BinaryDictInputOutput.java revision 4455fe2c894f8aabaf2b3105b72f9193226d4aba
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin.makedict;
18
19import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
20import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
21import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
22import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
23
24import java.io.ByteArrayOutputStream;
25import java.io.FileNotFoundException;
26import java.io.IOException;
27import java.io.OutputStream;
28import java.io.RandomAccessFile;
29import java.util.ArrayList;
30import java.util.Arrays;
31import java.util.HashMap;
32import java.util.Iterator;
33import java.util.Map;
34import java.util.TreeMap;
35
36/**
37 * Reads and writes XML files for a FusionDictionary.
38 *
39 * All the methods in this class are static.
40 */
41public class BinaryDictInputOutput {
42
43    /* Node layout is as follows:
44     *   | addressType                         xx     : mask with MASK_GROUP_ADDRESS_TYPE
45     *                                 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
46     * f |                                     01 = 1 byte      : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
47     * l |                                     10 = 2 bytes     : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
48     * a |                                     11 = 3 bytes     : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
49     * g | has several chars ?         1 bit, 1 = yes, 0 = no   : FLAG_HAS_MULTIPLE_CHARS
50     * s | has a terminal ?            1 bit, 1 = yes, 0 = no   : FLAG_IS_TERMINAL
51     *   | has shortcut targets ?      1 bit, 1 = yes, 0 = no   : FLAG_HAS_SHORTCUT_TARGETS
52     *   | has bigrams ?               1 bit, 1 = yes, 0 = no   : FLAG_HAS_BIGRAMS
53     *
54     * c | IF FLAG_HAS_MULTIPLE_CHARS
55     * h |   char, char, char, char    n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
56     * a |   end                       1 byte, = 0
57     * r | ELSE
58     * s |   char                      1 or 3 bytes
59     *   | END
60     *
61     * f |
62     * r | IF FLAG_IS_TERMINAL
63     * e |   frequency                 1 byte
64     * q |
65     *
66     * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
67     * h |   // nothing
68     * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
69     * l |   children address, 1 byte
70     * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
71     * r |   children address, 2 bytes
72     * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
73     * n |   children address, 3 bytes
74     * A | END
75     * d
76     * dress
77     *
78     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS
79     *   | shortcut string list
80     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
81     *   | bigrams address list
82     *
83     * Char format is:
84     * 1 byte = bbbbbbbb match
85     * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
86     * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
87     *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
88     *       00011111 would be outside unicode.
89     * else: iso-latin-1 code
90     * This allows for the whole unicode range to be encoded, including chars outside of
91     * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
92     * characters which should never happen anyway (and still work, but take 3 bytes).
93     *
94     * bigram address list is:
95     * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no     : FLAG_ATTRIBUTE_HAS_NEXT
96     *           | addressSign = 1 bit,                 : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
97     *           |                      1 = must take -address, 0 = must take +address
98     *           |                         xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
99     *           | addressFormat = 2 bits, 00 = unused  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
100     *           |                         01 = 1 byte  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
101     *           |                         10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
102     *           |                         11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
103     *           | 4 bits : frequency         : mask with FLAG_ATTRIBUTE_FREQUENCY
104     * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
105     *           |   read 1 byte, add top 4 bits
106     *           | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
107     *           |   read 2 bytes, add top 4 bits
108     *           | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
109     *           |   read 3 bytes, add top 4 bits
110     *           | END
111     *           | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
112     * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is
113     *
114     * shortcut string list is:
115     * <byte size> = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes.
116     * <flags>     = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
117     *               | reserved = 3 bits, must be 0
118     *               | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
119     * <shortcut>  = | string of characters at the char format described above, with the terminator
120     *               | used to signal the end of the string.
121     * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags
122     */
123
124    private static final int VERSION_1_MAGIC_NUMBER = 0x78B1;
125    private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
126    private static final int MINIMUM_SUPPORTED_VERSION = 1;
127    private static final int MAXIMUM_SUPPORTED_VERSION = 2;
128    private static final int NOT_A_VERSION_NUMBER = -1;
129    private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2;
130
131    // These options need to be the same numeric values as the one in the native reading code.
132    private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1;
133    private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4;
134    private static final int CONTAINS_BIGRAMS_FLAG = 0x8;
135
136    // TODO: Make this value adaptative to content data, store it in the header, and
137    // use it in the reading code.
138    private static final int MAX_WORD_LENGTH = 48;
139
140    private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
141    private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
142    private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
143    private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
144    private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
145
146    private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
147
148    private static final int FLAG_IS_TERMINAL = 0x10;
149    private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
150    private static final int FLAG_HAS_BIGRAMS = 0x04;
151
152    private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
153    private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
154    private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
155    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
156    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
157    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
158    private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
159
160    private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
161
162    private static final int GROUP_TERMINATOR_SIZE = 1;
163    private static final int GROUP_FLAGS_SIZE = 1;
164    private static final int GROUP_FREQUENCY_SIZE = 1;
165    private static final int GROUP_MAX_ADDRESS_SIZE = 3;
166    private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
167    private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
168    private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2;
169
170    private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
171    private static final int INVALID_CHARACTER = -1;
172
173    private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127
174    private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767
175
176    private static final int MAX_TERMINAL_FREQUENCY = 255;
177
178    // Arbitrary limit to how much passes we consider address size compression should
179    // terminate in. At the time of this writing, our largest dictionary completes
180    // compression in five passes.
181    // If the number of passes exceeds this number, makedict bails with an exception on
182    // suspicion that a bug might be causing an infinite loop.
183    private static final int MAX_PASSES = 24;
184
185    /**
186     * A class grouping utility function for our specific character encoding.
