BinaryDictInputOutput.java revision 1d80a7f395290cd0e7344210bb3960f685059264
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin.makedict;
18
19import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
20import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
21import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
22import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
23
24import java.io.ByteArrayOutputStream;
25import java.io.FileNotFoundException;
26import java.io.IOException;
27import java.io.OutputStream;
28import java.io.RandomAccessFile;
29import java.util.ArrayList;
30import java.util.Arrays;
31import java.util.HashMap;
32import java.util.Iterator;
33import java.util.Map;
34import java.util.TreeMap;
35
36/**
37 * Reads and writes XML files for a FusionDictionary.
38 *
39 * All the methods in this class are static.
40 */
41public class BinaryDictInputOutput {
42
43    /* Node layout is as follows:
44     *   | addressType                         xx     : mask with MASK_GROUP_ADDRESS_TYPE
45     *                                 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
46     * f |                                     01 = 1 byte      : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
47     * l |                                     10 = 2 bytes     : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
48     * a |                                     11 = 3 bytes     : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
49     * g | has several chars ?         1 bit, 1 = yes, 0 = no   : FLAG_HAS_MULTIPLE_CHARS
50     * s | has a terminal ?            1 bit, 1 = yes, 0 = no   : FLAG_IS_TERMINAL
51     *   | has shortcut targets ?      1 bit, 1 = yes, 0 = no   : FLAG_HAS_SHORTCUT_TARGETS
52     *   | has bigrams ?               1 bit, 1 = yes, 0 = no   : FLAG_HAS_BIGRAMS
53     *
54     * c | IF FLAG_HAS_MULTIPLE_CHARS
55     * h |   char, char, char, char    n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
56     * a |   end                       1 byte, = 0
57     * r | ELSE
58     * s |   char                      1 or 3 bytes
59     *   | END
60     *
61     * f |
62     * r | IF FLAG_IS_TERMINAL
63     * e |   frequency                 1 byte
64     * q |
65     *
66     * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
67     * h |   // nothing
68     * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
69     * l |   children address, 1 byte
70     * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
71     * r |   children address, 2 bytes
72     * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
73     * n |   children address, 3 bytes
74     * A | END
75     * d
76     * dress
77     *
78     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS
79     *   | shortcut string list
80     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
81     *   | bigrams address list
82     *
83     * Char format is:
84     * 1 byte = bbbbbbbb match
85     * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
86     * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
87     *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
88     *       00011111 would be outside unicode.
89     * else: iso-latin-1 code
90     * This allows for the whole unicode range to be encoded, including chars outside of
91     * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
92     * characters which should never happen anyway (and still work, but take 3 bytes).
93     *
94     * bigram address list is:
95     * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no     : FLAG_ATTRIBUTE_HAS_NEXT
96     *           | addressSign = 1 bit,                 : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
97     *           |                      1 = must take -address, 0 = must take +address
98     *           |                         xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
99     *           | addressFormat = 2 bits, 00 = unused  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
100     *           |                         01 = 1 byte  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
101     *           |                         10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
102     *           |                         11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
103     *           | 4 bits : frequency         : mask with FLAG_ATTRIBUTE_FREQUENCY
104     * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
105     *           |   read 1 byte, add top 4 bits
106     *           | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
107     *           |   read 2 bytes, add top 4 bits
108     *           | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
109     *           |   read 3 bytes, add top 4 bits
110     *           | END
111     *           | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
112     * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is
113     *
114     * shortcut string list is:
115     * <byte size> = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes.
116     * <flags>     = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
117     *               | reserved = 3 bits, must be 0
118     *               | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
119     * <shortcut>  = | string of characters at the char format described above, with the terminator
120     *               | used to signal the end of the string.
121     * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags
122     */
123
124    private static final int VERSION_1_MAGIC_NUMBER = 0x78B1;
125    private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
126    private static final int MINIMUM_SUPPORTED_VERSION = 1;
127    private static final int MAXIMUM_SUPPORTED_VERSION = 2;
128    private static final int NOT_A_VERSION_NUMBER = -1;
129    private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2;
130
131    // These options need to be the same numeric values as the one in the native reading code.
132    private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1;
133    private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4;
134
135    // TODO: Make this value adaptative to content data, store it in the header, and
136    // use it in the reading code.
137    private static final int MAX_WORD_LENGTH = 48;
138
139    private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
140    private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
141    private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
142    private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
143    private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
144
145    private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
146
147    private static final int FLAG_IS_TERMINAL = 0x10;
148    private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
149    private static final int FLAG_HAS_BIGRAMS = 0x04;
150
151    private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
152    private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
153    private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
154    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
155    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
156    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
157    private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
158
159    private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
160
161    private static final int GROUP_TERMINATOR_SIZE = 1;
162    private static final int GROUP_FLAGS_SIZE = 1;
163    private static final int GROUP_FREQUENCY_SIZE = 1;
164    private static final int GROUP_MAX_ADDRESS_SIZE = 3;
165    private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
166    private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
167    private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2;
168
169    private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
170    private static final int INVALID_CHARACTER = -1;
171
172    private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127
173    private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767
174
175    private static final int MAX_TERMINAL_FREQUENCY = 255;
176
177    /**
178     * A class grouping utility function for our specific character encoding.
179     */
180    private static class CharEncoding {
181
182        private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
183        private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
184
185        /**
186         * Helper method to find out whether this code fits on one byte
187         */
188        private static boolean fitsOnOneByte(int character) {
189            return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
190                    && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
191        }
192
193        /**
194         * Compute the size of a character given its character code.
