1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin.makedict;
18
19import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
20import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
21import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
22import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
23import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
24import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
25
26import java.io.ByteArrayOutputStream;
27import java.io.File;
28import java.io.FileInputStream;
29import java.io.FileNotFoundException;
30import java.io.IOException;
31import java.io.OutputStream;
32import java.nio.ByteBuffer;
33import java.nio.channels.FileChannel;
34import java.util.ArrayList;
35import java.util.Arrays;
36import java.util.HashMap;
37import java.util.Iterator;
38import java.util.Map;
39import java.util.TreeMap;
40
41/**
42 * Reads and writes XML files for a FusionDictionary.
43 *
44 * All the methods in this class are static.
45 */
46public final class BinaryDictInputOutput {
47
48    private static final boolean DBG = MakedictLog.DBG;
49
50    // Arbitrary limit to how much passes we consider address size compression should
51    // terminate in. At the time of this writing, our largest dictionary completes
52    // compression in five passes.
53    // If the number of passes exceeds this number, makedict bails with an exception on
54    // suspicion that a bug might be causing an infinite loop.
55    private static final int MAX_PASSES = 24;
56    private static final int MAX_JUMPS = 12;
57
58    public interface FusionDictionaryBufferInterface {
59        public int readUnsignedByte();
60        public int readUnsignedShort();
61        public int readUnsignedInt24();
62        public int readInt();
63        public int position();
64        public void position(int newPosition);
65        public void put(final byte b);
66        public int limit();
67        public int capacity();
68    }
69
70    public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
71        private ByteBuffer mBuffer;
72
73        public ByteBufferWrapper(final ByteBuffer buffer) {
74            mBuffer = buffer;
75        }
76
77        @Override
78        public int readUnsignedByte() {
79            return ((int)mBuffer.get()) & 0xFF;
80        }
81
82        @Override
83        public int readUnsignedShort() {
84            return ((int)mBuffer.getShort()) & 0xFFFF;
85        }
86
87        @Override
88        public int readUnsignedInt24() {
89            final int retval = readUnsignedByte();
90            return (retval << 16) + readUnsignedShort();
91        }
92
93        @Override
94        public int readInt() {
95            return mBuffer.getInt();
96        }
97
98        @Override
99        public int position() {
100            return mBuffer.position();
101        }
102
103        @Override
104        public void position(int newPos) {
105            mBuffer.position(newPos);
106        }
107
108        @Override
109        public void put(final byte b) {
110            mBuffer.put(b);
111        }
112
113        @Override
114        public int limit() {
115            return mBuffer.limit();
116        }
117
118        @Override
119        public int capacity() {
120            return mBuffer.capacity();
121        }
122    }
123
124    /**
125     * A class grouping utility function for our specific character encoding.
126     */
127    private static final class CharEncoding {
128
129        private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
130        private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
131
132        /**
133         * Helper method to find out whether this code fits on one byte
134         */
135        private static boolean fitsOnOneByte(final int character) {
136            return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
137                    && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
138        }
139
140        /**
141         * Compute the size of a character given its character code.
142         *
143         * Char format is:
144         * 1 byte = bbbbbbbb match
145         * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
146         * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
147         *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
148         *       00011111 would be outside unicode.
149         * else: iso-latin-1 code
150         * This allows for the whole unicode range to be encoded, including chars outside of
151         * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
152         * characters which should never happen anyway (and still work, but take 3 bytes).
153         *
154         * @param character the character code.
155         * @return the size in binary encoded-form, either 1 or 3 bytes.
156         */
157        private static int getCharSize(final int character) {
158            // See char encoding in FusionDictionary.java
159            if (fitsOnOneByte(character)) return 1;
160            if (FormatSpec.INVALID_CHARACTER == character) return 1;
161            return 3;
162        }
163
164        /**
165         * Compute the byte size of a character array.
166         */
167        private static int getCharArraySize(final int[] chars) {
168            int size = 0;
169            for (int character : chars) size += getCharSize(character);
170            return size;
171        }
172
173        /**
174         * Writes a char array to a byte buffer.
175         *
176         * @param codePoints the code point array to write.
177         * @param buffer the byte buffer to write to.
178         * @param index the index in buffer to write the character array to.
179         * @return the index after the last character.
180         */
181        private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
182            for (int codePoint : codePoints) {
183                if (1 == getCharSize(codePoint)) {
184                    buffer[index++] = (byte)codePoint;
185                } else {
186                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
187                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
188                    buffer[index++] = (byte)(0xFF & codePoint);
189                }
190            }
191            return index;
192        }
193
194        /**
195         * Writes a string with our character format to a byte buffer.
196         *
197         * This will also write the terminator byte.
198         *
199         * @param buffer the byte buffer to write to.
200         * @param origin the offset to write from.
201         * @param word the string to write.
202         * @return the size written, in bytes.
203         */
204        private static int writeString(final byte[] buffer, final int origin,
205                final String word) {
206            final int length = word.length();
207            int index = origin;
208            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
209                final int codePoint = word.codePointAt(i);
210                if (1 == getCharSize(codePoint)) {
211                    buffer[index++] = (byte)codePoint;
212                } else {
213                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
214                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
215                    buffer[index++] = (byte)(0xFF & codePoint);
216                }
217            }
218            buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
219            return index - origin;
220        }
221
222        /**
223         * Writes a string with our character format to a ByteArrayOutputStream.
224         *
225         * This will also write the terminator byte.
226         *
227         * @param buffer the ByteArrayOutputStream to write to.
228         * @param word the string to write.
229         */
230        private static void writeString(final ByteArrayOutputStream buffer, final String word) {
231            final int length = word.length();
232            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
233                final int codePoint = word.codePointAt(i);
234                if (1 == getCharSize(codePoint)) {
235                    buffer.write((byte) codePoint);
236                } else {
237                    buffer.write((byte) (0xFF & (codePoint >> 16)));
238                    buffer.write((byte) (0xFF & (codePoint >> 8)));
239                    buffer.write((byte) (0xFF & codePoint));
240                }
241            }
242            buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR);
243        }
244
245        /**
246         * Reads a string from a buffer. This is the converse of the above method.
247         */
248        private static String readString(final FusionDictionaryBufferInterface buffer) {
249            final StringBuilder s = new StringBuilder();
250            int character = readChar(buffer);
251            while (character != FormatSpec.INVALID_CHARACTER) {
252                s.appendCodePoint(character);
253                character = readChar(buffer);
254            }
255            return s.toString();
256        }
257
258        /**
259         * Reads a character from the buffer.
260         *
261         * This follows the character format documented earlier in this source file.
262         *
263         * @param buffer the buffer, positioned over an encoded character.
264         * @return the character code.
265         */
266        private static int readChar(final FusionDictionaryBufferInterface buffer) {
267            int character = buffer.readUnsignedByte();
268            if (!fitsOnOneByte(character)) {
269                if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) {
270                    return FormatSpec.INVALID_CHARACTER;
271                }
272                character <<= 16;
273                character += buffer.readUnsignedShort();
274            }
275            return character;
276        }
277    }
278
279    /**
280     * Compute the binary size of the character array in a group
281     *
282     * If only one character, this is the size of this character. If many, it's the sum of their
283     * sizes + 1 byte for the terminator.