187     */
188    private static class CharEncoding {
189
190        private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
191        private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
192
193        /**
194         * Helper method to find out whether this code fits on one byte
195         */
196        private static boolean fitsOnOneByte(int character) {
197            return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
198                    && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
199        }
200
201        /**
202         * Compute the size of a character given its character code.
203         *
204         * Char format is:
205         * 1 byte = bbbbbbbb match
206         * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
207         * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
208         *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
209         *       00011111 would be outside unicode.
210         * else: iso-latin-1 code
211         * This allows for the whole unicode range to be encoded, including chars outside of
212         * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
213         * characters which should never happen anyway (and still work, but take 3 bytes).
214         *
215         * @param character the character code.
216         * @return the size in binary encoded-form, either 1 or 3 bytes.
217         */
218        private static int getCharSize(int character) {
219            // See char encoding in FusionDictionary.java
220            if (fitsOnOneByte(character)) return 1;
221            if (INVALID_CHARACTER == character) return 1;
222            return 3;
223        }
224
225        /**
226         * Compute the byte size of a character array.
227         */
228        private static int getCharArraySize(final int[] chars) {
229            int size = 0;
230            for (int character : chars) size += getCharSize(character);
231            return size;
232        }
233
234        /**
235         * Writes a char array to a byte buffer.
236         *
237         * @param codePoints the code point array to write.
238         * @param buffer the byte buffer to write to.
239         * @param index the index in buffer to write the character array to.
240         * @return the index after the last character.
241         */
242        private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
243            for (int codePoint : codePoints) {
244                if (1 == getCharSize(codePoint)) {
245                    buffer[index++] = (byte)codePoint;
246                } else {
247                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
248                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
249                    buffer[index++] = (byte)(0xFF & codePoint);
250                }
251            }
252            return index;
253        }
254
255        /**
256         * Writes a string with our character format to a byte buffer.
257         *
258         * This will also write the terminator byte.
259         *
260         * @param buffer the byte buffer to write to.
261         * @param origin the offset to write from.
262         * @param word the string to write.
263         * @return the size written, in bytes.
264         */
265        private static int writeString(final byte[] buffer, final int origin,
266                final String word) {
267            final int length = word.length();
268            int index = origin;
269            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
270                final int codePoint = word.codePointAt(i);
271                if (1 == getCharSize(codePoint)) {
272                    buffer[index++] = (byte)codePoint;
273                } else {
274                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
275                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
276                    buffer[index++] = (byte)(0xFF & codePoint);
277                }
278            }
279            buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
280            return index - origin;
281        }
282
283        /**
284         * Writes a string with our character format to a ByteArrayOutputStream.
285         *
286         * This will also write the terminator byte.
287         *
288         * @param buffer the ByteArrayOutputStream to write to.
289         * @param word the string to write.
290         */
291        private static void writeString(ByteArrayOutputStream buffer, final String word) {
292            final int length = word.length();
293            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
294                final int codePoint = word.codePointAt(i);
295                if (1 == getCharSize(codePoint)) {
296                    buffer.write((byte) codePoint);
297                } else {
298                    buffer.write((byte) (0xFF & (codePoint >> 16)));
299                    buffer.write((byte) (0xFF & (codePoint >> 8)));
300                    buffer.write((byte) (0xFF & codePoint));
301                }
302            }
303            buffer.write(GROUP_CHARACTERS_TERMINATOR);
304        }
305
306        /**
307         * Reads a string from a RandomAccessFile. This is the converse of the above method.
308         */
309        private static String readString(final RandomAccessFile source) throws IOException {
310            final StringBuilder s = new StringBuilder();
311            int character = readChar(source);
312            while (character != INVALID_CHARACTER) {
313                s.appendCodePoint(character);
314                character = readChar(source);
315            }
316            return s.toString();
317        }
318
319        /**
320         * Reads a character from the file.
321         *
322         * This follows the character format documented earlier in this source file.
323         *
324         * @param source the file, positioned over an encoded character.
325         * @return the character code.
326         */
327        private static int readChar(RandomAccessFile source) throws IOException {
328            int character = source.readUnsignedByte();
329            if (!fitsOnOneByte(character)) {
330                if (GROUP_CHARACTERS_TERMINATOR == character)
331                    return INVALID_CHARACTER;
332                character <<= 16;
333                character += source.readUnsignedShort();
334            }
335            return character;
336        }
337    }
338
339    /**
340     * Compute the binary size of the character array in a group
341     *
342     * If only one character, this is the size of this character. If many, it's the sum of their
343     * sizes + 1 byte for the terminator.
344     *
345     * @param group the group
346     * @return the size of the char array, including the terminator if any
347     */
348    private static int getGroupCharactersSize(CharGroup group) {
349        int size = CharEncoding.getCharArraySize(group.mChars);
350        if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
351        return size;
352    }
353
354    /**
355     * Compute the binary size of the group count
356     * @param count the group count
357     * @return the size of the group count, either 1 or 2 bytes.
358     */
359    private static int getGroupCountSize(final int count) {
360        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
361            return 1;
362        } else if (MAX_CHARGROUPS_IN_A_NODE >= count) {
363            return 2;
364        } else {
365            throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE
366                    + " groups in a node (found " + count +")");
367        }
368    }
369
370    /**
371     * Compute the binary size of the group count for a node
372     * @param node the node
373     * @return the size of the group count, either 1 or 2 bytes.
374     */
375    private static int getGroupCountSize(final Node node) {
376        return getGroupCountSize(node.mData.size());
377    }
378
379    /**
380     * Compute the size of a shortcut in bytes.
