case 1005:{ // force transaction
1828                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1829                return NO_ERROR;
1830            }
1831            case 1006:{ // send empty update
1832                signalRefresh();
1833                return NO_ERROR;
1834            }
1835            case 1008:  // toggle use of hw composer
1836                n = data.readInt32();
1837                mDebugDisableHWC = n ? 1 : 0;
1838                invalidateHwcGeometry();
1839                repaintEverything();
1840                return NO_ERROR;
1841            case 1009:  // toggle use of transform hint
1842                n = data.readInt32();
1843                mDebugDisableTransformHint = n ? 1 : 0;
1844                invalidateHwcGeometry();
1845                repaintEverything();
1846                return NO_ERROR;
1847            case 1010:  // interrogate.
1848                reply->writeInt32(0);
1849                reply->writeInt32(0);
1850                reply->writeInt32(mDebugRegion);
1851                reply->writeInt32(0);
1852                reply->writeInt32(mDebugDisableHWC);
1853                return NO_ERROR;
1854            case 1013: {
1855                Mutex::Autolock _l(mStateLock);
1856                const DisplayHardware& hw(getDefaultDisplayHardware());
1857                reply->writeInt32(hw.getPageFlipCount());
1858            }
1859            return NO_ERROR;
1860        }
1861    }
1862    return err;
1863}
1864
1865void SurfaceFlinger::repaintEverything() {
1866    const DisplayHardware& hw(getDefaultDisplayHardware()); // FIXME: this cannot be bound the default display
1867    const Rect bounds(hw.getBounds());
1868    setInvalidateRegion(Region(bounds));
1869    signalTransaction();
1870}
1871
1872void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1873    Mutex::Autolock _l(mInvalidateLock);
1874    mInvalidateRegion = reg;
1875}
1876
1877Region SurfaceFlinger::getAndClearInvalidateRegion() {
1878    Mutex::Autolock _l(mInvalidateLock);
1879    Region reg(mInvalidateRegion);
1880    mInvalidateRegion.clear();
1881    return reg;
1882}
1883
1884// ---------------------------------------------------------------------------
1885
1886status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1887        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1888{
1889    Mutex::Autolock _l(mStateLock);
1890    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1891}
1892
1893status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1894        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1895{
1896    ATRACE_CALL();
1897
1898    if (!GLExtensions::getInstance().haveFramebufferObject())
1899        return INVALID_OPERATION;
1900
1901    // get screen geometry
1902    const DisplayHardware& hw(getDisplayHardware(dpy));
1903    const uint32_t hw_w = hw.getWidth();
1904    const uint32_t hw_h = hw.getHeight();
1905    GLfloat u = 1;
1906    GLfloat v = 1;
1907
1908    // make sure to clear all GL error flags
1909    while ( glGetError() != GL_NO_ERROR ) ;
1910
1911    // create a FBO
1912    GLuint name, tname;
1913    glGenTextures(1, &tname);
1914    glBindTexture(GL_TEXTURE_2D, tname);
1915    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1916    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1917    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1918            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1919    if (glGetError() != GL_NO_ERROR) {
1920        while ( glGetError() != GL_NO_ERROR ) ;
1921        GLint tw = (2 << (31 - clz(hw_w)));
1922        GLint th = (2 << (31 - clz(hw_h)));
1923        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1924                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1925        u = GLfloat(hw_w) / tw;
1926        v = GLfloat(hw_h) / th;
1927    }
1928    glGenFramebuffersOES(1, &name);
1929    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1930    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1931            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1932
1933    // redraw the screen entirely...
1934    glDisable(GL_TEXTURE_EXTERNAL_OES);
1935    glDisable(GL_TEXTURE_2D);
1936    glClearColor(0,0,0,1);
1937    glClear(GL_COLOR_BUFFER_BIT);
1938    glMatrixMode(GL_MODELVIEW);
1939    glLoadIdentity();
1940    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1941    const size_t count = layers.size();
1942    for (size_t i=0 ; i<count ; ++i) {
1943        const sp<LayerBase>& layer(layers[i]);
1944        layer->drawForSreenShot(hw);
1945    }
1946
1947    hw.compositionComplete();
1948
1949    // back to main framebuffer
1950    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1951    glDeleteFramebuffersOES(1, &name);
1952
1953    *textureName = tname;
1954    *uOut = u;
1955    *vOut = v;
1956    return NO_ERROR;
1957}
1958
1959// ---------------------------------------------------------------------------
1960
1961class VSyncWaiter {
1962    DisplayEventReceiver::Event buffer[4];
1963    sp<Looper> looper;
1964    sp<IDisplayEventConnection> events;
1965    sp<BitTube> eventTube;
1966public:
1967    VSyncWaiter(const sp<EventThread>& eventThread) {
1968        looper = new Looper(true);
1969        events = eventThread->createEventConnection();
1970        eventTube = events->getDataChannel();
1971        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
1972        events->requestNextVsync();
1973    }
1974
1975    void wait() {
1976        ssize_t n;
1977
1978        looper->pollOnce(-1);
1979        // we don't handle any errors here, it doesn't matter
1980        // and we don't want to take the risk to get stuck.