195         *
196         * Char format is:
197         * 1 byte = bbbbbbbb match
198         * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
199         * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
200         *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
201         *       00011111 would be outside unicode.
202         * else: iso-latin-1 code
203         * This allows for the whole unicode range to be encoded, including chars outside of
204         * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
205         * characters which should never happen anyway (and still work, but take 3 bytes).
206         *
207         * @param character the character code.
208         * @return the size in binary encoded-form, either 1 or 3 bytes.
209         */
210        private static int getCharSize(int character) {
211            // See char encoding in FusionDictionary.java
212            if (fitsOnOneByte(character)) return 1;
213            if (INVALID_CHARACTER == character) return 1;
214            return 3;
215        }
216
217        /**
218         * Compute the byte size of a character array.
219         */
220        private static int getCharArraySize(final int[] chars) {
221            int size = 0;
222            for (int character : chars) size += getCharSize(character);
223            return size;
224        }
225
226        /**
227         * Writes a char array to a byte buffer.
228         *
229         * @param codePoints the code point array to write.
230         * @param buffer the byte buffer to write to.
231         * @param index the index in buffer to write the character array to.
232         * @return the index after the last character.
233         */
234        private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
235            for (int codePoint : codePoints) {
236                if (1 == getCharSize(codePoint)) {
237                    buffer[index++] = (byte)codePoint;
238                } else {
239                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
240                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
241                    buffer[index++] = (byte)(0xFF & codePoint);
242                }
243            }
244            return index;
245        }
246
247        /**
248         * Writes a string with our character format to a byte buffer.
249         *
250         * This will also write the terminator byte.
251         *
252         * @param buffer the byte buffer to write to.
253         * @param origin the offset to write from.
254         * @param word the string to write.
255         * @return the size written, in bytes.
256         */
257        private static int writeString(final byte[] buffer, final int origin,
258                final String word) {
259            final int length = word.length();
260            int index = origin;
261            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
262                final int codePoint = word.codePointAt(i);
263                if (1 == getCharSize(codePoint)) {
264                    buffer[index++] = (byte)codePoint;
265                } else {
266                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
267                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
268                    buffer[index++] = (byte)(0xFF & codePoint);
269                }
270            }
271            buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
272            return index - origin;
273        }
274
275        /**
276         * Writes a string with our character format to a ByteArrayOutputStream.
277         *
278         * This will also write the terminator byte.
279         *
280         * @param buffer the ByteArrayOutputStream to write to.
281         * @param word the string to write.
282         */
283        private static void writeString(ByteArrayOutputStream buffer, final String word) {
284            final int length = word.length();
285            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
286                final int codePoint = word.codePointAt(i);
287                if (1 == getCharSize(codePoint)) {
288                    buffer.write((byte) codePoint);
289                } else {
290                    buffer.write((byte) (0xFF & (codePoint >> 16)));
291                    buffer.write((byte) (0xFF & (codePoint >> 8)));
292                    buffer.write((byte) (0xFF & codePoint));
293                }
294            }
295            buffer.write(GROUP_CHARACTERS_TERMINATOR);
296        }
297
298        /**
299         * Reads a string from a RandomAccessFile. This is the converse of the above method.
300         */
301        private static String readString(final RandomAccessFile source) throws IOException {
302            final StringBuilder s = new StringBuilder();
303            int character = readChar(source);
304            while (character != INVALID_CHARACTER) {
305                s.appendCodePoint(character);
306                character = readChar(source);
307            }
308            return s.toString();
309        }
310
311        /**
312         * Reads a character from the file.
313         *
314         * This follows the character format documented earlier in this source file.
315         *
316         * @param source the file, positioned over an encoded character.
317         * @return the character code.
318         */
319        private static int readChar(RandomAccessFile source) throws IOException {
320            int character = source.readUnsignedByte();
321            if (!fitsOnOneByte(character)) {
322                if (GROUP_CHARACTERS_TERMINATOR == character)
323                    return INVALID_CHARACTER;
324                character <<= 16;
325                character += source.readUnsignedShort();
326            }
327            return character;
328        }
329    }
330
331    /**
332     * Compute the binary size of the character array in a group
333     *
334     * If only one character, this is the size of this character. If many, it's the sum of their
335     * sizes + 1 byte for the terminator.
336     *
337     * @param group the group
338     * @return the size of the char array, including the terminator if any
339     */
340    private static int getGroupCharactersSize(CharGroup group) {
341        int size = CharEncoding.getCharArraySize(group.mChars);
342        if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
343        return size;
344    }
345
346    /**
347     * Compute the binary size of the group count
348     * @param count the group count
349     * @return the size of the group count, either 1 or 2 bytes.
350     */
351    private static int getGroupCountSize(final int count) {
352        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
353            return 1;
354        } else if (MAX_CHARGROUPS_IN_A_NODE >= count) {
355            return 2;
356        } else {
357            throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE
358                    + " groups in a node (found " + count +")");
359        }
360    }
361
362    /**
363     * Compute the binary size of the group count for a node
364     * @param node the node
365     * @return the size of the group count, either 1 or 2 bytes.
366     */
367    private static int getGroupCountSize(final Node node) {
368        return getGroupCountSize(node.mData.size());
369    }
370
371    /**
372     * Compute the size of a shortcut in bytes.