381     */
382    private static int getShortcutSize(final WeightedString shortcut) {
383        int size = GROUP_ATTRIBUTE_FLAGS_SIZE;
384        final String word = shortcut.mWord;
385        final int length = word.length();
386        for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
387            final int codePoint = word.codePointAt(i);
388            size += CharEncoding.getCharSize(codePoint);
389        }
390        size += GROUP_TERMINATOR_SIZE;
391        return size;
392    }
393
394    /**
395     * Compute the size of a shortcut list in bytes.
396     *
397     * This is known in advance and does not change according to position in the file
398     * like address lists do.
399     */
400    private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
401        if (null == shortcutList) return 0;
402        int size = GROUP_SHORTCUT_LIST_SIZE_SIZE;
403        for (final WeightedString shortcut : shortcutList) {
404            size += getShortcutSize(shortcut);
405        }
406        return size;
407    }
408
409    /**
410     * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
411     *
412     * @param group the CharGroup to compute the size of.
413     * @return the maximum size of the group.
414     */
415    private static int getCharGroupMaximumSize(CharGroup group) {
416        int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
417        // If terminal, one byte for the frequency
418        if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
419        size += GROUP_MAX_ADDRESS_SIZE; // For children address
420        size += getShortcutListSize(group.mShortcutTargets);
421        if (null != group.mBigrams) {
422            size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
423                    * group.mBigrams.size();
424        }
425        return size;
426    }
427
428    /**
429     * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
430     * it in the 'actualSize' member of the node.
431     *
432     * @param node the node to compute the maximum size of.
433     */
434    private static void setNodeMaximumSize(Node node) {
435        int size = getGroupCountSize(node);
436        for (CharGroup g : node.mData) {
437            final int groupSize = getCharGroupMaximumSize(g);
438            g.mCachedSize = groupSize;
439            size += groupSize;
440        }
441        node.mCachedSize = size;
442    }
443
444    /**
445     * Helper method to hide the actual value of the no children address.
446     */
447    private static boolean hasChildrenAddress(int address) {
448        return NO_CHILDREN_ADDRESS != address;
449    }
450
451    /**
452     * Compute the size, in bytes, that an address will occupy.
453     *
454     * This can be used either for children addresses (which are always positive) or for
455     * attribute, which may be positive or negative but
456     * store their sign bit separately.
457     *
458     * @param address the address
459     * @return the byte size.
460     */
461    private static int getByteSize(int address) {
462        assert(address < 0x1000000);
463        if (!hasChildrenAddress(address)) {
464            return 0;
465        } else if (Math.abs(address) < 0x100) {
466            return 1;
467        } else if (Math.abs(address) < 0x10000) {
468            return 2;
469        } else {
470            return 3;
471        }
472    }
473    // End utility methods.
474
475    // This method is responsible for finding a nice ordering of the nodes that favors run-time
476    // cache performance and dictionary size.
477    /* package for tests */ static ArrayList<Node> flattenTree(Node root) {
478        final int treeSize = FusionDictionary.countCharGroups(root);
479        MakedictLog.i("Counted nodes : " + treeSize);
480        final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
481        return flattenTreeInner(flatTree, root);
482    }
483
484    private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
485        // Removing the node is necessary if the tails are merged, because we would then
486        // add the same node several times when we only want it once. A number of places in
487        // the code also depends on any node being only once in the list.
488        // Merging tails can only be done if there are no attributes. Searching for attributes
489        // in LatinIME code depends on a total breadth-first ordering, which merging tails
490        // breaks. If there are no attributes, it should be fine (and reduce the file size)
491        // to merge tails, and the following step would be necessary.
492        // If eventually the code runs on Android, searching through the whole array each time
493        // may be a performance concern.
494        list.remove(node);
495        list.add(node);
496        final ArrayList<CharGroup> branches = node.mData;
497        final int nodeSize = branches.size();
498        for (CharGroup group : branches) {
499            if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
500        }
501        return list;
502    }
503
504    /**
505     * Finds the absolute address of a word in the dictionary.
506     *
507     * @param dict the dictionary in which to search.
508     * @param word the word we are searching for.
509     * @return the word address. If it is not found, an exception is thrown.
510     */
511    private static int findAddressOfWord(final FusionDictionary dict, final String word) {
512        return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
513    }
514
515    /**
516     * Computes the actual node size, based on the cached addresses of the children nodes.
517     *
518     * Each node stores its tentative address. During dictionary address computing, these
519     * are not final, but they can be used to compute the node size (the node size depends
520     * on the address of the children because the number of bytes necessary to store an
521     * address depends on its numeric value. The return value indicates whether the node
522     * contents (as in, any of the addresses stored in the cache fields) have changed with
523     * respect to their previous value.
524     *
525     * @param node the node to compute the size of.
526     * @param dict the dictionary in which the word/attributes are to be found.
527     * @return false if none of the cached addresses inside the node changed, true otherwise.
528     */
529    private static boolean computeActualNodeSize(Node node, FusionDictionary dict) {
530        boolean changed = false;
531        int size = getGroupCountSize(node);
532        for (CharGroup group : node.mData) {
533            if (group.mCachedAddress != node.mCachedAddress + size) {
534                changed = true;
535                group.mCachedAddress = node.mCachedAddress + size;
536            }
537            int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
538            if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
539            if (null != group.mChildren) {
540                final int offsetBasePoint= groupSize + node.mCachedAddress + size;
541                final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
542                groupSize += getByteSize(offset);
543            }
544            groupSize += getShortcutListSize(group.mShortcutTargets);
545            if (null != group.mBigrams) {
546                for (WeightedString bigram : group.mBigrams) {
547                    final int offsetBasePoint = groupSize + node.mCachedAddress + size
548                            + GROUP_FLAGS_SIZE;
549                    final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
550                    final int offset = addressOfBigram - offsetBasePoint;
551                    groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
552                }
553            }
554            group.mCachedSize = groupSize;
555            size += groupSize;
556        }
557        if (node.mCachedSize != size) {
558            node.mCachedSize = size;
559            changed = true;
560        }
561        return changed;
562    }
563
564    /**
565     * Computes the byte size of a list of nodes and updates each node cached position.