284     *
285     * @param group the group
286     * @return the size of the char array, including the terminator if any
287     */
288    private static int getGroupCharactersSize(final CharGroup group) {
289        int size = CharEncoding.getCharArraySize(group.mChars);
290        if (group.hasSeveralChars()) size += FormatSpec.GROUP_TERMINATOR_SIZE;
291        return size;
292    }
293
294    /**
295     * Compute the binary size of the group count
296     * @param count the group count
297     * @return the size of the group count, either 1 or 2 bytes.
298     */
299    public static int getGroupCountSize(final int count) {
300        if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
301            return 1;
302        } else if (FormatSpec.MAX_CHARGROUPS_IN_A_NODE >= count) {
303            return 2;
304        } else {
305            throw new RuntimeException("Can't have more than "
306                    + FormatSpec.MAX_CHARGROUPS_IN_A_NODE + " groups in a node (found " + count
307                    + ")");
308        }
309    }
310
311    /**
312     * Compute the binary size of the group count for a node
313     * @param node the node
314     * @return the size of the group count, either 1 or 2 bytes.
315     */
316    private static int getGroupCountSize(final Node node) {
317        return getGroupCountSize(node.mData.size());
318    }
319
320    /**
321     * Compute the size of a shortcut in bytes.
322     */
323    private static int getShortcutSize(final WeightedString shortcut) {
324        int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE;
325        final String word = shortcut.mWord;
326        final int length = word.length();
327        for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
328            final int codePoint = word.codePointAt(i);
329            size += CharEncoding.getCharSize(codePoint);
330        }
331        size += FormatSpec.GROUP_TERMINATOR_SIZE;
332        return size;
333    }
334
335    /**
336     * Compute the size of a shortcut list in bytes.
337     *
338     * This is known in advance and does not change according to position in the file
339     * like address lists do.
340     */
341    private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
342        if (null == shortcutList) return 0;
343        int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
344        for (final WeightedString shortcut : shortcutList) {
345            size += getShortcutSize(shortcut);
346        }
347        return size;
348    }
349
350    /**
351     * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
352     *
353     * @param group the CharGroup to compute the size of.
354     * @param options file format options.
355     * @return the maximum size of the group.
356     */
357    private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) {
358        int size = getGroupHeaderSize(group, options);
359        // If terminal, one byte for the frequency
360        if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE;
361        size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address
362        size += getShortcutListSize(group.mShortcutTargets);
363        if (null != group.mBigrams) {
364            size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE
365                    + FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
366                    * group.mBigrams.size();
367        }
368        return size;
369    }
370
371    /**
372     * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
373     * it in the 'actualSize' member of the node.
374     *
375     * @param node the node to compute the maximum size of.
376     * @param options file format options.
377     */
378    private static void setNodeMaximumSize(final Node node, final FormatOptions options) {
379        int size = getGroupCountSize(node);
380        for (CharGroup g : node.mData) {
381            final int groupSize = getCharGroupMaximumSize(g, options);
382            g.mCachedSize = groupSize;
383            size += groupSize;
384        }
385        if (options.mSupportsDynamicUpdate) {
386            size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
387        }
388        node.mCachedSize = size;
389    }
390
391    /**
392     * Helper method to hide the actual value of the no children address.
393     */
394    public static boolean hasChildrenAddress(final int address) {
395        return FormatSpec.NO_CHILDREN_ADDRESS != address;
396    }
397
398    /**
399     * Helper method to check whether the group is moved.
400     */
401    public static boolean isMovedGroup(final int flags, final FormatOptions options) {
402        return options.mSupportsDynamicUpdate && ((flags & FormatSpec.FLAG_IS_MOVED) == 1);
403    }
404
405    /**
406     * Helper method to check whether the dictionary can be updated dynamically.
407     */
408    public static boolean supportsDynamicUpdate(final FormatOptions options) {
409        return options.mVersion >= FormatSpec.FIRST_VERSION_WITH_DYNAMIC_UPDATE
410                && options.mSupportsDynamicUpdate;
411    }
412
413    /**
414     * Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
415     *
416     * @param group the group of which to compute the size of the header
417     * @param options file format options.
418     */
419    private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
420        if (supportsDynamicUpdate(options)) {
421            return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
422                    + getGroupCharactersSize(group);
423        } else {
424            return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
425        }
426    }
427
428    private static final int UINT8_MAX = 0xFF;
429    private static final int UINT16_MAX = 0xFFFF;
430    private static final int UINT24_MAX = 0xFFFFFF;
431
432    /**
433     * Compute the size, in bytes, that an address will occupy.
434     *
435     * This can be used either for children addresses (which are always positive) or for
436     * attribute, which may be positive or negative but
437     * store their sign bit separately.
438     *
439     * @param address the address
440     * @return the byte size.
441     */
442    private static int getByteSize(final int address) {
443        assert(address <= UINT24_MAX);
444        if (!hasChildrenAddress(address)) {
445            return 0;
446        } else if (Math.abs(address) <= UINT8_MAX) {
447            return 1;
448        } else if (Math.abs(address) <= UINT16_MAX) {
449            return 2;
450        } else {
451            return 3;
452        }
453    }
454
455    private static final int SINT8_MAX = 0x7F;
456    private static final int SINT16_MAX = 0x7FFF;
457    private static final int SINT24_MAX = 0x7FFFFF;
458    private static final int MSB8 = 0x80;
459    private static final int MSB16 = 0x8000;
460    private static final int MSB24 = 0x800000;
461
462    // End utility methods.
463
464    // This method is responsible for finding a nice ordering of the nodes that favors run-time
465    // cache performance and dictionary size.
466    /* package for tests */ static ArrayList<Node> flattenTree(final Node root) {
467        final int treeSize = FusionDictionary.countCharGroups(root);
468        MakedictLog.i("Counted nodes : " + treeSize);
469        final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
470        return flattenTreeInner(flatTree, root);
471    }
472
473    private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) {
474        // Removing the node is necessary if the tails are merged, because we would then
475        // add the same node several times when we only want it once. A number of places in
476        // the code also depends on any node being only once in the list.
477        // Merging tails can only be done if there are no attributes. Searching for attributes
478        // in LatinIME code depends on a total breadth-first ordering, which merging tails
479        // breaks. If there are no attributes, it should be fine (and reduce the file size)
480        // to merge tails, and removing the node from the list would be necessary. However,
481        // we don't merge tails because breaking the breadth-first ordering would result in
482        // extreme overhead at bigram lookup time (it would make the search function O(n) instead
483        // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
484        // high).
485        // If no nodes are ever merged, we can't have the same node twice in the list, hence
486        // searching for duplicates in unnecessary. It is also very performance consuming,
487        // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
488        // this simple list.remove operation O(n*n) overall. On Android this overhead is very
489        // high.
490        // For future reference, the code to remove duplicate is a simple : list.remove(node);
491        list.add(node);
492        final ArrayList<CharGroup> branches = node.mData;
493        final int nodeSize = branches.size();
494        for (CharGroup group : branches) {
495            if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
496        }
497        return list;
498    }
499
500    /**
501     * Finds the absolute address of a word in the dictionary.
