1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * ARM variants.  It is included by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32    int regCardBase = dvmCompilerAllocTemp(cUnit);
33    int regCardNo = dvmCompilerAllocTemp(cUnit);
34    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
35    loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
36                 regCardBase);
37    opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38    storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39                     kUnsignedByte);
40    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
41    target->defMask = ENCODE_ALL;
42    branchOver->generic.target = (LIR *)target;
43    dvmCompilerFreeTemp(cUnit, regCardBase);
44    dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48                                     int srcSize, int tgtSize)
49{
50    /*
51     * Don't optimize the register usage since it calls out to template
52     * functions
53     */
54    RegLocation rlSrc;
55    RegLocation rlDest;
56    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
57    if (srcSize == 1) {
58        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
59        loadValueDirectFixed(cUnit, rlSrc, r0);
60    } else {
61        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
62        loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
63    }
64    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
65    opReg(cUnit, kOpBlx, r2);
66    dvmCompilerClobberCallRegs(cUnit);
67    if (tgtSize == 1) {
68        RegLocation rlResult;
69        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
70        rlResult = dvmCompilerGetReturn(cUnit);
71        storeValue(cUnit, rlDest, rlResult);
72    } else {
73        RegLocation rlResult;
74        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
75        rlResult = dvmCompilerGetReturnWide(cUnit);
76        storeValueWide(cUnit, rlDest, rlResult);
77    }
78    return false;
79}
80
81static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
82                                    RegLocation rlDest, RegLocation rlSrc1,
83                                    RegLocation rlSrc2)
84{
85    RegLocation rlResult;
86    void* funct;
87
88    switch (mir->dalvikInsn.opcode) {
89        case OP_ADD_FLOAT_2ADDR:
90        case OP_ADD_FLOAT:
91            funct = (void*) __aeabi_fadd;
92            break;
93        case OP_SUB_FLOAT_2ADDR:
94        case OP_SUB_FLOAT:
95            funct = (void*) __aeabi_fsub;
96            break;
97        case OP_DIV_FLOAT_2ADDR:
98        case OP_DIV_FLOAT:
99            funct = (void*) __aeabi_fdiv;
100            break;
101        case OP_MUL_FLOAT_2ADDR:
102        case OP_MUL_FLOAT:
103            funct = (void*) __aeabi_fmul;
104            break;
105        case OP_REM_FLOAT_2ADDR:
106        case OP_REM_FLOAT:
107            funct = (void*) fmodf;
108            break;
109        case OP_NEG_FLOAT: {
110            genNegFloat(cUnit, rlDest, rlSrc1);
111            return false;
112        }
113        default:
114            return true;
115    }
116    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
117    loadValueDirectFixed(cUnit, rlSrc1, r0);
118    loadValueDirectFixed(cUnit, rlSrc2, r1);
119    LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
120    opReg(cUnit, kOpBlx, r2);
121    dvmCompilerClobberCallRegs(cUnit);
122    rlResult = dvmCompilerGetReturn(cUnit);
123    storeValue(cUnit, rlDest, rlResult);
124    return false;
125}
126
127static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
128                                     RegLocation rlDest, RegLocation rlSrc1,
129                                     RegLocation rlSrc2)
130{
131    RegLocation rlResult;
132    void* funct;
133
134    switch (mir->dalvikInsn.opcode) {
135        case OP_ADD_DOUBLE_2ADDR:
136        case OP_ADD_DOUBLE:
137            funct = (void*) __aeabi_dadd;
138            break;
139        case OP_SUB_DOUBLE_2ADDR:
140        case OP_SUB_DOUBLE:
141            funct = (void*) __aeabi_dsub;
142            break;
143        case OP_DIV_DOUBLE_2ADDR:
144        case OP_DIV_DOUBLE:
145            funct = (void*) __aeabi_ddiv;
146            break;
147        case OP_MUL_DOUBLE_2ADDR:
148        case OP_MUL_DOUBLE:
149            funct = (void*) __aeabi_dmul;
150            break;
151        case OP_REM_DOUBLE_2ADDR:
152        case OP_REM_DOUBLE:
153            funct = (void*) (double (*)(double, double)) fmod;
154            break;
155        case OP_NEG_DOUBLE: {
156            genNegDouble(cUnit, rlDest, rlSrc1);
157            return false;
158        }
159        default:
160            return true;
161    }
162    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
163    LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
164    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
165    loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
166    opReg(cUnit, kOpBlx, r14lr);
167    dvmCompilerClobberCallRegs(cUnit);
168    rlResult = dvmCompilerGetReturnWide(cUnit);
169    storeValueWide(cUnit, rlDest, rlResult);
170#if defined(WITH_SELF_VERIFICATION)
171    cUnit->usesLinkRegister = true;
172#endif
173    return false;
174}
175
176static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
177{
178    Opcode opcode = mir->dalvikInsn.opcode;
179
180    switch (opcode) {
181        case OP_INT_TO_FLOAT:
182            return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
183        case OP_FLOAT_TO_INT:
184            return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
185        case OP_DOUBLE_TO_FLOAT:
186            return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
187        case OP_FLOAT_TO_DOUBLE:
188            return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
189        case OP_INT_TO_DOUBLE:
190            return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
191        case OP_DOUBLE_TO_INT:
192            return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
193        case OP_FLOAT_TO_LONG:
194            return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
195        case OP_LONG_TO_FLOAT:
196            return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
197        case OP_DOUBLE_TO_LONG:
198            return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
199        case OP_LONG_TO_DOUBLE:
200            return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
201        default:
202            return true;
203    }
204    return false;
205}
206
207#if defined(WITH_SELF_VERIFICATION)
208static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
209                          int dest, int src1)
210{
211     ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
212     insn->opcode = opcode;
213     insn->operands[0] = dest;
214     insn->operands[1] = src1;
215     setupResourceMasks(insn);
216     dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
217}
218
219/*
220 * Example where r14 (LR) is preserved around a heap access under
221 * self-verification mode in Thumb2:
222 *
223 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
224 * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
225 * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
226 * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
227 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
228 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
229 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
230 * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
231 * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
232 * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
233 * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
234 * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
235 * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
236 * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
237 * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
238 * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
239 * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
240 * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
241 * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
242 *
243 */
244static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
245{
246    ArmLIR *thisLIR;
247    TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
248
249    for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
250         thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
251         thisLIR = NEXT_LIR(thisLIR)) {
252        if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
253            /*
254             * Push r5(FP) and r14(LR) onto stack. We need to make sure that
255             * SP is 8-byte aligned, and we use r5 as a temp to restore LR
256             * for Thumb-only target since LR cannot be directly accessed in
257             * Thumb mode. Another reason to choose r5 here is it is the Dalvik
258             * frame pointer and cannot be the target of the emulated heap
259             * load.
260             */
261            if (cUnit->usesLinkRegister) {
262                genSelfVerificationPreBranch(cUnit, thisLIR);
263            }
264
265            /* Branch to mem op decode template */
266            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
267                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
268                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
269            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
270                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
271                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
272
273            /* Restore LR */
274            if (cUnit->usesLinkRegister) {
275                genSelfVerificationPostBranch(cUnit, thisLIR);
276            }
277        }
278    }
279}
280#endif
281
282/* Generate conditional branch instructions */
283static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
284                                    ArmConditionCode cond,
285                                    ArmLIR *target)
286{
287    ArmLIR *branch = opCondBranch(cUnit, cond);
288    branch->generic.target = (LIR *) target;
289    return branch;
290}
291
292/* Generate a unconditional branch to go to the interpreter */
293static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
294                                  ArmLIR *pcrLabel)
295{
296    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
297    return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
298}
299
300/* Load a wide field from an object instance */
301static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
302{
303    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
304    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
305    RegLocation rlResult;
306    rlObj = loadValue(cUnit, rlObj, kCoreReg);
307    int regPtr = dvmCompilerAllocTemp(cUnit);
308
309    assert(rlDest.wide);
310
311    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
312                 NULL);/* null object? */
313    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
314    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
315
316    HEAP_ACCESS_SHADOW(true);
317    loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
318    HEAP_ACCESS_SHADOW(false);
319
320    dvmCompilerFreeTemp(cUnit, regPtr);
321    storeValueWide(cUnit, rlDest, rlResult);
322}
323
324/* Store a wide field to an object instance */
325static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
326{
327    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
328    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
329    rlObj = loadValue(cUnit, rlObj, kCoreReg);
330    int regPtr;
331    rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
332    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
333                 NULL);/* null object? */
334    regPtr = dvmCompilerAllocTemp(cUnit);
335    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
336
337    HEAP_ACCESS_SHADOW(true);
338    storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
339    HEAP_ACCESS_SHADOW(false);
340
341    dvmCompilerFreeTemp(cUnit, regPtr);
342}
343
344/*
345 * Load a field from an object instance
346 *
347 */
348static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
349                    int fieldOffset, bool isVolatile)
350{
351    RegLocation rlResult;
352    RegisterClass regClass = dvmCompilerRegClassBySize(size);
353    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
354    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
355    rlObj = loadValue(cUnit, rlObj, kCoreReg);
356    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
357    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
358                 NULL);/* null object? */
359
360    HEAP_ACCESS_SHADOW(true);
361    loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
362                 size, rlObj.sRegLow);
363    HEAP_ACCESS_SHADOW(false);
364    if (isVolatile) {
365        dvmCompilerGenMemBarrier(cUnit, kSY);
366    }
367
368    storeValue(cUnit, rlDest, rlResult);
369}
370
371/*
372 * Store a field to an object instance
373 *
374 */
375static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
376                    int fieldOffset, bool isObject, bool isVolatile)
377{
378    RegisterClass regClass = dvmCompilerRegClassBySize(size);
379    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
380    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
381    rlObj = loadValue(cUnit, rlObj, kCoreReg);
382    rlSrc = loadValue(cUnit, rlSrc, regClass);
383    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
384                 NULL);/* null object? */
385
386    if (isVolatile) {
387        dvmCompilerGenMemBarrier(cUnit, kST);
388    }
389    HEAP_ACCESS_SHADOW(true);
390    storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
391    HEAP_ACCESS_SHADOW(false);
392    if (isVolatile) {
393        dvmCompilerGenMemBarrier(cUnit, kSY);
394    }
395    if (isObject) {
396        /* NOTE: marking card based on object head */
397        markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
398    }
399}
400
401
402/*
403 * Generate array load
404 */
405static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
406                        RegLocation rlArray, RegLocation rlIndex,
407                        RegLocation rlDest, int scale)
408{
409    RegisterClass regClass = dvmCompilerRegClassBySize(size);
410    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
411    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
412    RegLocation rlResult;
413    rlArray = loadValue(cUnit, rlArray, kCoreReg);
414    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
415    int regPtr;
416
417    /* null object? */
418    ArmLIR * pcrLabel = NULL;
419
420    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
421        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
422                                rlArray.lowReg, mir->offset, NULL);
423    }
424
425    regPtr = dvmCompilerAllocTemp(cUnit);
426
427    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
428        int regLen = dvmCompilerAllocTemp(cUnit);
429        /* Get len */
430        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
431        /* regPtr -> array data */
432        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
433        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
434                       pcrLabel);
435        dvmCompilerFreeTemp(cUnit, regLen);
436    } else {
437        /* regPtr -> array data */
438        opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
439    }
440    if ((size == kLong) || (size == kDouble)) {
441        if (scale) {
442            int rNewIndex = dvmCompilerAllocTemp(cUnit);
443            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
444            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
445            dvmCompilerFreeTemp(cUnit, rNewIndex);
446        } else {
447            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
448        }
449        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
450
451        HEAP_ACCESS_SHADOW(true);
452        loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
453        HEAP_ACCESS_SHADOW(false);
454
455        dvmCompilerFreeTemp(cUnit, regPtr);
456        storeValueWide(cUnit, rlDest, rlResult);
457    } else {
458        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
459
460        HEAP_ACCESS_SHADOW(true);
461        loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
462                        scale, size);
463        HEAP_ACCESS_SHADOW(false);
464
465        dvmCompilerFreeTemp(cUnit, regPtr);
466        storeValue(cUnit, rlDest, rlResult);
467    }
468}
469
470/*
471 * Generate array store
472 *
473 */
474static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
475                        RegLocation rlArray, RegLocation rlIndex,
476                        RegLocation rlSrc, int scale)
477{
478    RegisterClass regClass = dvmCompilerRegClassBySize(size);
479    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
480    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
481
482    int regPtr;
483    rlArray = loadValue(cUnit, rlArray, kCoreReg);
484    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
485
486    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
487        dvmCompilerClobber(cUnit, rlArray.lowReg);
488        regPtr = rlArray.lowReg;
489    } else {
490        regPtr = dvmCompilerAllocTemp(cUnit);
491        genRegCopy(cUnit, regPtr, rlArray.lowReg);
492    }
493
494    /* null object? */
495    ArmLIR * pcrLabel = NULL;
496
497    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
498        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
499                                mir->offset, NULL);
500    }
501
502    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
503        int regLen = dvmCompilerAllocTemp(cUnit);
504        //NOTE: max live temps(4) here.