373     */
374    private static int getShortcutSize(final WeightedString shortcut) {
375        int size = GROUP_ATTRIBUTE_FLAGS_SIZE;
376        final String word = shortcut.mWord;
377        final int length = word.length();
378        for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
379            final int codePoint = word.codePointAt(i);
380            size += CharEncoding.getCharSize(codePoint);
381        }
382        size += GROUP_TERMINATOR_SIZE;
383        return size;
384    }
385
386    /**
387     * Compute the size of a shortcut list in bytes.
388     *
389     * This is known in advance and does not change according to position in the file
390     * like address lists do.
391     */
392    private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
393        if (null == shortcutList) return 0;
394        int size = GROUP_SHORTCUT_LIST_SIZE_SIZE;
395        for (final WeightedString shortcut : shortcutList) {
396            size += getShortcutSize(shortcut);
397        }
398        return size;
399    }
400
401    /**
402     * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
403     *
404     * @param group the CharGroup to compute the size of.
405     * @return the maximum size of the group.
406     */
407    private static int getCharGroupMaximumSize(CharGroup group) {
408        int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
409        // If terminal, one byte for the frequency
410        if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
411        size += GROUP_MAX_ADDRESS_SIZE; // For children address
412        size += getShortcutListSize(group.mShortcutTargets);
413        if (null != group.mBigrams) {
414            size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
415                    * group.mBigrams.size();
416        }
417        return size;
418    }
419
420    /**
421     * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
422     * it in the 'actualSize' member of the node.
423     *
424     * @param node the node to compute the maximum size of.
425     */
426    private static void setNodeMaximumSize(Node node) {
427        int size = getGroupCountSize(node);
428        for (CharGroup g : node.mData) {
429            final int groupSize = getCharGroupMaximumSize(g);
430            g.mCachedSize = groupSize;
431            size += groupSize;
432        }
433        node.mCachedSize = size;
434    }
435
436    /**
437     * Helper method to hide the actual value of the no children address.
438     */
439    private static boolean hasChildrenAddress(int address) {
440        return NO_CHILDREN_ADDRESS != address;
441    }
442
443    /**
444     * Compute the size, in bytes, that an address will occupy.
445     *
446     * This can be used either for children addresses (which are always positive) or for
447     * attribute, which may be positive or negative but
448     * store their sign bit separately.
449     *
450     * @param address the address
451     * @return the byte size.
452     */
453    private static int getByteSize(int address) {
454        assert(address < 0x1000000);
455        if (!hasChildrenAddress(address)) {
456            return 0;
457        } else if (Math.abs(address) < 0x100) {
458            return 1;
459        } else if (Math.abs(address) < 0x10000) {
460            return 2;
461        } else {
462            return 3;
463        }
464    }
465    // End utility methods.
466
467    // This method is responsible for finding a nice ordering of the nodes that favors run-time
468    // cache performance and dictionary size.
469    /* package for tests */ static ArrayList<Node> flattenTree(Node root) {
470        final int treeSize = FusionDictionary.countCharGroups(root);
471        MakedictLog.i("Counted nodes : " + treeSize);
472        final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
473        return flattenTreeInner(flatTree, root);
474    }
475
476    private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
477        // Removing the node is necessary if the tails are merged, because we would then
478        // add the same node several times when we only want it once. A number of places in
479        // the code also depends on any node being only once in the list.
480        // Merging tails can only be done if there are no attributes. Searching for attributes
481        // in LatinIME code depends on a total breadth-first ordering, which merging tails
482        // breaks. If there are no attributes, it should be fine (and reduce the file size)
483        // to merge tails, and the following step would be necessary.
484        // If eventually the code runs on Android, searching through the whole array each time
485        // may be a performance concern.
486        list.remove(node);
487        list.add(node);
488        final ArrayList<CharGroup> branches = node.mData;
489        final int nodeSize = branches.size();
490        for (CharGroup group : branches) {
491            if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
492        }
493        return list;
494    }
495
496    /**
497     * Finds the absolute address of a word in the dictionary.
498     *
499     * @param dict the dictionary in which to search.
500     * @param word the word we are searching for.
501     * @return the word address. If it is not found, an exception is thrown.
502     */
503    private static int findAddressOfWord(final FusionDictionary dict, final String word) {
504        return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
505    }
506
507    /**
508     * Computes the actual node size, based on the cached addresses of the children nodes.
509     *
510     * Each node stores its tentative address. During dictionary address computing, these
511     * are not final, but they can be used to compute the node size (the node size depends
512     * on the address of the children because the number of bytes necessary to store an
513     * address depends on its numeric value.
514     *
515     * @param node the node to compute the size of.
516     * @param dict the dictionary in which the word/attributes are to be found.
517     */
518    private static void computeActualNodeSize(Node node, FusionDictionary dict) {
519        int size = getGroupCountSize(node);
520        for (CharGroup group : node.mData) {
521            int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
522            if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
523            if (null != group.mChildren) {
524                final int offsetBasePoint= groupSize + node.mCachedAddress + size;
525                final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
526                groupSize += getByteSize(offset);
527            }
528            groupSize += getShortcutListSize(group.mShortcutTargets);
529            if (null != group.mBigrams) {
530                for (WeightedString bigram : group.mBigrams) {
531                    final int offsetBasePoint = groupSize + node.mCachedAddress + size
532                            + GROUP_FLAGS_SIZE;
533                    final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
534                    final int offset = addressOfBigram - offsetBasePoint;
535                    groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
536                }
537            }
538            group.mCachedSize = groupSize;
539            size += groupSize;
540        }
541        node.mCachedSize = size;
542    }
543
544    /**
545     * Computes the byte size of a list of nodes and updates each node cached position.