502     *
503     * @param dict the dictionary in which to search.
504     * @param word the word we are searching for.
505     * @return the word address. If it is not found, an exception is thrown.
506     */
507    private static int findAddressOfWord(final FusionDictionary dict, final String word) {
508        return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
509    }
510
511    /**
512     * Computes the actual node size, based on the cached addresses of the children nodes.
513     *
514     * Each node stores its tentative address. During dictionary address computing, these
515     * are not final, but they can be used to compute the node size (the node size depends
516     * on the address of the children because the number of bytes necessary to store an
517     * address depends on its numeric value. The return value indicates whether the node
518     * contents (as in, any of the addresses stored in the cache fields) have changed with
519     * respect to their previous value.
520     *
521     * @param node the node to compute the size of.
522     * @param dict the dictionary in which the word/attributes are to be found.
523     * @param formatOptions file format options.
524     * @return false if none of the cached addresses inside the node changed, true otherwise.
525     */
526    private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict,
527            final FormatOptions formatOptions) {
528        boolean changed = false;
529        int size = getGroupCountSize(node);
530        for (CharGroup group : node.mData) {
531            if (group.mCachedAddress != node.mCachedAddress + size) {
532                changed = true;
533                group.mCachedAddress = node.mCachedAddress + size;
534            }
535            int groupSize = getGroupHeaderSize(group, formatOptions);
536            if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE;
537            if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) {
538                groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
539            } else if (null != group.mChildren) {
540                final int offsetBasePoint = groupSize + node.mCachedAddress + size;
541                final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
542                // assign my address to children's parent address
543                group.mChildren.mCachedParentAddress = group.mCachedAddress
544                        - group.mChildren.mCachedAddress;
545                if (formatOptions.mSupportsDynamicUpdate) {
546                    groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
547                } else {
548                    groupSize += getByteSize(offset);
549                }
550            }
551            groupSize += getShortcutListSize(group.mShortcutTargets);
552            if (null != group.mBigrams) {
553                for (WeightedString bigram : group.mBigrams) {
554                    final int offsetBasePoint = groupSize + node.mCachedAddress + size
555                            + FormatSpec.GROUP_FLAGS_SIZE;
556                    final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
557                    final int offset = addressOfBigram - offsetBasePoint;
558                    groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE;
559                }
560            }
561            group.mCachedSize = groupSize;
562            size += groupSize;
563        }
564        if (formatOptions.mSupportsDynamicUpdate) {
565            size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
566        }
567        if (node.mCachedSize != size) {
568            node.mCachedSize = size;
569            changed = true;
570        }
571        return changed;
572    }
573
574    /**
575     * Computes the byte size of a list of nodes and updates each node cached position.
576     *
577     * @param flatNodes the array of nodes.
578     * @param formatOptions file format options.
579     * @return the byte size of the entire stack.
580     */
581    private static int stackNodes(final ArrayList<Node> flatNodes,
582            final FormatOptions formatOptions) {
583        int nodeOffset = 0;
584        for (Node n : flatNodes) {
585            n.mCachedAddress = nodeOffset;
586            int groupCountSize = getGroupCountSize(n);
587            int groupOffset = 0;
588            for (CharGroup g : n.mData) {
589                g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
590                groupOffset += g.mCachedSize;
591            }
592            final int nodeSize = groupCountSize + groupOffset
593                    + (formatOptions.mSupportsDynamicUpdate
594                            ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0);
595            if (nodeSize != n.mCachedSize) {
596                throw new RuntimeException("Bug : Stored and computed node size differ");
597            }
598            nodeOffset += n.mCachedSize;
599        }
600        return nodeOffset;
601    }
602
603    /**
604     * Compute the addresses and sizes of an ordered node array.
605     *
606     * This method takes a node array and will update its cached address and size values
607     * so that they can be written into a file. It determines the smallest size each of the
608     * nodes can be given the addresses of its children and attributes, and store that into
609     * each node.
610     * The order of the node is given by the order of the array. This method makes no effort
611     * to find a good order; it only mechanically computes the size this order results in.
612     *
613     * @param dict the dictionary
614     * @param flatNodes the ordered array of nodes
615     * @param formatOptions file format options.
616     * @return the same array it was passed. The nodes have been updated for address and size.
617     */
618    private static ArrayList<Node> computeAddresses(final FusionDictionary dict,
619            final ArrayList<Node> flatNodes, final FormatOptions formatOptions) {
620        // First get the worst sizes and offsets
621        for (Node n : flatNodes) setNodeMaximumSize(n, formatOptions);
622        final int offset = stackNodes(flatNodes, formatOptions);
623
624        MakedictLog.i("Compressing the array addresses. Original size : " + offset);
625        MakedictLog.i("(Recursively seen size : " + offset + ")");
626
627        int passes = 0;
628        boolean changesDone = false;
629        do {
630            changesDone = false;
631            for (Node n : flatNodes) {
632                final int oldNodeSize = n.mCachedSize;
633                final boolean changed = computeActualNodeSize(n, dict, formatOptions);
634                final int newNodeSize = n.mCachedSize;
635                if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
636                changesDone |= changed;
637            }
638            stackNodes(flatNodes, formatOptions);
639            ++passes;
640            if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
641        } while (changesDone);
642
643        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
644        MakedictLog.i("Compression complete in " + passes + " passes.");
645        MakedictLog.i("After address compression : "
646                + (lastNode.mCachedAddress + lastNode.mCachedSize));
647
648        return flatNodes;
649    }
650
651    /**
652     * Sanity-checking method.
653     *
654     * This method checks an array of node for juxtaposition, that is, it will do
655     * nothing if each node's cached address is actually the previous node's address
656     * plus the previous node's size.
657     * If this is not the case, it will throw an exception.
658     *
659     * @param array the array node to check
660     */
661    private static void checkFlatNodeArray(final ArrayList<Node> array) {
662        int offset = 0;
663        int index = 0;
664        for (Node n : array) {
665            if (n.mCachedAddress != offset) {
666                throw new RuntimeException("Wrong address for node " + index
667                        + " : expected " + offset + ", got " + n.mCachedAddress);
668            }
669            ++index;
670            offset += n.mCachedSize;
671        }
672    }
673
674    /**
675     * Helper method to write a variable-size address to a file.
676     *
677     * @param buffer the buffer to write to.
678     * @param index the index in the buffer to write the address to.
679     * @param address the address to write.
680     * @return the size in bytes the address actually took.
681     */
682    private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
683        switch (getByteSize(address)) {
684        case 1:
685            buffer[index++] = (byte)address;
686            return 1;
687        case 2:
688            buffer[index++] = (byte)(0xFF & (address >> 8));
689            buffer[index++] = (byte)(0xFF & address);
690            return 2;
691        case 3:
692            buffer[index++] = (byte)(0xFF & (address >> 16));
693            buffer[index++] = (byte)(0xFF & (address >> 8));
694            buffer[index++] = (byte)(0xFF & address);
695            return 3;
696        case 0:
697            return 0;
698        default:
699            throw new RuntimeException("Address " + address + " has a strange size");
700        }
701    }
702
703    /**
704     * Helper method to write a variable-size signed address to a file.
