BinaryDictInputOutput.java revision f5c4ff481782831329593760b000f0543680930a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin.makedict;
18
19import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
20import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
21import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
22import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
23
24import java.io.ByteArrayOutputStream;
25import java.io.File;
26import java.io.FileInputStream;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.OutputStream;
30import java.nio.ByteBuffer;
31import java.nio.channels.FileChannel;
32import java.util.ArrayList;
33import java.util.Arrays;
34import java.util.HashMap;
35import java.util.Iterator;
36import java.util.Map;
37import java.util.TreeMap;
38
39/**
40 * Reads and writes XML files for a FusionDictionary.
41 *
42 * All the methods in this class are static.
43 */
44public class BinaryDictInputOutput {
45
46    final static boolean DBG = MakedictLog.DBG;
47
48    /* Node layout is as follows:
49     *   | addressType                         xx     : mask with MASK_GROUP_ADDRESS_TYPE
50     *                                 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
51     * f |                                     01 = 1 byte      : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
52     * l |                                     10 = 2 bytes     : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
53     * a |                                     11 = 3 bytes     : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
54     * g | has several chars ?         1 bit, 1 = yes, 0 = no   : FLAG_HAS_MULTIPLE_CHARS
55     * s | has a terminal ?            1 bit, 1 = yes, 0 = no   : FLAG_IS_TERMINAL
56     *   | has shortcut targets ?      1 bit, 1 = yes, 0 = no   : FLAG_HAS_SHORTCUT_TARGETS
57     *   | has bigrams ?               1 bit, 1 = yes, 0 = no   : FLAG_HAS_BIGRAMS
58     *
59     * c | IF FLAG_HAS_MULTIPLE_CHARS
60     * h |   char, char, char, char    n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
61     * a |   end                       1 byte, = 0
62     * r | ELSE
63     * s |   char                      1 or 3 bytes
64     *   | END
65     *
66     * f |
67     * r | IF FLAG_IS_TERMINAL
68     * e |   frequency                 1 byte
69     * q |
70     *
71     * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
72     * h |   // nothing
73     * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
74     * l |   children address, 1 byte
75     * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
76     * r |   children address, 2 bytes
77     * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
78     * n |   children address, 3 bytes
79     * A | END
80     * d
81     * dress
82     *
83     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS
84     *   | shortcut string list
85     *   | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
86     *   | bigrams address list
87     *
88     * Char format is:
89     * 1 byte = bbbbbbbb match
90     * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
91     * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
92     *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
93     *       00011111 would be outside unicode.
94     * else: iso-latin-1 code
95     * This allows for the whole unicode range to be encoded, including chars outside of
96     * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
97     * characters which should never happen anyway (and still work, but take 3 bytes).
98     *
99     * bigram address list is:
100     * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no     : FLAG_ATTRIBUTE_HAS_NEXT
101     *           | addressSign = 1 bit,                 : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
102     *           |                      1 = must take -address, 0 = must take +address
103     *           |                         xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
104     *           | addressFormat = 2 bits, 00 = unused  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
105     *           |                         01 = 1 byte  : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
106     *           |                         10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
107     *           |                         11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
108     *           | 4 bits : frequency         : mask with FLAG_ATTRIBUTE_FREQUENCY
109     * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
110     *           |   read 1 byte, add top 4 bits
111     *           | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
112     *           |   read 2 bytes, add top 4 bits
113     *           | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
114     *           |   read 3 bytes, add top 4 bits
115     *           | END
116     *           | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
117     * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is
118     *
119     * shortcut string list is:
120     * <byte size> = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes.
121     * <flags>     = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
122     *               | reserved = 3 bits, must be 0
123     *               | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
124     * <shortcut>  = | string of characters at the char format described above, with the terminator
125     *               | used to signal the end of the string.
126     * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags
127     */
128
129    private static final int VERSION_1_MAGIC_NUMBER = 0x78B1;
130    public static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
131    private static final int MINIMUM_SUPPORTED_VERSION = 1;
132    private static final int MAXIMUM_SUPPORTED_VERSION = 2;
133    private static final int NOT_A_VERSION_NUMBER = -1;
134    private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2;
135
136    // These options need to be the same numeric values as the one in the native reading code.
137    private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1;
138    private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4;
139    private static final int CONTAINS_BIGRAMS_FLAG = 0x8;
140
141    // TODO: Make this value adaptative to content data, store it in the header, and
142    // use it in the reading code.
143    private static final int MAX_WORD_LENGTH = 48;
144
145    private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
146    private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
147    private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
148    private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
149    private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
150
151    private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
152
153    private static final int FLAG_IS_TERMINAL = 0x10;
154    private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
155    private static final int FLAG_HAS_BIGRAMS = 0x04;
156
157    private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
158    private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
159    private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
160    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
161    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
162    private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
163    private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
164
165    private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
166
167    private static final int GROUP_TERMINATOR_SIZE = 1;
168    private static final int GROUP_FLAGS_SIZE = 1;
169    private static final int GROUP_FREQUENCY_SIZE = 1;
170    private static final int GROUP_MAX_ADDRESS_SIZE = 3;
171    private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
172    private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
173    private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2;
174
175    private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
176    private static final int INVALID_CHARACTER = -1;
177
178    private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127
179    private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767
180
181    private static final int MAX_TERMINAL_FREQUENCY = 255;
182    private static final int MAX_BIGRAM_FREQUENCY = 15;
183
184    // Arbitrary limit to how much passes we consider address size compression should
185    // terminate in. At the time of this writing, our largest dictionary completes
186    // compression in five passes.
187    // If the number of passes exceeds this number, makedict bails with an exception on
188    // suspicion that a bug might be causing an infinite loop.
189    private static final int MAX_PASSES = 24;
190
191    private interface FusionDictionaryBufferInterface {
192        public int readUnsignedByte();
193        public int readUnsignedShort();
194        public int readUnsignedInt24();
195        public int readInt();
196        public int position();
197        public void position(int newPosition);
198    }
199
200    private static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
201        private ByteBuffer buffer;
202        ByteBufferWrapper(final ByteBuffer buffer) {
203            this.buffer = buffer;
204        }
205
206        @Override
207        public int readUnsignedByte() {
208            return ((int)buffer.get()) & 0xFF;
209        }
210
211        @Override
212        public int readUnsignedShort() {
213            return ((int)buffer.getShort()) & 0xFFFF;
214        }
215
216        @Override
217        public int readUnsignedInt24() {
218            final int retval = readUnsignedByte();
219            return (retval << 16) + readUnsignedShort();
220        }
221
222        @Override
223        public int readInt() {
224            return buffer.getInt();
225        }
226
227        @Override
228        public int position() {
229            return buffer.position();
230        }
231
232        @Override
233        public void position(int newPos) {
234            buffer.position(newPos);
235            return;
236        }
237    }
238
239    /**
240     * A class grouping utility function for our specific character encoding.