1981
1982        // drain the events...
1983        while ((n = DisplayEventReceiver::getEvents(
1984                eventTube, buffer, 4)) > 0) ;
1985
1986        events->requestNextVsync();
1987    }
1988};
1989
1990status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1991{
1992    // get screen geometry
1993    const DisplayHardware& hw(getDefaultDisplayHardware());
1994    const uint32_t hw_w = hw.getWidth();
1995    const uint32_t hw_h = hw.getHeight();
1996    const Region screenBounds(hw.getBounds());
1997
1998    GLfloat u, v;
1999    GLuint tname;
2000    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2001    if (result != NO_ERROR) {
2002        return result;
2003    }
2004
2005    GLfloat vtx[8];
2006    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2007    glBindTexture(GL_TEXTURE_2D, tname);
2008    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2009    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2010    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2011    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2012    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2013    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2014    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2015    glVertexPointer(2, GL_FLOAT, 0, vtx);
2016
2017    /*
2018     * Texture coordinate mapping
2019     *
2020     *                 u
2021     *    1 +----------+---+
2022     *      |     |    |   |  image is inverted
2023     *      |     V    |   |  w.r.t. the texture
2024     *  1-v +----------+   |  coordinates
2025     *      |              |
2026     *      |              |
2027     *      |              |
2028     *    0 +--------------+
2029     *      0              1
2030     *
2031     */
2032
2033    class s_curve_interpolator {
2034        const float nbFrames, s, v;
2035    public:
2036        s_curve_interpolator(int nbFrames, float s)
2037        : nbFrames(1.0f / (nbFrames-1)), s(s),
2038          v(1.0f + expf(-s + 0.5f*s)) {
2039        }
2040        float operator()(int f) {
2041            const float x = f * nbFrames;
2042            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2043        }
2044    };
2045
2046    class v_stretch {
2047        const GLfloat hw_w, hw_h;
2048    public:
2049        v_stretch(uint32_t hw_w, uint32_t hw_h)
2050        : hw_w(hw_w), hw_h(hw_h) {
2051        }
2052        void operator()(GLfloat* vtx, float v) {
2053            const GLfloat w = hw_w + (hw_w * v);
2054            const GLfloat h = hw_h - (hw_h * v);
2055            const GLfloat x = (hw_w - w) * 0.5f;
2056            const GLfloat y = (hw_h - h) * 0.5f;
2057            vtx[0] = x;         vtx[1] = y;
2058            vtx[2] = x;         vtx[3] = y + h;
2059            vtx[4] = x + w;     vtx[5] = y + h;
2060            vtx[6] = x + w;     vtx[7] = y;
2061        }
2062    };
2063
2064    class h_stretch {
2065        const GLfloat hw_w, hw_h;
2066    public:
2067        h_stretch(uint32_t hw_w, uint32_t hw_h)
2068        : hw_w(hw_w), hw_h(hw_h) {
2069        }
2070        void operator()(GLfloat* vtx, float v) {
2071            const GLfloat w = hw_w - (hw_w * v);
2072            const GLfloat h = 1.0f;
2073            const GLfloat x = (hw_w - w) * 0.5f;
2074            const GLfloat y = (hw_h - h) * 0.5f;
2075            vtx[0] = x;         vtx[1] = y;
2076            vtx[2] = x;         vtx[3] = y + h;
2077            vtx[4] = x + w;     vtx[5] = y + h;
2078            vtx[6] = x + w;     vtx[7] = y;
2079        }
2080    };
2081
2082    VSyncWaiter vsync(mEventThread);
2083
2084    // the full animation is 24 frames
2085    char value[PROPERTY_VALUE_MAX];
2086    property_get("debug.sf.electron_frames", value, "24");
2087    int nbFrames = (atoi(value) + 1) >> 1;
2088    if (nbFrames <= 0) // just in case
2089        nbFrames = 24;
2090
2091    s_curve_interpolator itr(nbFrames, 7.5f);
2092    s_curve_interpolator itg(nbFrames, 8.0f);
2093    s_curve_interpolator itb(nbFrames, 8.5f);
2094
2095    v_stretch vverts(hw_w, hw_h);
2096
2097    glMatrixMode(GL_TEXTURE);
2098    glLoadIdentity();
2099    glMatrixMode(GL_MODELVIEW);
2100    glLoadIdentity();
2101
2102    glEnable(GL_BLEND);
2103    glBlendFunc(GL_ONE, GL_ONE);
2104    for (int i=0 ; i<nbFrames ; i++) {