705     *
706     * @param buffer the buffer to write to.
707     * @param index the index in the buffer to write the address to.
708     * @param address the address to write.
709     * @return the size in bytes the address actually took.
710     */
711    private static int writeVariableSignedAddress(final byte[] buffer, int index,
712            final int address) {
713        if (!hasChildrenAddress(address)) {
714            buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
715        } else {
716            final int absAddress = Math.abs(address);
717            buffer[index++] = (byte)((address < 0 ? MSB8 : 0) | (0xFF & (absAddress >> 16)));
718            buffer[index++] = (byte)(0xFF & (absAddress >> 8));
719            buffer[index++] = (byte)(0xFF & absAddress);
720        }
721        return 3;
722    }
723
724    private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
725            final int childrenOffset, final FormatOptions formatOptions) {
726        byte flags = 0;
727        if (group.mChars.length > 1) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
728        if (group.mFrequency >= 0) {
729            flags |= FormatSpec.FLAG_IS_TERMINAL;
730        }
731        if (null != group.mChildren) {
732            final int byteSize = formatOptions.mSupportsDynamicUpdate
733                    ? FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE : getByteSize(childrenOffset);
734            switch (byteSize) {
735            case 1:
736                flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
737                break;
738            case 2:
739                flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
740                break;
741            case 3:
742                flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
743                break;
744            default:
745                throw new RuntimeException("Node with a strange address");
746            }
747        } else if (formatOptions.mSupportsDynamicUpdate) {
748            flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
749        }
750        if (null != group.mShortcutTargets) {
751            if (DBG && 0 == group.mShortcutTargets.size()) {
752                throw new RuntimeException("0-sized shortcut list must be null");
753            }
754            flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
755        }
756        if (null != group.mBigrams) {
757            if (DBG && 0 == group.mBigrams.size()) {
758                throw new RuntimeException("0-sized bigram list must be null");
759            }
760            flags |= FormatSpec.FLAG_HAS_BIGRAMS;
761        }
762        if (group.mIsNotAWord) {
763            flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
764        }
765        if (group.mIsBlacklistEntry) {
766            flags |= FormatSpec.FLAG_IS_BLACKLISTED;
767        }
768        return flags;
769    }
770
771    /**
772     * Makes the flag value for a bigram.
773     *
774     * @param more whether there are more bigrams after this one.
775     * @param offset the offset of the bigram.
776     * @param bigramFrequency the frequency of the bigram, 0..255.
777     * @param unigramFrequency the unigram frequency of the same word, 0..255.
778     * @param word the second bigram, for debugging purposes
779     * @return the flags
780     */
781    private static final int makeBigramFlags(final boolean more, final int offset,
782            int bigramFrequency, final int unigramFrequency, final String word) {
783        int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
784                + (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
785        switch (getByteSize(offset)) {
786        case 1:
787            bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
788            break;
789        case 2:
790            bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
791            break;
792        case 3:
793            bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
794            break;
795        default:
796            throw new RuntimeException("Strange offset size");
797        }
798        if (unigramFrequency > bigramFrequency) {
799            MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
800                    + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
801                    + word + " is " + unigramFrequency);
802            bigramFrequency = unigramFrequency;
803        }
804        // We compute the difference between 255 (which means probability = 1) and the
805        // unigram score. We split this into a number of discrete steps.
806        // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
807        // represents an increase of 16 steps: a value of 15 will be interpreted as the median
808        // value of the 16th step. In all justice, if the bigram frequency is low enough to be
809        // rounded below the first step (which means it is less than half a step higher than the
810        // unigram frequency) then the unigram frequency itself is the best approximation of the
811        // bigram freq that we could possibly supply, hence we should *not* include this bigram
812        // in the file at all.
813        // until this is done, we'll write 0 and slightly overestimate this case.
814        // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
815        // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
816        // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
817        // step size. Then we compute the start of the first step (the one where value 0 starts)
818        // by adding half-a-step to the unigramFrequency. From there, we compute the integer
819        // number of steps to the bigramFrequency. One last thing: we want our steps to include
820        // their lower bound and exclude their higher bound so we need to have the first step
821        // start at exactly 1 unit higher than floor(unigramFreq + half a step).
822        // Note : to reconstruct the score, the dictionary reader will need to divide
823        // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
824        // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
825        // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
826        // step pointed by the discretized frequency.
827        final float stepSize =
828                (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
829                / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
830        final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
831        final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
832        // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
833        // here. The best approximation would be the unigram freq itself, so we should not
834        // include this bigram in the dictionary. For now, register as 0, and live with the
835        // small over-estimation that we get in this case. TODO: actually remove this bigram
836        // if discretizedFrequency < 0.
837        final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
838        bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY;
839        return bigramFlags;
840    }
841
842    /**
843     * Makes the 2-byte value for options flags.
844     */
845    private static final int makeOptionsValue(final FusionDictionary dictionary,
846            final FormatOptions formatOptions) {
847        final DictionaryOptions options = dictionary.mOptions;
848        final boolean hasBigrams = dictionary.hasBigrams();
849        return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0)
850                + (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0)
851                + (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0)
852                + (formatOptions.mSupportsDynamicUpdate ? FormatSpec.SUPPORTS_DYNAMIC_UPDATE : 0);
853    }
854
855    /**
856     * Makes the flag value for a shortcut.
857     *
858     * @param more whether there are more attributes after this one.
859     * @param frequency the frequency of the attribute, 0..15
860     * @return the flags
861     */
862    private static final int makeShortcutFlags(final boolean more, final int frequency) {
863        return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
864                + (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY);
865    }
866
867    private static final int writeParentAddress(final byte[] buffer, final int index,
868            final int address, final FormatOptions formatOptions) {
869        if (supportsDynamicUpdate(formatOptions)) {
870            if (address == FormatSpec.NO_PARENT_ADDRESS) {
871                buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
872            } else {
873                final int absAddress = Math.abs(address);
874                assert(absAddress <= SINT24_MAX);
875                buffer[index] = (byte)((address < 0 ? MSB8 : 0)
876                        | ((absAddress >> 16) & 0xFF));
877                buffer[index + 1] = (byte)((absAddress >> 8) & 0xFF);
878                buffer[index + 2] = (byte)(absAddress & 0xFF);
879            }
880            return index + 3;
881        } else {
882            return index;
883        }
884    }
885
886    /**
887     * Write a node to memory. The node is expected to have its final position cached.
888     *
889     * This can be an empty map, but the more is inside the faster the lookups will be. It can
890     * be carried on as long as nodes do not move.
891     *
892     * @param dict the dictionary the node is a part of (for relative offsets).
893     * @param buffer the memory buffer to write to.
894     * @param node the node to write.
895     * @param formatOptions file format options.
896     * @return the address of the END of the node.
897     */
898    private static int writePlacedNode(final FusionDictionary dict, byte[] buffer,
899            final Node node, final FormatOptions formatOptions) {
900        int index = node.mCachedAddress;
901
902        final int groupCount = node.mData.size();
903        final int countSize = getGroupCountSize(node);
904        final int parentAddress = node.mCachedParentAddress;
905        if (1 == countSize) {
906            buffer[index++] = (byte)groupCount;
907        } else if (2 == countSize) {
908            // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
909            // we | 0x80 to do this.