566     *
567     * @param flatNodes the array of nodes.
568     * @return the byte size of the entire stack.
569     */
570    private static int stackNodes(ArrayList<Node> flatNodes) {
571        int nodeOffset = 0;
572        for (Node n : flatNodes) {
573            n.mCachedAddress = nodeOffset;
574            int groupCountSize = getGroupCountSize(n);
575            int groupOffset = 0;
576            for (CharGroup g : n.mData) {
577                g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
578                groupOffset += g.mCachedSize;
579            }
580            if (groupOffset + groupCountSize != n.mCachedSize) {
581                throw new RuntimeException("Bug : Stored and computed node size differ");
582            }
583            nodeOffset += n.mCachedSize;
584        }
585        return nodeOffset;
586    }
587
588    /**
589     * Compute the addresses and sizes of an ordered node array.
590     *
591     * This method takes a node array and will update its cached address and size values
592     * so that they can be written into a file. It determines the smallest size each of the
593     * nodes can be given the addresses of its children and attributes, and store that into
594     * each node.
595     * The order of the node is given by the order of the array. This method makes no effort
596     * to find a good order; it only mechanically computes the size this order results in.
597     *
598     * @param dict the dictionary
599     * @param flatNodes the ordered array of nodes
600     * @return the same array it was passed. The nodes have been updated for address and size.
601     */
602    private static ArrayList<Node> computeAddresses(FusionDictionary dict,
603            ArrayList<Node> flatNodes) {
604        // First get the worst sizes and offsets
605        for (Node n : flatNodes) setNodeMaximumSize(n);
606        final int offset = stackNodes(flatNodes);
607
608        MakedictLog.i("Compressing the array addresses. Original size : " + offset);
609        MakedictLog.i("(Recursively seen size : " + offset + ")");
610
611        int passes = 0;
612        boolean changesDone = false;
613        do {
614            changesDone = false;
615            for (Node n : flatNodes) {
616                final int oldNodeSize = n.mCachedSize;
617                final boolean changed = computeActualNodeSize(n, dict);
618                final int newNodeSize = n.mCachedSize;
619                if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
620                changesDone |= changed;
621            }
622            stackNodes(flatNodes);
623            ++passes;
624            if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
625        } while (changesDone);
626
627        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
628        MakedictLog.i("Compression complete in " + passes + " passes.");
629        MakedictLog.i("After address compression : "
630                + (lastNode.mCachedAddress + lastNode.mCachedSize));
631
632        return flatNodes;
633    }
634
635    /**
636     * Sanity-checking method.
637     *
638     * This method checks an array of node for juxtaposition, that is, it will do
639     * nothing if each node's cached address is actually the previous node's address
640     * plus the previous node's size.
641     * If this is not the case, it will throw an exception.
642     *
643     * @param array the array node to check
644     */
645    private static void checkFlatNodeArray(ArrayList<Node> array) {
646        int offset = 0;
647        int index = 0;
648        for (Node n : array) {
649            if (n.mCachedAddress != offset) {
650                throw new RuntimeException("Wrong address for node " + index
651                        + " : expected " + offset + ", got " + n.mCachedAddress);
652            }
653            ++index;
654            offset += n.mCachedSize;
655        }
656    }
657
658    /**
659     * Helper method to write a variable-size address to a file.
660     *
661     * @param buffer the buffer to write to.
662     * @param index the index in the buffer to write the address to.
663     * @param address the address to write.
664     * @return the size in bytes the address actually took.
665     */
666    private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
667        switch (getByteSize(address)) {
668        case 1:
669            buffer[index++] = (byte)address;
670            return 1;
671        case 2:
672            buffer[index++] = (byte)(0xFF & (address >> 8));
673            buffer[index++] = (byte)(0xFF & address);
674            return 2;
675        case 3:
676            buffer[index++] = (byte)(0xFF & (address >> 16));
677            buffer[index++] = (byte)(0xFF & (address >> 8));
678            buffer[index++] = (byte)(0xFF & address);
679            return 3;
680        case 0:
681            return 0;
682        default:
683            throw new RuntimeException("Address " + address + " has a strange size");
684        }
685    }
686
687    private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
688            final int childrenOffset) {
689        byte flags = 0;
690        if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
691        if (group.mFrequency >= 0) {
692            flags |= FLAG_IS_TERMINAL;
693        }
694        if (null != group.mChildren) {
695            switch (getByteSize(childrenOffset)) {
696             case 1:
697                 flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
698                 break;
699             case 2:
700                 flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
701                 break;
702             case 3:
703                 flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
704                 break;
705             default:
706                 throw new RuntimeException("Node with a strange address");
707             }
708        }
709        if (null != group.mShortcutTargets) {
710            if (0 == group.mShortcutTargets.size()) {
711                throw new RuntimeException("0-sized shortcut list must be null");
712            }
713            flags |= FLAG_HAS_SHORTCUT_TARGETS;
714        }
715        if (null != group.mBigrams) {
716            if (0 == group.mBigrams.size()) {
717                throw new RuntimeException("0-sized bigram list must be null");
718            }
719            flags |= FLAG_HAS_BIGRAMS;
720        }
721        return flags;
722    }
723
724    /**
725     * Makes the flag value for a bigram.
726     *
727     * @param more whether there are more bigrams after this one.