241     */
242    private static class CharEncoding {
243
244        private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
245        private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
246
247        /**
248         * Helper method to find out whether this code fits on one byte
249         */
250        private static boolean fitsOnOneByte(int character) {
251            return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
252                    && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
253        }
254
255        /**
256         * Compute the size of a character given its character code.
257         *
258         * Char format is:
259         * 1 byte = bbbbbbbb match
260         * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
261         * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
262         *       unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
263         *       00011111 would be outside unicode.
264         * else: iso-latin-1 code
265         * This allows for the whole unicode range to be encoded, including chars outside of
266         * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
267         * characters which should never happen anyway (and still work, but take 3 bytes).
268         *
269         * @param character the character code.
270         * @return the size in binary encoded-form, either 1 or 3 bytes.
271         */
272        private static int getCharSize(int character) {
273            // See char encoding in FusionDictionary.java
274            if (fitsOnOneByte(character)) return 1;
275            if (INVALID_CHARACTER == character) return 1;
276            return 3;
277        }
278
279        /**
280         * Compute the byte size of a character array.
281         */
282        private static int getCharArraySize(final int[] chars) {
283            int size = 0;
284            for (int character : chars) size += getCharSize(character);
285            return size;
286        }
287
288        /**
289         * Writes a char array to a byte buffer.
290         *
291         * @param codePoints the code point array to write.
292         * @param buffer the byte buffer to write to.
293         * @param index the index in buffer to write the character array to.
294         * @return the index after the last character.
295         */
296        private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
297            for (int codePoint : codePoints) {
298                if (1 == getCharSize(codePoint)) {
299                    buffer[index++] = (byte)codePoint;
300                } else {
301                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
302                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
303                    buffer[index++] = (byte)(0xFF & codePoint);
304                }
305            }
306            return index;
307        }
308
309        /**
310         * Writes a string with our character format to a byte buffer.
311         *
312         * This will also write the terminator byte.
313         *
314         * @param buffer the byte buffer to write to.
315         * @param origin the offset to write from.
316         * @param word the string to write.
317         * @return the size written, in bytes.
318         */
319        private static int writeString(final byte[] buffer, final int origin,
320                final String word) {
321            final int length = word.length();
322            int index = origin;
323            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
324                final int codePoint = word.codePointAt(i);
325                if (1 == getCharSize(codePoint)) {
326                    buffer[index++] = (byte)codePoint;
327                } else {
328                    buffer[index++] = (byte)(0xFF & (codePoint >> 16));
329                    buffer[index++] = (byte)(0xFF & (codePoint >> 8));
330                    buffer[index++] = (byte)(0xFF & codePoint);
331                }
332            }
333            buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
334            return index - origin;
335        }
336
337        /**
338         * Writes a string with our character format to a ByteArrayOutputStream.
339         *
340         * This will also write the terminator byte.
341         *
342         * @param buffer the ByteArrayOutputStream to write to.
343         * @param word the string to write.
344         */
345        private static void writeString(ByteArrayOutputStream buffer, final String word) {
346            final int length = word.length();
347            for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
348                final int codePoint = word.codePointAt(i);
349                if (1 == getCharSize(codePoint)) {
350                    buffer.write((byte) codePoint);
351                } else {
352                    buffer.write((byte) (0xFF & (codePoint >> 16)));
353                    buffer.write((byte) (0xFF & (codePoint >> 8)));
354                    buffer.write((byte) (0xFF & codePoint));
355                }
356            }
357            buffer.write(GROUP_CHARACTERS_TERMINATOR);
358        }
359
360        /**
361         * Reads a string from a buffer. This is the converse of the above method.
362         */
363        private static String readString(final FusionDictionaryBufferInterface buffer) {
364            final StringBuilder s = new StringBuilder();
365            int character = readChar(buffer);
366            while (character != INVALID_CHARACTER) {
367                s.appendCodePoint(character);
368                character = readChar(buffer);
369            }
370            return s.toString();
371        }
372
373        /**
374         * Reads a character from the buffer.
375         *
376         * This follows the character format documented earlier in this source file.
377         *
378         * @param buffer the buffer, positioned over an encoded character.
379         * @return the character code.
380         */
381        private static int readChar(final FusionDictionaryBufferInterface buffer) {
382            int character = buffer.readUnsignedByte();
383            if (!fitsOnOneByte(character)) {
384                if (GROUP_CHARACTERS_TERMINATOR == character) return INVALID_CHARACTER;
385                character <<= 16;
386                character += buffer.readUnsignedShort();
387            }
388            return character;
389        }
390    }
391
392    /**
393     * Compute the binary size of the character array in a group
394     *
395     * If only one character, this is the size of this character. If many, it's the sum of their
396     * sizes + 1 byte for the terminator.
397     *
398     * @param group the group
399     * @return the size of the char array, including the terminator if any
400     */
401    private static int getGroupCharactersSize(CharGroup group) {
402        int size = CharEncoding.getCharArraySize(group.mChars);
403        if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
404        return size;
405    }
406
407    /**
408     * Compute the binary size of the group count
409     * @param count the group count
410     * @return the size of the group count, either 1 or 2 bytes.
411     */
412    private static int getGroupCountSize(final int count) {
413        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
414            return 1;
415        } else if (MAX_CHARGROUPS_IN_A_NODE >= count) {
416            return 2;
417        } else {
418            throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE
419                    + " groups in a node (found " + count +")");
420        }
421    }
422
423    /**
424     * Compute the binary size of the group count for a node
425     * @param node the node
426     * @return the size of the group count, either 1 or 2 bytes.
427     */
428    private static int getGroupCountSize(final Node node) {
429        return getGroupCountSize(node.mData.size());
430    }
431
432    /**
433     * Compute the size of a shortcut in bytes.
434     */
435    private static int getShortcutSize(final WeightedString shortcut) {
436        int size = GROUP_ATTRIBUTE_FLAGS_SIZE;
437        final String word = shortcut.mWord;
438        final int length = word.length();
439        for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
440            final int codePoint = word.codePointAt(i);
441            size += CharEncoding.getCharSize(codePoint);
442        }
443        size += GROUP_TERMINATOR_SIZE;
444        return size;
445    }
446
447    /**
448     * Compute the size of a shortcut list in bytes.