910            buffer[index++] = (byte)((groupCount >> 8) | 0x80);
911            buffer[index++] = (byte)(groupCount & 0xFF);
912        } else {
913            throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
914        }
915        int groupAddress = index;
916        for (int i = 0; i < groupCount; ++i) {
917            CharGroup group = node.mData.get(i);
918            if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
919                    + "the same as the cached address of the group : "
920                    + index + " <> " + group.mCachedAddress);
921            groupAddress += getGroupHeaderSize(group, formatOptions);
922            // Sanity checks.
923            if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) {
924                throw new RuntimeException("A node has a frequency > "
925                        + FormatSpec.MAX_TERMINAL_FREQUENCY
926                        + " : " + group.mFrequency);
927            }
928            if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE;
929            final int childrenOffset = null == group.mChildren
930                    ? FormatSpec.NO_CHILDREN_ADDRESS
931                            : group.mChildren.mCachedAddress - groupAddress;
932            byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions);
933            buffer[index++] = flags;
934
935            if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) {
936                index = writeParentAddress(buffer, index, parentAddress, formatOptions);
937            } else {
938                index = writeParentAddress(buffer, index,
939                        parentAddress + (node.mCachedAddress - group.mCachedAddress),
940                        formatOptions);
941            }
942
943            index = CharEncoding.writeCharArray(group.mChars, buffer, index);
944            if (group.hasSeveralChars()) {
945                buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
946            }
947            if (group.mFrequency >= 0) {
948                buffer[index++] = (byte) group.mFrequency;
949            }
950
951            final int shift;
952            if (formatOptions.mSupportsDynamicUpdate) {
953                shift = writeVariableSignedAddress(buffer, index, childrenOffset);
954            } else {
955                shift = writeVariableAddress(buffer, index, childrenOffset);
956            }
957            index += shift;
958            groupAddress += shift;
959
960            // Write shortcuts
961            if (null != group.mShortcutTargets) {
962                final int indexOfShortcutByteSize = index;
963                index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
964                groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
965                final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
966                while (shortcutIterator.hasNext()) {
967                    final WeightedString target = shortcutIterator.next();
968                    ++groupAddress;
969                    int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
970                            target.mFrequency);
971                    buffer[index++] = (byte)shortcutFlags;
972                    final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
973                    index += shortcutShift;
974                    groupAddress += shortcutShift;
975                }
976                final int shortcutByteSize = index - indexOfShortcutByteSize;
977                if (shortcutByteSize > 0xFFFF) {
978                    throw new RuntimeException("Shortcut list too large");
979                }
980                buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
981                buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
982            }
983            // Write bigrams
984            if (null != group.mBigrams) {
985                final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
986                while (bigramIterator.hasNext()) {
987                    final WeightedString bigram = bigramIterator.next();
988                    final CharGroup target =
989                            FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
990                    final int addressOfBigram = target.mCachedAddress;
991                    final int unigramFrequencyForThisWord = target.mFrequency;
992                    ++groupAddress;
993                    final int offset = addressOfBigram - groupAddress;
994                    int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
995                            bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
996                    buffer[index++] = (byte)bigramFlags;
997                    final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
998                    index += bigramShift;
999                    groupAddress += bigramShift;
1000                }
1001            }
1002
1003        }
1004        if (formatOptions.mSupportsDynamicUpdate) {
1005            buffer[index] = buffer[index + 1] = buffer[index + 2]
1006                    = FormatSpec.NO_FORWARD_LINK_ADDRESS;
1007            index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
1008        }
1009        if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
1010                "Not the same size : written "
1011                + (index - node.mCachedAddress) + " bytes out of a node that should have "
1012                + node.mCachedSize + " bytes");
1013        return index;
1014    }
1015
1016    /**
1017     * Dumps a collection of useful statistics about a node array.
1018     *
1019     * This prints purely informative stuff, like the total estimated file size, the
1020     * number of nodes, of character groups, the repartition of each address size, etc
1021     *
1022     * @param nodes the node array.
1023     */
1024    private static void showStatistics(ArrayList<Node> nodes) {
1025        int firstTerminalAddress = Integer.MAX_VALUE;
1026        int lastTerminalAddress = Integer.MIN_VALUE;
1027        int size = 0;
1028        int charGroups = 0;
1029        int maxGroups = 0;
1030        int maxRuns = 0;
1031        for (Node n : nodes) {
1032            if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
1033            for (CharGroup cg : n.mData) {
1034                ++charGroups;
1035                if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
1036                if (cg.mFrequency >= 0) {
1037                    if (n.mCachedAddress < firstTerminalAddress)
1038                        firstTerminalAddress = n.mCachedAddress;
1039                    if (n.mCachedAddress > lastTerminalAddress)
1040                        lastTerminalAddress = n.mCachedAddress;
1041                }
1042            }
1043            if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
1044        }
1045        final int[] groupCounts = new int[maxGroups + 1];
1046        final int[] runCounts = new int[maxRuns + 1];
1047        for (Node n : nodes) {
1048            ++groupCounts[n.mData.size()];
1049            for (CharGroup cg : n.mData) {
1050                ++runCounts[cg.mChars.length];
1051            }
1052        }
1053
1054        MakedictLog.i("Statistics:\n"
1055                + "  total file size " + size + "\n"
1056                + "  " + nodes.size() + " nodes\n"
1057                + "  " + charGroups + " groups (" + ((float)charGroups / nodes.size())
1058                        + " groups per node)\n"
1059                + "  first terminal at " + firstTerminalAddress + "\n"
1060                + "  last terminal at " + lastTerminalAddress + "\n"
1061                + "  Group stats : max = " + maxGroups);
1062        for (int i = 0; i < groupCounts.length; ++i) {
1063            MakedictLog.i("    " + i + " : " + groupCounts[i]);
1064        }
1065        MakedictLog.i("  Character run stats : max = " + maxRuns);
1066        for (int i = 0; i < runCounts.length; ++i) {
1067            MakedictLog.i("    " + i + " : " + runCounts[i]);
1068        }
1069    }
1070
1071    /**
1072     * Dumps a FusionDictionary to a file.
1073     *
1074     * This is the public entry point to write a dictionary to a file.
1075     *
1076     * @param destination the stream to write the binary data to.
1077     * @param dict the dictionary to write.
1078     * @param formatOptions file format options.
1079     */
1080    public static void writeDictionaryBinary(final OutputStream destination,
1081            final FusionDictionary dict, final FormatOptions formatOptions)
1082            throws IOException, UnsupportedFormatException {
1083
1084        // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
1085        // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
1086        // of the nodes becomes a quite complicated problem, because though the dictionary itself
1087        // does not have a size limit, each node must still be within 16MB of all its children and
1088        // parents. As long as this is ensured, the dictionary file may grow to any size.