728     * @param offset the offset of the bigram.
729     * @param bigramFrequency the frequency of the bigram, 0..15.
730     * @param unigramFrequency the unigram frequency of the same word.
731     * @return the flags
732     */
733    private static final int makeBigramFlags(final boolean more, final int offset,
734            final int bigramFrequency, final int unigramFrequency) {
735        int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
736                + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
737        switch (getByteSize(offset)) {
738        case 1:
739            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
740            break;
741        case 2:
742            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
743            break;
744        case 3:
745            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
746            break;
747        default:
748            throw new RuntimeException("Strange offset size");
749        }
750        bigramFlags += bigramFrequency & FLAG_ATTRIBUTE_FREQUENCY;
751        return bigramFlags;
752    }
753
754    /**
755     * Makes the 2-byte value for options flags.
756     */
757    private static final int makeOptionsValue(final FusionDictionary dictionary) {
758        final DictionaryOptions options = dictionary.mOptions;
759        final boolean hasBigrams = dictionary.hasBigrams();
760        return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0)
761                + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0)
762                + (hasBigrams ? CONTAINS_BIGRAMS_FLAG : 0);
763    }
764
765    /**
766     * Makes the flag value for a shortcut.
767     *
768     * @param more whether there are more attributes after this one.
769     * @param frequency the frequency of the attribute, 0..15
770     * @return the flags
771     */
772    private static final int makeShortcutFlags(final boolean more, final int frequency) {
773        return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY);
774    }
775
776    /**
777     * Write a node to memory. The node is expected to have its final position cached.
778     *
779     * This can be an empty map, but the more is inside the faster the lookups will be. It can
780     * be carried on as long as nodes do not move.
781     *
782     * @param dict the dictionary the node is a part of (for relative offsets).
783     * @param buffer the memory buffer to write to.
784     * @param node the node to write.
785     * @return the address of the END of the node.
786     */
787    private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
788        int index = node.mCachedAddress;
789
790        final int groupCount = node.mData.size();
791        final int countSize = getGroupCountSize(node);
792        if (1 == countSize) {
793            buffer[index++] = (byte)groupCount;
794        } else if (2 == countSize) {
795            // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
796            // we | 0x80 to do this.
797            buffer[index++] = (byte)((groupCount >> 8) | 0x80);
798            buffer[index++] = (byte)(groupCount & 0xFF);
799        } else {
800            throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
801        }
802        int groupAddress = index;
803        for (int i = 0; i < groupCount; ++i) {
804            CharGroup group = node.mData.get(i);
805            if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
806                    + "the same as the cached address of the group : "
807                    + index + " <> " + group.mCachedAddress);
808            groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
809            // Sanity checks.
810            if (group.mFrequency > MAX_TERMINAL_FREQUENCY) {
811                throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
812                        + " : " + group.mFrequency);
813            }
814            if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
815            final int childrenOffset = null == group.mChildren
816                    ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
817            byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
818            buffer[index++] = flags;
819            index = CharEncoding.writeCharArray(group.mChars, buffer, index);
820            if (group.hasSeveralChars()) {
821                buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
822            }
823            if (group.mFrequency >= 0) {
824                buffer[index++] = (byte) group.mFrequency;
825            }
826            final int shift = writeVariableAddress(buffer, index, childrenOffset);
827            index += shift;
828            groupAddress += shift;
829
830            // Write shortcuts
831            if (null != group.mShortcutTargets) {
832                final int indexOfShortcutByteSize = index;
833                index += GROUP_SHORTCUT_LIST_SIZE_SIZE;
834                groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE;
835                final Iterator shortcutIterator = group.mShortcutTargets.iterator();
836                while (shortcutIterator.hasNext()) {
837                    final WeightedString target = (WeightedString)shortcutIterator.next();
838                    ++groupAddress;
839                    int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
840                            target.mFrequency);
841                    buffer[index++] = (byte)shortcutFlags;
842                    final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
843                    index += shortcutShift;
844                    groupAddress += shortcutShift;
845                }
846                final int shortcutByteSize = index - indexOfShortcutByteSize;
847                if (shortcutByteSize > 0xFFFF) {
848                    throw new RuntimeException("Shortcut list too large");
849                }
850                buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
851                buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
852            }
853            // Write bigrams
854            if (null != group.mBigrams) {
855                final Iterator bigramIterator = group.mBigrams.iterator();
856                while (bigramIterator.hasNext()) {
857                    final WeightedString bigram = (WeightedString)bigramIterator.next();
858                    final CharGroup target =
859                            FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
860                    final int addressOfBigram = target.mCachedAddress;
861                    final int unigramFrequencyForThisWord = target.mFrequency;
862                    ++groupAddress;
863                    final int offset = addressOfBigram - groupAddress;
864                    int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
865                            bigram.mFrequency, unigramFrequencyForThisWord);
866                    buffer[index++] = (byte)bigramFlags;
867                    final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
868                    index += bigramShift;
869                    groupAddress += bigramShift;
870                }
871            }
872
873        }
874        if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
875                "Not the same size : written "
876                + (index - node.mCachedAddress) + " bytes out of a node that should have "
877                + node.mCachedSize + " bytes");
878        return index;
879    }
880
881    /**
882     * Dumps a collection of useful statistics about a node array.
883     *
884     * This prints purely informative stuff, like the total estimated file size, the
885     * number of nodes, of character groups, the repartition of each address size, etc
886     *
887     * @param nodes the node array.