2105        float x, y, w, h;
2106        const float vr = itr(i);
2107        const float vg = itg(i);
2108        const float vb = itb(i);
2109
2110        // wait for vsync
2111        vsync.wait();
2112
2113        // clear screen
2114        glColorMask(1,1,1,1);
2115        glClear(GL_COLOR_BUFFER_BIT);
2116        glEnable(GL_TEXTURE_2D);
2117
2118        // draw the red plane
2119        vverts(vtx, vr);
2120        glColorMask(1,0,0,1);
2121        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2122
2123        // draw the green plane
2124        vverts(vtx, vg);
2125        glColorMask(0,1,0,1);
2126        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2127
2128        // draw the blue plane
2129        vverts(vtx, vb);
2130        glColorMask(0,0,1,1);
2131        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2132
2133        // draw the white highlight (we use the last vertices)
2134        glDisable(GL_TEXTURE_2D);
2135        glColorMask(1,1,1,1);
2136        glColor4f(vg, vg, vg, 1);
2137        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2138        hw.flip(screenBounds);
2139    }
2140
2141    h_stretch hverts(hw_w, hw_h);
2142    glDisable(GL_BLEND);
2143    glDisable(GL_TEXTURE_2D);
2144    glColorMask(1,1,1,1);
2145    for (int i=0 ; i<nbFrames ; i++) {
2146        const float v = itg(i);
2147        hverts(vtx, v);
2148
2149        // wait for vsync
2150        vsync.wait();
2151
2152        glClear(GL_COLOR_BUFFER_BIT);
2153        glColor4f(1-v, 1-v, 1-v, 1);
2154        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2155        hw.flip(screenBounds);
2156    }
2157
2158    glColorMask(1,1,1,1);
2159    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2160    glDeleteTextures(1, &tname);
2161    glDisable(GL_TEXTURE_2D);
2162    glDisable(GL_BLEND);
2163    return NO_ERROR;
2164}
2165
2166status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2167{
2168    status_t result = PERMISSION_DENIED;
2169
2170    if (!GLExtensions::getInstance().haveFramebufferObject())
2171        return INVALID_OPERATION;
2172
2173
2174    // get screen geometry
2175    const DisplayHardware& hw(getDefaultDisplayHardware());
2176    const uint32_t hw_w = hw.getWidth();
2177    const uint32_t hw_h = hw.getHeight();
2178    const Region screenBounds(hw.bounds());
2179
2180    GLfloat u, v;
2181    GLuint tname;
2182    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2183    if (result != NO_ERROR) {
2184        return result;
2185    }
2186
2187    GLfloat vtx[8];
2188    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2189    glBindTexture(GL_TEXTURE_2D, tname);
2190    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2191    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2192    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2193    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2194    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2195    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2196    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2197    glVertexPointer(2, GL_FLOAT, 0, vtx);
2198
2199    class s_curve_interpolator {
2200        const float nbFrames, s, v;
2201    public:
2202        s_curve_interpolator(int nbFrames, float s)
2203        : nbFrames(1.0f / (nbFrames-1)), s(s),
2204          v(1.0f + expf(-s + 0.5f*s)) {
2205        }
2206        float operator()(int f) {
2207            const float x = f * nbFrames;
2208            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2209        }
2210    };
2211
2212    class v_stretch {
2213        const GLfloat hw_w, hw_h;
2214    public:
2215        v_stretch(uint32_t hw_w, uint32_t hw_h)
2216        : hw_w(hw_w), hw_h(hw_h) {
2217        }
2218        void operator()(GLfloat* vtx, float v) {
2219            const GLfloat w = hw_w + (hw_w * v);
2220            const GLfloat h = hw_h - (hw_h * v);
2221            const GLfloat x = (hw_w - w) * 0.5f;
2222            const GLfloat y = (hw_h - h) * 0.5f;
2223            vtx[0] = x;         vtx[1] = y;
2224            vtx[2] = x;         vtx[3] = y + h;
2225            vtx[4] = x + w;     vtx[5] = y + h;
2226            vtx[6] = x + w;     vtx[7] = y;
2227        }
2228    };
2229
2230    class h_stretch {
2231        const GLfloat hw_w, hw_h;