505        /* Get len */
506        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
507        /* regPtr -> array data */
508        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
509        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
510                       pcrLabel);
511        dvmCompilerFreeTemp(cUnit, regLen);
512    } else {
513        /* regPtr -> array data */
514        opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
515    }
516    /* at this point, regPtr points to array, 2 live temps */
517    if ((size == kLong) || (size == kDouble)) {
518        //TODO: need specific wide routine that can handle fp regs
519        if (scale) {
520            int rNewIndex = dvmCompilerAllocTemp(cUnit);
521            opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
522            opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
523            dvmCompilerFreeTemp(cUnit, rNewIndex);
524        } else {
525            opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
526        }
527        rlSrc = loadValueWide(cUnit, rlSrc, regClass);
528
529        HEAP_ACCESS_SHADOW(true);
530        storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
531        HEAP_ACCESS_SHADOW(false);
532
533        dvmCompilerFreeTemp(cUnit, regPtr);
534    } else {
535        rlSrc = loadValue(cUnit, rlSrc, regClass);
536
537        HEAP_ACCESS_SHADOW(true);
538        storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
539                         scale, size);
540        HEAP_ACCESS_SHADOW(false);
541    }
542}
543
544/*
545 * Generate array object store
546 * Must use explicit register allocation here because of
547 * call-out to dvmCanPutArrayElement
548 */
549static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
550                              RegLocation rlArray, RegLocation rlIndex,
551                              RegLocation rlSrc, int scale)
552{
553    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
554    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
555
556    dvmCompilerFlushAllRegs(cUnit);
557
558    int regLen = r0;
559    int regPtr = r4PC;  /* Preserved across call */
560    int regArray = r1;
561    int regIndex = r7;  /* Preserved across call */
562
563    loadValueDirectFixed(cUnit, rlArray, regArray);
564    loadValueDirectFixed(cUnit, rlIndex, regIndex);
565
566    /* null object? */
567    ArmLIR * pcrLabel = NULL;
568
569    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
570        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
571                                mir->offset, NULL);
572    }
573
574    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
575        /* Get len */
576        loadWordDisp(cUnit, regArray, lenOffset, regLen);
577        /* regPtr -> array data */
578        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
579        genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
580                       pcrLabel);
581    } else {
582        /* regPtr -> array data */
583        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
584    }
585
586    /* Get object to store */
587    loadValueDirectFixed(cUnit, rlSrc, r0);
588    LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
589
590    /* Are we storing null?  If so, avoid check */
591    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
592
593    /* Make sure the types are compatible */
594    loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
595    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
596    opReg(cUnit, kOpBlx, r2);
597    dvmCompilerClobberCallRegs(cUnit);
598
599    /*
600     * Using fixed registers here, and counting on r4 and r7 being
601     * preserved across the above call.  Tell the register allocation
602     * utilities about the regs we are using directly
603     */
604    dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
605    dvmCompilerLockTemp(cUnit, regIndex); // r7
606    dvmCompilerLockTemp(cUnit, r0);
607    dvmCompilerLockTemp(cUnit, r1);
608
609    /* Bad? - roll back and re-execute if so */
610    genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
611
612    /* Resume here - must reload element & array, regPtr & index preserved */
613    loadValueDirectFixed(cUnit, rlSrc, r0);
614    loadValueDirectFixed(cUnit, rlArray, r1);
615
616    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
617    target->defMask = ENCODE_ALL;
618    branchOver->generic.target = (LIR *) target;
619
620    HEAP_ACCESS_SHADOW(true);
621    storeBaseIndexed(cUnit, regPtr, regIndex, r0,
622                     scale, kWord);
623    HEAP_ACCESS_SHADOW(false);
624
625    dvmCompilerFreeTemp(cUnit, regPtr);
626    dvmCompilerFreeTemp(cUnit, regIndex);
627
628    /* NOTE: marking card here based on object head */
629    markCard(cUnit, r0, r1);
630}
631
632static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
633                           RegLocation rlDest, RegLocation rlSrc1,
634                           RegLocation rlShift)
635{
636    /*
637     * Don't mess with the regsiters here as there is a particular calling
638     * convention to the out-of-line handler.
639     */
640    RegLocation rlResult;
641
642    loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
643    loadValueDirect(cUnit, rlShift, r2);
644    switch( mir->dalvikInsn.opcode) {
645        case OP_SHL_LONG:
646        case OP_SHL_LONG_2ADDR:
647            genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
648            break;
649        case OP_SHR_LONG:
650        case OP_SHR_LONG_2ADDR:
651            genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
652            break;
653        case OP_USHR_LONG:
654        case OP_USHR_LONG_2ADDR:
655            genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
656            break;
657        default:
658            return true;
659    }
660    rlResult = dvmCompilerGetReturnWide(cUnit);
661    storeValueWide(cUnit, rlDest, rlResult);
662    return false;
663}
664
665static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
666                           RegLocation rlDest, RegLocation rlSrc1,
667                           RegLocation rlSrc2)
668{
669    RegLocation rlResult;
670    OpKind firstOp = kOpBkpt;
671    OpKind secondOp = kOpBkpt;
672    bool callOut = false;
673    bool checkZero = false;
674    void *callTgt;
675    int retReg = r0;
676
677    switch (mir->dalvikInsn.opcode) {
678        case OP_NOT_LONG:
679            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
680            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
681            opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
682            opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
683            storeValueWide(cUnit, rlDest, rlResult);
684            return false;
685            break;
686        case OP_ADD_LONG:
687        case OP_ADD_LONG_2ADDR:
688            firstOp = kOpAdd;
689            secondOp = kOpAdc;
690            break;
691        case OP_SUB_LONG:
692        case OP_SUB_LONG_2ADDR:
693            firstOp = kOpSub;
694            secondOp = kOpSbc;
695            break;
696        case OP_MUL_LONG:
697        case OP_MUL_LONG_2ADDR:
698            genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
699            return false;
700        case OP_DIV_LONG:
701        case OP_DIV_LONG_2ADDR:
702            callOut = true;
703            retReg = r0;
704            checkZero = true;
705            callTgt = (void*)__aeabi_ldivmod;
706            break;
707        /* NOTE - result is in r2/r3 instead of r0/r1 */
708        case OP_REM_LONG:
709        case OP_REM_LONG_2ADDR:
710            callOut = true;
711            callTgt = (void*)__aeabi_ldivmod;
712            retReg = r2;
713            checkZero = true;
714            break;
715        case OP_AND_LONG_2ADDR:
716        case OP_AND_LONG:
717            firstOp = kOpAnd;
718            secondOp = kOpAnd;
719            break;
720        case OP_OR_LONG:
721        case OP_OR_LONG_2ADDR:
722            firstOp = kOpOr;
723            secondOp = kOpOr;
724            break;
725        case OP_XOR_LONG:
726        case OP_XOR_LONG_2ADDR:
727            firstOp = kOpXor;
728            secondOp = kOpXor;
729            break;
730        case OP_NEG_LONG: {
731            //TUNING: can improve this using Thumb2 code
732            int tReg = dvmCompilerAllocTemp(cUnit);
733            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
734            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
735            loadConstantNoClobber(cUnit, tReg, 0);
736            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
737                        tReg, rlSrc2.lowReg);
738            opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
739            genRegCopy(cUnit, rlResult.highReg, tReg);
740            storeValueWide(cUnit, rlDest, rlResult);
741            return false;
742        }
743        default:
744            ALOGE("Invalid long arith op");
745            dvmCompilerAbort(cUnit);
746    }
747    if (!callOut) {
748        genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
749    } else {
750        // Adjust return regs in to handle case of rem returning r2/r3
751        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
752        loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
753        loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
754        LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
755        if (checkZero) {
756            int tReg = r12; // Using fixed registers during call sequence
757            opRegRegReg(cUnit, kOpOr, tReg, r2, r3);
758            genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL);
759        }
760        opReg(cUnit, kOpBlx, r14lr);
761        dvmCompilerClobberCallRegs(cUnit);
762        if (retReg == r0)
763            rlResult = dvmCompilerGetReturnWide(cUnit);
764        else
765            rlResult = dvmCompilerGetReturnWideAlt(cUnit);
766        storeValueWide(cUnit, rlDest, rlResult);
767#if defined(WITH_SELF_VERIFICATION)
768        cUnit->usesLinkRegister = true;
769#endif
770    }
771    return false;
772}
773
774static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
775                          RegLocation rlDest, RegLocation rlSrc1,
776                          RegLocation rlSrc2)
777{
778    OpKind op = kOpBkpt;
779    bool callOut = false;
780    bool checkZero = false;
781    bool unary = false;
782    int retReg = r0;
783    int (*callTgt)(int, int);
784    RegLocation rlResult;
785    bool shiftOp = false;
786
787    switch (mir->dalvikInsn.opcode) {
788        case OP_NEG_INT:
789            op = kOpNeg;
790            unary = true;
791            break;
792        case OP_NOT_INT:
793            op = kOpMvn;
794            unary = true;
795            break;
796        case OP_ADD_INT:
797        case OP_ADD_INT_2ADDR:
798            op = kOpAdd;
799            break;
800        case OP_SUB_INT:
801        case OP_SUB_INT_2ADDR:
802            op = kOpSub;
803            break;
804        case OP_MUL_INT:
805        case OP_MUL_INT_2ADDR:
806            op = kOpMul;
807            break;
808        case OP_DIV_INT:
809        case OP_DIV_INT_2ADDR:
810            callOut = true;
811            checkZero = true;
812            callTgt = __aeabi_idiv;
813            retReg = r0;
814            break;
815        /* NOTE: returns in r1 */
816        case OP_REM_INT:
817        case OP_REM_INT_2ADDR:
818            callOut = true;
819            checkZero = true;
820            callTgt = __aeabi_idivmod;
821            retReg = r1;
822            break;
823        case OP_AND_INT:
824        case OP_AND_INT_2ADDR:
825            op = kOpAnd;
826            break;
827        case OP_OR_INT:
828        case OP_OR_INT_2ADDR:
829            op = kOpOr;
830            break;
831        case OP_XOR_INT:
832        case OP_XOR_INT_2ADDR:
833            op = kOpXor;
834            break;
835        case OP_SHL_INT:
836        case OP_SHL_INT_2ADDR:
837            shiftOp = true;
838            op = kOpLsl;
839            break;
840        case OP_SHR_INT:
841        case OP_SHR_INT_2ADDR:
842            shiftOp = true;
843            op = kOpAsr;
844            break;
845        case OP_USHR_INT:
846        case OP_USHR_INT_2ADDR:
847            shiftOp = true;
848            op = kOpLsr;
849            break;
850        default:
851            ALOGE("Invalid word arith op: %#x(%d)",
852                 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
853            dvmCompilerAbort(cUnit);
854    }
855    if (!callOut) {
856        rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
857        if (unary) {
858            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
859            opRegReg(cUnit, op, rlResult.lowReg,
860                     rlSrc1.lowReg);
861        } else {
862            rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
863            if (shiftOp) {
864                int tReg = dvmCompilerAllocTemp(cUnit);
865                opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
866                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
867                opRegRegReg(cUnit, op, rlResult.lowReg,
868                            rlSrc1.lowReg, tReg);
869                dvmCompilerFreeTemp(cUnit, tReg);
870            } else {
871                rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
872                opRegRegReg(cUnit, op, rlResult.lowReg,
873                            rlSrc1.lowReg, rlSrc2.lowReg);
874            }
875        }
876        storeValue(cUnit, rlDest, rlResult);
877    } else {
878        RegLocation rlResult;
879        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
880        loadValueDirectFixed(cUnit, rlSrc2, r1);
881        LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
882        loadValueDirectFixed(cUnit, rlSrc1, r0);
883        if (checkZero) {
884            genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
885        }
886        opReg(cUnit, kOpBlx, r2);
887        dvmCompilerClobberCallRegs(cUnit);
888        if (retReg == r0)
889            rlResult = dvmCompilerGetReturn(cUnit);
890        else
891            rlResult = dvmCompilerGetReturnAlt(cUnit);
892        storeValue(cUnit, rlDest, rlResult);
893    }
894    return false;
895}
896
897static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
898{
899    Opcode opcode = mir->dalvikInsn.opcode;
900    RegLocation rlDest;
901    RegLocation rlSrc1;
902    RegLocation rlSrc2;
903    /* Deduce sizes of operands */
904    if (mir->ssaRep->numUses == 2) {
905        rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
906        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
907    } else if (mir->ssaRep->numUses == 3) {
908        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
909        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
910    } else {
911        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
912        rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
913        assert(mir->ssaRep->numUses == 4);
914    }
915    if (mir->ssaRep->numDefs == 1) {
916        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
917    } else {
918        assert(mir->ssaRep->numDefs == 2);
919        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
920    }
921
922    if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
923        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
924    }
925    if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
926        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
927    }
928    if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
929        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
930    }
931    if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
932        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
933    }
934    if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
935        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
936    }
937    if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
938        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
939    }
940    if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
941        return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
942    }
943    if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
944        return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
945    }
946    if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
947        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
948    }
949    if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
950        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
951    }
952    return true;
953}
954
955/* Generate unconditional branch instructions */
956static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
957{
958    ArmLIR *branch = opNone(cUnit, kOpUncondBr);
959    branch->generic.target = (LIR *) target;
960    return branch;
961}
962
963/* Perform the actual operation for OP_RETURN_* */
964static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
965{
966    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
967                         TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
968#if defined(WITH_JIT_TUNING)
969    gDvmJit.returnOp++;
970#endif
971    int dPC = (int) (cUnit->method->insns + mir->offset);
972    /* Insert branch, but defer setting of target */
973    ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
974    /* Set up the place holder to reconstruct this Dalvik PC */
975    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
976    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
977    pcrLabel->operands[0] = dPC;
978    pcrLabel->operands[1] = mir->offset;
979    /* Insert the place holder to the growable list */
980    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
981    /* Branch to the PC reconstruction code */
982    branch->generic.target = (LIR *) pcrLabel;
983}
984
985static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
986                                  DecodedInstruction *dInsn,
987                                  ArmLIR **pcrLabel)
988{
989    unsigned int i;
990    unsigned int regMask = 0;
991    RegLocation rlArg;
992    int numDone = 0;
993
994    /*
995     * Load arguments to r0..r4.  Note that these registers may contain
996     * live values, so we clobber them immediately after loading to prevent
997     * them from being used as sources for subsequent loads.
998     */
999    dvmCompilerLockAllTemps(cUnit);
1000    for (i = 0; i < dInsn->vA; i++) {
1001        regMask |= 1 << i;
1002        rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
1003        loadValueDirectFixed(cUnit, rlArg, i);
1004    }
1005    if (regMask) {
1006        /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
1007        opRegRegImm(cUnit, kOpSub, r7, r5FP,
1008                    sizeof(StackSaveArea) + (dInsn->vA << 2));
1009        /* generate null check */
1010        if (pcrLabel) {
1011            *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1012                                     mir->offset, NULL);
1013        }
1014        storeMultiple(cUnit, r7, regMask);
1015    }
1016}
1017
1018static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1019                                DecodedInstruction *dInsn,
1020                                ArmLIR **pcrLabel)
1021{
1022    int srcOffset = dInsn->vC << 2;
1023    int numArgs = dInsn->vA;
1024    int regMask;
1025
1026    /*
1027     * Note: here, all promoted registers will have been flushed
1028     * back to the Dalvik base locations, so register usage restrictins
1029     * are lifted.  All parms loaded from original Dalvik register
1030     * region - even though some might conceivably have valid copies
1031     * cached in a preserved register.