888     */
889    private static void showStatistics(ArrayList<Node> nodes) {
890        int firstTerminalAddress = Integer.MAX_VALUE;
891        int lastTerminalAddress = Integer.MIN_VALUE;
892        int size = 0;
893        int charGroups = 0;
894        int maxGroups = 0;
895        int maxRuns = 0;
896        for (Node n : nodes) {
897            if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
898            for (CharGroup cg : n.mData) {
899                ++charGroups;
900                if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
901                if (cg.mFrequency >= 0) {
902                    if (n.mCachedAddress < firstTerminalAddress)
903                        firstTerminalAddress = n.mCachedAddress;
904                    if (n.mCachedAddress > lastTerminalAddress)
905                        lastTerminalAddress = n.mCachedAddress;
906                }
907            }
908            if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
909        }
910        final int[] groupCounts = new int[maxGroups + 1];
911        final int[] runCounts = new int[maxRuns + 1];
912        for (Node n : nodes) {
913            ++groupCounts[n.mData.size()];
914            for (CharGroup cg : n.mData) {
915                ++runCounts[cg.mChars.length];
916            }
917        }
918
919        MakedictLog.i("Statistics:\n"
920                + "  total file size " + size + "\n"
921                + "  " + nodes.size() + " nodes\n"
922                + "  " + charGroups + " groups (" + ((float)charGroups / nodes.size())
923                        + " groups per node)\n"
924                + "  first terminal at " + firstTerminalAddress + "\n"
925                + "  last terminal at " + lastTerminalAddress + "\n"
926                + "  Group stats : max = " + maxGroups);
927        for (int i = 0; i < groupCounts.length; ++i) {
928            MakedictLog.i("    " + i + " : " + groupCounts[i]);
929        }
930        MakedictLog.i("  Character run stats : max = " + maxRuns);
931        for (int i = 0; i < runCounts.length; ++i) {
932            MakedictLog.i("    " + i + " : " + runCounts[i]);
933        }
934    }
935
936    /**
937     * Dumps a FusionDictionary to a file.
938     *
939     * This is the public entry point to write a dictionary to a file.
940     *
941     * @param destination the stream to write the binary data to.
942     * @param dict the dictionary to write.
943     * @param version the version of the format to write, currently either 1 or 2.
944     */
945    public static void writeDictionaryBinary(final OutputStream destination,
946            final FusionDictionary dict, final int version)
947            throws IOException, UnsupportedFormatException {
948
949        // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
950        // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
951        // of the nodes becomes a quite complicated problem, because though the dictionary itself
952        // does not have a size limit, each node must still be within 16MB of all its children and
953        // parents. As long as this is ensured, the dictionary file may grow to any size.
954
955        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
956            throw new UnsupportedFormatException("Requested file format version " + version
957                    + ", but this implementation only supports versions "
958                    + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION);
959        }
960
961        ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
962
963        // The magic number in big-endian order.
964        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
965            // Magic number for version 2+.
966            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24)));
967            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16)));
968            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8)));
969            headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER));
970            // Dictionary version.
971            headerBuffer.write((byte) (0xFF & (version >> 8)));
972            headerBuffer.write((byte) (0xFF & version));
973        } else {
974            // Magic number for version 1.
975            headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8)));
976            headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER));
977            // Dictionary version.
978            headerBuffer.write((byte) (0xFF & version));
979        }
980        // Options flags
981        final int options = makeOptionsValue(dict);
982        headerBuffer.write((byte) (0xFF & (options >> 8)));
983        headerBuffer.write((byte) (0xFF & options));
984        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
985            final int headerSizeOffset = headerBuffer.size();
986            // Placeholder to be written later with header size.
987            for (int i = 0; i < 4; ++i) {
988                headerBuffer.write(0);
989            }
990            // Write out the options.
991            for (final String key : dict.mOptions.mAttributes.keySet()) {
992                final String value = dict.mOptions.mAttributes.get(key);
993                CharEncoding.writeString(headerBuffer, key);
994                CharEncoding.writeString(headerBuffer, value);
995            }
996            final int size = headerBuffer.size();
997            final byte[] bytes = headerBuffer.toByteArray();
998            // Write out the header size.
999            bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
1000            bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
1001            bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
1002            bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
1003            destination.write(bytes);
1004        } else {
1005            headerBuffer.writeTo(destination);
1006        }
1007
1008        headerBuffer.close();
1009
1010        // Leave the choice of the optimal node order to the flattenTree function.
1011        MakedictLog.i("Flattening the tree...");
1012        ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
1013
1014        MakedictLog.i("Computing addresses...");
1015        computeAddresses(dict, flatNodes);
1016        MakedictLog.i("Checking array...");
1017        checkFlatNodeArray(flatNodes);
1018
1019        // Create a buffer that matches the final dictionary size.
1020        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
1021        final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize);
1022        final byte[] buffer = new byte[bufferSize];
1023        int index = 0;
1024
1025        MakedictLog.i("Writing file...");
1026        int dataEndOffset = 0;
1027        for (Node n : flatNodes) {
1028            dataEndOffset = writePlacedNode(dict, buffer, n);
1029        }
1030
1031        showStatistics(flatNodes);
1032
1033        destination.write(buffer, 0, dataEndOffset);
1034
1035        destination.close();
1036        MakedictLog.i("Done");
1037    }
1038
1039
1040    // Input methods: Read a binary dictionary to memory.
1041    // readDictionaryBinary is the public entry point for them.