546     *
547     * @param flatNodes the array of nodes.
548     * @return the byte size of the entire stack.
549     */
550    private static int stackNodes(ArrayList<Node> flatNodes) {
551        int nodeOffset = 0;
552        for (Node n : flatNodes) {
553            n.mCachedAddress = nodeOffset;
554            int groupCountSize = getGroupCountSize(n);
555            int groupOffset = 0;
556            for (CharGroup g : n.mData) {
557                g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
558                groupOffset += g.mCachedSize;
559            }
560            if (groupOffset + groupCountSize != n.mCachedSize) {
561                throw new RuntimeException("Bug : Stored and computed node size differ");
562            }
563            nodeOffset += n.mCachedSize;
564        }
565        return nodeOffset;
566    }
567
568    /**
569     * Compute the addresses and sizes of an ordered node array.
570     *
571     * This method takes a node array and will update its cached address and size values
572     * so that they can be written into a file. It determines the smallest size each of the
573     * nodes can be given the addresses of its children and attributes, and store that into
574     * each node.
575     * The order of the node is given by the order of the array. This method makes no effort
576     * to find a good order; it only mechanically computes the size this order results in.
577     *
578     * @param dict the dictionary
579     * @param flatNodes the ordered array of nodes
580     * @return the same array it was passed. The nodes have been updated for address and size.
581     */
582    private static ArrayList<Node> computeAddresses(FusionDictionary dict,
583            ArrayList<Node> flatNodes) {
584        // First get the worst sizes and offsets
585        for (Node n : flatNodes) setNodeMaximumSize(n);
586        final int offset = stackNodes(flatNodes);
587
588        MakedictLog.i("Compressing the array addresses. Original size : " + offset);
589        MakedictLog.i("(Recursively seen size : " + offset + ")");
590
591        int passes = 0;
592        boolean changesDone = false;
593        do {
594            changesDone = false;
595            for (Node n : flatNodes) {
596                final int oldNodeSize = n.mCachedSize;
597                computeActualNodeSize(n, dict);
598                final int newNodeSize = n.mCachedSize;
599                if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
600                if (oldNodeSize != newNodeSize) changesDone = true;
601            }
602            stackNodes(flatNodes);
603            ++passes;
604        } while (changesDone);
605
606        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
607        MakedictLog.i("Compression complete in " + passes + " passes.");
608        MakedictLog.i("After address compression : "
609                + (lastNode.mCachedAddress + lastNode.mCachedSize));
610
611        return flatNodes;
612    }
613
614    /**
615     * Sanity-checking method.
616     *
617     * This method checks an array of node for juxtaposition, that is, it will do
618     * nothing if each node's cached address is actually the previous node's address
619     * plus the previous node's size.
620     * If this is not the case, it will throw an exception.
621     *
622     * @param array the array node to check
623     */
624    private static void checkFlatNodeArray(ArrayList<Node> array) {
625        int offset = 0;
626        int index = 0;
627        for (Node n : array) {
628            if (n.mCachedAddress != offset) {
629                throw new RuntimeException("Wrong address for node " + index
630                        + " : expected " + offset + ", got " + n.mCachedAddress);
631            }
632            ++index;
633            offset += n.mCachedSize;
634        }
635    }
636
637    /**
638     * Helper method to write a variable-size address to a file.
639     *
640     * @param buffer the buffer to write to.
641     * @param index the index in the buffer to write the address to.
642     * @param address the address to write.
643     * @return the size in bytes the address actually took.
644     */
645    private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
646        switch (getByteSize(address)) {
647        case 1:
648            buffer[index++] = (byte)address;
649            return 1;
650        case 2:
651            buffer[index++] = (byte)(0xFF & (address >> 8));
652            buffer[index++] = (byte)(0xFF & address);
653            return 2;
654        case 3:
655            buffer[index++] = (byte)(0xFF & (address >> 16));
656            buffer[index++] = (byte)(0xFF & (address >> 8));
657            buffer[index++] = (byte)(0xFF & address);
658            return 3;
659        case 0:
660            return 0;
661        default:
662            throw new RuntimeException("Address " + address + " has a strange size");
663        }
664    }
665
666    private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
667            final int childrenOffset) {
668        byte flags = 0;
669        if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
670        if (group.mFrequency >= 0) {
671            flags |= FLAG_IS_TERMINAL;
672        }
673        if (null != group.mChildren) {
674            switch (getByteSize(childrenOffset)) {
675             case 1:
676                 flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
677                 break;
678             case 2:
679                 flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
680                 break;
681             case 3:
682                 flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
683                 break;
684             default:
685                 throw new RuntimeException("Node with a strange address");
686             }
687        }
688        if (null != group.mShortcutTargets) {
689            if (0 == group.mShortcutTargets.size()) {
690                throw new RuntimeException("0-sized shortcut list must be null");
691            }
692            flags |= FLAG_HAS_SHORTCUT_TARGETS;
693        }
694        if (null != group.mBigrams) {
695            if (0 == group.mBigrams.size()) {
696                throw new RuntimeException("0-sized bigram list must be null");
697            }
698            flags |= FLAG_HAS_BIGRAMS;
699        }
700        return flags;
701    }
702
703    /**
704     * Makes the flag value for an attribute.
705     *
706     * @param more whether there are more attributes after this one.
707     * @param offset the offset of the attribute.
