1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.concurrent.atomic.AtomicInteger;
10import java.util.concurrent.locks.Condition;
11import java.util.concurrent.locks.ReentrantLock;
12import java.util.AbstractQueue;
13import java.util.Collection;
14import java.util.Iterator;
15import java.util.NoSuchElementException;
16
17// BEGIN android-note
18// removed link to collections framework docs
19// END android-note
20
21/**
22 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
23 * linked nodes.
24 * This queue orders elements FIFO (first-in-first-out).
25 * The <em>head</em> of the queue is that element that has been on the
26 * queue the longest time.
27 * The <em>tail</em> of the queue is that element that has been on the
28 * queue the shortest time. New elements
29 * are inserted at the tail of the queue, and the queue retrieval
30 * operations obtain elements at the head of the queue.
31 * Linked queues typically have higher throughput than array-based queues but
32 * less predictable performance in most concurrent applications.
33 *
34 * <p> The optional capacity bound constructor argument serves as a
35 * way to prevent excessive queue expansion. The capacity, if unspecified,
36 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
37 * dynamically created upon each insertion unless this would bring the
38 * queue above capacity.
39 *
40 * <p>This class and its iterator implement all of the
41 * <em>optional</em> methods of the {@link Collection} and {@link
42 * Iterator} interfaces.
43 *
44 * @since 1.5
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 *
48 */
49public class LinkedBlockingQueue<E> extends AbstractQueue<E>
50        implements BlockingQueue<E>, java.io.Serializable {
51    private static final long serialVersionUID = -6903933977591709194L;
52
53    /*
54     * A variant of the "two lock queue" algorithm.  The putLock gates
55     * entry to put (and offer), and has an associated condition for
56     * waiting puts.  Similarly for the takeLock.  The "count" field
57     * that they both rely on is maintained as an atomic to avoid
58     * needing to get both locks in most cases. Also, to minimize need
59     * for puts to get takeLock and vice-versa, cascading notifies are
60     * used. When a put notices that it has enabled at least one take,
61     * it signals taker. That taker in turn signals others if more
62     * items have been entered since the signal. And symmetrically for
63     * takes signalling puts. Operations such as remove(Object) and
64     * iterators acquire both locks.
65     *
66     * Visibility between writers and readers is provided as follows:
67     *
68     * Whenever an element is enqueued, the putLock is acquired and
69     * count updated.  A subsequent reader guarantees visibility to the
70     * enqueued Node by either acquiring the putLock (via fullyLock)
71     * or by acquiring the takeLock, and then reading n = count.get();
72     * this gives visibility to the first n items.
73     *
74     * To implement weakly consistent iterators, it appears we need to
75     * keep all Nodes GC-reachable from a predecessor dequeued Node.
76     * That would cause two problems:
77     * - allow a rogue Iterator to cause unbounded memory retention
78     * - cause cross-generational linking of old Nodes to new Nodes if
79     *   a Node was tenured while live, which generational GCs have a
80     *   hard time dealing with, causing repeated major collections.
81     * However, only non-deleted Nodes need to be reachable from
82     * dequeued Nodes, and reachability does not necessarily have to
83     * be of the kind understood by the GC.  We use the trick of
84     * linking a Node that has just been dequeued to itself.  Such a
85     * self-link implicitly means to advance to head.next.
86     */
87
88    /**
89     * Linked list node class
90     */
91    static class Node<E> {
92        E item;
93
94        /**
95         * One of:
96         * - the real successor Node
97         * - this Node, meaning the successor is head.next
98         * - null, meaning there is no successor (this is the last node)
99         */
100        Node<E> next;
101
102        Node(E x) { item = x; }
103    }
104
105    /** The capacity bound, or Integer.MAX_VALUE if none */
106    private final int capacity;
107
108    /** Current number of elements */
109    private final AtomicInteger count = new AtomicInteger();
110
111    /**
112     * Head of linked list.
113     * Invariant: head.item == null
114     */
115    transient Node<E> head;
116
117    /**
118     * Tail of linked list.
119     * Invariant: last.next == null
120     */
121    private transient Node<E> last;
122
123    /** Lock held by take, poll, etc */
124    private final ReentrantLock takeLock = new ReentrantLock();
125
126    /** Wait queue for waiting takes */
127    private final Condition notEmpty = takeLock.newCondition();
128
129    /** Lock held by put, offer, etc */
130    private final ReentrantLock putLock = new ReentrantLock();
131
132    /** Wait queue for waiting puts */
133    private final Condition notFull = putLock.newCondition();
134
135    /**
136     * Signals a waiting take. Called only from put/offer (which do not
137     * otherwise ordinarily lock takeLock.)