1032     */
1033    dvmCompilerLockAllTemps(cUnit);
1034
1035    /*
1036     * r4PC     : &r5FP[vC]
1037     * r7: &newFP[0]
1038     */
1039    opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
1040    /* load [r0 .. min(numArgs,4)] */
1041    regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1042    /*
1043     * Protect the loadMultiple instruction from being reordered with other
1044     * Dalvik stack accesses.
1045     */
1046    if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1047
1048    opRegRegImm(cUnit, kOpSub, r7, r5FP,
1049                sizeof(StackSaveArea) + (numArgs << 2));
1050    /* generate null check */
1051    if (pcrLabel) {
1052        *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
1053                                 mir->offset, NULL);
1054    }
1055
1056    /*
1057     * Handle remaining 4n arguments:
1058     * store previously loaded 4 values and load the next 4 values
1059     */
1060    if (numArgs >= 8) {
1061        ArmLIR *loopLabel = NULL;
1062        /*
1063         * r0 contains "this" and it will be used later, so push it to the stack
1064         * first. Pushing r5FP is just for stack alignment purposes.
1065         */
1066        opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
1067        /* No need to generate the loop structure if numArgs <= 11 */
1068        if (numArgs > 11) {
1069            loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
1070            loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1071            loopLabel->defMask = ENCODE_ALL;
1072        }
1073        storeMultiple(cUnit, r7, regMask);
1074        /*
1075         * Protect the loadMultiple instruction from being reordered with other
1076         * Dalvik stack accesses.
1077         */
1078        loadMultiple(cUnit, r4PC, regMask);
1079        /* No need to generate the loop structure if numArgs <= 11 */
1080        if (numArgs > 11) {
1081            opRegImm(cUnit, kOpSub, r5FP, 4);
1082            genConditionalBranch(cUnit, kArmCondNe, loopLabel);
1083        }
1084    }
1085
1086    /* Save the last batch of loaded values */
1087    if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
1088
1089    /* Generate the loop epilogue - don't use r0 */
1090    if ((numArgs > 4) && (numArgs % 4)) {
1091        regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1092        /*
1093         * Protect the loadMultiple instruction from being reordered with other
1094         * Dalvik stack accesses.
1095         */
1096        loadMultiple(cUnit, r4PC, regMask);
1097    }
1098    if (numArgs >= 8)
1099        opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
1100
1101    /* Save the modulo 4 arguments */
1102    if ((numArgs > 4) && (numArgs % 4)) {
1103        storeMultiple(cUnit, r7, regMask);
1104    }
1105}
1106
1107/*
1108 * Generate code to setup the call stack then jump to the chaining cell if it
1109 * is not a native method.
1110 */
1111static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1112                                     BasicBlock *bb, ArmLIR *labelList,
1113                                     ArmLIR *pcrLabel,
1114                                     const Method *calleeMethod)
1115{
1116    /*
1117     * Note: all Dalvik register state should be flushed to
1118     * memory by the point, so register usage restrictions no
1119     * longer apply.  All temp & preserved registers may be used.
1120     */
1121    dvmCompilerLockAllTemps(cUnit);
1122    ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
1123
1124    /* r1 = &retChainingCell */
1125    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1126
1127    /* r4PC = dalvikCallsite */
1128    loadConstant(cUnit, r4PC,
1129                 (int) (cUnit->method->insns + mir->offset));
1130    addrRetChain->generic.target = (LIR *) retChainingCell;
1131
1132    /* r7 = calleeMethod->registersSize */
1133    loadConstant(cUnit, r7, calleeMethod->registersSize);
1134    /*
1135     * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1136     * r1 = &ChainingCell
1137     * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
1138     * r4PC = callsiteDPC
1139     * r7 = calleeMethod->registersSize
1140     */
1141    if (dvmIsNativeMethod(calleeMethod)) {
1142        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1143            TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1144            TEMPLATE_INVOKE_METHOD_NATIVE);
1145#if defined(WITH_JIT_TUNING)
1146        gDvmJit.invokeNative++;
1147#endif
1148    } else {
1149        /* For Java callees, set up r2 to be calleeMethod->outsSize */
1150        loadConstant(cUnit, r2, calleeMethod->outsSize);
1151        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1152            TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1153            TEMPLATE_INVOKE_METHOD_CHAIN);
1154#if defined(WITH_JIT_TUNING)
1155        gDvmJit.invokeMonomorphic++;
1156#endif
1157        /* Branch to the chaining cell */
1158        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1159    }
1160    /* Handle exceptions using the interpreter */
1161    genTrap(cUnit, mir->offset, pcrLabel);
1162}
1163
1164/*
1165 * Generate code to check the validity of a predicted chain and take actions
1166 * based on the result.
1167 *
1168 * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
1169 * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
1170 * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
1171 * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1172 * 0x426a99b2 : blx_2   see above     --+
1173 * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
1174 * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
1175 * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
1176 * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
1177 * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
1178 * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
1179 * 0x426a99c0 : blx     r7            --+
1180 * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
1181 * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
1182 * 0x426a99c6 : blx_2   see above     --+
1183 */
1184static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1185                                   int methodIndex,
1186                                   ArmLIR *retChainingCell,
1187                                   ArmLIR *predChainingCell,
1188                                   ArmLIR *pcrLabel)
1189{
1190    /*
1191     * Note: all Dalvik register state should be flushed to
1192     * memory by the point, so register usage restrictions no
1193     * longer apply.  Lock temps to prevent them from being
1194     * allocated by utility routines.
1195     */
1196    dvmCompilerLockAllTemps(cUnit);
1197
1198    /*
1199     * For verbose printing, store the method pointer in operands[1] first as
1200     * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1201     */
1202    predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1203
1204    /* "this" is already left in r0 by genProcessArgs* */
1205
1206    /* r4PC = dalvikCallsite */
1207    loadConstant(cUnit, r4PC,
1208                 (int) (cUnit->method->insns + mir->offset));
1209
1210    /* r1 = &retChainingCell */
1211    ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1212    addrRetChain->generic.target = (LIR *) retChainingCell;
1213
1214    /* r2 = &predictedChainingCell */
1215    ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
1216    predictedChainingCell->generic.target = (LIR *) predChainingCell;
1217
1218    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1219        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1220        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1221
1222    /* return through lr - jump to the chaining cell */
1223    genUnconditionalBranch(cUnit, predChainingCell);
1224
1225    /*
1226     * null-check on "this" may have been eliminated, but we still need a PC-
1227     * reconstruction label for stack overflow bailout.
1228     */
1229    if (pcrLabel == NULL) {
1230        int dPC = (int) (cUnit->method->insns + mir->offset);
1231        pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
1232        pcrLabel->opcode = kArmPseudoPCReconstructionCell;
1233        pcrLabel->operands[0] = dPC;
1234        pcrLabel->operands[1] = mir->offset;
1235        /* Insert the place holder to the growable list */
1236        dvmInsertGrowableList(&cUnit->pcReconstructionList,
1237                              (intptr_t) pcrLabel);
1238    }
1239
1240    /* return through lr+2 - punt to the interpreter */
1241    genUnconditionalBranch(cUnit, pcrLabel);
1242
1243    /*
1244     * return through lr+4 - fully resolve the callee method.
1245     * r1 <- count
1246     * r2 <- &predictedChainCell
1247     * r3 <- this->class
1248     * r4 <- dPC
1249     * r7 <- this->class->vtable
1250     */
1251
1252    /* r0 <- calleeMethod */
1253    loadWordDisp(cUnit, r7, methodIndex * 4, r0);
1254
1255    /* Check if rechain limit is reached */
1256    ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
1257
1258    LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
1259
1260    genRegCopy(cUnit, r1, r6SELF);
1261
1262    /*
1263     * r0 = calleeMethod
1264     * r2 = &predictedChainingCell
1265     * r3 = class
1266     *
1267     * &returnChainingCell has been loaded into r1 but is not needed
1268     * when patching the chaining cell and will be clobbered upon
1269     * returning so it will be reconstructed again.
1270     */
1271    opReg(cUnit, kOpBlx, r7);
1272
1273    /* r1 = &retChainingCell */
1274    addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
1275    addrRetChain->generic.target = (LIR *) retChainingCell;
1276
1277    bypassRechaining->generic.target = (LIR *) addrRetChain;
1278    /*
1279     * r0 = calleeMethod,
1280     * r1 = &ChainingCell,
1281     * r4PC = callsiteDPC,
1282     */
1283    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1284        TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1285        TEMPLATE_INVOKE_METHOD_NO_OPT);
1286#if defined(WITH_JIT_TUNING)
1287    gDvmJit.invokePolymorphic++;
1288#endif
1289    /* Handle exceptions using the interpreter */
1290    genTrap(cUnit, mir->offset, pcrLabel);
1291}
1292
1293/* "this" pointer is already in r0 */
1294static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1295                                        MIR *mir,
1296                                        void *calleeAddr,
1297                                        ArmLIR *retChainingCell)
1298{
1299    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1300    dvmCompilerLockAllTemps(cUnit);
1301
1302    loadClassPointer(cUnit, r1, (int) callsiteInfo);
1303
1304    loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
1305    /* Branch to the slow path if classes are not equal */
1306    opRegReg(cUnit, kOpCmp, r1, r2);
1307    /*
1308     * Set the misPredBranchOver target so that it will be generated when the
1309     * code for the non-optimized invoke is generated.
1310     */
1311    ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
1312
1313    /* r0 = the Dalvik PC of the callsite */
1314    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1315
1316    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1317    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1318    genUnconditionalBranch(cUnit, retChainingCell);
1319
1320    /* Target of slow path */
1321    ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
1322
1323    slowPathLabel->defMask = ENCODE_ALL;
1324    classCheck->generic.target = (LIR *) slowPathLabel;
1325
1326    // FIXME
1327    cUnit->printMe = true;
1328}
1329
1330static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1331                                          MIR *mir,
1332                                          void *calleeAddr,
1333                                          ArmLIR *retChainingCell)
1334{
1335    /* r0 = the Dalvik PC of the callsite */
1336    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1337
1338    newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
1339    newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
1340    genUnconditionalBranch(cUnit, retChainingCell);
1341
1342    // FIXME
1343    cUnit->printMe = true;
1344}
1345
1346/* Geneate a branch to go back to the interpreter */
1347static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1348{
1349    /* r0 = dalvik pc */
1350    dvmCompilerFlushAllRegs(cUnit);
1351    loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
1352    loadWordDisp(cUnit, r6SELF, offsetof(Thread,
1353                 jitToInterpEntries.dvmJitToInterpPunt), r1);
1354    opReg(cUnit, kOpBlx, r1);
1355}
1356
1357/*
1358 * Attempt to single step one instruction using the interpreter and return
1359 * to the compiled code for the next Dalvik instruction
1360 */
1361static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1362{
1363    int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1364    int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1365
1366    // Single stepping is considered loop mode breaker
1367    if (cUnit->jitMode == kJitLoop) {
1368        cUnit->quitLoopMode = true;
1369        return;
1370    }
1371
1372    //If already optimized out, just ignore
1373    if (mir->dalvikInsn.opcode == OP_NOP)
1374        return;
1375
1376    //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
1377    dvmCompilerFlushAllRegs(cUnit);
1378
1379    if ((mir->next == NULL) || (flags & flagsToCheck)) {
1380       genPuntToInterp(cUnit, mir->offset);
1381       return;
1382    }
1383    int entryAddr = offsetof(Thread,
1384                             jitToInterpEntries.dvmJitToInterpSingleStep);
1385    loadWordDisp(cUnit, r6SELF, entryAddr, r2);
1386    /* r0 = dalvik pc */
1387    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
1388    /* r1 = dalvik pc of following instruction */
1389    loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
1390    opReg(cUnit, kOpBlx, r2);
1391}
1392
1393#if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
1394/*
1395 * To prevent a thread in a monitor wait from blocking the Jit from
1396 * resetting the code cache, heavyweight monitor lock will not
1397 * be allowed to return to an existing translation.  Instead, we will
1398 * handle them by branching to a handler, which will in turn call the
1399 * runtime lock routine and then branch directly back to the
1400 * interpreter main loop.  Given the high cost of the heavyweight
1401 * lock operation, this additional cost should be slight (especially when
1402 * considering that we expect the vast majority of lock operations to
1403 * use the fast-path thin lock bypass).
1404 */
1405static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1406{
1407    bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1408    genExportPC(cUnit, mir);
1409    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
1410    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1411    loadValueDirectFixed(cUnit, rlSrc, r1);
1412    genRegCopy(cUnit, r0, r6SELF);
1413    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
1414    if (isEnter) {
1415        /* Get dPC of next insn */
1416        loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1417                 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1418        genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1419    } else {
1420        LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
1421        /* Do the call */
1422        opReg(cUnit, kOpBlx, r2);
1423        /* Did we throw? */
1424        ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1425        loadConstant(cUnit, r0,
1426                     (int) (cUnit->method->insns + mir->offset +
1427                     dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1428        genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1429        ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1430        target->defMask = ENCODE_ALL;
1431        branchOver->generic.target = (LIR *) target;
1432        dvmCompilerClobberCallRegs(cUnit);
1433    }
1434}
1435#endif
1436
1437/*
1438 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1439 * punt to the interpreter.
1440 */
1441static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1442{
1443    int rTemp = dvmCompilerAllocTemp(cUnit);
1444    ArmLIR *ld;
1445    ld = loadBaseDisp(cUnit, NULL, r6SELF,
1446                      offsetof(Thread, interpBreak.ctl.breakFlags),
1447                      rTemp, kUnsignedByte, INVALID_SREG);
1448    setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1449    genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
1450}
1451
1452/*
1453 * The following are the first-level codegen routines that analyze the format
1454 * of each bytecode then either dispatch special purpose codegen routines
1455 * or produce corresponding Thumb instructions directly.
1456 */
1457
1458static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1459                                       BasicBlock *bb, ArmLIR *labelList)
1460{
1461    /* backward branch? */
1462    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1463
1464    if (backwardBranch &&
1465        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1466        genSuspendPoll(cUnit, mir);
1467    }
1468
1469    int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1470    /*
1471     * Things could be hoisted out of the taken block into the predecessor, so
1472     * make sure it is dominated by the predecessor.