708     * @param frequency the frequency of the attribute, 0..15
709     * @return the flags
710     */
711    private static final int makeAttributeFlags(final boolean more, final int offset,
712            final int frequency) {
713        int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
714                + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
715        switch (getByteSize(offset)) {
716        case 1:
717            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
718            break;
719        case 2:
720            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
721            break;
722        case 3:
723            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
724            break;
725        default:
726            throw new RuntimeException("Strange offset size");
727        }
728        bigramFlags += frequency & FLAG_ATTRIBUTE_FREQUENCY;
729        return bigramFlags;
730    }
731
732    /**
733     * Makes the 2-byte value for options flags.
734     */
735    private static final int makeOptionsValue(final DictionaryOptions options) {
736        return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0)
737                + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0);
738    }
739
740    /**
741     * Makes the flag value for a shortcut.
742     *
743     * @param more whether there are more attributes after this one.
744     * @param frequency the frequency of the attribute, 0..15
745     * @return the flags
746     */
747    private static final int makeShortcutFlags(final boolean more, final int frequency) {
748        return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY);
749    }
750
751    /**
752     * Write a node to memory. The node is expected to have its final position cached.
753     *
754     * This can be an empty map, but the more is inside the faster the lookups will be. It can
755     * be carried on as long as nodes do not move.
756     *
757     * @param dict the dictionary the node is a part of (for relative offsets).
758     * @param buffer the memory buffer to write to.
759     * @param node the node to write.
760     * @return the address of the END of the node.
761     */
762    private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
763        int index = node.mCachedAddress;
764
765        final int groupCount = node.mData.size();
766        final int countSize = getGroupCountSize(node);
767        if (1 == countSize) {
768            buffer[index++] = (byte)groupCount;
769        } else if (2 == countSize) {
770            // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
771            // we | 0x80 to do this.
772            buffer[index++] = (byte)((groupCount >> 8) | 0x80);
773            buffer[index++] = (byte)(groupCount & 0xFF);
774        } else {
775            throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
776        }
777        int groupAddress = index;
778        for (int i = 0; i < groupCount; ++i) {
779            CharGroup group = node.mData.get(i);
780            if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
781                    + "the same as the cached address of the group : "
782                    + index + " <> " + group.mCachedAddress);
783            groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
784            // Sanity checks.
785            if (group.mFrequency > MAX_TERMINAL_FREQUENCY) {
786                throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
787                        + " : " + group.mFrequency);
788            }
789            if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
790            final int childrenOffset = null == group.mChildren
791                    ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
792            byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
793            buffer[index++] = flags;
794            index = CharEncoding.writeCharArray(group.mChars, buffer, index);
795            if (group.hasSeveralChars()) {
796                buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
797            }
798            if (group.mFrequency >= 0) {
799                buffer[index++] = (byte) group.mFrequency;
800            }
801            final int shift = writeVariableAddress(buffer, index, childrenOffset);
802            index += shift;
803            groupAddress += shift;
804
805            // Write shortcuts
806            if (null != group.mShortcutTargets) {
807                final int indexOfShortcutByteSize = index;
808                index += GROUP_SHORTCUT_LIST_SIZE_SIZE;
809                groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE;
810                final Iterator shortcutIterator = group.mShortcutTargets.iterator();
811                while (shortcutIterator.hasNext()) {
812                    final WeightedString target = (WeightedString)shortcutIterator.next();
813                    ++groupAddress;
814                    int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
815                            target.mFrequency);
816                    buffer[index++] = (byte)shortcutFlags;
817                    final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
818                    index += shortcutShift;
819                    groupAddress += shortcutShift;
820                }
821                final int shortcutByteSize = index - indexOfShortcutByteSize;
822                if (shortcutByteSize > 0xFFFF) {
823                    throw new RuntimeException("Shortcut list too large");
824                }
825                buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
826                buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
827            }
828            // Write bigrams
829            if (null != group.mBigrams) {
830                final Iterator bigramIterator = group.mBigrams.iterator();
831                while (bigramIterator.hasNext()) {
832                    final WeightedString bigram = (WeightedString)bigramIterator.next();
833                    final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
834                    ++groupAddress;
835                    final int offset = addressOfBigram - groupAddress;
836                    int bigramFlags = makeAttributeFlags(bigramIterator.hasNext(), offset,
837                            bigram.mFrequency);
838                    buffer[index++] = (byte)bigramFlags;
839                    final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
840                    index += bigramShift;
841                    groupAddress += bigramShift;
842                }
843            }
844
845        }
846        if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
847                "Not the same size : written "
848                + (index - node.mCachedAddress) + " bytes out of a node that should have "
849                + node.mCachedSize + " bytes");
850        return index;
851    }
852
853    /**
854     * Dumps a collection of useful statistics about a node array.
855     *
856     * This prints purely informative stuff, like the total estimated file size, the
857     * number of nodes, of character groups, the repartition of each address size, etc
858     *
859     * @param nodes the node array.