138     */
139    private void signalNotEmpty() {
140        final ReentrantLock takeLock = this.takeLock;
141        takeLock.lock();
142        try {
143            notEmpty.signal();
144        } finally {
145            takeLock.unlock();
146        }
147    }
148
149    /**
150     * Signals a waiting put. Called only from take/poll.
151     */
152    private void signalNotFull() {
153        final ReentrantLock putLock = this.putLock;
154        putLock.lock();
155        try {
156            notFull.signal();
157        } finally {
158            putLock.unlock();
159        }
160    }
161
162    /**
163     * Links node at end of queue.
164     *
165     * @param node the node
166     */
167    private void enqueue(Node<E> node) {
168        // assert putLock.isHeldByCurrentThread();
169        // assert last.next == null;
170        last = last.next = node;
171    }
172
173    /**
174     * Removes a node from head of queue.
175     *
176     * @return the node
177     */
178    private E dequeue() {
179        // assert takeLock.isHeldByCurrentThread();
180        // assert head.item == null;
181        Node<E> h = head;
182        Node<E> first = h.next;
183        h.next = h; // help GC
184        head = first;
185        E x = first.item;
186        first.item = null;
187        return x;
188    }
189
190    /**
191     * Lock to prevent both puts and takes.
192     */
193    void fullyLock() {
194        putLock.lock();
195        takeLock.lock();
196    }
197
198    /**
199     * Unlock to allow both puts and takes.
200     */
201    void fullyUnlock() {
202        takeLock.unlock();
203        putLock.unlock();
204    }
205
206//     /**
207//      * Tells whether both locks are held by current thread.
208//      */
209//     boolean isFullyLocked() {
210//         return (putLock.isHeldByCurrentThread() &&
211//                 takeLock.isHeldByCurrentThread());
212//     }
213
214    /**
215     * Creates a {@code LinkedBlockingQueue} with a capacity of
216     * {@link Integer#MAX_VALUE}.
217     */
218    public LinkedBlockingQueue() {
219        this(Integer.MAX_VALUE);
220    }
221
222    /**
223     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
224     *
225     * @param capacity the capacity of this queue
226     * @throws IllegalArgumentException if {@code capacity} is not greater
227     *         than zero
228     */
229    public LinkedBlockingQueue(int capacity) {
230        if (capacity <= 0) throw new IllegalArgumentException();
231        this.capacity = capacity;
232        last = head = new Node<E>(null);
233    }
234
235    /**
236     * Creates a {@code LinkedBlockingQueue} with a capacity of
237     * {@link Integer#MAX_VALUE}, initially containing the elements of the
238     * given collection,
239     * added in traversal order of the collection's iterator.
240     *
241     * @param c the collection of elements to initially contain
242     * @throws NullPointerException if the specified collection or any
243     *         of its elements are null
244     */
245    public LinkedBlockingQueue(Collection<? extends E> c) {
246        this(Integer.MAX_VALUE);
247        final ReentrantLock putLock = this.putLock;
248        putLock.lock(); // Never contended, but necessary for visibility
249        try {
250            int n = 0;
251            for (E e : c) {
252                if (e == null)
253                    throw new NullPointerException();
254                if (n == capacity)
255                    throw new IllegalStateException("Queue full");
256                enqueue(new Node<E>(e));
257                ++n;
258            }
259            count.set(n);
260        } finally {
261            putLock.unlock();
262        }
263    }
264
265
266    // this doc comment is overridden to remove the reference to collections
267    // greater in size than Integer.MAX_VALUE
268    /**
269     * Returns the number of elements in this queue.
270     *
271     * @return the number of elements in this queue
272     */
273    public int size() {
274        return count.get();
275    }
276
277    // this doc comment is a modified copy of the inherited doc comment,
278    // without the reference to unlimited queues.
279    /**
280     * Returns the number of additional elements that this queue can ideally
281     * (in the absence of memory or resource constraints) accept without
282     * blocking. This is always equal to the initial capacity of this queue
283     * less the current {@code size} of this queue.