1473     */
1474    if (numPredecessors == 1 && bb->taken->visited == false &&
1475        bb->taken->blockType == kDalvikByteCode) {
1476        cUnit->nextCodegenBlock = bb->taken;
1477    } else {
1478        /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1479        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1480    }
1481    return false;
1482}
1483
1484static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1485{
1486    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1487    if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1488        ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1489        return true;
1490    }
1491    switch (dalvikOpcode) {
1492        case OP_RETURN_VOID_BARRIER:
1493            dvmCompilerGenMemBarrier(cUnit, kST);
1494            // Intentional fallthrough
1495        case OP_RETURN_VOID:
1496            genReturnCommon(cUnit,mir);
1497            break;
1498        case OP_UNUSED_73:
1499        case OP_UNUSED_79:
1500        case OP_UNUSED_7A:
1501        case OP_UNUSED_FF:
1502            ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1503            return true;
1504        case OP_NOP:
1505            break;
1506        default:
1507            return true;
1508    }
1509    return false;
1510}
1511
1512static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1513{
1514    RegLocation rlDest;
1515    RegLocation rlResult;
1516    if (mir->ssaRep->numDefs == 2) {
1517        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1518    } else {
1519        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1520    }
1521
1522    switch (mir->dalvikInsn.opcode) {
1523        case OP_CONST:
1524        case OP_CONST_4: {
1525            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1526            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1527            storeValue(cUnit, rlDest, rlResult);
1528            break;
1529        }
1530        case OP_CONST_WIDE_32: {
1531            //TUNING: single routine to load constant pair for support doubles
1532            //TUNING: load 0/-1 separately to avoid load dependency
1533            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1534            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1535            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1536                        rlResult.lowReg, 31);
1537            storeValueWide(cUnit, rlDest, rlResult);
1538            break;
1539        }
1540        default:
1541            return true;
1542    }
1543    return false;
1544}
1545
1546static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1547{
1548    RegLocation rlDest;
1549    RegLocation rlResult;
1550    if (mir->ssaRep->numDefs == 2) {
1551        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1552    } else {
1553        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1554    }
1555    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1556
1557    switch (mir->dalvikInsn.opcode) {
1558        case OP_CONST_HIGH16: {
1559            loadConstantNoClobber(cUnit, rlResult.lowReg,
1560                                  mir->dalvikInsn.vB << 16);
1561            storeValue(cUnit, rlDest, rlResult);
1562            break;
1563        }
1564        case OP_CONST_WIDE_HIGH16: {
1565            loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1566                                  0, mir->dalvikInsn.vB << 16);
1567            storeValueWide(cUnit, rlDest, rlResult);
1568            break;
1569        }
1570        default:
1571            return true;
1572    }
1573    return false;
1574}
1575
1576static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
1577{
1578    /* For OP_THROW_VERIFICATION_ERROR */
1579    genInterpSingleStep(cUnit, mir);
1580    return false;
1581}
1582
1583static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
1584{
1585    RegLocation rlResult;
1586    RegLocation rlDest;
1587    RegLocation rlSrc;
1588
1589    switch (mir->dalvikInsn.opcode) {
1590        case OP_CONST_STRING_JUMBO:
1591        case OP_CONST_STRING: {
1592            void *strPtr = (void*)
1593              (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1594
1595            if (strPtr == NULL) {
1596                BAIL_LOOP_COMPILATION();
1597                ALOGE("Unexpected null string");
1598                dvmAbort();
1599            }
1600
1601            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1602            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1603            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1604            storeValue(cUnit, rlDest, rlResult);
1605            break;
1606        }
1607        case OP_CONST_CLASS: {
1608            void *classPtr = (void*)
1609              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1610
1611            if (classPtr == NULL) {
1612                BAIL_LOOP_COMPILATION();
1613                ALOGE("Unexpected null class");
1614                dvmAbort();
1615            }
1616
1617            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1618            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1619            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1620            storeValue(cUnit, rlDest, rlResult);
1621            break;
1622        }
1623        case OP_SGET:
1624        case OP_SGET_VOLATILE:
1625        case OP_SGET_OBJECT:
1626        case OP_SGET_OBJECT_VOLATILE:
1627        case OP_SGET_BOOLEAN:
1628        case OP_SGET_CHAR:
1629        case OP_SGET_BYTE:
1630        case OP_SGET_SHORT: {
1631            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1632            int tReg = dvmCompilerAllocTemp(cUnit);
1633            bool isVolatile;
1634            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1635                mir->meta.calleeMethod : cUnit->method;
1636            void *fieldPtr = (void*)
1637              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1638
1639            if (fieldPtr == NULL) {
1640                BAIL_LOOP_COMPILATION();
1641                ALOGE("Unexpected null static field");
1642                dvmAbort();
1643            }
1644
1645            /*
1646             * On SMP systems, Dalvik opcodes found to be referencing
1647             * volatile fields are rewritten to their _VOLATILE variant.
1648             * However, this does not happen on non-SMP systems. The JIT
1649             * still needs to know about volatility to avoid unsafe
1650             * optimizations so we determine volatility based on either
1651             * the opcode or the field access flags.
1652             */
1653#if ANDROID_SMP != 0
1654            Opcode opcode = mir->dalvikInsn.opcode;
1655            isVolatile = (opcode == OP_SGET_VOLATILE) ||
1656                         (opcode == OP_SGET_OBJECT_VOLATILE);
1657            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1658#else
1659            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1660#endif
1661
1662            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1663            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1664            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1665
1666            if (isVolatile) {
1667                dvmCompilerGenMemBarrier(cUnit, kSY);
1668            }
1669            HEAP_ACCESS_SHADOW(true);
1670            loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1671            HEAP_ACCESS_SHADOW(false);
1672
1673            storeValue(cUnit, rlDest, rlResult);
1674            break;
1675        }
1676        case OP_SGET_WIDE: {
1677            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1678            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1679                mir->meta.calleeMethod : cUnit->method;
1680            void *fieldPtr = (void*)
1681              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1682
1683            if (fieldPtr == NULL) {
1684                BAIL_LOOP_COMPILATION();
1685                ALOGE("Unexpected null static field");
1686                dvmAbort();
1687            }
1688
1689            int tReg = dvmCompilerAllocTemp(cUnit);
1690            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1691            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1692            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1693
1694            HEAP_ACCESS_SHADOW(true);
1695            loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1696            HEAP_ACCESS_SHADOW(false);
1697
1698            storeValueWide(cUnit, rlDest, rlResult);
1699            break;
1700        }
1701        case OP_SPUT:
1702        case OP_SPUT_VOLATILE:
1703        case OP_SPUT_OBJECT:
1704        case OP_SPUT_OBJECT_VOLATILE:
1705        case OP_SPUT_BOOLEAN:
1706        case OP_SPUT_CHAR:
1707        case OP_SPUT_BYTE:
1708        case OP_SPUT_SHORT: {
1709            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1710            int tReg = dvmCompilerAllocTemp(cUnit);
1711            int objHead;
1712            bool isVolatile;
1713            bool isSputObject;
1714            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1715                mir->meta.calleeMethod : cUnit->method;
1716            void *fieldPtr = (void*)
1717              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1718            Opcode opcode = mir->dalvikInsn.opcode;
1719
1720            if (fieldPtr == NULL) {
1721                BAIL_LOOP_COMPILATION();
1722                ALOGE("Unexpected null static field");
1723                dvmAbort();
1724            }
1725
1726#if ANDROID_SMP != 0
1727            isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1728                         (opcode == OP_SPUT_OBJECT_VOLATILE);
1729            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1730#else
1731            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1732#endif
1733
1734            isSputObject = (opcode == OP_SPUT_OBJECT) ||
1735                           (opcode == OP_SPUT_OBJECT_VOLATILE);
1736
1737            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1738            rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1739            loadConstant(cUnit, tReg,  (int) fieldPtr);
1740            if (isSputObject) {
1741                objHead = dvmCompilerAllocTemp(cUnit);
1742                loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1743            }
1744            if (isVolatile) {
1745                dvmCompilerGenMemBarrier(cUnit, kST);
1746            }
1747            HEAP_ACCESS_SHADOW(true);
1748            storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1749            dvmCompilerFreeTemp(cUnit, tReg);
1750            HEAP_ACCESS_SHADOW(false);
1751            if (isVolatile) {
1752                dvmCompilerGenMemBarrier(cUnit, kSY);
1753            }
1754            if (isSputObject) {
1755                /* NOTE: marking card based sfield->clazz */
1756                markCard(cUnit, rlSrc.lowReg, objHead);
1757                dvmCompilerFreeTemp(cUnit, objHead);
1758            }
1759
1760            break;
1761        }
1762        case OP_SPUT_WIDE: {
1763            int tReg = dvmCompilerAllocTemp(cUnit);
1764            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1765            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1766                mir->meta.calleeMethod : cUnit->method;
1767            void *fieldPtr = (void*)
1768              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1769
1770            if (fieldPtr == NULL) {
1771                BAIL_LOOP_COMPILATION();
1772                ALOGE("Unexpected null static field");
1773                dvmAbort();
1774            }
1775
1776            rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1777            rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1778            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1779
1780            HEAP_ACCESS_SHADOW(true);
1781            storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1782            HEAP_ACCESS_SHADOW(false);
1783            break;
1784        }
1785        case OP_NEW_INSTANCE: {
1786            /*
1787             * Obey the calling convention and don't mess with the register
1788             * usage.
1789             */
1790            ClassObject *classPtr = (ClassObject *)
1791              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1792
1793            if (classPtr == NULL) {
1794                BAIL_LOOP_COMPILATION();
1795                ALOGE("Unexpected null class");
1796                dvmAbort();
1797            }
1798
1799            /*
1800             * If it is going to throw, it should not make to the trace to begin
1801             * with.  However, Alloc might throw, so we need to genExportPC()
1802             */
1803            assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1804            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1805            genExportPC(cUnit, mir);
1806            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
1807            loadConstant(cUnit, r0, (int) classPtr);
1808            loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
1809            opReg(cUnit, kOpBlx, r2);
1810            dvmCompilerClobberCallRegs(cUnit);
1811            /* generate a branch over if allocation is successful */
1812            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
1813            /*
1814             * OOM exception needs to be thrown here and cannot re-execute
1815             */
1816            loadConstant(cUnit, r0,
1817                         (int) (cUnit->method->insns + mir->offset));
1818            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1819            /* noreturn */
1820
1821            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1822            target->defMask = ENCODE_ALL;
1823            branchOver->generic.target = (LIR *) target;
1824            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1825            rlResult = dvmCompilerGetReturn(cUnit);
1826            storeValue(cUnit, rlDest, rlResult);
1827            break;
1828        }
1829        case OP_CHECK_CAST: {
1830            /*
1831             * Obey the calling convention and don't mess with the register
1832             * usage.
1833             */
1834            ClassObject *classPtr =
1835              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1836            /*
1837             * Note: It is possible that classPtr is NULL at this point,
1838             * even though this instruction has been successfully interpreted.
1839             * If the previous interpretation had a null source, the
1840             * interpreter would not have bothered to resolve the clazz.
1841             * Bail out to the interpreter in this case, and log it
1842             * so that we can tell if it happens frequently.
1843             */
1844            if (classPtr == NULL) {
1845                BAIL_LOOP_COMPILATION();
1846                LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1847                genInterpSingleStep(cUnit, mir);
1848                return false;
1849            }
1850            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1851            loadConstant(cUnit, r1, (int) classPtr );
1852            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1853            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1854            /* Null? */
1855            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
1856                                              rlSrc.lowReg, 0);
1857            /*
1858             *  rlSrc.lowReg now contains object->clazz.  Note that
1859             *  it could have been allocated r0, but we're okay so long
1860             *  as we don't do anything desctructive until r0 is loaded
1861             *  with clazz.
1862             */
1863            /* r0 now contains object->clazz */
1864            loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
1865            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
1866            opRegReg(cUnit, kOpCmp, r0, r1);
1867            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
1868            opReg(cUnit, kOpBlx, r2);
1869            dvmCompilerClobberCallRegs(cUnit);
1870            /*
1871             * If null, check cast failed - punt to the interpreter.  Because
1872             * interpreter will be the one throwing, we don't need to
1873             * genExportPC() here.
1874             */
1875            genZeroCheck(cUnit, r0, mir->offset, NULL);
1876            /* check cast passed - branch target here */
1877            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
1878            target->defMask = ENCODE_ALL;
1879            branch1->generic.target = (LIR *)target;
1880            branch2->generic.target = (LIR *)target;
1881            break;
1882        }
1883        case OP_SGET_WIDE_VOLATILE:
1884        case OP_SPUT_WIDE_VOLATILE:
1885            genInterpSingleStep(cUnit, mir);
1886            break;
1887        default:
1888            return true;
1889    }
1890    return false;
1891}
1892
1893/*
1894 * A typical example of inlined getter/setter from a monomorphic callsite:
1895 *
1896 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
1897 * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
1898 * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
1899 * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
1900 * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
1901 * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
1902 * D/dalvikvm(  289): L0x0003:
1903 * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
1904 *
1905 * Note the invoke-static and move-result-object with the (I) notation are
1906 * turned into no-op.