1042
1043    static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
1044    private static CharGroupInfo readCharGroup(RandomAccessFile source,
1045            final int originalGroupAddress) throws IOException {
1046        int addressPointer = originalGroupAddress;
1047        final int flags = source.readUnsignedByte();
1048        ++addressPointer;
1049        final int characters[];
1050        if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
1051            int index = 0;
1052            int character = CharEncoding.readChar(source);
1053            addressPointer += CharEncoding.getCharSize(character);
1054            while (-1 != character) {
1055                characterBuffer[index++] = character;
1056                character = CharEncoding.readChar(source);
1057                addressPointer += CharEncoding.getCharSize(character);
1058            }
1059            characters = Arrays.copyOfRange(characterBuffer, 0, index);
1060        } else {
1061            final int character = CharEncoding.readChar(source);
1062            addressPointer += CharEncoding.getCharSize(character);
1063            characters = new int[] { character };
1064        }
1065        final int frequency;
1066        if (0 != (FLAG_IS_TERMINAL & flags)) {
1067            ++addressPointer;
1068            frequency = source.readUnsignedByte();
1069        } else {
1070            frequency = CharGroup.NOT_A_TERMINAL;
1071        }
1072        int childrenAddress = addressPointer;
1073        switch (flags & MASK_GROUP_ADDRESS_TYPE) {
1074        case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
1075            childrenAddress += source.readUnsignedByte();
1076            addressPointer += 1;
1077            break;
1078        case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
1079            childrenAddress += source.readUnsignedShort();
1080            addressPointer += 2;
1081            break;
1082        case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
1083            childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort();
1084            addressPointer += 3;
1085            break;
1086        case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
1087        default:
1088            childrenAddress = NO_CHILDREN_ADDRESS;
1089            break;
1090        }
1091        ArrayList<WeightedString> shortcutTargets = null;
1092        if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) {
1093            final long pointerBefore = source.getFilePointer();
1094            shortcutTargets = new ArrayList<WeightedString>();
1095            source.readUnsignedShort(); // Skip the size
1096            while (true) {
1097                final int targetFlags = source.readUnsignedByte();
1098                final String word = CharEncoding.readString(source);
1099                shortcutTargets.add(new WeightedString(word,
1100                        targetFlags & FLAG_ATTRIBUTE_FREQUENCY));
1101                if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1102            }
1103            addressPointer += (source.getFilePointer() - pointerBefore);
1104        }
1105        ArrayList<PendingAttribute> bigrams = null;
1106        if (0 != (flags & FLAG_HAS_BIGRAMS)) {
1107            bigrams = new ArrayList<PendingAttribute>();
1108            while (true) {
1109                final int bigramFlags = source.readUnsignedByte();
1110                ++addressPointer;
1111                final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
1112                int bigramAddress = addressPointer;
1113                switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
1114                case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
1115                    bigramAddress += sign * source.readUnsignedByte();
1116                    addressPointer += 1;
1117                    break;
1118                case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
1119                    bigramAddress += sign * source.readUnsignedShort();
1120                    addressPointer += 2;
1121                    break;
1122                case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
1123                    final int offset = ((source.readUnsignedByte() << 16)
1124                            + source.readUnsignedShort());
1125                    bigramAddress += sign * offset;
1126                    addressPointer += 3;
1127                    break;
1128                default:
1129                    throw new RuntimeException("Has bigrams with no address");
1130                }
1131                bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
1132                        bigramAddress));
1133                if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1134            }
1135        }
1136        return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
1137                childrenAddress, shortcutTargets, bigrams);
1138    }
1139
1140    /**
1141     * Reads and returns the char group count out of a file and forwards the pointer.
1142     */
1143    private static int readCharGroupCount(RandomAccessFile source) throws IOException {
1144        final int msb = source.readUnsignedByte();
1145        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
1146            return msb;
1147        } else {
1148            return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
1149                    + source.readUnsignedByte();
1150        }
1151    }
1152
1153    // The word cache here is a stopgap bandaid to help the catastrophic performance
1154    // of this method. Since it performs direct, unbuffered random access to the file and
1155    // may be called hundreds of thousands of times, the resulting performance is not
1156    // reasonable without some kind of cache. Thus:
1157    // TODO: perform buffered I/O here and in other places in the code.
1158    private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
1159    /**
1160     * Finds, as a string, the word at the address passed as an argument.
1161     *
1162     * @param source the file to read from.
1163     * @param headerSize the size of the header.
1164     * @param address the address to seek.
1165     * @return the word, as a string.
1166     * @throws IOException if the file can't be read.
1167     */
1168    private static String getWordAtAddress(final RandomAccessFile source, final long headerSize,
1169            int address) throws IOException {
1170        final String cachedString = wordCache.get(address);
1171        if (null != cachedString) return cachedString;
1172        final long originalPointer = source.getFilePointer();
1173        source.seek(headerSize);
1174        final int count = readCharGroupCount(source);
1175        int groupOffset = getGroupCountSize(count);
1176        final StringBuilder builder = new StringBuilder();
1177        String result = null;
1178
1179        CharGroupInfo last = null;
1180        for (int i = count - 1; i >= 0; --i) {
1181            CharGroupInfo info = readCharGroup(source, groupOffset);
1182            groupOffset = info.mEndAddress;
1183            if (info.mOriginalAddress == address) {
1184                builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
1185                result = builder.toString();
1186                break; // and return
1187            }
1188            if (hasChildrenAddress(info.mChildrenAddress)) {
1189                if (info.mChildrenAddress > address) {
1190                    if (null == last) continue;
1191                    builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1192                    source.seek(last.mChildrenAddress + headerSize);
1193                    groupOffset = last.mChildrenAddress + 1;
1194                    i = source.readUnsignedByte();
1195                    last = null;
1196                    continue;
1197                }
1198                last = info;
1199            }
1200            if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
1201                builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1202                source.seek(last.mChildrenAddress + headerSize);
1203                groupOffset = last.mChildrenAddress + 1;
1204                i = source.readUnsignedByte();
1205                last = null;
1206                continue;
1207            }
1208        }
1209        source.seek(originalPointer);
1210        wordCache.put(address, result);
1211        return result;
1212    }
1213
1214    /**
1215     * Reads a single node from a binary file.