860     */
861    private static void showStatistics(ArrayList<Node> nodes) {
862        int firstTerminalAddress = Integer.MAX_VALUE;
863        int lastTerminalAddress = Integer.MIN_VALUE;
864        int size = 0;
865        int charGroups = 0;
866        int maxGroups = 0;
867        int maxRuns = 0;
868        for (Node n : nodes) {
869            if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
870            for (CharGroup cg : n.mData) {
871                ++charGroups;
872                if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
873                if (cg.mFrequency >= 0) {
874                    if (n.mCachedAddress < firstTerminalAddress)
875                        firstTerminalAddress = n.mCachedAddress;
876                    if (n.mCachedAddress > lastTerminalAddress)
877                        lastTerminalAddress = n.mCachedAddress;
878                }
879            }
880            if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
881        }
882        final int[] groupCounts = new int[maxGroups + 1];
883        final int[] runCounts = new int[maxRuns + 1];
884        for (Node n : nodes) {
885            ++groupCounts[n.mData.size()];
886            for (CharGroup cg : n.mData) {
887                ++runCounts[cg.mChars.length];
888            }
889        }
890
891        MakedictLog.i("Statistics:\n"
892                + "  total file size " + size + "\n"
893                + "  " + nodes.size() + " nodes\n"
894                + "  " + charGroups + " groups (" + ((float)charGroups / nodes.size())
895                        + " groups per node)\n"
896                + "  first terminal at " + firstTerminalAddress + "\n"
897                + "  last terminal at " + lastTerminalAddress + "\n"
898                + "  Group stats : max = " + maxGroups);
899        for (int i = 0; i < groupCounts.length; ++i) {
900            MakedictLog.i("    " + i + " : " + groupCounts[i]);
901        }
902        MakedictLog.i("  Character run stats : max = " + maxRuns);
903        for (int i = 0; i < runCounts.length; ++i) {
904            MakedictLog.i("    " + i + " : " + runCounts[i]);
905        }
906    }
907
908    /**
909     * Dumps a FusionDictionary to a file.
910     *
911     * This is the public entry point to write a dictionary to a file.
912     *
913     * @param destination the stream to write the binary data to.
914     * @param dict the dictionary to write.
915     * @param version the version of the format to write, currently either 1 or 2.
916     */
917    public static void writeDictionaryBinary(final OutputStream destination,
918            final FusionDictionary dict, final int version)
919            throws IOException, UnsupportedFormatException {
920
921        // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
922        // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
923        // of the nodes becomes a quite complicated problem, because though the dictionary itself
924        // does not have a size limit, each node must still be within 16MB of all its children and
925        // parents. As long as this is ensured, the dictionary file may grow to any size.
926
927        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
928            throw new UnsupportedFormatException("Requested file format version " + version
929                    + ", but this implementation only supports versions "
930                    + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION);
931        }
932
933        ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
934
935        // The magic number in big-endian order.
936        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
937            // Magic number for version 2+.
938            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24)));
939            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16)));
940            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8)));
941            headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER));
942            // Dictionary version.
943            headerBuffer.write((byte) (0xFF & (version >> 8)));
944            headerBuffer.write((byte) (0xFF & version));
945        } else {
946            // Magic number for version 1.
947            headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8)));
948            headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER));
949            // Dictionary version.
950            headerBuffer.write((byte) (0xFF & version));
951        }
952        // Options flags
953        final int options = makeOptionsValue(dict.mOptions);
954        headerBuffer.write((byte) (0xFF & (options >> 8)));
955        headerBuffer.write((byte) (0xFF & options));
956        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
957            final int headerSizeOffset = headerBuffer.size();
958            // Placeholder to be written later with header size.
959            for (int i = 0; i < 4; ++i) {
960                headerBuffer.write(0);
961            }
962            // Write out the options.
963            for (final String key : dict.mOptions.mAttributes.keySet()) {
964                final String value = dict.mOptions.mAttributes.get(key);
965                CharEncoding.writeString(headerBuffer, key);
966                CharEncoding.writeString(headerBuffer, value);
967            }
968            final int size = headerBuffer.size();
969            final byte[] bytes = headerBuffer.toByteArray();
970            // Write out the header size.
971            bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
972            bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
973            bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
974            bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
975            destination.write(bytes);
976        } else {
977            headerBuffer.writeTo(destination);
978        }
979
980        headerBuffer.close();
981
982        // Leave the choice of the optimal node order to the flattenTree function.
983        MakedictLog.i("Flattening the tree...");
984        ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
985
986        MakedictLog.i("Computing addresses...");
987        computeAddresses(dict, flatNodes);
988        MakedictLog.i("Checking array...");
989        checkFlatNodeArray(flatNodes);
990
991        // Create a buffer that matches the final dictionary size.
992        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
993        final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize);
994        final byte[] buffer = new byte[bufferSize];
995        int index = 0;
996
997        MakedictLog.i("Writing file...");
998        int dataEndOffset = 0;
999        for (Node n : flatNodes) {
1000            dataEndOffset = writePlacedNode(dict, buffer, n);
1001        }
1002
1003        showStatistics(flatNodes);
1004
1005        destination.write(buffer, 0, dataEndOffset);
1006
1007        destination.close();
1008        MakedictLog.i("Done");
1009    }
1010
1011
1012    // Input methods: Read a binary dictionary to memory.
1013    // readDictionaryBinary is the public entry point for them.