2232    public:
2233        h_stretch(uint32_t hw_w, uint32_t hw_h)
2234        : hw_w(hw_w), hw_h(hw_h) {
2235        }
2236        void operator()(GLfloat* vtx, float v) {
2237            const GLfloat w = hw_w - (hw_w * v);
2238            const GLfloat h = 1.0f;
2239            const GLfloat x = (hw_w - w) * 0.5f;
2240            const GLfloat y = (hw_h - h) * 0.5f;
2241            vtx[0] = x;         vtx[1] = y;
2242            vtx[2] = x;         vtx[3] = y + h;
2243            vtx[4] = x + w;     vtx[5] = y + h;
2244            vtx[6] = x + w;     vtx[7] = y;
2245        }
2246    };
2247
2248    VSyncWaiter vsync(mEventThread);
2249
2250    // the full animation is 12 frames
2251    int nbFrames = 8;
2252    s_curve_interpolator itr(nbFrames, 7.5f);
2253    s_curve_interpolator itg(nbFrames, 8.0f);
2254    s_curve_interpolator itb(nbFrames, 8.5f);
2255
2256    h_stretch hverts(hw_w, hw_h);
2257    glDisable(GL_BLEND);
2258    glDisable(GL_TEXTURE_2D);
2259    glColorMask(1,1,1,1);
2260    for (int i=nbFrames-1 ; i>=0 ; i--) {
2261        const float v = itg(i);
2262        hverts(vtx, v);
2263
2264        // wait for vsync
2265        vsync.wait();
2266
2267        glClear(GL_COLOR_BUFFER_BIT);
2268        glColor4f(1-v, 1-v, 1-v, 1);
2269        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2270        hw.flip(screenBounds);
2271    }
2272
2273    nbFrames = 4;
2274    v_stretch vverts(hw_w, hw_h);
2275    glEnable(GL_BLEND);
2276    glBlendFunc(GL_ONE, GL_ONE);
2277    for (int i=nbFrames-1 ; i>=0 ; i--) {
2278        float x, y, w, h;
2279        const float vr = itr(i);
2280        const float vg = itg(i);
2281        const float vb = itb(i);
2282
2283        // wait for vsync
2284        vsync.wait();
2285
2286        // clear screen
2287        glColorMask(1,1,1,1);
2288        glClear(GL_COLOR_BUFFER_BIT);
2289        glEnable(GL_TEXTURE_2D);
2290
2291        // draw the red plane
2292        vverts(vtx, vr);
2293        glColorMask(1,0,0,1);
2294        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2295
2296        // draw the green plane
2297        vverts(vtx, vg);
2298        glColorMask(0,1,0,1);
2299        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2300
2301        // draw the blue plane
2302        vverts(vtx, vb);
2303        glColorMask(0,0,1,1);
2304        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2305
2306        hw.flip(screenBounds);
2307    }
2308
2309    glColorMask(1,1,1,1);
2310    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2311    glDeleteTextures(1, &tname);
2312    glDisable(GL_TEXTURE_2D);
2313    glDisable(GL_BLEND);
2314
2315    return NO_ERROR;
2316}
2317
2318// ---------------------------------------------------------------------------
2319
2320status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2321{
2322    ATRACE_CALL();
2323
2324    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2325    if (!hw.canDraw()) {
2326        // we're already off
2327        return NO_ERROR;
2328    }
2329
2330    // turn off hwc while we're doing the animation
2331    hw.getHwComposer().disable();
2332    // and make sure to turn it back on (if needed) next time we compose
2333    invalidateHwcGeometry();
2334
2335    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2336        electronBeamOffAnimationImplLocked();
2337    }
2338
2339    // always clear the whole screen at the end of the animation
2340    glClearColor(0,0,0,1);
2341    glClear(GL_COLOR_BUFFER_BIT);
2342    hw.flip( Region(hw.bounds()) );
2343
2344    return NO_ERROR;
2345}
2346
2347status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2348{
2349    class MessageTurnElectronBeamOff : public MessageBase {
2350        SurfaceFlinger* flinger;
2351        int32_t mode;
2352        status_t result;
2353    public:
2354        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2355            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2356        }
2357        status_t getResult() const {
2358            return result;
2359        }
2360        virtual bool handler() {
2361            Mutex::Autolock _l(flinger->mStateLock);
2362            result = flinger->turnElectronBeamOffImplLocked(mode);
2363            return true;
2364        }
2365    };
2366