1907 */
1908static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1909{
1910    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1911    RegLocation rlResult;
1912    switch (dalvikOpcode) {
1913        case OP_MOVE_EXCEPTION: {
1914            int exOffset = offsetof(Thread, exception);
1915            int resetReg = dvmCompilerAllocTemp(cUnit);
1916            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1917            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1918            loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
1919            loadConstant(cUnit, resetReg, 0);
1920            storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
1921            storeValue(cUnit, rlDest, rlResult);
1922           break;
1923        }
1924        case OP_MOVE_RESULT:
1925        case OP_MOVE_RESULT_OBJECT: {
1926            /* An inlined move result is effectively no-op */
1927            if (mir->OptimizationFlags & MIR_INLINED)
1928                break;
1929            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1930            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1931            rlSrc.fp = rlDest.fp;
1932            storeValue(cUnit, rlDest, rlSrc);
1933            break;
1934        }
1935        case OP_MOVE_RESULT_WIDE: {
1936            /* An inlined move result is effectively no-op */
1937            if (mir->OptimizationFlags & MIR_INLINED)
1938                break;
1939            RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1940            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1941            rlSrc.fp = rlDest.fp;
1942            storeValueWide(cUnit, rlDest, rlSrc);
1943            break;
1944        }
1945        case OP_RETURN_WIDE: {
1946            RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1947            RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
1948            rlDest.fp = rlSrc.fp;
1949            storeValueWide(cUnit, rlDest, rlSrc);
1950            genReturnCommon(cUnit,mir);
1951            break;
1952        }
1953        case OP_RETURN:
1954        case OP_RETURN_OBJECT: {
1955            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1956            RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
1957            rlDest.fp = rlSrc.fp;
1958            storeValue(cUnit, rlDest, rlSrc);
1959            genReturnCommon(cUnit, mir);
1960            break;
1961        }
1962        case OP_MONITOR_EXIT:
1963        case OP_MONITOR_ENTER:
1964            genMonitor(cUnit, mir);
1965            break;
1966        case OP_THROW:
1967            genInterpSingleStep(cUnit, mir);
1968            break;
1969        default:
1970            return true;
1971    }
1972    return false;
1973}
1974
1975static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
1976{
1977    Opcode opcode = mir->dalvikInsn.opcode;
1978    RegLocation rlDest;
1979    RegLocation rlSrc;
1980    RegLocation rlResult;
1981
1982    if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
1983        return genArithOp( cUnit, mir );
1984    }
1985
1986    if (mir->ssaRep->numUses == 2)
1987        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1988    else
1989        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1990    if (mir->ssaRep->numDefs == 2)
1991        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1992    else
1993        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1994
1995    switch (opcode) {
1996        case OP_DOUBLE_TO_INT:
1997        case OP_INT_TO_FLOAT:
1998        case OP_FLOAT_TO_INT:
1999        case OP_DOUBLE_TO_FLOAT:
2000        case OP_FLOAT_TO_DOUBLE:
2001        case OP_INT_TO_DOUBLE:
2002        case OP_FLOAT_TO_LONG:
2003        case OP_LONG_TO_FLOAT:
2004        case OP_DOUBLE_TO_LONG:
2005        case OP_LONG_TO_DOUBLE:
2006            return genConversion(cUnit, mir);
2007        case OP_NEG_INT:
2008        case OP_NOT_INT:
2009            return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2010        case OP_NEG_LONG:
2011        case OP_NOT_LONG:
2012            return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2013        case OP_NEG_FLOAT:
2014            return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2015        case OP_NEG_DOUBLE:
2016            return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2017        case OP_MOVE_WIDE:
2018            storeValueWide(cUnit, rlDest, rlSrc);
2019            break;
2020        case OP_INT_TO_LONG:
2021            rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2022            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2023            //TUNING: shouldn't loadValueDirect already check for phys reg?
2024            if (rlSrc.location == kLocPhysReg) {
2025                genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2026            } else {
2027                loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2028            }
2029            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2030                        rlResult.lowReg, 31);
2031            storeValueWide(cUnit, rlDest, rlResult);
2032            break;
2033        case OP_LONG_TO_INT:
2034            rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2035            rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2036            // Intentional fallthrough
2037        case OP_MOVE:
2038        case OP_MOVE_OBJECT:
2039            storeValue(cUnit, rlDest, rlSrc);
2040            break;
2041        case OP_INT_TO_BYTE:
2042            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2043            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2044            opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2045            storeValue(cUnit, rlDest, rlResult);
2046            break;
2047        case OP_INT_TO_SHORT:
2048            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2049            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2050            opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2051            storeValue(cUnit, rlDest, rlResult);
2052            break;
2053        case OP_INT_TO_CHAR:
2054            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2055            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2056            opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2057            storeValue(cUnit, rlDest, rlResult);
2058            break;
2059        case OP_ARRAY_LENGTH: {
2060            int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2061            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2062            genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2063                         mir->offset, NULL);
2064            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2065            loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2066                         rlResult.lowReg);
2067            storeValue(cUnit, rlDest, rlResult);
2068            break;
2069        }
2070        default:
2071            return true;
2072    }
2073    return false;
2074}
2075
2076static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2077{
2078    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2079    RegLocation rlDest;
2080    RegLocation rlResult;
2081    int BBBB = mir->dalvikInsn.vB;
2082    if (dalvikOpcode == OP_CONST_WIDE_16) {
2083        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2084        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2085        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2086        //TUNING: do high separately to avoid load dependency
2087        opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2088        storeValueWide(cUnit, rlDest, rlResult);
2089    } else if (dalvikOpcode == OP_CONST_16) {
2090        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2091        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2092        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2093        storeValue(cUnit, rlDest, rlResult);
2094    } else
2095        return true;
2096    return false;
2097}
2098
2099/* Compare agaist zero */
2100static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2101                         ArmLIR *labelList)
2102{
2103    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2104    ArmConditionCode cond;
2105    /* backward branch? */
2106    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2107
2108    if (backwardBranch &&
2109        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2110        genSuspendPoll(cUnit, mir);
2111    }
2112
2113    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2114    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2115
2116    opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
2117
2118//TUNING: break this out to allow use of Thumb2 CB[N]Z
2119    switch (dalvikOpcode) {
2120        case OP_IF_EQZ:
2121            cond = kArmCondEq;
2122            break;
2123        case OP_IF_NEZ:
2124            cond = kArmCondNe;
2125            break;
2126        case OP_IF_LTZ:
2127            cond = kArmCondLt;
2128            break;
2129        case OP_IF_GEZ:
2130            cond = kArmCondGe;
2131            break;
2132        case OP_IF_GTZ:
2133            cond = kArmCondGt;
2134            break;
2135        case OP_IF_LEZ:
2136            cond = kArmCondLe;
2137            break;
2138        default:
2139            cond = (ArmConditionCode)0;
2140            ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2141            dvmCompilerAbort(cUnit);
2142    }
2143    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2144    /* This mostly likely will be optimized away in a later phase */
2145    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2146    return false;
2147}
2148
2149static bool isPowerOfTwo(int x)
2150{
2151    return (x & (x - 1)) == 0;
2152}
2153
2154// Returns true if no more than two bits are set in 'x'.
2155static bool isPopCountLE2(unsigned int x)
2156{
2157    x &= x - 1;
2158    return (x & (x - 1)) == 0;
2159}
2160
2161// Returns the index of the lowest set bit in 'x'.
2162static int lowestSetBit(unsigned int x) {
2163    int bit_posn = 0;
2164    while ((x & 0xf) == 0) {
2165        bit_posn += 4;
2166        x >>= 4;
2167    }
2168    while ((x & 1) == 0) {
2169        bit_posn++;
2170        x >>= 1;
2171    }
2172    return bit_posn;
2173}
2174
2175// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2176// and store the result in 'rlDest'.
2177static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2178                             RegLocation rlSrc, RegLocation rlDest, int lit)
2179{
2180    if (lit < 2 || !isPowerOfTwo(lit)) {
2181        return false;
2182    }
2183    int k = lowestSetBit(lit);
2184    if (k >= 30) {
2185        // Avoid special cases.
2186        return false;
2187    }
2188    bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2189    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2190    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2191    if (div) {
2192        int tReg = dvmCompilerAllocTemp(cUnit);
2193        if (lit == 2) {
2194            // Division by 2 is by far the most common division by constant.
2195            opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2196            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2197            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2198        } else {
2199            opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2200            opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2201            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2202            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2203        }
2204    } else {
2205        int cReg = dvmCompilerAllocTemp(cUnit);
2206        loadConstant(cUnit, cReg, lit - 1);
2207        int tReg1 = dvmCompilerAllocTemp(cUnit);
2208        int tReg2 = dvmCompilerAllocTemp(cUnit);
2209        if (lit == 2) {
2210            opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2211            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2212            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2213            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2214        } else {
2215            opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2216            opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2217            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2218            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2219            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2220        }
2221    }
2222    storeValue(cUnit, rlDest, rlResult);
2223    return true;
2224}
2225
2226// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2227// and store the result in 'rlDest'.
2228static bool handleEasyMultiply(CompilationUnit *cUnit,
2229                               RegLocation rlSrc, RegLocation rlDest, int lit)
2230{
2231    // Can we simplify this multiplication?
2232    bool powerOfTwo = false;
2233    bool popCountLE2 = false;
2234    bool powerOfTwoMinusOne = false;
2235    if (lit < 2) {
2236        // Avoid special cases.
2237        return false;
2238    } else if (isPowerOfTwo(lit)) {
2239        powerOfTwo = true;
2240    } else if (isPopCountLE2(lit)) {
2241        popCountLE2 = true;
2242    } else if (isPowerOfTwo(lit + 1)) {
2243        powerOfTwoMinusOne = true;
2244    } else {
2245        return false;
2246    }
2247    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2248    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2249    if (powerOfTwo) {
2250        // Shift.
2251        opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2252                    lowestSetBit(lit));
2253    } else if (popCountLE2) {
2254        // Shift and add and shift.
2255        int firstBit = lowestSetBit(lit);
2256        int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2257        genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2258                                      firstBit, secondBit);
2259    } else {
2260        // Reverse subtract: (src << (shift + 1)) - src.
2261        assert(powerOfTwoMinusOne);
2262        // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2263        int tReg = dvmCompilerAllocTemp(cUnit);
2264        opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2265        opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2266    }
2267    storeValue(cUnit, rlDest, rlResult);
2268    return true;
2269}
2270
2271static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2272{
2273    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2274    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2275    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2276    RegLocation rlResult;
2277    int lit = mir->dalvikInsn.vC;
2278    OpKind op = (OpKind)0;      /* Make gcc happy */
2279    int shiftOp = false;
2280    bool isDiv = false;
2281
2282    switch (dalvikOpcode) {
2283        case OP_RSUB_INT_LIT8:
2284        case OP_RSUB_INT: {
2285            int tReg;
2286            //TUNING: add support for use of Arm rsub op
2287            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2288            tReg = dvmCompilerAllocTemp(cUnit);
2289            loadConstant(cUnit, tReg, lit);
2290            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2291            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2292                        tReg, rlSrc.lowReg);
2293            storeValue(cUnit, rlDest, rlResult);
2294            return false;
2295            break;
2296        }
2297
2298        case OP_ADD_INT_LIT8:
2299        case OP_ADD_INT_LIT16:
2300            op = kOpAdd;
2301            break;
2302        case OP_MUL_INT_LIT8:
2303        case OP_MUL_INT_LIT16: {
2304            if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2305                return false;
2306            }
2307            op = kOpMul;
2308            break;
2309        }
2310        case OP_AND_INT_LIT8:
2311        case OP_AND_INT_LIT16:
2312            op = kOpAnd;
2313            break;
2314        case OP_OR_INT_LIT8:
2315        case OP_OR_INT_LIT16:
2316            op = kOpOr;
2317            break;
2318        case OP_XOR_INT_LIT8:
2319        case OP_XOR_INT_LIT16:
2320            op = kOpXor;
2321            break;
2322        case OP_SHL_INT_LIT8:
2323            lit &= 31;
2324            shiftOp = true;
2325            op = kOpLsl;
2326            break;
2327        case OP_SHR_INT_LIT8:
2328            lit &= 31;
2329            shiftOp = true;
2330            op = kOpAsr;
2331            break;
2332        case OP_USHR_INT_LIT8:
2333            lit &= 31;
2334            shiftOp = true;
2335            op = kOpLsr;
2336            break;
2337
2338        case OP_DIV_INT_LIT8:
2339        case OP_DIV_INT_LIT16:
2340        case OP_REM_INT_LIT8:
2341        case OP_REM_INT_LIT16:
2342            if (lit == 0) {
2343                /* Let the interpreter deal with div by 0 */
2344                genInterpSingleStep(cUnit, mir);
2345                return false;
2346            }
2347            if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2348                return false;
2349            }
2350            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2351            loadValueDirectFixed(cUnit, rlSrc, r0);
2352            dvmCompilerClobber(cUnit, r0);
2353            if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2354                (dalvikOpcode == OP_DIV_INT_LIT16)) {
2355                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
2356                isDiv = true;
2357            } else {
2358                LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
2359                isDiv = false;
2360            }
2361            loadConstant(cUnit, r1, lit);
2362            opReg(cUnit, kOpBlx, r2);
2363            dvmCompilerClobberCallRegs(cUnit);
2364            if (isDiv)
2365                rlResult = dvmCompilerGetReturn(cUnit);
2366            else
2367                rlResult = dvmCompilerGetReturnAlt(cUnit);
2368            storeValue(cUnit, rlDest, rlResult);
2369            return false;
2370            break;
2371        default:
2372            return true;
2373    }
2374    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2375    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2376    // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
2377    if (shiftOp && (lit == 0)) {
2378        genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2379    } else {
2380        opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2381    }
2382    storeValue(cUnit, rlDest, rlResult);
2383    return false;
2384}
2385
2386static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
2387{
2388    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2389    int fieldOffset = -1;
2390    bool isVolatile = false;
2391    switch (dalvikOpcode) {
2392        /*
2393         * Wide volatiles currently handled via single step.
2394         * Add them here if generating in-line code.
2395         *     case OP_IGET_WIDE_VOLATILE:
2396         *     case OP_IPUT_WIDE_VOLATILE:
2397         */
2398        case OP_IGET_VOLATILE:
2399        case OP_IGET_OBJECT_VOLATILE:
2400        case OP_IPUT_VOLATILE:
2401        case OP_IPUT_OBJECT_VOLATILE:
2402#if ANDROID_SMP != 0
2403            isVolatile = true;
2404        // NOTE: intentional fallthrough
2405#endif
2406        case OP_IGET:
2407        case OP_IGET_WIDE:
2408        case OP_IGET_OBJECT:
2409        case OP_IGET_BOOLEAN:
2410        case OP_IGET_BYTE:
2411        case OP_IGET_CHAR:
2412        case OP_IGET_SHORT:
2413        case OP_IPUT:
2414        case OP_IPUT_WIDE:
2415        case OP_IPUT_OBJECT:
2416        case OP_IPUT_BOOLEAN:
2417        case OP_IPUT_BYTE:
2418        case OP_IPUT_CHAR:
2419        case OP_IPUT_SHORT: {
2420            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2421                mir->meta.calleeMethod : cUnit->method;
2422            Field *fieldPtr =
2423                method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2424
2425            if (fieldPtr == NULL) {
2426                BAIL_LOOP_COMPILATION();
2427                ALOGE("Unexpected null instance field");
2428                dvmAbort();
2429            }
2430
2431#if ANDROID_SMP != 0
2432            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2433#else
2434            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2435#endif
2436            fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2437            break;
2438        }
2439        default:
2440            break;
2441    }
2442
2443    switch (dalvikOpcode) {
2444        case OP_NEW_ARRAY: {
2445            // Generates a call - use explicit registers
2446            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2447            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2448            RegLocation rlResult;
2449            void *classPtr = (void*)
2450              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2451
2452            if (classPtr == NULL) {
2453                BAIL_LOOP_COMPILATION();
2454                ALOGE("Unexpected null class");
2455                dvmAbort();
2456            }
2457
2458            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2459            genExportPC(cUnit, mir);
2460            loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
2461            loadConstant(cUnit, r0, (int) classPtr );
2462            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
2463            /*
2464             * "len < 0": bail to the interpreter to re-execute the
2465             * instruction
2466             */
2467            genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
2468            loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
2469            opReg(cUnit, kOpBlx, r3);
2470            dvmCompilerClobberCallRegs(cUnit);
2471            /* generate a branch over if allocation is successful */
2472            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2473            /*
2474             * OOM exception needs to be thrown here and cannot re-execute
2475             */
2476            loadConstant(cUnit, r0,
2477                         (int) (cUnit->method->insns + mir->offset));
2478            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2479            /* noreturn */
2480
2481            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2482            target->defMask = ENCODE_ALL;
2483            branchOver->generic.target = (LIR *) target;
2484            rlResult = dvmCompilerGetReturn(cUnit);
2485            storeValue(cUnit, rlDest, rlResult);
2486            break;
2487        }
2488        case OP_INSTANCE_OF: {
2489            // May generate a call - use explicit registers
2490            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2491            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2492            RegLocation rlResult;
2493            ClassObject *classPtr =
2494              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2495            /*
2496             * Note: It is possible that classPtr is NULL at this point,
2497             * even though this instruction has been successfully interpreted.