1089
1090        final int version = formatOptions.mVersion;
1091        if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
1092                || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
1093            throw new UnsupportedFormatException("Requested file format version " + version
1094                    + ", but this implementation only supports versions "
1095                    + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
1096                    + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
1097        }
1098
1099        ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
1100
1101        // The magic number in big-endian order.
1102        if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
1103            // Magic number for version 2+.
1104            headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 24)));
1105            headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 16)));
1106            headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 8)));
1107            headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_2_MAGIC_NUMBER));
1108            // Dictionary version.
1109            headerBuffer.write((byte) (0xFF & (version >> 8)));
1110            headerBuffer.write((byte) (0xFF & version));
1111        } else {
1112            // Magic number for version 1.
1113            headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_1_MAGIC_NUMBER >> 8)));
1114            headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_1_MAGIC_NUMBER));
1115            // Dictionary version.
1116            headerBuffer.write((byte) (0xFF & version));
1117        }
1118        // Options flags
1119        final int options = makeOptionsValue(dict, formatOptions);
1120        headerBuffer.write((byte) (0xFF & (options >> 8)));
1121        headerBuffer.write((byte) (0xFF & options));
1122        if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
1123            final int headerSizeOffset = headerBuffer.size();
1124            // Placeholder to be written later with header size.
1125            for (int i = 0; i < 4; ++i) {
1126                headerBuffer.write(0);
1127            }
1128            // Write out the options.
1129            for (final String key : dict.mOptions.mAttributes.keySet()) {
1130                final String value = dict.mOptions.mAttributes.get(key);
1131                CharEncoding.writeString(headerBuffer, key);
1132                CharEncoding.writeString(headerBuffer, value);
1133            }
1134            final int size = headerBuffer.size();
1135            final byte[] bytes = headerBuffer.toByteArray();
1136            // Write out the header size.
1137            bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
1138            bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
1139            bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
1140            bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
1141            destination.write(bytes);
1142        } else {
1143            headerBuffer.writeTo(destination);
1144        }
1145
1146        headerBuffer.close();
1147
1148        // Leave the choice of the optimal node order to the flattenTree function.
1149        MakedictLog.i("Flattening the tree...");
1150        ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
1151
1152        MakedictLog.i("Computing addresses...");
1153        computeAddresses(dict, flatNodes, formatOptions);
1154        MakedictLog.i("Checking array...");
1155        if (DBG) checkFlatNodeArray(flatNodes);
1156
1157        // Create a buffer that matches the final dictionary size.
1158        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
1159        final int bufferSize = lastNode.mCachedAddress + lastNode.mCachedSize;
1160        final byte[] buffer = new byte[bufferSize];
1161        int index = 0;
1162
1163        MakedictLog.i("Writing file...");
1164        int dataEndOffset = 0;
1165        for (Node n : flatNodes) {
1166            dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions);
1167        }
1168
1169        if (DBG) showStatistics(flatNodes);
1170
1171        destination.write(buffer, 0, dataEndOffset);
1172
1173        destination.close();
1174        MakedictLog.i("Done");
1175    }
1176
1177
1178    // Input methods: Read a binary dictionary to memory.
1179    // readDictionaryBinary is the public entry point for them.
1180
1181    private static int getChildrenAddressSize(final int optionFlags,
1182            final FormatOptions formatOptions) {
1183        if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
1184        switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
1185            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
1186                return 1;
1187            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
1188                return 2;
1189            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
1190                return 3;
1191            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
1192            default:
1193                return 0;
1194        }
1195    }
1196
1197    private static int readChildrenAddress(final FusionDictionaryBufferInterface buffer,
1198            final int optionFlags, final FormatOptions options) {
1199        if (options.mSupportsDynamicUpdate) {
1200            final int address = buffer.readUnsignedInt24();
1201            if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS;
1202            if ((address & MSB24) != 0) {
1203                return -(address & SINT24_MAX);
1204            } else {
1205                return address;
1206            }
1207        }
1208        int address;
1209        switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
1210            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
1211                return buffer.readUnsignedByte();
1212            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
1213                return buffer.readUnsignedShort();
1214            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
1215                return buffer.readUnsignedInt24();
1216            case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
1217            default:
1218                return FormatSpec.NO_CHILDREN_ADDRESS;
1219        }
1220    }
1221
1222    private static int readParentAddress(final FusionDictionaryBufferInterface buffer,
1223            final FormatOptions formatOptions) {
1224        if (supportsDynamicUpdate(formatOptions)) {
1225            final int parentAddress = buffer.readUnsignedInt24();
1226            final int sign = ((parentAddress & MSB24) != 0) ? -1 : 1;
1227            return sign * (parentAddress & SINT24_MAX);
1228        } else {
1229            return FormatSpec.NO_PARENT_ADDRESS;
1230        }
1231    }
1232
1233    private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH];
1234    public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
1235            final int originalGroupAddress, final FormatOptions options) {
1236        int addressPointer = originalGroupAddress;
1237        final int flags = buffer.readUnsignedByte();
1238        ++addressPointer;
1239
1240        final int parentAddress = readParentAddress(buffer, options);
1241        if (supportsDynamicUpdate(options)) {
1242            addressPointer += 3;
1243        }
1244
1245        final int characters[];
1246        if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) {
1247            int index = 0;
1248            int character = CharEncoding.readChar(buffer);
1249            addressPointer += CharEncoding.getCharSize(character);
1250            while (-1 != character) {
1251                // FusionDictionary is making sure that the length of the word is smaller than
1252                // MAX_WORD_LENGTH.
1253                // So we'll never write past the end of CHARACTER_BUFFER.
1254                CHARACTER_BUFFER[index++] = character;
1255                character = CharEncoding.readChar(buffer);
1256                addressPointer += CharEncoding.getCharSize(character);
1257            }
1258            characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index);
1259        } else {
1260            final int character = CharEncoding.readChar(buffer);
1261            addressPointer += CharEncoding.getCharSize(character);
1262            characters = new int[] { character };
1263        }
1264        final int frequency;
1265        if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) {
1266            ++addressPointer;
1267            frequency = buffer.readUnsignedByte();
1268        } else {
1269            frequency = CharGroup.NOT_A_TERMINAL;
1270        }
1271        int childrenAddress = readChildrenAddress(buffer, flags, options);
1272        if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) {
1273            childrenAddress += addressPointer;
1274        }
1275        addressPointer += getChildrenAddressSize(flags, options);
1276        ArrayList<WeightedString> shortcutTargets = null;
1277        if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) {
1278            final int pointerBefore = buffer.position();
1279            shortcutTargets = new ArrayList<WeightedString>();
1280            buffer.readUnsignedShort(); // Skip the size
1281            while (true) {
1282                final int targetFlags = buffer.readUnsignedByte();
1283                final String word = CharEncoding.readString(buffer);
1284                shortcutTargets.add(new WeightedString(word,
1285                        targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY));
1286                if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
1287            }
1288            addressPointer += buffer.position() - pointerBefore;
1289        }
1290        ArrayList<PendingAttribute> bigrams = null;
1291        if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) {
1292            bigrams = new ArrayList<PendingAttribute>();
1293            while (true) {
1294                final int bigramFlags = buffer.readUnsignedByte();
1295                ++addressPointer;
1296                final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE)
1297                        ? 1 : -1;
1298                int bigramAddress = addressPointer;
1299                switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) {
1300                case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
1301                    bigramAddress += sign * buffer.readUnsignedByte();
1302                    addressPointer += 1;
1303                    break;
1304                case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
1305                    bigramAddress += sign * buffer.readUnsignedShort();
1306                    addressPointer += 2;
1307                    break;
1308                case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
1309                    final int offset = (buffer.readUnsignedByte() << 16)
1310                            + buffer.readUnsignedShort();
1311                    bigramAddress += sign * offset;
1312                    addressPointer += 3;
1313                    break;
1314                default:
1315                    throw new RuntimeException("Has bigrams with no address");
1316                }
1317                bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY,
1318                        bigramAddress));
1319                if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
1320            }
1321        }
1322        return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
1323                parentAddress, childrenAddress, shortcutTargets, bigrams);
1324    }
1325
1326    /**
1327     * Reads and returns the char group count out of a buffer and forwards the pointer.