449     *
450     * This is known in advance and does not change according to position in the file
451     * like address lists do.
452     */
453    private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
454        if (null == shortcutList) return 0;
455        int size = GROUP_SHORTCUT_LIST_SIZE_SIZE;
456        for (final WeightedString shortcut : shortcutList) {
457            size += getShortcutSize(shortcut);
458        }
459        return size;
460    }
461
462    /**
463     * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
464     *
465     * @param group the CharGroup to compute the size of.
466     * @return the maximum size of the group.
467     */
468    private static int getCharGroupMaximumSize(CharGroup group) {
469        int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
470        // If terminal, one byte for the frequency
471        if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
472        size += GROUP_MAX_ADDRESS_SIZE; // For children address
473        size += getShortcutListSize(group.mShortcutTargets);
474        if (null != group.mBigrams) {
475            size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
476                    * group.mBigrams.size();
477        }
478        return size;
479    }
480
481    /**
482     * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
483     * it in the 'actualSize' member of the node.
484     *
485     * @param node the node to compute the maximum size of.
486     */
487    private static void setNodeMaximumSize(Node node) {
488        int size = getGroupCountSize(node);
489        for (CharGroup g : node.mData) {
490            final int groupSize = getCharGroupMaximumSize(g);
491            g.mCachedSize = groupSize;
492            size += groupSize;
493        }
494        node.mCachedSize = size;
495    }
496
497    /**
498     * Helper method to hide the actual value of the no children address.
499     */
500    private static boolean hasChildrenAddress(int address) {
501        return NO_CHILDREN_ADDRESS != address;
502    }
503
504    /**
505     * Compute the size, in bytes, that an address will occupy.
506     *
507     * This can be used either for children addresses (which are always positive) or for
508     * attribute, which may be positive or negative but
509     * store their sign bit separately.
510     *
511     * @param address the address
512     * @return the byte size.
513     */
514    private static int getByteSize(int address) {
515        assert(address < 0x1000000);
516        if (!hasChildrenAddress(address)) {
517            return 0;
518        } else if (Math.abs(address) < 0x100) {
519            return 1;
520        } else if (Math.abs(address) < 0x10000) {
521            return 2;
522        } else {
523            return 3;
524        }
525    }
526    // End utility methods.
527
528    // This method is responsible for finding a nice ordering of the nodes that favors run-time
529    // cache performance and dictionary size.
530    /* package for tests */ static ArrayList<Node> flattenTree(Node root) {
531        final int treeSize = FusionDictionary.countCharGroups(root);
532        MakedictLog.i("Counted nodes : " + treeSize);
533        final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
534        return flattenTreeInner(flatTree, root);
535    }
536
537    private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
538        // Removing the node is necessary if the tails are merged, because we would then
539        // add the same node several times when we only want it once. A number of places in
540        // the code also depends on any node being only once in the list.
541        // Merging tails can only be done if there are no attributes. Searching for attributes
542        // in LatinIME code depends on a total breadth-first ordering, which merging tails
543        // breaks. If there are no attributes, it should be fine (and reduce the file size)
544        // to merge tails, and removing the node from the list would be necessary. However,
545        // we don't merge tails because breaking the breadth-first ordering would result in
546        // extreme overhead at bigram lookup time (it would make the search function O(n) instead
547        // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
548        // high).
549        // If no nodes are ever merged, we can't have the same node twice in the list, hence
550        // searching for duplicates in unnecessary. It is also very performance consuming,
551        // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
552        // this simple list.remove operation O(n*n) overall. On Android this overhead is very
553        // high.
554        // For future reference, the code to remove duplicate is a simple : list.remove(node);
555        list.add(node);
556        final ArrayList<CharGroup> branches = node.mData;
557        final int nodeSize = branches.size();
558        for (CharGroup group : branches) {
559            if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
560        }
561        return list;
562    }
563
564    /**
565     * Finds the absolute address of a word in the dictionary.
566     *
567     * @param dict the dictionary in which to search.
568     * @param word the word we are searching for.
569     * @return the word address. If it is not found, an exception is thrown.
570     */
571    private static int findAddressOfWord(final FusionDictionary dict, final String word) {
572        return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
573    }
574
575    /**
576     * Computes the actual node size, based on the cached addresses of the children nodes.
577     *
578     * Each node stores its tentative address. During dictionary address computing, these
579     * are not final, but they can be used to compute the node size (the node size depends
580     * on the address of the children because the number of bytes necessary to store an
581     * address depends on its numeric value. The return value indicates whether the node
582     * contents (as in, any of the addresses stored in the cache fields) have changed with
583     * respect to their previous value.
584     *
585     * @param node the node to compute the size of.
586     * @param dict the dictionary in which the word/attributes are to be found.
587     * @return false if none of the cached addresses inside the node changed, true otherwise.
588     */
589    private static boolean computeActualNodeSize(Node node, FusionDictionary dict) {
590        boolean changed = false;
591        int size = getGroupCountSize(node);
592        for (CharGroup group : node.mData) {
593            if (group.mCachedAddress != node.mCachedAddress + size) {
594                changed = true;
595                group.mCachedAddress = node.mCachedAddress + size;
596            }
597            int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
598            if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
599            if (null != group.mChildren) {
600                final int offsetBasePoint= groupSize + node.mCachedAddress + size;
601                final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
602                groupSize += getByteSize(offset);
603            }
604            groupSize += getShortcutListSize(group.mShortcutTargets);
605            if (null != group.mBigrams) {
606                for (WeightedString bigram : group.mBigrams) {
607                    final int offsetBasePoint = groupSize + node.mCachedAddress + size
608                            + GROUP_FLAGS_SIZE;
609                    final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
610                    final int offset = addressOfBigram - offsetBasePoint;
611                    groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
612                }
613            }
614            group.mCachedSize = groupSize;
615            size += groupSize;
616        }
617        if (node.mCachedSize != size) {
618            node.mCachedSize = size;
619            changed = true;
620        }
621        return changed;
622    }
623
624    /**
625     * Computes the byte size of a list of nodes and updates each node cached position.
626     *
627     * @param flatNodes the array of nodes.
628     * @return the byte size of the entire stack.