1216     *
1217     * This methods reads the file at the current position of its file pointer. A node is
1218     * fully expected to start at the current position.
1219     * This will recursively read other nodes into the structure, populating the reverse
1220     * maps on the fly and using them to keep track of already read nodes.
1221     *
1222     * @param source the data file, correctly positioned at the start of a node.
1223     * @param headerSize the size, in bytes, of the file header.
1224     * @param reverseNodeMap a mapping from addresses to already read nodes.
1225     * @param reverseGroupMap a mapping from addresses to already read character groups.
1226     * @return the read node with all his children already read.
1227     */
1228    private static Node readNode(RandomAccessFile source, long headerSize,
1229            Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)
1230            throws IOException {
1231        final int nodeOrigin = (int)(source.getFilePointer() - headerSize);
1232        final int count = readCharGroupCount(source);
1233        final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
1234        int groupOffset = nodeOrigin + getGroupCountSize(count);
1235        for (int i = count; i > 0; --i) {
1236            CharGroupInfo info = readCharGroup(source, groupOffset);
1237            ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
1238            ArrayList<WeightedString> bigrams = null;
1239            if (null != info.mBigrams) {
1240                bigrams = new ArrayList<WeightedString>();
1241                for (PendingAttribute bigram : info.mBigrams) {
1242                    final String word = getWordAtAddress(source, headerSize, bigram.mAddress);
1243                    bigrams.add(new WeightedString(word, bigram.mFrequency));
1244                }
1245            }
1246            if (hasChildrenAddress(info.mChildrenAddress)) {
1247                Node children = reverseNodeMap.get(info.mChildrenAddress);
1248                if (null == children) {
1249                    final long currentPosition = source.getFilePointer();
1250                    source.seek(info.mChildrenAddress + headerSize);
1251                    children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap);
1252                    source.seek(currentPosition);
1253                }
1254                nodeContents.add(
1255                        new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency,
1256                                children));
1257            } else {
1258                nodeContents.add(
1259                        new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency));
1260            }
1261            groupOffset = info.mEndAddress;
1262        }
1263        final Node node = new Node(nodeContents);
1264        node.mCachedAddress = nodeOrigin;
1265        reverseNodeMap.put(node.mCachedAddress, node);
1266        return node;
1267    }
1268
1269    /**
1270     * Helper function to get the binary format version from the header.
1271     */
1272    private static int getFormatVersion(final RandomAccessFile source) throws IOException {
1273        final int magic_v1 = source.readUnsignedShort();
1274        if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte();
1275        final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort();
1276        if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort();
1277        return NOT_A_VERSION_NUMBER;
1278    }
1279
1280    /**
1281     * Reads a random access file and returns the memory representation of the dictionary.
1282     *
1283     * This high-level method takes a binary file and reads its contents, populating a
1284     * FusionDictionary structure. The optional dict argument is an existing dictionary to
1285     * which words from the file should be added. If it is null, a new dictionary is created.
1286     *
1287     * @param source the file to read.
1288     * @param dict an optional dictionary to add words to, or null.
1289     * @return the created (or merged) dictionary.
1290     */
1291    public static FusionDictionary readDictionaryBinary(final RandomAccessFile source,
1292            final FusionDictionary dict) throws IOException, UnsupportedFormatException {
1293        // Check file version
1294        final int version = getFormatVersion(source);
1295        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) {
1296            throw new UnsupportedFormatException("This file has version " + version
1297                    + ", but this implementation does not support versions above "
1298                    + MAXIMUM_SUPPORTED_VERSION);
1299        }
1300
1301        // Read options
1302        final int optionsFlags = source.readUnsignedShort();
1303
1304        final long headerSize;
1305        final HashMap<String, String> options = new HashMap<String, String>();
1306        if (version < FIRST_VERSION_WITH_HEADER_SIZE) {
1307            headerSize = source.getFilePointer();
1308        } else {
1309            headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16)
1310                    + (source.readUnsignedByte() << 8) + source.readUnsignedByte();
1311            while (source.getFilePointer() < headerSize) {
1312                final String key = CharEncoding.readString(source);
1313                final String value = CharEncoding.readString(source);
1314                options.put(key, value);
1315            }
1316            source.seek(headerSize);
1317        }
1318
1319        Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
1320        Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
1321        final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping);
1322
1323        FusionDictionary newDict = new FusionDictionary(root,
1324                new FusionDictionary.DictionaryOptions(options,
1325                        0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG),
1326                        0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG)));
1327        if (null != dict) {
1328            for (final Word w : dict) {
1329                newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets);
1330            }
1331            for (final Word w : dict) {
1332                // By construction a binary dictionary may not have bigrams pointing to
1333                // words that are not also registered as unigrams so we don't have to avoid
1334                // them explicitly here.
1335                for (final WeightedString bigram : w.mBigrams) {
1336                    newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
1337                }
1338            }
1339        }
1340
1341        return newDict;
1342    }
1343
1344    /**
1345     * Basic test to find out whether the file is a binary dictionary or not.
1346     *
1347     * Concretely this only tests the magic number.
1348     *
1349     * @param filename The name of the file to test.
1350     * @return true if it's a binary dictionary, false otherwise
1351     */
1352    public static boolean isBinaryDictionary(final String filename) {
1353        try {
1354            RandomAccessFile f = new RandomAccessFile(filename, "r");
1355            final int version = getFormatVersion(f);
1356            return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION);
1357        } catch (FileNotFoundException e) {
1358            return false;
1359        } catch (IOException e) {
1360            return false;
1361        }
1362    }
1363}
1364