1328     */
1329    public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
1330        final int msb = buffer.readUnsignedByte();
1331        if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
1332            return msb;
1333        } else {
1334            return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
1335                    + buffer.readUnsignedByte();
1336        }
1337    }
1338
1339    // The word cache here is a stopgap bandaid to help the catastrophic performance
1340    // of this method. Since it performs direct, unbuffered random access to the file and
1341    // may be called hundreds of thousands of times, the resulting performance is not
1342    // reasonable without some kind of cache. Thus:
1343    private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
1344    /**
1345     * Finds, as a string, the word at the address passed as an argument.
1346     *
1347     * @param buffer the buffer to read from.
1348     * @param headerSize the size of the header.
1349     * @param address the address to seek.
1350     * @param formatOptions file format options.
1351     * @return the word, as a string.
1352     */
1353    /* packages for tests */ static String getWordAtAddress(
1354            final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
1355            final FormatOptions formatOptions) {
1356        final String cachedString = wordCache.get(address);
1357        if (null != cachedString) return cachedString;
1358
1359        final String result;
1360        final int originalPointer = buffer.position();
1361        buffer.position(address);
1362
1363        if (supportsDynamicUpdate(formatOptions)) {
1364            result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions);
1365        } else {
1366            result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address,
1367                    formatOptions);
1368        }
1369
1370        wordCache.put(address, result);
1371        buffer.position(originalPointer);
1372        return result;
1373    }
1374
1375    private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH];
1376    private static String getWordAtAddressWithParentAddress(
1377            final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
1378            final FormatOptions options) {
1379        final StringBuilder builder = new StringBuilder();
1380
1381        int currentAddress = address;
1382        int index = FormatSpec.MAX_WORD_LENGTH - 1;
1383        // the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH
1384        for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) {
1385            CharGroupInfo currentInfo;
1386            int loopCounter = 0;
1387            do {
1388                buffer.position(currentAddress + headerSize);
1389                currentInfo = readCharGroup(buffer, currentAddress, options);
1390                if (isMovedGroup(currentInfo.mFlags, options)) {
1391                    currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
1392                }
1393                if (DBG && loopCounter++ > MAX_JUMPS) {
1394                    MakedictLog.d("Too many jumps - probably a bug");
1395                }
1396            } while (isMovedGroup(currentInfo.mFlags, options));
1397            for (int i = 0; i < currentInfo.mCharacters.length; ++i) {
1398                sGetWordBuffer[index--] =
1399                        currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1];
1400            }
1401            if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break;
1402            currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
1403        }
1404
1405        return new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1);
1406    }
1407
1408    private static String getWordAtAddressWithoutParentAddress(
1409            final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
1410            final FormatOptions options) {
1411        buffer.position(headerSize);
1412        final int count = readCharGroupCount(buffer);
1413        int groupOffset = getGroupCountSize(count);
1414        final StringBuilder builder = new StringBuilder();
1415        String result = null;
1416
1417        CharGroupInfo last = null;
1418        for (int i = count - 1; i >= 0; --i) {
1419            CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
1420            groupOffset = info.mEndAddress;
1421            if (info.mOriginalAddress == address) {
1422                builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
1423                result = builder.toString();
1424                break; // and return
1425            }
1426            if (hasChildrenAddress(info.mChildrenAddress)) {
1427                if (info.mChildrenAddress > address) {
1428                    if (null == last) continue;
1429                    builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1430                    buffer.position(last.mChildrenAddress + headerSize);
1431                    groupOffset = last.mChildrenAddress + 1;
1432                    i = buffer.readUnsignedByte();
1433                    last = null;
1434                    continue;
1435                }
1436                last = info;
1437            }
1438            if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
1439                builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1440                buffer.position(last.mChildrenAddress + headerSize);
1441                groupOffset = last.mChildrenAddress + 1;
1442                i = buffer.readUnsignedByte();
1443                last = null;
1444                continue;
1445            }
1446        }
1447        return result;
1448    }
1449
1450    /**
1451     * Reads a single node from a buffer.
1452     *
1453     * This methods reads the file at the current position. A node is fully expected to start at
1454     * the current position.
1455     * This will recursively read other nodes into the structure, populating the reverse
1456     * maps on the fly and using them to keep track of already read nodes.
1457     *
1458     * @param buffer the buffer, correctly positioned at the start of a node.
1459     * @param headerSize the size, in bytes, of the file header.
1460     * @param reverseNodeMap a mapping from addresses to already read nodes.
1461     * @param reverseGroupMap a mapping from addresses to already read character groups.
1462     * @param options file format options.
1463     * @return the read node with all his children already read.
1464     */
1465    private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
1466            final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap,
1467            final FormatOptions options)
1468            throws IOException {
1469        final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
1470        final int nodeOrigin = buffer.position() - headerSize;
1471
1472        do { // Scan the linked-list node.
1473            final int nodeHeadPosition = buffer.position() - headerSize;
1474            final int count = readCharGroupCount(buffer);
1475            int groupOffset = nodeHeadPosition + getGroupCountSize(count);
1476            for (int i = count; i > 0; --i) { // Scan the array of CharGroup.
1477                CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
1478                if (isMovedGroup(info.mFlags, options)) continue;
1479                ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
1480                ArrayList<WeightedString> bigrams = null;
1481                if (null != info.mBigrams) {
1482                    bigrams = new ArrayList<WeightedString>();
1483                    for (PendingAttribute bigram : info.mBigrams) {
1484                        final String word = getWordAtAddress(
1485                                buffer, headerSize, bigram.mAddress, options);
1486                        bigrams.add(new WeightedString(word, bigram.mFrequency));
1487                    }
1488                }
1489                if (hasChildrenAddress(info.mChildrenAddress)) {
1490                    Node children = reverseNodeMap.get(info.mChildrenAddress);
1491                    if (null == children) {
1492                        final int currentPosition = buffer.position();
1493                        buffer.position(info.mChildrenAddress + headerSize);
1494                        children = readNode(
1495                                buffer, headerSize, reverseNodeMap, reverseGroupMap, options);
1496                        buffer.position(currentPosition);
1497                    }
1498                    nodeContents.add(
1499                            new CharGroup(info.mCharacters, shortcutTargets, bigrams,
1500                                    info.mFrequency,
1501                                    0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
1502                                    0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children));
1503                } else {
1504                    nodeContents.add(
1505                            new CharGroup(info.mCharacters, shortcutTargets, bigrams,
1506                                    info.mFrequency,
1507                                    0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
1508                                    0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED)));
1509                }
1510                groupOffset = info.mEndAddress;
1511            }
1512
1513            // reach the end of the array.