629     */
630    private static int stackNodes(ArrayList<Node> flatNodes) {
631        int nodeOffset = 0;
632        for (Node n : flatNodes) {
633            n.mCachedAddress = nodeOffset;
634            int groupCountSize = getGroupCountSize(n);
635            int groupOffset = 0;
636            for (CharGroup g : n.mData) {
637                g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
638                groupOffset += g.mCachedSize;
639            }
640            if (groupOffset + groupCountSize != n.mCachedSize) {
641                throw new RuntimeException("Bug : Stored and computed node size differ");
642            }
643            nodeOffset += n.mCachedSize;
644        }
645        return nodeOffset;
646    }
647
648    /**
649     * Compute the addresses and sizes of an ordered node array.
650     *
651     * This method takes a node array and will update its cached address and size values
652     * so that they can be written into a file. It determines the smallest size each of the
653     * nodes can be given the addresses of its children and attributes, and store that into
654     * each node.
655     * The order of the node is given by the order of the array. This method makes no effort
656     * to find a good order; it only mechanically computes the size this order results in.
657     *
658     * @param dict the dictionary
659     * @param flatNodes the ordered array of nodes
660     * @return the same array it was passed. The nodes have been updated for address and size.
661     */
662    private static ArrayList<Node> computeAddresses(FusionDictionary dict,
663            ArrayList<Node> flatNodes) {
664        // First get the worst sizes and offsets
665        for (Node n : flatNodes) setNodeMaximumSize(n);
666        final int offset = stackNodes(flatNodes);
667
668        MakedictLog.i("Compressing the array addresses. Original size : " + offset);
669        MakedictLog.i("(Recursively seen size : " + offset + ")");
670
671        int passes = 0;
672        boolean changesDone = false;
673        do {
674            changesDone = false;
675            for (Node n : flatNodes) {
676                final int oldNodeSize = n.mCachedSize;
677                final boolean changed = computeActualNodeSize(n, dict);
678                final int newNodeSize = n.mCachedSize;
679                if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
680                changesDone |= changed;
681            }
682            stackNodes(flatNodes);
683            ++passes;
684            if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
685        } while (changesDone);
686
687        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
688        MakedictLog.i("Compression complete in " + passes + " passes.");
689        MakedictLog.i("After address compression : "
690                + (lastNode.mCachedAddress + lastNode.mCachedSize));
691
692        return flatNodes;
693    }
694
695    /**
696     * Sanity-checking method.
697     *
698     * This method checks an array of node for juxtaposition, that is, it will do
699     * nothing if each node's cached address is actually the previous node's address
700     * plus the previous node's size.
701     * If this is not the case, it will throw an exception.
702     *
703     * @param array the array node to check
704     */
705    private static void checkFlatNodeArray(ArrayList<Node> array) {
706        int offset = 0;
707        int index = 0;
708        for (Node n : array) {
709            if (n.mCachedAddress != offset) {
710                throw new RuntimeException("Wrong address for node " + index
711                        + " : expected " + offset + ", got " + n.mCachedAddress);
712            }
713            ++index;
714            offset += n.mCachedSize;
715        }
716    }
717
718    /**
719     * Helper method to write a variable-size address to a file.
720     *
721     * @param buffer the buffer to write to.
722     * @param index the index in the buffer to write the address to.
723     * @param address the address to write.
724     * @return the size in bytes the address actually took.
725     */
726    private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
727        switch (getByteSize(address)) {
728        case 1:
729            buffer[index++] = (byte)address;
730            return 1;
731        case 2:
732            buffer[index++] = (byte)(0xFF & (address >> 8));
733            buffer[index++] = (byte)(0xFF & address);
734            return 2;
735        case 3:
736            buffer[index++] = (byte)(0xFF & (address >> 16));
737            buffer[index++] = (byte)(0xFF & (address >> 8));
738            buffer[index++] = (byte)(0xFF & address);
739            return 3;
740        case 0:
741            return 0;
742        default:
743            throw new RuntimeException("Address " + address + " has a strange size");
744        }
745    }
746
747    private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
748            final int childrenOffset) {
749        byte flags = 0;
750        if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
751        if (group.mFrequency >= 0) {
752            flags |= FLAG_IS_TERMINAL;
753        }
754        if (null != group.mChildren) {
755            switch (getByteSize(childrenOffset)) {
756             case 1:
757                 flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
758                 break;
759             case 2:
760                 flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
761                 break;
762             case 3:
763                 flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
764                 break;
765             default:
766                 throw new RuntimeException("Node with a strange address");
767             }
768        }
769        if (null != group.mShortcutTargets) {
770            if (DBG && 0 == group.mShortcutTargets.size()) {
771                throw new RuntimeException("0-sized shortcut list must be null");
772            }
773            flags |= FLAG_HAS_SHORTCUT_TARGETS;
774        }
775        if (null != group.mBigrams) {
776            if (DBG && 0 == group.mBigrams.size()) {
777                throw new RuntimeException("0-sized bigram list must be null");
778            }
779            flags |= FLAG_HAS_BIGRAMS;
780        }
781        return flags;
782    }
783
784    /**
785     * Makes the flag value for a bigram.
786     *
787     * @param more whether there are more bigrams after this one.
788     * @param offset the offset of the bigram.
789     * @param bigramFrequency the frequency of the bigram, 0..255.
790     * @param unigramFrequency the unigram frequency of the same word, 0..255.
791     * @param word the second bigram, for debugging purposes
792     * @return the flags
793     */
794    private static final int makeBigramFlags(final boolean more, final int offset,
795            int bigramFrequency, final int unigramFrequency, final String word) {
796        int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
797                + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
798        switch (getByteSize(offset)) {
799        case 1:
800            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
801            break;
802        case 2:
803            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
804            break;
805        case 3:
806            bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
807            break;
808        default:
809            throw new RuntimeException("Strange offset size");
810        }
811        if (unigramFrequency > bigramFrequency) {
812            MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
813                    + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
814                    + word + " is " + unigramFrequency);
815            bigramFrequency = unigramFrequency;
816        }
817        // We compute the difference between 255 (which means probability = 1) and the
818        // unigram score. We split this into a number of discrete steps.
819        // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
820        // represents an increase of 16 steps: a value of 15 will be interpreted as the median
821        // value of the 16th step. In all justice, if the bigram frequency is low enough to be
822        // rounded below the first step (which means it is less than half a step higher than the
823        // unigram frequency) then the unigram frequency itself is the best approximation of the
824        // bigram freq that we could possibly supply, hence we should *not* include this bigram
825        // in the file at all.
826        // until this is done, we'll write 0 and slightly overestimate this case.