2367    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2368    status_t res = postMessageSync(msg);
2369    if (res == NO_ERROR) {
2370        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2371
2372        // work-around: when the power-manager calls us we activate the
2373        // animation. eventually, the "on" animation will be called
2374        // by the power-manager itself
2375        mElectronBeamAnimationMode = mode;
2376    }
2377    return res;
2378}
2379
2380// ---------------------------------------------------------------------------
2381
2382status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2383{
2384    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2385    if (hw.canDraw()) {
2386        // we're already on
2387        return NO_ERROR;
2388    }
2389    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2390        electronBeamOnAnimationImplLocked();
2391    }
2392
2393    // make sure to redraw the whole screen when the animation is done
2394    mDirtyRegion.set(hw.bounds());
2395    signalTransaction();
2396
2397    return NO_ERROR;
2398}
2399
2400status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2401{
2402    class MessageTurnElectronBeamOn : public MessageBase {
2403        SurfaceFlinger* flinger;
2404        int32_t mode;
2405        status_t result;
2406    public:
2407        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2408            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2409        }
2410        status_t getResult() const {
2411            return result;
2412        }
2413        virtual bool handler() {
2414            Mutex::Autolock _l(flinger->mStateLock);
2415            result = flinger->turnElectronBeamOnImplLocked(mode);
2416            return true;
2417        }
2418    };
2419
2420    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2421    return NO_ERROR;
2422}
2423
2424// ---------------------------------------------------------------------------
2425
2426status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2427        sp<IMemoryHeap>* heap,
2428        uint32_t* w, uint32_t* h, PixelFormat* f,
2429        uint32_t sw, uint32_t sh,
2430        uint32_t minLayerZ, uint32_t maxLayerZ)
2431{
2432    ATRACE_CALL();
2433
2434    status_t result = PERMISSION_DENIED;
2435
2436    // only one display supported for now
2437    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2438        return BAD_VALUE;
2439    }
2440
2441    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2442        return INVALID_OPERATION;
2443    }
2444
2445    // get screen geometry
2446    const DisplayHardware& hw(getDisplayHardware(dpy));
2447    const uint32_t hw_w = hw.getWidth();
2448    const uint32_t hw_h = hw.getHeight();
2449
2450    // if we have secure windows on this display, never allow the screen capture
2451    if (hw.getSecureLayerVisible()) {
2452        return PERMISSION_DENIED;
2453    }
2454
2455    if ((sw > hw_w) || (sh > hw_h)) {
2456        return BAD_VALUE;
2457    }
2458
2459    sw = (!sw) ? hw_w : sw;
2460    sh = (!sh) ? hw_h : sh;
2461    const size_t size = sw * sh * 4;
2462
2463    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2464    //        sw, sh, minLayerZ, maxLayerZ);
2465
2466    // make sure to clear all GL error flags
2467    while ( glGetError() != GL_NO_ERROR ) ;
2468
2469    // create a FBO
2470    GLuint name, tname;
2471    glGenRenderbuffersOES(1, &tname);
2472    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2473    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2474
2475    glGenFramebuffersOES(1, &name);
2476    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2477    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2478            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2479
2480    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2481
2482    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2483
2484        // invert everything, b/c glReadPixel() below will invert the FB
2485        glViewport(0, 0, sw, sh);
2486        glMatrixMode(GL_PROJECTION);
2487        glPushMatrix();
2488        glLoadIdentity();
2489        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2490        glMatrixMode(GL_MODELVIEW);
2491
2492        // redraw the screen entirely...