284     *
285     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
286     * an element will succeed by inspecting {@code remainingCapacity}
287     * because it may be the case that another thread is about to
288     * insert or remove an element.
289     */
290    public int remainingCapacity() {
291        return capacity - count.get();
292    }
293
294    /**
295     * Inserts the specified element at the tail of this queue, waiting if
296     * necessary for space to become available.
297     *
298     * @throws InterruptedException {@inheritDoc}
299     * @throws NullPointerException {@inheritDoc}
300     */
301    public void put(E e) throws InterruptedException {
302        if (e == null) throw new NullPointerException();
303        // Note: convention in all put/take/etc is to preset local var
304        // holding count negative to indicate failure unless set.
305        int c = -1;
306        Node<E> node = new Node<E>(e);
307        final ReentrantLock putLock = this.putLock;
308        final AtomicInteger count = this.count;
309        putLock.lockInterruptibly();
310        try {
311            /*
312             * Note that count is used in wait guard even though it is
313             * not protected by lock. This works because count can
314             * only decrease at this point (all other puts are shut
315             * out by lock), and we (or some other waiting put) are
316             * signalled if it ever changes from capacity. Similarly
317             * for all other uses of count in other wait guards.
318             */
319            while (count.get() == capacity) {
320                notFull.await();
321            }
322            enqueue(node);
323            c = count.getAndIncrement();
324            if (c + 1 < capacity)
325                notFull.signal();
326        } finally {
327            putLock.unlock();
328        }
329        if (c == 0)
330            signalNotEmpty();
331    }
332
333    /**
334     * Inserts the specified element at the tail of this queue, waiting if
335     * necessary up to the specified wait time for space to become available.
336     *
337     * @return {@code true} if successful, or {@code false} if
338     *         the specified waiting time elapses before space is available.
339     * @throws InterruptedException {@inheritDoc}
340     * @throws NullPointerException {@inheritDoc}
341     */
342    public boolean offer(E e, long timeout, TimeUnit unit)
343        throws InterruptedException {
344
345        if (e == null) throw new NullPointerException();
346        long nanos = unit.toNanos(timeout);
347        int c = -1;
348        final ReentrantLock putLock = this.putLock;
349        final AtomicInteger count = this.count;
350        putLock.lockInterruptibly();
351        try {
352            while (count.get() == capacity) {
353                if (nanos <= 0)
354                    return false;
355                nanos = notFull.awaitNanos(nanos);
356            }
357            enqueue(new Node<E>(e));
358            c = count.getAndIncrement();
359            if (c + 1 < capacity)
360                notFull.signal();
361        } finally {
362            putLock.unlock();
363        }
364        if (c == 0)
365            signalNotEmpty();
366        return true;
367    }
368
369    /**
370     * Inserts the specified element at the tail of this queue if it is
371     * possible to do so immediately without exceeding the queue's capacity,
372     * returning {@code true} upon success and {@code false} if this queue
373     * is full.
374     * When using a capacity-restricted queue, this method is generally
375     * preferable to method {@link BlockingQueue#add add}, which can fail to
376     * insert an element only by throwing an exception.
377     *
378     * @throws NullPointerException if the specified element is null
379     */
380    public boolean offer(E e) {
381        if (e == null) throw new NullPointerException();
382        final AtomicInteger count = this.count;
383        if (count.get() == capacity)
384            return false;
385        int c = -1;
386        Node<E> node = new Node<E>(e);
387        final ReentrantLock putLock = this.putLock;
388        putLock.lock();
389        try {
390            if (count.get() < capacity) {
391                enqueue(node);
392                c = count.getAndIncrement();
393                if (c + 1 < capacity)
394                    notFull.signal();
395            }
396        } finally {
397            putLock.unlock();
398        }
399        if (c == 0)
400            signalNotEmpty();
401        return c >= 0;
402    }
403
404
405    public E take() throws InterruptedException {
406        E x;
407        int c = -1;
408        final AtomicInteger count = this.count;
409        final ReentrantLock takeLock = this.takeLock;
410        takeLock.lockInterruptibly();
411        try {
412            while (count.get() == 0) {
413                notEmpty.await();
414            }
415            x = dequeue();
416            c = count.getAndDecrement();
417            if (c > 1)
418                notEmpty.signal();
419        } finally {
420            takeLock.unlock();
421        }
422        if (c == capacity)
423            signalNotFull();
424        return x;
425    }
426
427    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
428        E x = null;
429        int c = -1;
430        long nanos = unit.toNanos(timeout);