827        // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
828        // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
829        // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
830        // step size. Then we compute the start of the first step (the one where value 0 starts)
831        // by adding half-a-step to the unigramFrequency. From there, we compute the integer
832        // number of steps to the bigramFrequency. One last thing: we want our steps to include
833        // their lower bound and exclude their higher bound so we need to have the first step
834        // start at exactly 1 unit higher than floor(unigramFreq + half a step).
835        // Note : to reconstruct the score, the dictionary reader will need to divide
836        // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
837        // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
838        // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
839        // step pointed by the discretized frequency.
840        final float stepSize =
841                (MAX_TERMINAL_FREQUENCY - unigramFrequency) / (1.5f + MAX_BIGRAM_FREQUENCY);
842        final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
843        final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
844        // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
845        // here. The best approximation would be the unigram freq itself, so we should not
846        // include this bigram in the dictionary. For now, register as 0, and live with the
847        // small over-estimation that we get in this case. TODO: actually remove this bigram
848        // if discretizedFrequency < 0.
849        final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
850        bigramFlags += finalBigramFrequency & FLAG_ATTRIBUTE_FREQUENCY;
851        return bigramFlags;
852    }
853
854    /**
855     * Makes the 2-byte value for options flags.
856     */
857    private static final int makeOptionsValue(final FusionDictionary dictionary) {
858        final DictionaryOptions options = dictionary.mOptions;
859        final boolean hasBigrams = dictionary.hasBigrams();
860        return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0)
861                + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0)
862                + (hasBigrams ? CONTAINS_BIGRAMS_FLAG : 0);
863    }
864
865    /**
866     * Makes the flag value for a shortcut.
867     *
868     * @param more whether there are more attributes after this one.
869     * @param frequency the frequency of the attribute, 0..15
870     * @return the flags
871     */
872    private static final int makeShortcutFlags(final boolean more, final int frequency) {
873        return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY);
874    }
875
876    /**
877     * Write a node to memory. The node is expected to have its final position cached.
878     *
879     * This can be an empty map, but the more is inside the faster the lookups will be. It can
880     * be carried on as long as nodes do not move.
881     *
882     * @param dict the dictionary the node is a part of (for relative offsets).
883     * @param buffer the memory buffer to write to.
884     * @param node the node to write.
885     * @return the address of the END of the node.
886     */
887    private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
888        int index = node.mCachedAddress;
889
890        final int groupCount = node.mData.size();
891        final int countSize = getGroupCountSize(node);
892        if (1 == countSize) {
893            buffer[index++] = (byte)groupCount;
894        } else if (2 == countSize) {
895            // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
896            // we | 0x80 to do this.
897            buffer[index++] = (byte)((groupCount >> 8) | 0x80);
898            buffer[index++] = (byte)(groupCount & 0xFF);
899        } else {
900            throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
901        }
902        int groupAddress = index;
903        for (int i = 0; i < groupCount; ++i) {
904            CharGroup group = node.mData.get(i);
905            if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
906                    + "the same as the cached address of the group : "
907                    + index + " <> " + group.mCachedAddress);
908            groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
909            // Sanity checks.
910            if (DBG && group.mFrequency > MAX_TERMINAL_FREQUENCY) {
911                throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
912                        + " : " + group.mFrequency);
913            }
914            if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
915            final int childrenOffset = null == group.mChildren
916                    ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
917            byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
918            buffer[index++] = flags;
919            index = CharEncoding.writeCharArray(group.mChars, buffer, index);
920            if (group.hasSeveralChars()) {
921                buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
922            }
923            if (group.mFrequency >= 0) {
924                buffer[index++] = (byte) group.mFrequency;
925            }
926            final int shift = writeVariableAddress(buffer, index, childrenOffset);
927            index += shift;
928            groupAddress += shift;
929
930            // Write shortcuts
931            if (null != group.mShortcutTargets) {
932                final int indexOfShortcutByteSize = index;
933                index += GROUP_SHORTCUT_LIST_SIZE_SIZE;
934                groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE;
935                final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
936                while (shortcutIterator.hasNext()) {
937                    final WeightedString target = shortcutIterator.next();
938                    ++groupAddress;
939                    int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
940                            target.mFrequency);
941                    buffer[index++] = (byte)shortcutFlags;
942                    final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
943                    index += shortcutShift;
944                    groupAddress += shortcutShift;
945                }
946                final int shortcutByteSize = index - indexOfShortcutByteSize;
947                if (shortcutByteSize > 0xFFFF) {
948                    throw new RuntimeException("Shortcut list too large");
949                }
950                buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
951                buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
952            }
953            // Write bigrams
954            if (null != group.mBigrams) {
955                final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
956                while (bigramIterator.hasNext()) {
957                    final WeightedString bigram = bigramIterator.next();
958                    final CharGroup target =
959                            FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
960                    final int addressOfBigram = target.mCachedAddress;
961                    final int unigramFrequencyForThisWord = target.mFrequency;
962                    ++groupAddress;
963                    final int offset = addressOfBigram - groupAddress;
964                    int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
965                            bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
966                    buffer[index++] = (byte)bigramFlags;
967                    final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
968                    index += bigramShift;
969                    groupAddress += bigramShift;
970                }
971            }
972
973        }
974        if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
975                "Not the same size : written "
976                + (index - node.mCachedAddress) + " bytes out of a node that should have "
977                + node.mCachedSize + " bytes");
978        return index;
979    }
980
981    /**
982     * Dumps a collection of useful statistics about a node array.
983     *
984     * This prints purely informative stuff, like the total estimated file size, the
985     * number of nodes, of character groups, the repartition of each address size, etc
986     *
987     * @param nodes the node array.