2498             * If the previous interpretation had a null source, the
2499             * interpreter would not have bothered to resolve the clazz.
2500             * Bail out to the interpreter in this case, and log it
2501             * so that we can tell if it happens frequently.
2502             */
2503            if (classPtr == NULL) {
2504                BAIL_LOOP_COMPILATION();
2505                ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2506                genInterpSingleStep(cUnit, mir);
2507                break;
2508            }
2509            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2510            loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
2511            loadConstant(cUnit, r2, (int) classPtr );
2512            /* When taken r0 has NULL which can be used for store directly */
2513            ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
2514            /* r1 now contains object->clazz */
2515            loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
2516            /* r1 now contains object->clazz */
2517            LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
2518            loadConstant(cUnit, r0, 1);                /* Assume true */
2519            opRegReg(cUnit, kOpCmp, r1, r2);
2520            ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
2521            genRegCopy(cUnit, r0, r1);
2522            genRegCopy(cUnit, r1, r2);
2523            opReg(cUnit, kOpBlx, r3);
2524            dvmCompilerClobberCallRegs(cUnit);
2525            /* branch target here */
2526            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2527            target->defMask = ENCODE_ALL;
2528            rlResult = dvmCompilerGetReturn(cUnit);
2529            storeValue(cUnit, rlDest, rlResult);
2530            branch1->generic.target = (LIR *)target;
2531            branch2->generic.target = (LIR *)target;
2532            break;
2533        }
2534        case OP_IGET_WIDE:
2535            genIGetWide(cUnit, mir, fieldOffset);
2536            break;
2537        case OP_IGET_VOLATILE:
2538        case OP_IGET_OBJECT_VOLATILE:
2539        case OP_IGET:
2540        case OP_IGET_OBJECT:
2541        case OP_IGET_BOOLEAN:
2542        case OP_IGET_BYTE:
2543        case OP_IGET_CHAR:
2544        case OP_IGET_SHORT:
2545            genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2546            break;
2547        case OP_IPUT_WIDE:
2548            genIPutWide(cUnit, mir, fieldOffset);
2549            break;
2550        case OP_IPUT_VOLATILE:
2551        case OP_IPUT:
2552        case OP_IPUT_BOOLEAN:
2553        case OP_IPUT_BYTE:
2554        case OP_IPUT_CHAR:
2555        case OP_IPUT_SHORT:
2556            genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2557            break;
2558        case OP_IPUT_OBJECT_VOLATILE:
2559        case OP_IPUT_OBJECT:
2560            genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2561            break;
2562        case OP_IGET_WIDE_VOLATILE:
2563        case OP_IPUT_WIDE_VOLATILE:
2564            genInterpSingleStep(cUnit, mir);
2565            break;
2566        default:
2567            return true;
2568    }
2569    return false;
2570}
2571
2572static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2573{
2574    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2575    int fieldOffset =  mir->dalvikInsn.vC;
2576    switch (dalvikOpcode) {
2577        case OP_IGET_QUICK:
2578        case OP_IGET_OBJECT_QUICK:
2579            genIGet(cUnit, mir, kWord, fieldOffset, false);
2580            break;
2581        case OP_IPUT_QUICK:
2582            genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2583            break;
2584        case OP_IPUT_OBJECT_QUICK:
2585            genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2586            break;
2587        case OP_IGET_WIDE_QUICK:
2588            genIGetWide(cUnit, mir, fieldOffset);
2589            break;
2590        case OP_IPUT_WIDE_QUICK:
2591            genIPutWide(cUnit, mir, fieldOffset);
2592            break;
2593        default:
2594            return true;
2595    }
2596    return false;
2597
2598}
2599
2600/* Compare agaist zero */
2601static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2602                         ArmLIR *labelList)
2603{
2604    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2605    ArmConditionCode cond;
2606    /* backward branch? */
2607    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2608
2609    if (backwardBranch &&
2610        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2611        genSuspendPoll(cUnit, mir);
2612    }
2613
2614    RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2615    RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2616
2617    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2618    rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2619
2620    opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
2621
2622    switch (dalvikOpcode) {
2623        case OP_IF_EQ:
2624            cond = kArmCondEq;
2625            break;
2626        case OP_IF_NE:
2627            cond = kArmCondNe;
2628            break;
2629        case OP_IF_LT:
2630            cond = kArmCondLt;
2631            break;
2632        case OP_IF_GE:
2633            cond = kArmCondGe;
2634            break;
2635        case OP_IF_GT:
2636            cond = kArmCondGt;
2637            break;
2638        case OP_IF_LE:
2639            cond = kArmCondLe;
2640            break;
2641        default:
2642            cond = (ArmConditionCode)0;
2643            ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2644            dvmCompilerAbort(cUnit);
2645    }
2646    genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
2647    /* This mostly likely will be optimized away in a later phase */
2648    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2649    return false;
2650}
2651
2652static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2653{
2654    Opcode opcode = mir->dalvikInsn.opcode;
2655
2656    switch (opcode) {
2657        case OP_MOVE_16:
2658        case OP_MOVE_OBJECT_16:
2659        case OP_MOVE_FROM16:
2660        case OP_MOVE_OBJECT_FROM16: {
2661            storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2662                       dvmCompilerGetSrc(cUnit, mir, 0));
2663            break;
2664        }
2665        case OP_MOVE_WIDE_16:
2666        case OP_MOVE_WIDE_FROM16: {
2667            storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2668                           dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2669            break;
2670        }
2671        default:
2672            return true;
2673    }
2674    return false;
2675}
2676
2677static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2678{
2679    Opcode opcode = mir->dalvikInsn.opcode;
2680    RegLocation rlSrc1;
2681    RegLocation rlSrc2;
2682    RegLocation rlDest;
2683
2684    if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2685        return genArithOp( cUnit, mir );
2686    }
2687
2688    /* APUTs have 3 sources and no targets */
2689    if (mir->ssaRep->numDefs == 0) {
2690        if (mir->ssaRep->numUses == 3) {
2691            rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2692            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2693            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2694        } else {
2695            assert(mir->ssaRep->numUses == 4);
2696            rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2697            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2698            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2699        }
2700    } else {
2701        /* Two sources and 1 dest.  Deduce the operand sizes */
2702        if (mir->ssaRep->numUses == 4) {
2703            rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2704            rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2705        } else {
2706            assert(mir->ssaRep->numUses == 2);
2707            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2708            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2709        }
2710        if (mir->ssaRep->numDefs == 2) {
2711            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2712        } else {
2713            assert(mir->ssaRep->numDefs == 1);
2714            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2715        }
2716    }
2717
2718
2719    switch (opcode) {
2720        case OP_CMPL_FLOAT:
2721        case OP_CMPG_FLOAT:
2722        case OP_CMPL_DOUBLE:
2723        case OP_CMPG_DOUBLE:
2724            return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2725        case OP_CMP_LONG:
2726            genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2727            break;
2728        case OP_AGET_WIDE:
2729            genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2730            break;
2731        case OP_AGET:
2732        case OP_AGET_OBJECT:
2733            genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2734            break;
2735        case OP_AGET_BOOLEAN:
2736            genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2737            break;
2738        case OP_AGET_BYTE:
2739            genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2740            break;
2741        case OP_AGET_CHAR:
2742            genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2743            break;
2744        case OP_AGET_SHORT:
2745            genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2746            break;
2747        case OP_APUT_WIDE:
2748            genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2749            break;
2750        case OP_APUT:
2751            genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2752            break;
2753        case OP_APUT_OBJECT:
2754            genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2755            break;
2756        case OP_APUT_SHORT:
2757        case OP_APUT_CHAR:
2758            genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2759            break;
2760        case OP_APUT_BYTE:
2761        case OP_APUT_BOOLEAN:
2762            genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2763            break;
2764        default:
2765            return true;
2766    }
2767    return false;
2768}
2769
2770/*
2771 * Find the matching case.
2772 *
2773 * return values:
2774 * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2775 *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2776 * r1 (high 32-bit): the branch offset of the matching case (only for indexes
2777 *    above MAX_CHAINED_SWITCH_CASES).
2778 *
2779 * Instructions around the call are:
2780 *
2781 * mov r2, pc
2782 * blx &findPackedSwitchIndex
2783 * mov pc, r0
2784 * .align4
2785 * chaining cell for case 0 [12 bytes]
2786 * chaining cell for case 1 [12 bytes]
2787 *               :
2788 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
2789 * chaining cell for case default [8 bytes]
2790 * noChain exit
2791 */
2792static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
2793{
2794    int size;
2795    int firstKey;
2796    const int *entries;
2797    int index;
2798    int jumpIndex;
2799    uintptr_t caseDPCOffset = 0;
2800    /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2801    uintptr_t chainingPC = (pc + 4) & ~3;
2802
2803    /*
2804     * Packed switch data format:
2805     *  ushort ident = 0x0100   magic value
2806     *  ushort size             number of entries in the table
2807     *  int first_key           first (and lowest) switch case value
2808     *  int targets[size]       branch targets, relative to switch opcode
2809     *
2810     * Total size is (4+size*2) 16-bit code units.
2811     */
2812    size = switchData[1];
2813    assert(size > 0);
2814
2815    firstKey = switchData[2];
2816    firstKey |= switchData[3] << 16;
2817
2818
2819    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2820     * we can treat them as a native int array.
2821     */
2822    entries = (const int*) &switchData[4];
2823    assert(((u4)entries & 0x3) == 0);
2824
2825    index = testVal - firstKey;
2826
2827    /* Jump to the default cell */
2828    if (index < 0 || index >= size) {
2829        jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2830    /* Jump to the non-chaining exit point */
2831    } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2832        jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2833        caseDPCOffset = entries[index];
2834    /* Jump to the inline chaining cell */
2835    } else {
2836        jumpIndex = index;
2837    }
2838
2839    chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2840    return (((u8) caseDPCOffset) << 32) | (u8) chainingPC;
2841}
2842
2843/* See comments for findPackedSwitchIndex */
2844static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
2845{
2846    int size;
2847    const int *keys;
2848    const int *entries;
2849    uintptr_t chainingPC = (pc + 4) & ~3;
2850    int i;
2851
2852    /*
2853     * Sparse switch data format:
2854     *  ushort ident = 0x0200   magic value
2855     *  ushort size             number of entries in the table; > 0
2856     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
2857     *  int targets[size]       branch targets, relative to switch opcode
2858     *
2859     * Total size is (2+size*4) 16-bit code units.
2860     */
2861
2862    size = switchData[1];
2863    assert(size > 0);
2864
2865    /* The keys are guaranteed to be aligned on a 32-bit boundary;
2866     * we can treat them as a native int array.
2867     */
2868    keys = (const int*) &switchData[2];
2869    assert(((u4)keys & 0x3) == 0);
2870
2871    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2872     * we can treat them as a native int array.
2873     */
2874    entries = keys + size;
2875    assert(((u4)entries & 0x3) == 0);
2876
2877    /*
2878     * Run through the list of keys, which are guaranteed to
2879     * be sorted low-to-high.
2880     *
2881     * Most tables have 3-4 entries.  Few have more than 10.  A binary
2882     * search here is probably not useful.
2883     */
2884    for (i = 0; i < size; i++) {
2885        int k = keys[i];
2886        if (k == testVal) {
2887            /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2888            int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2889                           i : MAX_CHAINED_SWITCH_CASES + 1;
2890            chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
2891            return (((u8) entries[i]) << 32) | (u8) chainingPC;
2892        } else if (k > testVal) {
2893            break;
2894        }
2895    }
2896    return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
2897           CHAIN_CELL_NORMAL_SIZE;
2898}
2899
2900static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2901{
2902    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2903    switch (dalvikOpcode) {
2904        case OP_FILL_ARRAY_DATA: {
2905            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2906            // Making a call - use explicit registers
2907            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2908            genExportPC(cUnit, mir);
2909            loadValueDirectFixed(cUnit, rlSrc, r0);
2910            LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
2911            loadConstant(cUnit, r1,
2912               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2913            opReg(cUnit, kOpBlx, r2);
2914            dvmCompilerClobberCallRegs(cUnit);
2915            /* generate a branch over if successful */
2916            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
2917            loadConstant(cUnit, r0,
2918                         (int) (cUnit->method->insns + mir->offset));
2919            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2920            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2921            target->defMask = ENCODE_ALL;
2922            branchOver->generic.target = (LIR *) target;
2923            break;
2924        }
2925        /*
2926         * Compute the goto target of up to
2927         * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
2928         * See the comment before findPackedSwitchIndex for the code layout.