431        final AtomicInteger count = this.count;
432        final ReentrantLock takeLock = this.takeLock;
433        takeLock.lockInterruptibly();
434        try {
435            while (count.get() == 0) {
436                if (nanos <= 0)
437                    return null;
438                nanos = notEmpty.awaitNanos(nanos);
439            }
440            x = dequeue();
441            c = count.getAndDecrement();
442            if (c > 1)
443                notEmpty.signal();
444        } finally {
445            takeLock.unlock();
446        }
447        if (c == capacity)
448            signalNotFull();
449        return x;
450    }
451
452    public E poll() {
453        final AtomicInteger count = this.count;
454        if (count.get() == 0)
455            return null;
456        E x = null;
457        int c = -1;
458        final ReentrantLock takeLock = this.takeLock;
459        takeLock.lock();
460        try {
461            if (count.get() > 0) {
462                x = dequeue();
463                c = count.getAndDecrement();
464                if (c > 1)
465                    notEmpty.signal();
466            }
467        } finally {
468            takeLock.unlock();
469        }
470        if (c == capacity)
471            signalNotFull();
472        return x;
473    }
474
475    public E peek() {
476        if (count.get() == 0)
477            return null;
478        final ReentrantLock takeLock = this.takeLock;
479        takeLock.lock();
480        try {
481            Node<E> first = head.next;
482            if (first == null)
483                return null;
484            else
485                return first.item;
486        } finally {
487            takeLock.unlock();
488        }
489    }
490
491    /**
492     * Unlinks interior Node p with predecessor trail.
493     */
494    void unlink(Node<E> p, Node<E> trail) {
495        // assert isFullyLocked();
496        // p.next is not changed, to allow iterators that are
497        // traversing p to maintain their weak-consistency guarantee.
498        p.item = null;
499        trail.next = p.next;
500        if (last == p)
501            last = trail;
502        if (count.getAndDecrement() == capacity)
503            notFull.signal();
504    }
505
506    /**
507     * Removes a single instance of the specified element from this queue,
508     * if it is present.  More formally, removes an element {@code e} such
509     * that {@code o.equals(e)}, if this queue contains one or more such
510     * elements.
511     * Returns {@code true} if this queue contained the specified element
512     * (or equivalently, if this queue changed as a result of the call).
513     *
514     * @param o element to be removed from this queue, if present
515     * @return {@code true} if this queue changed as a result of the call
516     */
517    public boolean remove(Object o) {
518        if (o == null) return false;
519        fullyLock();
520        try {
521            for (Node<E> trail = head, p = trail.next;
522                 p != null;
523                 trail = p, p = p.next) {
524                if (o.equals(p.item)) {
525                    unlink(p, trail);
526                    return true;
527                }
528            }
529            return false;
530        } finally {
531            fullyUnlock();
532        }
533    }
534
535    /**
536     * Returns {@code true} if this queue contains the specified element.
537     * More formally, returns {@code true} if and only if this queue contains
538     * at least one element {@code e} such that {@code o.equals(e)}.
539     *
540     * @param o object to be checked for containment in this queue
541     * @return {@code true} if this queue contains the specified element
542     */
543    public boolean contains(Object o) {
544        if (o == null) return false;
545        fullyLock();
546        try {
547            for (Node<E> p = head.next; p != null; p = p.next)
548                if (o.equals(p.item))
549                    return true;
550            return false;
551        } finally {
552            fullyUnlock();
553        }
554    }
555
556    /**
557     * Returns an array containing all of the elements in this queue, in
558     * proper sequence.
559     *
560     * <p>The returned array will be "safe" in that no references to it are
561     * maintained by this queue.  (In other words, this method must allocate
562     * a new array).  The caller is thus free to modify the returned array.
563     *
564     * <p>This method acts as bridge between array-based and collection-based
565     * APIs.
566     *
567     * @return an array containing all of the elements in this queue
568     */
569    public Object[] toArray() {
570        fullyLock();
571        try {
572            int size = count.get();
573            Object[] a = new Object[size];
574            int k = 0;
575            for (Node<E> p = head.next; p != null; p = p.next)
576                a[k++] = p.item;
577            return a;
578        } finally {
579            fullyUnlock();
580        }
581    }
582
583    /**
584     * Returns an array containing all of the elements in this queue, in
585     * proper sequence; the runtime type of the returned array is that of
586     * the specified array.  If the queue fits in the specified array, it
587     * is returned therein.  Otherwise, a new array is allocated with the
588     * runtime type of the specified array and the size of this queue.