2493        glClearColor(0,0,0,1);
2494        glClear(GL_COLOR_BUFFER_BIT);
2495
2496        const LayerVector& layers(mDrawingState.layersSortedByZ);
2497        const size_t count = layers.size();
2498        for (size_t i=0 ; i<count ; ++i) {
2499            const sp<LayerBase>& layer(layers[i]);
2500            const uint32_t flags = layer->drawingState().flags;
2501            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2502                const uint32_t z = layer->drawingState().z;
2503                if (z >= minLayerZ && z <= maxLayerZ) {
2504                    layer->drawForSreenShot(hw);
2505                }
2506            }
2507        }
2508
2509        // check for errors and return screen capture
2510        if (glGetError() != GL_NO_ERROR) {
2511            // error while rendering
2512            result = INVALID_OPERATION;
2513        } else {
2514            // allocate shared memory large enough to hold the
2515            // screen capture
2516            sp<MemoryHeapBase> base(
2517                    new MemoryHeapBase(size, 0, "screen-capture") );
2518            void* const ptr = base->getBase();
2519            if (ptr) {
2520                // capture the screen with glReadPixels()
2521                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2522                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2523                if (glGetError() == GL_NO_ERROR) {
2524                    *heap = base;
2525                    *w = sw;
2526                    *h = sh;
2527                    *f = PIXEL_FORMAT_RGBA_8888;
2528                    result = NO_ERROR;
2529                }
2530            } else {
2531                result = NO_MEMORY;
2532            }
2533        }
2534        glViewport(0, 0, hw_w, hw_h);
2535        glMatrixMode(GL_PROJECTION);
2536        glPopMatrix();
2537        glMatrixMode(GL_MODELVIEW);
2538    } else {
2539        result = BAD_VALUE;
2540    }
2541
2542    // release FBO resources
2543    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2544    glDeleteRenderbuffersOES(1, &tname);
2545    glDeleteFramebuffersOES(1, &name);
2546
2547    hw.compositionComplete();
2548
2549    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2550
2551    return result;
2552}
2553
2554
2555status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2556        sp<IMemoryHeap>* heap,
2557        uint32_t* width, uint32_t* height, PixelFormat* format,
2558        uint32_t sw, uint32_t sh,
2559        uint32_t minLayerZ, uint32_t maxLayerZ)
2560{
2561    // only one display supported for now
2562    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2563        return BAD_VALUE;
2564
2565    if (!GLExtensions::getInstance().haveFramebufferObject())
2566        return INVALID_OPERATION;
2567
2568    class MessageCaptureScreen : public MessageBase {
2569        SurfaceFlinger* flinger;
2570        DisplayID dpy;
2571        sp<IMemoryHeap>* heap;
2572        uint32_t* w;
2573        uint32_t* h;
2574        PixelFormat* f;
2575        uint32_t sw;
2576        uint32_t sh;
2577        uint32_t minLayerZ;
2578        uint32_t maxLayerZ;
2579        status_t result;
2580    public:
2581        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2582                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2583                uint32_t sw, uint32_t sh,
2584                uint32_t minLayerZ, uint32_t maxLayerZ)
2585            : flinger(flinger), dpy(dpy),
2586              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2587              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2588              result(PERMISSION_DENIED)
2589        {
2590        }
2591        status_t getResult() const {
2592            return result;
2593        }
2594        virtual bool handler() {
2595            Mutex::Autolock _l(flinger->mStateLock);
2596            result = flinger->captureScreenImplLocked(dpy,
2597                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2598            return true;
2599        }
2600    };
2601
2602    sp<MessageBase> msg = new MessageCaptureScreen(this,
2603            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2604    status_t res = postMessageSync(msg);
2605    if (res == NO_ERROR) {
2606        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2607    }
2608    return res;
2609}
2610
2611// ---------------------------------------------------------------------------
2612
2613sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2614{
2615    sp<Layer> result;
2616    Mutex::Autolock _l(mStateLock);
2617    result = mLayerMap.valueFor( sur->asBinder() ).promote();
2618    return result;
2619}
2620
2621// ---------------------------------------------------------------------------
2622
2623GraphicBufferAlloc::GraphicBufferAlloc() {}
2624
2625GraphicBufferAlloc::~GraphicBufferAlloc() {}
2626
2627sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2628        PixelFormat format, uint32_t usage, status_t* error) {
2629    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2630    status_t err = graphicBuffer->initCheck();
2631    *error = err;
2632    if (err != 0 || graphicBuffer->handle == 0) {
2633        if (err == NO_MEMORY) {
2634            GraphicBuffer::dumpAllocationsToSystemLog();
2635        }
2636        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2637             "failed (%s), handle=%p",
2638                w, h, strerror(-err), graphicBuffer->handle);
2639        return 0;
2640    }
2641    return graphicBuffer;
2642}
2643
2644// ---------------------------------------------------------------------------
2645
2646}; // namespace android
2647