1014
1015    static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
1016    private static CharGroupInfo readCharGroup(RandomAccessFile source,
1017            final int originalGroupAddress) throws IOException {
1018        int addressPointer = originalGroupAddress;
1019        final int flags = source.readUnsignedByte();
1020        ++addressPointer;
1021        final int characters[];
1022        if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
1023            int index = 0;
1024            int character = CharEncoding.readChar(source);
1025            addressPointer += CharEncoding.getCharSize(character);
1026            while (-1 != character) {
1027                characterBuffer[index++] = character;
1028                character = CharEncoding.readChar(source);
1029                addressPointer += CharEncoding.getCharSize(character);
1030            }
1031            characters = Arrays.copyOfRange(characterBuffer, 0, index);
1032        } else {
1033            final int character = CharEncoding.readChar(source);
1034            addressPointer += CharEncoding.getCharSize(character);
1035            characters = new int[] { character };
1036        }
1037        final int frequency;
1038        if (0 != (FLAG_IS_TERMINAL & flags)) {
1039            ++addressPointer;
1040            frequency = source.readUnsignedByte();
1041        } else {
1042            frequency = CharGroup.NOT_A_TERMINAL;
1043        }
1044        int childrenAddress = addressPointer;
1045        switch (flags & MASK_GROUP_ADDRESS_TYPE) {
1046        case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
1047            childrenAddress += source.readUnsignedByte();
1048            addressPointer += 1;
1049            break;
1050        case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
1051            childrenAddress += source.readUnsignedShort();
1052            addressPointer += 2;
1053            break;
1054        case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
1055            childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort();
1056            addressPointer += 3;
1057            break;
1058        case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
1059        default:
1060            childrenAddress = NO_CHILDREN_ADDRESS;
1061            break;
1062        }
1063        ArrayList<WeightedString> shortcutTargets = null;
1064        if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) {
1065            final long pointerBefore = source.getFilePointer();
1066            shortcutTargets = new ArrayList<WeightedString>();
1067            source.readUnsignedShort(); // Skip the size
1068            while (true) {
1069                final int targetFlags = source.readUnsignedByte();
1070                final String word = CharEncoding.readString(source);
1071                shortcutTargets.add(new WeightedString(word,
1072                        targetFlags & FLAG_ATTRIBUTE_FREQUENCY));
1073                if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1074            }
1075            addressPointer += (source.getFilePointer() - pointerBefore);
1076        }
1077        ArrayList<PendingAttribute> bigrams = null;
1078        if (0 != (flags & FLAG_HAS_BIGRAMS)) {
1079            bigrams = new ArrayList<PendingAttribute>();
1080            while (true) {
1081                final int bigramFlags = source.readUnsignedByte();
1082                ++addressPointer;
1083                final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
1084                int bigramAddress = addressPointer;
1085                switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
1086                case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
1087                    bigramAddress += sign * source.readUnsignedByte();
1088                    addressPointer += 1;
1089                    break;
1090                case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
1091                    bigramAddress += sign * source.readUnsignedShort();
1092                    addressPointer += 2;
1093                    break;
1094                case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
1095                    final int offset = ((source.readUnsignedByte() << 16)
1096                            + source.readUnsignedShort());
1097                    bigramAddress += sign * offset;
1098                    addressPointer += 3;
1099                    break;
1100                default:
1101                    throw new RuntimeException("Has bigrams with no address");
1102                }
1103                bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
1104                        bigramAddress));
1105                if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1106            }
1107        }
1108        return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
1109                childrenAddress, shortcutTargets, bigrams);
1110    }
1111
1112    /**
1113     * Reads and returns the char group count out of a file and forwards the pointer.
1114     */
1115    private static int readCharGroupCount(RandomAccessFile source) throws IOException {
1116        final int msb = source.readUnsignedByte();
1117        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
1118            return msb;
1119        } else {
1120            return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
1121                    + source.readUnsignedByte();
1122        }
1123    }
1124
1125    // The word cache here is a stopgap bandaid to help the catastrophic performance
1126    // of this method. Since it performs direct, unbuffered random access to the file and
1127    // may be called hundreds of thousands of times, the resulting performance is not
1128    // reasonable without some kind of cache. Thus:
1129    // TODO: perform buffered I/O here and in other places in the code.
1130    private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
1131    /**
1132     * Finds, as a string, the word at the address passed as an argument.
1133     *
1134     * @param source the file to read from.
1135     * @param headerSize the size of the header.
1136     * @param address the address to seek.
1137     * @return the word, as a string.
1138     * @throws IOException if the file can't be read.
1139     */
1140    private static String getWordAtAddress(final RandomAccessFile source, final long headerSize,
1141            int address) throws IOException {
1142        final String cachedString = wordCache.get(address);
1143        if (null != cachedString) return cachedString;
1144        final long originalPointer = source.getFilePointer();
1145        source.seek(headerSize);
1146        final int count = readCharGroupCount(source);
1147        int groupOffset = getGroupCountSize(count);
1148        final StringBuilder builder = new StringBuilder();
1149        String result = null;
1150
1151        CharGroupInfo last = null;
1152        for (int i = count - 1; i >= 0; --i) {
1153            CharGroupInfo info = readCharGroup(source, groupOffset);
1154            groupOffset = info.mEndAddress;
1155            if (info.mOriginalAddress == address) {
1156                builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
1157                result = builder.toString();
1158                break; // and return
1159            }
1160            if (hasChildrenAddress(info.mChildrenAddress)) {
1161                if (info.mChildrenAddress > address) {
1162                    if (null == last) continue;
1163                    builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1164                    source.seek(last.mChildrenAddress + headerSize);
1165                    groupOffset = last.mChildrenAddress + 1;
1166                    i = source.readUnsignedByte();
1167                    last = null;
1168                    continue;
1169                }
1170                last = info;
1171            }
1172            if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
1173                builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1174                source.seek(last.mChildrenAddress + headerSize);
1175                groupOffset = last.mChildrenAddress + 1;
1176                i = source.readUnsignedByte();
1177                last = null;
1178                continue;
1179            }
1180        }
1181        source.seek(originalPointer);
1182        wordCache.put(address, result);
1183        return result;
1184    }
1185
1186    /**
1187     * Reads a single node from a binary file.