2929         */
2930        case OP_PACKED_SWITCH:
2931        case OP_SPARSE_SWITCH: {
2932            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2933            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2934            loadValueDirectFixed(cUnit, rlSrc, r1);
2935            dvmCompilerLockAllTemps(cUnit);
2936            if (dalvikOpcode == OP_PACKED_SWITCH) {
2937                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
2938            } else {
2939                LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
2940            }
2941            /* r0 <- Addr of the switch data */
2942            loadConstant(cUnit, r0,
2943               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
2944            /* r2 <- pc of the instruction following the blx */
2945            opRegReg(cUnit, kOpMov, r2, r15pc);
2946            opReg(cUnit, kOpBlx, r4PC);
2947            dvmCompilerClobberCallRegs(cUnit);
2948            /* pc <- computed goto target */
2949            opRegReg(cUnit, kOpMov, r15pc, r0);
2950            break;
2951        }
2952        default:
2953            return true;
2954    }
2955    return false;
2956}
2957
2958/*
2959 * See the example of predicted inlining listed before the
2960 * genValidationForPredictedInline function. The function here takes care the
2961 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
2962 */
2963static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
2964                                               BasicBlock *bb,
2965                                               ArmLIR *labelList)
2966{
2967    BasicBlock *fallThrough = bb->fallThrough;
2968
2969    /* Bypass the move-result block if there is one */
2970    if (fallThrough->firstMIRInsn) {
2971        assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
2972        fallThrough = fallThrough->fallThrough;
2973    }
2974    /* Generate a branch over if the predicted inlining is correct */
2975    genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
2976
2977    /* Reset the register state */
2978    dvmCompilerResetRegPool(cUnit);
2979    dvmCompilerClobberAllRegs(cUnit);
2980    dvmCompilerResetNullCheck(cUnit);
2981
2982    /* Target for the slow invoke path */
2983    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
2984    target->defMask = ENCODE_ALL;
2985    /* Hook up the target to the verification branch */
2986    mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
2987}
2988
2989static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
2990                             BasicBlock *bb, ArmLIR *labelList)
2991{
2992    ArmLIR *retChainingCell = NULL;
2993    ArmLIR *pcrLabel = NULL;
2994
2995    /* An invoke with the MIR_INLINED is effectively a no-op */
2996    if (mir->OptimizationFlags & MIR_INLINED)
2997        return false;
2998
2999    if (bb->fallThrough != NULL)
3000        retChainingCell = &labelList[bb->fallThrough->id];
3001
3002    DecodedInstruction *dInsn = &mir->dalvikInsn;
3003    switch (mir->dalvikInsn.opcode) {
3004        /*
3005         * calleeMethod = this->clazz->vtable[
3006         *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3007         * ]
3008         */
3009        case OP_INVOKE_VIRTUAL:
3010        case OP_INVOKE_VIRTUAL_RANGE: {
3011            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3012            int methodIndex =
3013                cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3014                methodIndex;
3015
3016            /*
3017             * If the invoke has non-null misPredBranchOver, we need to generate
3018             * the non-inlined version of the invoke here to handle the
3019             * mispredicted case.
3020             */
3021            if (mir->meta.callsiteInfo->misPredBranchOver) {
3022                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3023            }
3024
3025            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3026                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3027            else
3028                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3029
3030            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3031                                   retChainingCell,
3032                                   predChainingCell,
3033                                   pcrLabel);
3034            break;
3035        }
3036        /*
3037         * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3038         *                ->pResMethods[BBBB]->methodIndex]
3039         */
3040        case OP_INVOKE_SUPER:
3041        case OP_INVOKE_SUPER_RANGE: {
3042            /* Grab the method ptr directly from what the interpreter sees */
3043            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3044            assert(calleeMethod == cUnit->method->clazz->super->vtable[
3045                                     cUnit->method->clazz->pDvmDex->
3046                                       pResMethods[dInsn->vB]->methodIndex]);
3047
3048            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3049                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3050            else
3051                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3052
3053            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3054                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3055                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3056                assert(calleeAddr);
3057                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3058                                              retChainingCell);
3059            } else {
3060                /* r0 = calleeMethod */
3061                loadConstant(cUnit, r0, (int) calleeMethod);
3062
3063                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3064                                         calleeMethod);
3065            }
3066            break;
3067        }
3068        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3069        case OP_INVOKE_DIRECT:
3070        case OP_INVOKE_DIRECT_RANGE: {
3071            /* Grab the method ptr directly from what the interpreter sees */
3072            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3073            assert(calleeMethod ==
3074                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3075
3076            if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3077                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3078            else
3079                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3080
3081            /* r0 = calleeMethod */
3082            loadConstant(cUnit, r0, (int) calleeMethod);
3083
3084            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3085                                     calleeMethod);
3086            break;
3087        }
3088        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3089        case OP_INVOKE_STATIC:
3090        case OP_INVOKE_STATIC_RANGE: {
3091            /* Grab the method ptr directly from what the interpreter sees */
3092            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3093            assert(calleeMethod ==
3094                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3095
3096            if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3097                genProcessArgsNoRange(cUnit, mir, dInsn,
3098                                      NULL /* no null check */);
3099            else
3100                genProcessArgsRange(cUnit, mir, dInsn,
3101                                    NULL /* no null check */);
3102
3103            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3104                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3105                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3106                assert(calleeAddr);
3107                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3108                                              retChainingCell);
3109            } else {
3110                /* r0 = calleeMethod */
3111                loadConstant(cUnit, r0, (int) calleeMethod);
3112
3113                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3114                                         calleeMethod);
3115            }
3116            break;
3117        }
3118        /*
3119         * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3120         *                    BBBB, method, method->clazz->pDvmDex)
3121         *
3122         * The following is an example of generated code for
3123         *      "invoke-interface v0"
3124         *
3125         * -------- dalvik offset: 0x0008 @ invoke-interface v0
3126         * 0x47357e36 : ldr     r0, [r5, #0]   --+
3127         * 0x47357e38 : sub     r7,r5,#24        |
3128         * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
3129         * 0x47357e3e : beq     0x47357e82       |
3130         * 0x47357e40 : stmia   r7, <r0>       --+
3131         * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
3132         * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
3133         * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
3134         * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
3135         * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
3136         * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
3137         * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
3138         * 0x47357e50 : mov     r8, r1         --+
3139         * 0x47357e52 : mov     r9, r2           |
3140         * 0x47357e54 : ldr     r2, [pc, #96]    |
3141         * 0x47357e56 : mov     r10, r3          |
3142         * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
3143         * 0x47357e5a : ldr     r3, [pc, #88]    |
3144         * 0x47357e5c : ldr     r7, [pc, #80]    |
3145         * 0x47357e5e : mov     r1, #1452        |
3146         * 0x47357e62 : blx     r7             --+
3147         * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
3148         * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
3149         * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
3150         * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
3151         * 0x47357e6c : blx_2   see above      --+     COMMON
3152         * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
3153         * 0x47357e70 : cmp     r1, #0         --> compare against 0
3154         * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
3155         * 0x47357e74 : ldr     r7, [pc, #off] --+
3156         * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
3157         * 0x47357e78 : mov     r3, r10          |
3158         * 0x47357e7a : blx     r7             --+
3159         * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
3160         * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
3161         * 0x47357e80 : blx_2   see above      --+
3162         * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
3163         * 0x47357e82 : ldr     r0, [pc, #56]
3164         * Exception_Handling:
3165         * 0x47357e84 : ldr     r1, [r6, #92]
3166         * 0x47357e86 : blx     r1
3167         * 0x47357e88 : .align4
3168         * -------- chaining cell (hot): 0x000b
3169         * 0x47357e88 : ldr     r0, [r6, #104]
3170         * 0x47357e8a : blx     r0
3171         * 0x47357e8c : data    0x19e2(6626)
3172         * 0x47357e8e : data    0x4257(16983)
3173         * 0x47357e90 : .align4
3174         * -------- chaining cell (predicted)
3175         * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
3176         * 0x47357e92 : data    0x0000(0)
3177         * 0x47357e94 : data    0x0000(0)      --> class
3178         * 0x47357e96 : data    0x0000(0)
3179         * 0x47357e98 : data    0x0000(0)      --> method
3180         * 0x47357e9a : data    0x0000(0)
3181         * 0x47357e9c : data    0x0000(0)      --> rechain count
3182         * 0x47357e9e : data    0x0000(0)
3183         * -------- end of chaining cells (0x006c)
3184         * 0x47357eb0 : .word (0xad03e369)
3185         * 0x47357eb4 : .word (0x28a90)
3186         * 0x47357eb8 : .word (0x41a63394)
3187         * 0x47357ebc : .word (0x425719dc)
3188         */
3189        case OP_INVOKE_INTERFACE:
3190        case OP_INVOKE_INTERFACE_RANGE: {
3191            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3192
3193            /*
3194             * If the invoke has non-null misPredBranchOver, we need to generate
3195             * the non-inlined version of the invoke here to handle the
3196             * mispredicted case.
3197             */
3198            if (mir->meta.callsiteInfo->misPredBranchOver) {
3199                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3200            }
3201
3202            if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3203                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3204            else
3205                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3206
3207            /* "this" is already left in r0 by genProcessArgs* */
3208
3209            /* r4PC = dalvikCallsite */
3210            loadConstant(cUnit, r4PC,
3211                         (int) (cUnit->method->insns + mir->offset));
3212
3213            /* r1 = &retChainingCell */
3214            ArmLIR *addrRetChain =
3215                opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3216            addrRetChain->generic.target = (LIR *) retChainingCell;
3217
3218            /* r2 = &predictedChainingCell */
3219            ArmLIR *predictedChainingCell =
3220                opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
3221            predictedChainingCell->generic.target = (LIR *) predChainingCell;
3222
3223            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3224                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3225                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3226
3227            /* return through lr - jump to the chaining cell */
3228            genUnconditionalBranch(cUnit, predChainingCell);
3229
3230            /*
3231             * null-check on "this" may have been eliminated, but we still need
3232             * a PC-reconstruction label for stack overflow bailout.
3233             */
3234            if (pcrLabel == NULL) {
3235                int dPC = (int) (cUnit->method->insns + mir->offset);
3236                pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
3237                pcrLabel->opcode = kArmPseudoPCReconstructionCell;
3238                pcrLabel->operands[0] = dPC;
3239                pcrLabel->operands[1] = mir->offset;
3240                /* Insert the place holder to the growable list */
3241                dvmInsertGrowableList(&cUnit->pcReconstructionList,
3242                                      (intptr_t) pcrLabel);
3243            }
3244
3245            /* return through lr+2 - punt to the interpreter */
3246            genUnconditionalBranch(cUnit, pcrLabel);
3247
3248            /*
3249             * return through lr+4 - fully resolve the callee method.
3250             * r1 <- count
3251             * r2 <- &predictedChainCell
3252             * r3 <- this->class
3253             * r4 <- dPC
3254             * r7 <- this->class->vtable
3255             */
3256
3257            /* Save count, &predictedChainCell, and class to high regs first */
3258            genRegCopy(cUnit, r8, r1);
3259            genRegCopy(cUnit, r9, r2);
3260            genRegCopy(cUnit, r10, r3);
3261
3262            /* r0 now contains this->clazz */
3263            genRegCopy(cUnit, r0, r3);
3264
3265            /* r1 = BBBB */
3266            loadConstant(cUnit, r1, dInsn->vB);
3267
3268            /* r2 = method (caller) */
3269            loadConstant(cUnit, r2, (int) cUnit->method);
3270
3271            /* r3 = pDvmDex */
3272            loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
3273
3274            LOAD_FUNC_ADDR(cUnit, r7,
3275                           (intptr_t) dvmFindInterfaceMethodInCache);
3276            opReg(cUnit, kOpBlx, r7);
3277            /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3278
3279            dvmCompilerClobberCallRegs(cUnit);
3280            /* generate a branch over if the interface method is resolved */
3281            ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3282            /*
3283             * calleeMethod == NULL -> throw
3284             */
3285            loadConstant(cUnit, r0,
3286                         (int) (cUnit->method->insns + mir->offset));
3287            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3288            /* noreturn */
3289
3290            ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3291            target->defMask = ENCODE_ALL;
3292            branchOver->generic.target = (LIR *) target;
3293
3294            genRegCopy(cUnit, r1, r8);
3295
3296            /* Check if rechain limit is reached */
3297            ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
3298                                                       r1, 0);
3299
3300            LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
3301
3302            genRegCopy(cUnit, r1, r6SELF);
3303            genRegCopy(cUnit, r2, r9);
3304            genRegCopy(cUnit, r3, r10);
3305
3306            /*
3307             * r0 = calleeMethod
3308             * r2 = &predictedChainingCell
3309             * r3 = class
3310             *
3311             * &returnChainingCell has been loaded into r1 but is not needed
3312             * when patching the chaining cell and will be clobbered upon
3313             * returning so it will be reconstructed again.
3314             */
3315            opReg(cUnit, kOpBlx, r7);
3316
3317            /* r1 = &retChainingCell */
3318            addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
3319            addrRetChain->generic.target = (LIR *) retChainingCell;
3320
3321            bypassRechaining->generic.target = (LIR *) addrRetChain;
3322
3323            /*
3324             * r0 = this, r1 = calleeMethod,
3325             * r1 = &ChainingCell,
3326             * r4PC = callsiteDPC,
3327             */
3328            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3329                TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3330                TEMPLATE_INVOKE_METHOD_NO_OPT);
3331#if defined(WITH_JIT_TUNING)
3332            gDvmJit.invokePolymorphic++;
3333#endif
3334            /* Handle exceptions using the interpreter */
3335            genTrap(cUnit, mir->offset, pcrLabel);
3336            break;
3337        }
3338        case OP_INVOKE_OBJECT_INIT_RANGE:
3339        case OP_FILLED_NEW_ARRAY:
3340        case OP_FILLED_NEW_ARRAY_RANGE: {
3341            /* Just let the interpreter deal with these */
3342            genInterpSingleStep(cUnit, mir);
3343            break;
3344        }
3345        default:
3346            return true;
3347    }
3348    return false;
3349}
3350
3351static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3352                               BasicBlock *bb, ArmLIR *labelList)
3353{
3354    ArmLIR *pcrLabel = NULL;
3355
3356    /* An invoke with the MIR_INLINED is effectively a no-op */
3357    if (mir->OptimizationFlags & MIR_INLINED)
3358        return false;
3359
3360    DecodedInstruction *dInsn = &mir->dalvikInsn;
3361    switch (mir->dalvikInsn.opcode) {
3362        /* calleeMethod = this->clazz->vtable[BBBB] */
3363        case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3364        case OP_INVOKE_VIRTUAL_QUICK: {
3365            int methodIndex = dInsn->vB;
3366            ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
3367            ArmLIR *predChainingCell = &labelList[bb->taken->id];
3368
3369            /*
3370             * If the invoke has non-null misPredBranchOver, we need to generate
3371             * the non-inlined version of the invoke here to handle the
3372             * mispredicted case.