589     *
590     * <p>If this queue fits in the specified array with room to spare
591     * (i.e., the array has more elements than this queue), the element in
592     * the array immediately following the end of the queue is set to
593     * {@code null}.
594     *
595     * <p>Like the {@link #toArray()} method, this method acts as bridge between
596     * array-based and collection-based APIs.  Further, this method allows
597     * precise control over the runtime type of the output array, and may,
598     * under certain circumstances, be used to save allocation costs.
599     *
600     * <p>Suppose {@code x} is a queue known to contain only strings.
601     * The following code can be used to dump the queue into a newly
602     * allocated array of {@code String}:
603     *
604     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
605     *
606     * Note that {@code toArray(new Object[0])} is identical in function to
607     * {@code toArray()}.
608     *
609     * @param a the array into which the elements of the queue are to
610     *          be stored, if it is big enough; otherwise, a new array of the
611     *          same runtime type is allocated for this purpose
612     * @return an array containing all of the elements in this queue
613     * @throws ArrayStoreException if the runtime type of the specified array
614     *         is not a supertype of the runtime type of every element in
615     *         this queue
616     * @throws NullPointerException if the specified array is null
617     */
618    @SuppressWarnings("unchecked")
619    public <T> T[] toArray(T[] a) {
620        fullyLock();
621        try {
622            int size = count.get();
623            if (a.length < size)
624                a = (T[])java.lang.reflect.Array.newInstance
625                    (a.getClass().getComponentType(), size);
626
627            int k = 0;
628            for (Node<E> p = head.next; p != null; p = p.next)
629                a[k++] = (T)p.item;
630            if (a.length > k)
631                a[k] = null;
632            return a;
633        } finally {
634            fullyUnlock();
635        }
636    }
637
638    public String toString() {
639        fullyLock();
640        try {
641            Node<E> p = head.next;
642            if (p == null)
643                return "[]";
644
645            StringBuilder sb = new StringBuilder();
646            sb.append('[');
647            for (;;) {
648                E e = p.item;
649                sb.append(e == this ? "(this Collection)" : e);
650                p = p.next;
651                if (p == null)
652                    return sb.append(']').toString();
653                sb.append(',').append(' ');
654            }
655        } finally {
656            fullyUnlock();
657        }
658    }
659
660    /**
661     * Atomically removes all of the elements from this queue.
662     * The queue will be empty after this call returns.
663     */
664    public void clear() {
665        fullyLock();
666        try {
667            for (Node<E> p, h = head; (p = h.next) != null; h = p) {
668                h.next = h;
669                p.item = null;
670            }
671            head = last;
672            // assert head.item == null && head.next == null;
673            if (count.getAndSet(0) == capacity)
674                notFull.signal();
675        } finally {
676            fullyUnlock();
677        }
678    }
679
680    /**
681     * @throws UnsupportedOperationException {@inheritDoc}
682     * @throws ClassCastException            {@inheritDoc}
683     * @throws NullPointerException          {@inheritDoc}
684     * @throws IllegalArgumentException      {@inheritDoc}
685     */
686    public int drainTo(Collection<? super E> c) {
687        return drainTo(c, Integer.MAX_VALUE);
688    }
689
690    /**
691     * @throws UnsupportedOperationException {@inheritDoc}
692     * @throws ClassCastException            {@inheritDoc}
693     * @throws NullPointerException          {@inheritDoc}
694     * @throws IllegalArgumentException      {@inheritDoc}
695     */
696    public int drainTo(Collection<? super E> c, int maxElements) {
697        if (c == null)
698            throw new NullPointerException();
699        if (c == this)
700            throw new IllegalArgumentException();
701        if (maxElements <= 0)
702            return 0;
703        boolean signalNotFull = false;
704        final ReentrantLock takeLock = this.takeLock;
705        takeLock.lock();
706        try {
707            int n = Math.min(maxElements, count.get());
708            // count.get provides visibility to first n Nodes
709            Node<E> h = head;
710            int i = 0;
711            try {
712                while (i < n) {
713                    Node<E> p = h.next;
714                    c.add(p.item);
715                    p.item = null;
716                    h.next = h;
717                    h = p;
718                    ++i;
719                }
720                return n;
721            } finally {
722                // Restore invariants even if c.add() threw
723                if (i > 0) {
724                    // assert h.item == null;
725                    head = h;
726                    signalNotFull = (count.getAndAdd(-i) == capacity);
727                }
728            }
729        } finally {
730            takeLock.unlock();
731            if (signalNotFull)
732                signalNotFull();
733        }
734    }
735
736    /**
737     * Returns an iterator over the elements in this queue in proper sequence.