988     */
989    private static void showStatistics(ArrayList<Node> nodes) {
990        int firstTerminalAddress = Integer.MAX_VALUE;
991        int lastTerminalAddress = Integer.MIN_VALUE;
992        int size = 0;
993        int charGroups = 0;
994        int maxGroups = 0;
995        int maxRuns = 0;
996        for (Node n : nodes) {
997            if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
998            for (CharGroup cg : n.mData) {
999                ++charGroups;
1000                if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
1001                if (cg.mFrequency >= 0) {
1002                    if (n.mCachedAddress < firstTerminalAddress)
1003                        firstTerminalAddress = n.mCachedAddress;
1004                    if (n.mCachedAddress > lastTerminalAddress)
1005                        lastTerminalAddress = n.mCachedAddress;
1006                }
1007            }
1008            if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
1009        }
1010        final int[] groupCounts = new int[maxGroups + 1];
1011        final int[] runCounts = new int[maxRuns + 1];
1012        for (Node n : nodes) {
1013            ++groupCounts[n.mData.size()];
1014            for (CharGroup cg : n.mData) {
1015                ++runCounts[cg.mChars.length];
1016            }
1017        }
1018
1019        MakedictLog.i("Statistics:\n"
1020                + "  total file size " + size + "\n"
1021                + "  " + nodes.size() + " nodes\n"
1022                + "  " + charGroups + " groups (" + ((float)charGroups / nodes.size())
1023                        + " groups per node)\n"
1024                + "  first terminal at " + firstTerminalAddress + "\n"
1025                + "  last terminal at " + lastTerminalAddress + "\n"
1026                + "  Group stats : max = " + maxGroups);
1027        for (int i = 0; i < groupCounts.length; ++i) {
1028            MakedictLog.i("    " + i + " : " + groupCounts[i]);
1029        }
1030        MakedictLog.i("  Character run stats : max = " + maxRuns);
1031        for (int i = 0; i < runCounts.length; ++i) {
1032            MakedictLog.i("    " + i + " : " + runCounts[i]);
1033        }
1034    }
1035
1036    /**
1037     * Dumps a FusionDictionary to a file.
1038     *
1039     * This is the public entry point to write a dictionary to a file.
1040     *
1041     * @param destination the stream to write the binary data to.
1042     * @param dict the dictionary to write.
1043     * @param version the version of the format to write, currently either 1 or 2.
1044     */
1045    public static void writeDictionaryBinary(final OutputStream destination,
1046            final FusionDictionary dict, final int version)
1047            throws IOException, UnsupportedFormatException {
1048
1049        // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
1050        // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
1051        // of the nodes becomes a quite complicated problem, because though the dictionary itself
1052        // does not have a size limit, each node must still be within 16MB of all its children and
1053        // parents. As long as this is ensured, the dictionary file may grow to any size.
1054
1055        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
1056            throw new UnsupportedFormatException("Requested file format version " + version
1057                    + ", but this implementation only supports versions "
1058                    + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION);
1059        }
1060
1061        ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
1062
1063        // The magic number in big-endian order.
1064        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
1065            // Magic number for version 2+.
1066            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24)));
1067            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16)));
1068            headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8)));
1069            headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER));
1070            // Dictionary version.
1071            headerBuffer.write((byte) (0xFF & (version >> 8)));
1072            headerBuffer.write((byte) (0xFF & version));
1073        } else {
1074            // Magic number for version 1.
1075            headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8)));
1076            headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER));
1077            // Dictionary version.
1078            headerBuffer.write((byte) (0xFF & version));
1079        }
1080        // Options flags
1081        final int options = makeOptionsValue(dict);
1082        headerBuffer.write((byte) (0xFF & (options >> 8)));
1083        headerBuffer.write((byte) (0xFF & options));
1084        if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
1085            final int headerSizeOffset = headerBuffer.size();
1086            // Placeholder to be written later with header size.
1087            for (int i = 0; i < 4; ++i) {
1088                headerBuffer.write(0);
1089            }
1090            // Write out the options.
1091            for (final String key : dict.mOptions.mAttributes.keySet()) {
1092                final String value = dict.mOptions.mAttributes.get(key);
1093                CharEncoding.writeString(headerBuffer, key);
1094                CharEncoding.writeString(headerBuffer, value);
1095            }
1096            final int size = headerBuffer.size();
1097            final byte[] bytes = headerBuffer.toByteArray();
1098            // Write out the header size.
1099            bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
1100            bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
1101            bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
1102            bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
1103            destination.write(bytes);
1104        } else {
1105            headerBuffer.writeTo(destination);
1106        }
1107
1108        headerBuffer.close();
1109
1110        // Leave the choice of the optimal node order to the flattenTree function.
1111        MakedictLog.i("Flattening the tree...");
1112        ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
1113
1114        MakedictLog.i("Computing addresses...");
1115        computeAddresses(dict, flatNodes);
1116        MakedictLog.i("Checking array...");
1117        if (DBG) checkFlatNodeArray(flatNodes);
1118
1119        // Create a buffer that matches the final dictionary size.
1120        final Node lastNode = flatNodes.get(flatNodes.size() - 1);
1121        final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize);
1122        final byte[] buffer = new byte[bufferSize];
1123        int index = 0;
1124
1125        MakedictLog.i("Writing file...");
1126        int dataEndOffset = 0;
1127        for (Node n : flatNodes) {
1128            dataEndOffset = writePlacedNode(dict, buffer, n);
1129        }
1130
1131        if (DBG) showStatistics(flatNodes);
1132
1133        destination.write(buffer, 0, dataEndOffset);
1134
1135        destination.close();
1136        MakedictLog.i("Done");
1137    }
1138
1139
1140    // Input methods: Read a binary dictionary to memory.
1141    // readDictionaryBinary is the public entry point for them.