1514            if (options.mSupportsDynamicUpdate) {
1515                final int nextAddress = buffer.readUnsignedInt24();
1516                if (nextAddress >= 0 && nextAddress < buffer.limit()) {
1517                    buffer.position(nextAddress);
1518                } else {
1519                    break;
1520                }
1521            }
1522        } while (options.mSupportsDynamicUpdate &&
1523                buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS);
1524
1525        final Node node = new Node(nodeContents);
1526        node.mCachedAddress = nodeOrigin;
1527        reverseNodeMap.put(node.mCachedAddress, node);
1528        return node;
1529    }
1530
1531    /**
1532     * Helper function to get the binary format version from the header.
1533     * @throws IOException
1534     */
1535    private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
1536            throws IOException {
1537        final int magic_v1 = buffer.readUnsignedShort();
1538        if (FormatSpec.VERSION_1_MAGIC_NUMBER == magic_v1) return buffer.readUnsignedByte();
1539        final int magic_v2 = (magic_v1 << 16) + buffer.readUnsignedShort();
1540        if (FormatSpec.VERSION_2_MAGIC_NUMBER == magic_v2) return buffer.readUnsignedShort();
1541        return FormatSpec.NOT_A_VERSION_NUMBER;
1542    }
1543
1544    /**
1545     * Helper function to get and validate the binary format version.
1546     * @throws UnsupportedFormatException
1547     * @throws IOException
1548     */
1549    private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer)
1550            throws IOException, UnsupportedFormatException {
1551        final int version = getFormatVersion(buffer);
1552        if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
1553                || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
1554            throw new UnsupportedFormatException("This file has version " + version
1555                    + ", but this implementation does not support versions above "
1556                    + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
1557        }
1558        return version;
1559    }
1560
1561    /**
1562     * Reads a header from a buffer.
1563     * @param buffer the buffer to read.
1564     * @throws IOException
1565     * @throws UnsupportedFormatException
1566     */
1567    public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer)
1568            throws IOException, UnsupportedFormatException {
1569        final int version = checkFormatVersion(buffer);
1570        final int optionsFlags = buffer.readUnsignedShort();
1571
1572        final HashMap<String, String> attributes = new HashMap<String, String>();
1573        final int headerSize;
1574        if (version < FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
1575            headerSize = buffer.position();
1576        } else {
1577            headerSize = buffer.readInt();
1578            populateOptions(buffer, headerSize, attributes);
1579            buffer.position(headerSize);
1580        }
1581
1582        if (headerSize < 0) {
1583            throw new UnsupportedFormatException("header size can't be negative.");
1584        }
1585
1586        final FileHeader header = new FileHeader(headerSize,
1587                new FusionDictionary.DictionaryOptions(attributes,
1588                        0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG),
1589                        0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)),
1590                new FormatOptions(version,
1591                        0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE)));
1592        return header;
1593    }
1594
1595    /**
1596     * Reads options from a buffer and populate a map with their contents.
1597     *
1598     * The buffer is read at the current position, so the caller must take care the pointer
1599     * is in the right place before calling this.
1600     */
1601    public static void populateOptions(final FusionDictionaryBufferInterface buffer,
1602            final int headerSize, final HashMap<String, String> options) {
1603        while (buffer.position() < headerSize) {
1604            final String key = CharEncoding.readString(buffer);
1605            final String value = CharEncoding.readString(buffer);
1606            options.put(key, value);
1607        }
1608    }
1609
1610    /**
1611     * Reads a buffer and returns the memory representation of the dictionary.
1612     *
1613     * This high-level method takes a buffer and reads its contents, populating a
1614     * FusionDictionary structure. The optional dict argument is an existing dictionary to
1615     * which words from the buffer should be added. If it is null, a new dictionary is created.
1616     *
1617     * @param buffer the buffer to read.
1618     * @param dict an optional dictionary to add words to, or null.
1619     * @return the created (or merged) dictionary.
1620     */
1621    public static FusionDictionary readDictionaryBinary(
1622            final FusionDictionaryBufferInterface buffer, final FusionDictionary dict)
1623                    throws IOException, UnsupportedFormatException {
1624        // clear cache
1625        wordCache.clear();
1626
1627        // Read header
1628        final FileHeader header = readHeader(buffer);
1629
1630        Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
1631        Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
1632        final Node root = readNode(buffer, header.mHeaderSize, reverseNodeMapping,
1633                reverseGroupMapping, header.mFormatOptions);
1634
1635        FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions);
1636        if (null != dict) {
1637            for (final Word w : dict) {
1638                if (w.mIsBlacklistEntry) {
1639                    newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord);
1640                } else {
1641                    newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord);
1642                }
1643            }
1644            for (final Word w : dict) {
1645                // By construction a binary dictionary may not have bigrams pointing to
1646                // words that are not also registered as unigrams so we don't have to avoid
1647                // them explicitly here.
1648                for (final WeightedString bigram : w.mBigrams) {
1649                    newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
1650                }
1651            }
1652        }
1653
1654        return newDict;
1655    }
1656
1657    /**
1658     * Basic test to find out whether the file is a binary dictionary or not.
1659     *
1660     * Concretely this only tests the magic number.
1661     *
1662     * @param filename The name of the file to test.
1663     * @return true if it's a binary dictionary, false otherwise
1664     */
1665    public static boolean isBinaryDictionary(final String filename) {
1666        FileInputStream inStream = null;
1667        try {
1668            final File file = new File(filename);
1669            inStream = new FileInputStream(file);
1670            final ByteBuffer buffer = inStream.getChannel().map(
1671                    FileChannel.MapMode.READ_ONLY, 0, file.length());
1672            final int version = getFormatVersion(new ByteBufferWrapper(buffer));
1673            return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION
1674                    && version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION);
1675        } catch (FileNotFoundException e) {
1676            return false;
1677        } catch (IOException e) {
1678            return false;
1679        } finally {
1680            if (inStream != null) {
1681                try {
1682                    inStream.close();
1683                } catch (IOException e) {
1684                    // do nothing
1685                }
1686            }
1687        }
1688    }
1689
1690    /**
1691     * Calculate bigram frequency from compressed value
1692     *
1693     * @see #makeBigramFlags
1694     *
1695     * @param unigramFrequency
1696     * @param bigramFrequency compressed frequency
1697     * @return approximate bigram frequency
1698     */
1699    public static int reconstructBigramFrequency(final int unigramFrequency,
1700            final int bigramFrequency) {
1701        final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
1702                / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
1703        final float resultFreqFloat = (float)unigramFrequency
1704                + stepSize * (bigramFrequency + 1.0f);
1705        return (int)resultFreqFloat;
1706    }
1707}
1708