738     * The elements will be returned in order from first (head) to last (tail).
739     *
740     * <p>The returned iterator is a "weakly consistent" iterator that
741     * will never throw {@link java.util.ConcurrentModificationException
742     * ConcurrentModificationException}, and guarantees to traverse
743     * elements as they existed upon construction of the iterator, and
744     * may (but is not guaranteed to) reflect any modifications
745     * subsequent to construction.
746     *
747     * @return an iterator over the elements in this queue in proper sequence
748     */
749    public Iterator<E> iterator() {
750        return new Itr();
751    }
752
753    private class Itr implements Iterator<E> {
754        /*
755         * Basic weakly-consistent iterator.  At all times hold the next
756         * item to hand out so that if hasNext() reports true, we will
757         * still have it to return even if lost race with a take etc.
758         */
759        private Node<E> current;
760        private Node<E> lastRet;
761        private E currentElement;
762
763        Itr() {
764            fullyLock();
765            try {
766                current = head.next;
767                if (current != null)
768                    currentElement = current.item;
769            } finally {
770                fullyUnlock();
771            }
772        }
773
774        public boolean hasNext() {
775            return current != null;
776        }
777
778        /**
779         * Returns the next live successor of p, or null if no such.
780         *
781         * Unlike other traversal methods, iterators need to handle both:
782         * - dequeued nodes (p.next == p)
783         * - (possibly multiple) interior removed nodes (p.item == null)
784         */
785        private Node<E> nextNode(Node<E> p) {
786            for (;;) {
787                Node<E> s = p.next;
788                if (s == p)
789                    return head.next;
790                if (s == null || s.item != null)
791                    return s;
792                p = s;
793            }
794        }
795
796        public E next() {
797            fullyLock();
798            try {
799                if (current == null)
800                    throw new NoSuchElementException();
801                E x = currentElement;
802                lastRet = current;
803                current = nextNode(current);
804                currentElement = (current == null) ? null : current.item;
805                return x;
806            } finally {
807                fullyUnlock();
808            }
809        }
810
811        public void remove() {
812            if (lastRet == null)
813                throw new IllegalStateException();
814            fullyLock();
815            try {
816                Node<E> node = lastRet;
817                lastRet = null;
818                for (Node<E> trail = head, p = trail.next;
819                     p != null;
820                     trail = p, p = p.next) {
821                    if (p == node) {
822                        unlink(p, trail);
823                        break;
824                    }
825                }
826            } finally {
827                fullyUnlock();
828            }
829        }
830    }
831
832    /**
833     * Saves the state to a stream (that is, serializes it).
834     *
835     * @serialData The capacity is emitted (int), followed by all of
836     * its elements (each an {@code Object}) in the proper order,
837     * followed by a null
838     * @param s the stream
839     */
840    private void writeObject(java.io.ObjectOutputStream s)
841        throws java.io.IOException {
842
843        fullyLock();
844        try {
845            // Write out any hidden stuff, plus capacity
846            s.defaultWriteObject();
847
848            // Write out all elements in the proper order.
849            for (Node<E> p = head.next; p != null; p = p.next)
850                s.writeObject(p.item);
851
852            // Use trailing null as sentinel
853            s.writeObject(null);
854        } finally {
855            fullyUnlock();
856        }
857    }
858
859    /**
860     * Reconstitutes this queue from a stream (that is, deserializes it).
861     *
862     * @param s the stream
863     */
864    private void readObject(java.io.ObjectInputStream s)
865        throws java.io.IOException, ClassNotFoundException {
866        // Read in capacity, and any hidden stuff
867        s.defaultReadObject();
868
869        count.set(0);
870        last = head = new Node<E>(null);
871
872        // Read in all elements and place in queue
873        for (;;) {
874            @SuppressWarnings("unchecked")
875            E item = (E)s.readObject();
876            if (item == null)
877                break;
878            add(item);
879        }
880    }
881}
882