1142
1143    static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
1144    private static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
1145            final int originalGroupAddress) {
1146        int addressPointer = originalGroupAddress;
1147        final int flags = buffer.readUnsignedByte();
1148        ++addressPointer;
1149        final int characters[];
1150        if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
1151            int index = 0;
1152            int character = CharEncoding.readChar(buffer);
1153            addressPointer += CharEncoding.getCharSize(character);
1154            while (-1 != character) {
1155                characterBuffer[index++] = character;
1156                character = CharEncoding.readChar(buffer);
1157                addressPointer += CharEncoding.getCharSize(character);
1158            }
1159            characters = Arrays.copyOfRange(characterBuffer, 0, index);
1160        } else {
1161            final int character = CharEncoding.readChar(buffer);
1162            addressPointer += CharEncoding.getCharSize(character);
1163            characters = new int[] { character };
1164        }
1165        final int frequency;
1166        if (0 != (FLAG_IS_TERMINAL & flags)) {
1167            ++addressPointer;
1168            frequency = buffer.readUnsignedByte();
1169        } else {
1170            frequency = CharGroup.NOT_A_TERMINAL;
1171        }
1172        int childrenAddress = addressPointer;
1173        switch (flags & MASK_GROUP_ADDRESS_TYPE) {
1174        case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
1175            childrenAddress += buffer.readUnsignedByte();
1176            addressPointer += 1;
1177            break;
1178        case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
1179            childrenAddress += buffer.readUnsignedShort();
1180            addressPointer += 2;
1181            break;
1182        case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
1183            childrenAddress += buffer.readUnsignedInt24();
1184            addressPointer += 3;
1185            break;
1186        case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
1187        default:
1188            childrenAddress = NO_CHILDREN_ADDRESS;
1189            break;
1190        }
1191        ArrayList<WeightedString> shortcutTargets = null;
1192        if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) {
1193            final int pointerBefore = buffer.position();
1194            shortcutTargets = new ArrayList<WeightedString>();
1195            buffer.readUnsignedShort(); // Skip the size
1196            while (true) {
1197                final int targetFlags = buffer.readUnsignedByte();
1198                final String word = CharEncoding.readString(buffer);
1199                shortcutTargets.add(new WeightedString(word,
1200                        targetFlags & FLAG_ATTRIBUTE_FREQUENCY));
1201                if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1202            }
1203            addressPointer += buffer.position() - pointerBefore;
1204        }
1205        ArrayList<PendingAttribute> bigrams = null;
1206        if (0 != (flags & FLAG_HAS_BIGRAMS)) {
1207            bigrams = new ArrayList<PendingAttribute>();
1208            while (true) {
1209                final int bigramFlags = buffer.readUnsignedByte();
1210                ++addressPointer;
1211                final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
1212                int bigramAddress = addressPointer;
1213                switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
1214                case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
1215                    bigramAddress += sign * buffer.readUnsignedByte();
1216                    addressPointer += 1;
1217                    break;
1218                case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
1219                    bigramAddress += sign * buffer.readUnsignedShort();
1220                    addressPointer += 2;
1221                    break;
1222                case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
1223                    final int offset = (buffer.readUnsignedByte() << 16)
1224                            + buffer.readUnsignedShort();
1225                    bigramAddress += sign * offset;
1226                    addressPointer += 3;
1227                    break;
1228                default:
1229                    throw new RuntimeException("Has bigrams with no address");
1230                }
1231                bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
1232                        bigramAddress));
1233                if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
1234            }
1235        }
1236        return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
1237                childrenAddress, shortcutTargets, bigrams);
1238    }
1239
1240    /**
1241     * Reads and returns the char group count out of a buffer and forwards the pointer.
1242     */
1243    private static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
1244        final int msb = buffer.readUnsignedByte();
1245        if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
1246            return msb;
1247        } else {
1248            return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
1249                    + buffer.readUnsignedByte();
1250        }
1251    }
1252
1253    // The word cache here is a stopgap bandaid to help the catastrophic performance
1254    // of this method. Since it performs direct, unbuffered random access to the file and
1255    // may be called hundreds of thousands of times, the resulting performance is not
1256    // reasonable without some kind of cache. Thus:
1257    private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
1258    /**
1259     * Finds, as a string, the word at the address passed as an argument.
1260     *
1261     * @param buffer the buffer to read from.
1262     * @param headerSize the size of the header.
1263     * @param address the address to seek.
1264     * @return the word, as a string.
1265     */
1266    private static String getWordAtAddress(final FusionDictionaryBufferInterface buffer,
1267            final int headerSize, final int address) {
1268        final String cachedString = wordCache.get(address);
1269        if (null != cachedString) return cachedString;
1270        final int originalPointer = buffer.position();
1271        buffer.position(headerSize);
1272        final int count = readCharGroupCount(buffer);
1273        int groupOffset = getGroupCountSize(count);
1274        final StringBuilder builder = new StringBuilder();
1275        String result = null;
1276
1277        CharGroupInfo last = null;
1278        for (int i = count - 1; i >= 0; --i) {
1279            CharGroupInfo info = readCharGroup(buffer, groupOffset);
1280            groupOffset = info.mEndAddress;
1281            if (info.mOriginalAddress == address) {
1282                builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
1283                result = builder.toString();
1284                break; // and return
1285            }
1286            if (hasChildrenAddress(info.mChildrenAddress)) {
1287                if (info.mChildrenAddress > address) {
1288                    if (null == last) continue;
1289                    builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1290                    buffer.position(last.mChildrenAddress + headerSize);
1291                    groupOffset = last.mChildrenAddress + 1;
1292                    i = buffer.readUnsignedByte();
1293                    last = null;
1294                    continue;
1295                }
1296                last = info;
1297            }
1298            if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
1299                builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
1300                buffer.position(last.mChildrenAddress + headerSize);
1301                groupOffset = last.mChildrenAddress + 1;
1302                i = buffer.readUnsignedByte();
1303                last = null;
1304                continue;
1305            }
1306        }
1307        buffer.position(originalPointer);
1308        wordCache.put(address, result);
1309        return result;
1310    }
1311
1312    /**
1313     * Reads a single node from a buffer.
1314     *
1315     * This methods reads the file at the current position. A node is fully expected to start at
1316     * the current position.
1317     * This will recursively read other nodes into the structure, populating the reverse
1318     * maps on the fly and using them to keep track of already read nodes.
1319     *
1320     * @param buffer the buffer, correctly positioned at the start of a node.
1321     * @param headerSize the size, in bytes, of the file header.
1322     * @param reverseNodeMap a mapping from addresses to already read nodes.
1323     * @param reverseGroupMap a mapping from addresses to already read character groups.
1324     * @return the read node with all his children already read.
1325     */
1326    private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
1327            final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap)
1328            throws IOException {
1329        final int nodeOrigin = buffer.position() - headerSize;
1330        final int count = readCharGroupCount(buffer);
1331        final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
1332        int groupOffset = nodeOrigin + getGroupCountSize(count);
1333        for (int i = count; i > 0; --i) {
1334            CharGroupInfo info = readCharGroup(buffer, groupOffset);
1335            ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
1336            ArrayList<WeightedString> bigrams = null;
1337            if (null != info.mBigrams) {
1338                bigrams = new ArrayList<WeightedString>();
1339                for (PendingAttribute bigram : info.mBigrams) {
1340                    final String word = getWordAtAddress(
1341                            buffer, headerSize, bigram.mAddress);
1342                    bigrams.add(new WeightedString(word, bigram.mFrequency));
1343                }
1344            }
1345            if (hasChildrenAddress(info.mChildrenAddress)) {
1346                Node children = reverseNodeMap.get(info.mChildrenAddress);
1347                if (null == children) {
1348                    final int currentPosition = buffer.position();
1349                    buffer.position(info.mChildrenAddress + headerSize);
1350                    children = readNode(
1351                            buffer, headerSize, reverseNodeMap, reverseGroupMap);
1352                    buffer.position(currentPosition);
1353                }
1354                nodeContents.add(
1355                        new CharGroup(info.mCharacters, shortcutTargets,
1356                                bigrams, info.mFrequency, children));
1357            } else {
1358                nodeContents.add(
1359                        new CharGroup(info.mCharacters, shortcutTargets,
1360                                bigrams, info.mFrequency));
1361            }
1362            groupOffset = info.mEndAddress;
1363        }
1364        final Node node = new Node(nodeContents);
1365        node.mCachedAddress = nodeOrigin;
1366        reverseNodeMap.put(node.mCachedAddress, node);
1367        return node;
1368    }
1369
1370    /**
1371     * Helper function to get the binary format version from the header.