1188     *
1189     * This methods reads the file at the current position of its file pointer. A node is
1190     * fully expected to start at the current position.
1191     * This will recursively read other nodes into the structure, populating the reverse
1192     * maps on the fly and using them to keep track of already read nodes.
1193     *
1194     * @param source the data file, correctly positioned at the start of a node.
1195     * @param headerSize the size, in bytes, of the file header.
1196     * @param reverseNodeMap a mapping from addresses to already read nodes.
1197     * @param reverseGroupMap a mapping from addresses to already read character groups.
1198     * @return the read node with all his children already read.
1199     */
1200    private static Node readNode(RandomAccessFile source, long headerSize,
1201            Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)
1202            throws IOException {
1203        final int nodeOrigin = (int)(source.getFilePointer() - headerSize);
1204        final int count = readCharGroupCount(source);
1205        final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
1206        int groupOffset = nodeOrigin + getGroupCountSize(count);
1207        for (int i = count; i > 0; --i) {
1208            CharGroupInfo info = readCharGroup(source, groupOffset);
1209            ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
1210            ArrayList<WeightedString> bigrams = null;
1211            if (null != info.mBigrams) {
1212                bigrams = new ArrayList<WeightedString>();
1213                for (PendingAttribute bigram : info.mBigrams) {
1214                    final String word = getWordAtAddress(source, headerSize, bigram.mAddress);
1215                    bigrams.add(new WeightedString(word, bigram.mFrequency));
1216                }
1217            }
1218            if (hasChildrenAddress(info.mChildrenAddress)) {
1219                Node children = reverseNodeMap.get(info.mChildrenAddress);
1220                if (null == children) {
1221                    final long currentPosition = source.getFilePointer();
1222                    source.seek(info.mChildrenAddress + headerSize);
1223                    children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap);
1224                    source.seek(currentPosition);
1225                }
1226                nodeContents.add(
1227                        new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency,
1228                                children));
1229            } else {
1230                nodeContents.add(
1231                        new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency));
1232            }
1233            groupOffset = info.mEndAddress;
1234        }
1235        final Node node = new Node(nodeContents);
1236        node.mCachedAddress = nodeOrigin;
1237        reverseNodeMap.put(node.mCachedAddress, node);
1238        return node;
1239    }
1240
1241    /**
1242     * Helper function to get the binary format version from the header.
1243     */
1244    private static int getFormatVersion(final RandomAccessFile source) throws IOException {
1245        final int magic_v1 = source.readUnsignedShort();
1246        if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte();
1247        final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort();
1248        if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort();
1249        return NOT_A_VERSION_NUMBER;
1250    }
1251
1252    /**
1253     * Reads a random access file and returns the memory representation of the dictionary.
1254     *
1255     * This high-level method takes a binary file and reads its contents, populating a
1256     * FusionDictionary structure. The optional dict argument is an existing dictionary to
1257     * which words from the file should be added. If it is null, a new dictionary is created.
1258     *
1259     * @param source the file to read.
1260     * @param dict an optional dictionary to add words to, or null.
1261     * @return the created (or merged) dictionary.
1262     */
1263    public static FusionDictionary readDictionaryBinary(final RandomAccessFile source,
1264            final FusionDictionary dict) throws IOException, UnsupportedFormatException {
1265        // Check file version
1266        final int version = getFormatVersion(source);
1267        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) {
1268            throw new UnsupportedFormatException("This file has version " + version
1269                    + ", but this implementation does not support versions above "
1270                    + MAXIMUM_SUPPORTED_VERSION);
1271        }
1272
1273        // Read options
1274        final int optionsFlags = source.readUnsignedShort();
1275
1276        final long headerSize;
1277        final HashMap<String, String> options = new HashMap<String, String>();
1278        if (version < FIRST_VERSION_WITH_HEADER_SIZE) {
1279            headerSize = source.getFilePointer();
1280        } else {
1281            headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16)
1282                    + (source.readUnsignedByte() << 8) + source.readUnsignedByte();
1283            while (source.getFilePointer() < headerSize) {
1284                final String key = CharEncoding.readString(source);
1285                final String value = CharEncoding.readString(source);
1286                options.put(key, value);
1287            }
1288            source.seek(headerSize);
1289        }
1290
1291        Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
1292        Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
1293        final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping);
1294
1295        FusionDictionary newDict = new FusionDictionary(root,
1296                new FusionDictionary.DictionaryOptions(options,
1297                        0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG),
1298                        0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG)));
1299        if (null != dict) {
1300            for (Word w : dict) {
1301                newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mBigrams);
1302            }
1303        }
1304
1305        return newDict;
1306    }
1307
1308    /**
1309     * Basic test to find out whether the file is a binary dictionary or not.
1310     *
1311     * Concretely this only tests the magic number.
1312     *
1313     * @param filename The name of the file to test.
1314     * @return true if it's a binary dictionary, false otherwise
1315     */
1316    public static boolean isBinaryDictionary(final String filename) {
1317        try {
1318            RandomAccessFile f = new RandomAccessFile(filename, "r");
1319            final int version = getFormatVersion(f);
1320            return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION);
1321        } catch (FileNotFoundException e) {
1322            return false;
1323        } catch (IOException e) {
1324            return false;
1325        }
1326    }
1327}
1328