1372     * @throws IOException
1373     */
1374    private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
1375            throws IOException {
1376        final int magic_v1 = buffer.readUnsignedShort();
1377        if (VERSION_1_MAGIC_NUMBER == magic_v1) return buffer.readUnsignedByte();
1378        final int magic_v2 = (magic_v1 << 16) + buffer.readUnsignedShort();
1379        if (VERSION_2_MAGIC_NUMBER == magic_v2) return buffer.readUnsignedShort();
1380        return NOT_A_VERSION_NUMBER;
1381    }
1382
1383    /**
1384     * Reads options from a buffer and populate a map with their contents.
1385     *
1386     * The buffer is read at the current position, so the caller must take care the pointer
1387     * is in the right place before calling this.
1388     */
1389    public static void populateOptions(final FusionDictionaryBufferInterface buffer,
1390            final int headerSize, final HashMap<String, String> options) {
1391        while (buffer.position() < headerSize) {
1392            final String key = CharEncoding.readString(buffer);
1393            final String value = CharEncoding.readString(buffer);
1394            options.put(key, value);
1395        }
1396    }
1397    // TODO: remove this method.
1398    public static void populateOptions(final ByteBuffer buffer, final int headerSize,
1399            final HashMap<String, String> options) {
1400        populateOptions(new ByteBufferWrapper(buffer), headerSize, options);
1401    }
1402
1403    /**
1404     * Reads a buffer and returns the memory representation of the dictionary.
1405     *
1406     * This high-level method takes a buffer and reads its contents, populating a
1407     * FusionDictionary structure. The optional dict argument is an existing dictionary to
1408     * which words from the buffer should be added. If it is null, a new dictionary is created.
1409     *
1410     * @param buffer the buffer to read.
1411     * @param dict an optional dictionary to add words to, or null.
1412     * @return the created (or merged) dictionary.
1413     */
1414    public static FusionDictionary readDictionaryBinary(
1415            final FusionDictionaryBufferInterface buffer, final FusionDictionary dict)
1416                    throws IOException, UnsupportedFormatException {
1417        // Check file version
1418        final int version = getFormatVersion(buffer);
1419        if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
1420            throw new UnsupportedFormatException("This file has version " + version
1421                    + ", but this implementation does not support versions above "
1422                    + MAXIMUM_SUPPORTED_VERSION);
1423        }
1424
1425        // clear cache
1426        wordCache.clear();
1427
1428        // Read options
1429        final int optionsFlags = buffer.readUnsignedShort();
1430
1431        final int headerSize;
1432        final HashMap<String, String> options = new HashMap<String, String>();
1433        if (version < FIRST_VERSION_WITH_HEADER_SIZE) {
1434            headerSize = buffer.position();
1435        } else {
1436            headerSize = buffer.readInt();
1437            populateOptions(buffer, headerSize, options);
1438            buffer.position(headerSize);
1439        }
1440
1441        if (headerSize < 0) {
1442            throw new UnsupportedFormatException("header size can't be negative.");
1443        }
1444
1445        Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
1446        Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
1447        final Node root = readNode(
1448                buffer, headerSize, reverseNodeMapping, reverseGroupMapping);
1449
1450        FusionDictionary newDict = new FusionDictionary(root,
1451                new FusionDictionary.DictionaryOptions(options,
1452                        0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG),
1453                        0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG)));
1454        if (null != dict) {
1455            for (final Word w : dict) {
1456                newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets);
1457            }
1458            for (final Word w : dict) {
1459                // By construction a binary dictionary may not have bigrams pointing to
1460                // words that are not also registered as unigrams so we don't have to avoid
1461                // them explicitly here.
1462                for (final WeightedString bigram : w.mBigrams) {
1463                    newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
1464                }
1465            }
1466        }
1467
1468        return newDict;
1469    }
1470
1471    // TODO: remove this method.
1472    public static FusionDictionary readDictionaryBinary(final ByteBuffer buffer,
1473            final FusionDictionary dict) throws IOException, UnsupportedFormatException {
1474        return readDictionaryBinary(new ByteBufferWrapper(buffer), dict);
1475    }
1476
1477    /**
1478     * Basic test to find out whether the file is a binary dictionary or not.
1479     *
1480     * Concretely this only tests the magic number.
1481     *
1482     * @param filename The name of the file to test.
1483     * @return true if it's a binary dictionary, false otherwise
1484     */
1485    public static boolean isBinaryDictionary(final String filename) {
1486        FileInputStream inStream = null;
1487        try {
1488            final File file = new File(filename);
1489            inStream = new FileInputStream(file);
1490            final ByteBuffer buffer = inStream.getChannel().map(
1491                    FileChannel.MapMode.READ_ONLY, 0, file.length());
1492            final int version = getFormatVersion(new ByteBufferWrapper(buffer));
1493            return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION);
1494        } catch (FileNotFoundException e) {
1495            return false;
1496        } catch (IOException e) {
1497            return false;
1498        } finally {
1499            if (inStream != null) {
1500                try {
1501                    inStream.close();
1502                } catch (IOException e) {
1503                    // do nothing
1504                }
1505            }
1506        }
1507    }
1508
1509    /**
1510     * Calculate bigram frequency from compressed value
1511     *
1512     * @see #makeBigramFlags
1513     *
1514     * @param unigramFrequency
1515     * @param bigramFrequency compressed frequency
1516     * @return approximate bigram frequency
1517     */
1518    public static int reconstructBigramFrequency(final int unigramFrequency,
1519            final int bigramFrequency) {
1520        final float stepSize = (MAX_TERMINAL_FREQUENCY - unigramFrequency)
1521                / (1.5f + MAX_BIGRAM_FREQUENCY);
1522        final float resultFreqFloat = (float)unigramFrequency
1523                + stepSize * (bigramFrequency + 1.0f);
1524        return (int)resultFreqFloat;
1525    }
1526}
1527