3373             */
3374            if (mir->meta.callsiteInfo->misPredBranchOver) {
3375                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3376            }
3377
3378            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3379                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3380            else
3381                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3382
3383
3384            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3385                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3386                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3387                assert(calleeAddr);
3388                genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3389                                            retChainingCell);
3390            }
3391
3392            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3393                                   retChainingCell,
3394                                   predChainingCell,
3395                                   pcrLabel);
3396            break;
3397        }
3398        /* calleeMethod = method->clazz->super->vtable[BBBB] */
3399        case OP_INVOKE_SUPER_QUICK:
3400        case OP_INVOKE_SUPER_QUICK_RANGE: {
3401            /* Grab the method ptr directly from what the interpreter sees */
3402            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3403            assert(calleeMethod ==
3404                   cUnit->method->clazz->super->vtable[dInsn->vB]);
3405
3406            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3407                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3408            else
3409                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3410
3411            /* r0 = calleeMethod */
3412            loadConstant(cUnit, r0, (int) calleeMethod);
3413
3414            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3415                                     calleeMethod);
3416            break;
3417        }
3418        default:
3419            return true;
3420    }
3421    return false;
3422}
3423
3424/*
3425 * This operation is complex enough that we'll do it partly inline
3426 * and partly with a handler.  NOTE: the handler uses hardcoded
3427 * values for string object offsets and must be revisitied if the
3428 * layout changes.
3429 */
3430static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3431{
3432#if defined(USE_GLOBAL_STRING_DEFS)
3433    return handleExecuteInlineC(cUnit, mir);
3434#else
3435    ArmLIR *rollback;
3436    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3437    RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3438
3439    loadValueDirectFixed(cUnit, rlThis, r0);
3440    loadValueDirectFixed(cUnit, rlComp, r1);
3441    /* Test objects for NULL */
3442    rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3443    genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
3444    /*
3445     * TUNING: we could check for object pointer equality before invoking
3446     * handler. Unclear whether the gain would be worth the added code size
3447     * expansion.
3448     */
3449    genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3450    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3451               dvmCompilerGetReturn(cUnit));
3452    return false;
3453#endif
3454}
3455
3456static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3457{
3458#if defined(USE_GLOBAL_STRING_DEFS)
3459    return handleExecuteInlineC(cUnit, mir);
3460#else
3461    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3462    RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3463
3464    loadValueDirectFixed(cUnit, rlThis, r0);
3465    loadValueDirectFixed(cUnit, rlChar, r1);
3466    RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3467    loadValueDirectFixed(cUnit, rlStart, r2);
3468    /* Test objects for NULL */
3469    genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
3470    genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3471    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3472               dvmCompilerGetReturn(cUnit));
3473    return false;
3474#endif
3475}
3476
3477// Generates an inlined String.isEmpty or String.length.
3478static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3479                                            bool isEmpty)
3480{
3481    // dst = src.length();
3482    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3483    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3484    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3485    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3486    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3487    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3488                 rlResult.lowReg);
3489    if (isEmpty) {
3490        // dst = (dst == 0);
3491        int tReg = dvmCompilerAllocTemp(cUnit);
3492        opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
3493        opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
3494    }
3495    storeValue(cUnit, rlDest, rlResult);
3496    return false;
3497}
3498
3499static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3500{
3501    return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3502}
3503
3504static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3505{
3506    return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3507}
3508
3509static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3510{
3511    int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3512    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3513    RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3514    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3515    RegLocation rlResult;
3516    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3517    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3518    int regMax = dvmCompilerAllocTemp(cUnit);
3519    int regOff = dvmCompilerAllocTemp(cUnit);
3520    int regPtr = dvmCompilerAllocTemp(cUnit);
3521    ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3522                                    mir->offset, NULL);
3523    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3524    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3525    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3526    genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3527    dvmCompilerFreeTemp(cUnit, regMax);
3528    opRegImm(cUnit, kOpAdd, regPtr, contents);
3529    opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3530    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3531    loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3532    storeValue(cUnit, rlDest, rlResult);
3533    return false;
3534}
3535
3536static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3537{
3538    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3539    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3540    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3541    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3542    int signReg = dvmCompilerAllocTemp(cUnit);
3543    /*
3544     * abs(x) = y<=x>>31, (x+y)^y.
3545     * Thumb2's IT block also yields 3 instructions, but imposes
3546     * scheduling constraints.
3547     */
3548    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3549    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3550    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3551    storeValue(cUnit, rlDest, rlResult);
3552    return false;
3553}
3554
3555static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3556{
3557    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3558    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3559    rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3560    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3561    int signReg = dvmCompilerAllocTemp(cUnit);
3562    /*
3563     * abs(x) = y<=x>>31, (x+y)^y.
3564     * Thumb2 IT block allows slightly shorter sequence,
3565     * but introduces a scheduling barrier.  Stick with this
3566     * mechanism for now.
3567     */
3568    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3569    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3570    opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
3571    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3572    opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3573    storeValueWide(cUnit, rlDest, rlResult);
3574    return false;
3575}
3576
3577static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3578{
3579    // Just move from source to destination...
3580    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3581    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3582    storeValue(cUnit, rlDest, rlSrc);
3583    return false;
3584}
3585
3586static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3587{
3588    // Just move from source to destination...
3589    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3590    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3591    storeValueWide(cUnit, rlDest, rlSrc);
3592    return false;
3593}
3594
3595/*
3596 * JITs a call to a C function.
3597 * TODO: use this for faster native method invocation for simple native
3598 * methods (http://b/3069458).
3599 */
3600static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3601{
3602    DecodedInstruction *dInsn = &mir->dalvikInsn;
3603    int operation = dInsn->vB;
3604    unsigned int i;
3605    const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3606    uintptr_t fn = (int) inLineTable[operation].func;
3607    if (fn == 0) {
3608        dvmCompilerAbort(cUnit);
3609    }
3610    dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3611    dvmCompilerClobberCallRegs(cUnit);
3612    dvmCompilerClobber(cUnit, r4PC);
3613    dvmCompilerClobber(cUnit, r7);
3614    int offset = offsetof(Thread, interpSave.retval);
3615    opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
3616    opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
3617    LOAD_FUNC_ADDR(cUnit, r4PC, fn);
3618    genExportPC(cUnit, mir);
3619    for (i=0; i < dInsn->vA; i++) {
3620        loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
3621    }
3622    opReg(cUnit, kOpBlx, r4PC);
3623    opRegImm(cUnit, kOpAdd, r13sp, 8);
3624    /* NULL? */
3625    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
3626    loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
3627    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3628    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3629    target->defMask = ENCODE_ALL;
3630    branchOver->generic.target = (LIR *) target;
3631    return false;
3632}
3633
3634/*
3635 * NOTE: Handles both range and non-range versions (arguments
3636 * have already been normalized by this point).
3637 */
3638static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3639{
3640    DecodedInstruction *dInsn = &mir->dalvikInsn;
3641    assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3642           dInsn->opcode == OP_EXECUTE_INLINE);
3643    switch (dInsn->vB) {
3644        case INLINE_EMPTYINLINEMETHOD:
3645            return false;  /* Nop */
3646
3647        /* These ones we potentially JIT inline. */
3648
3649        case INLINE_STRING_CHARAT:
3650            return genInlinedStringCharAt(cUnit, mir);
3651        case INLINE_STRING_LENGTH:
3652            return genInlinedStringLength(cUnit, mir);
3653        case INLINE_STRING_IS_EMPTY:
3654            return genInlinedStringIsEmpty(cUnit, mir);
3655        case INLINE_STRING_COMPARETO:
3656            return genInlinedCompareTo(cUnit, mir);
3657        case INLINE_STRING_FASTINDEXOF_II:
3658            return genInlinedFastIndexOf(cUnit, mir);
3659
3660        case INLINE_MATH_ABS_INT:
3661        case INLINE_STRICT_MATH_ABS_INT:
3662            return genInlinedAbsInt(cUnit, mir);
3663        case INLINE_MATH_ABS_LONG:
3664        case INLINE_STRICT_MATH_ABS_LONG:
3665            return genInlinedAbsLong(cUnit, mir);
3666        case INLINE_MATH_MIN_INT:
3667        case INLINE_STRICT_MATH_MIN_INT:
3668            return genInlinedMinMaxInt(cUnit, mir, true);
3669        case INLINE_MATH_MAX_INT:
3670        case INLINE_STRICT_MATH_MAX_INT:
3671            return genInlinedMinMaxInt(cUnit, mir, false);
3672        case INLINE_MATH_SQRT:
3673        case INLINE_STRICT_MATH_SQRT:
3674            return genInlineSqrt(cUnit, mir);
3675        case INLINE_MATH_ABS_FLOAT:
3676        case INLINE_STRICT_MATH_ABS_FLOAT:
3677            return genInlinedAbsFloat(cUnit, mir);
3678        case INLINE_MATH_ABS_DOUBLE:
3679        case INLINE_STRICT_MATH_ABS_DOUBLE:
3680            return genInlinedAbsDouble(cUnit, mir);
3681
3682        case INLINE_FLOAT_TO_RAW_INT_BITS:
3683        case INLINE_INT_BITS_TO_FLOAT:
3684            return genInlinedIntFloatConversion(cUnit, mir);
3685        case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3686        case INLINE_LONG_BITS_TO_DOUBLE:
3687            return genInlinedLongDoubleConversion(cUnit, mir);
3688
3689        /*
3690         * These ones we just JIT a call to a C function for.
3691         * TODO: special-case these in the other "invoke" call paths.
3692         */
3693        case INLINE_STRING_EQUALS:
3694        case INLINE_MATH_COS:
3695        case INLINE_MATH_SIN:
3696        case INLINE_FLOAT_TO_INT_BITS:
3697        case INLINE_DOUBLE_TO_LONG_BITS:
3698            return handleExecuteInlineC(cUnit, mir);
3699    }
3700    dvmCompilerAbort(cUnit);
3701    return false; // Not reachable; keeps compiler happy.
3702}
3703
3704static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3705{
3706    //TUNING: We're using core regs here - not optimal when target is a double
3707    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3708    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3709    loadConstantNoClobber(cUnit, rlResult.lowReg,
3710                          mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3711    loadConstantNoClobber(cUnit, rlResult.highReg,
3712                          (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3713    storeValueWide(cUnit, rlDest, rlResult);
3714    return false;
3715}
3716
3717/*
3718 * The following are special processing routines that handle transfer of
3719 * controls between compiled code and the interpreter. Certain VM states like
3720 * Dalvik PC and special-purpose registers are reconstructed here.
3721 */
3722
3723/*
3724 * Insert a
3725 *    b   .+4
3726 *    nop
3727 * pair at the beginning of a chaining cell.  This serves as the
3728 * switch branch that selects between reverting to the interpreter or
3729 * not.  Once the cell is chained to a translation, the cell will
3730 * contain a 32-bit branch.  Subsequent chain/unchain operations will
3731 * then only alter that first 16-bits - the "b .+4" for unchaining,
3732 * and the restoration of the first half of the 32-bit branch for
3733 * rechaining.
3734 */
3735static void insertChainingSwitch(CompilationUnit *cUnit)
3736{
3737    ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
3738    newLIR2(cUnit, kThumbOrr, r0, r0);
3739    ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
3740    target->defMask = ENCODE_ALL;
3741    branch->generic.target = (LIR *) target;
3742}
3743
3744/* Chaining cell for code that may need warmup. */
3745static void handleNormalChainingCell(CompilationUnit *cUnit,
3746                                     unsigned int offset)
3747{
3748    /*
3749     * Use raw instruction constructors to guarantee that the generated
3750     * instructions fit the predefined cell size.
3751     */
3752    insertChainingSwitch(cUnit);
3753    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3754            offsetof(Thread,
3755                     jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3756    newLIR1(cUnit, kThumbBlxR, r0);
3757    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3758}
3759
3760/*
3761 * Chaining cell for instructions that immediately following already translated
3762 * code.
3763 */
3764static void handleHotChainingCell(CompilationUnit *cUnit,
3765                                  unsigned int offset)
3766{
3767    /*
3768     * Use raw instruction constructors to guarantee that the generated
3769     * instructions fit the predefined cell size.
3770     */
3771    insertChainingSwitch(cUnit);
3772    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3773            offsetof(Thread,
3774                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3775    newLIR1(cUnit, kThumbBlxR, r0);
3776    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3777}
3778
3779/* Chaining cell for branches that branch back into the same basic block */
3780static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3781                                             unsigned int offset)
3782{
3783    /*
3784     * Use raw instruction constructors to guarantee that the generated
3785     * instructions fit the predefined cell size.
3786     */
3787    insertChainingSwitch(cUnit);
3788#if defined(WITH_SELF_VERIFICATION)
3789    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3790        offsetof(Thread,
3791                 jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
3792#else
3793    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3794        offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
3795#endif
3796    newLIR1(cUnit, kThumbBlxR, r0);
3797    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3798}
3799
3800/* Chaining cell for monomorphic method invocations. */
3801static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3802                                              const Method *callee)
3803{
3804    /*
3805     * Use raw instruction constructors to guarantee that the generated
3806     * instructions fit the predefined cell size.
3807     */
3808    insertChainingSwitch(cUnit);
3809    newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
3810            offsetof(Thread,
3811                     jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
3812    newLIR1(cUnit, kThumbBlxR, r0);
3813    addWordData(cUnit, NULL, (int) (callee->insns));
3814}
3815
3816/* Chaining cell for monomorphic method invocations. */
3817static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3818{
3819
3820    /* Should not be executed in the initial state */
3821    addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3822    /* To be filled: class */
3823    addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3824    /* To be filled: method */
3825    addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3826    /*
3827     * Rechain count. The initial value of 0 here will trigger chaining upon
3828     * the first invocation of this callsite.
3829     */
3830    addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3831}
3832
3833/* Load the Dalvik PC into r0 and jump to the specified target */
3834static void handlePCReconstruction(CompilationUnit *cUnit,
3835                                   ArmLIR *targetLabel)
3836{
3837    ArmLIR **pcrLabel =
3838        (ArmLIR **) cUnit->pcReconstructionList.elemList;
3839    int numElems = cUnit->pcReconstructionList.numUsed;
3840    int i;
3841
3842    /*
3843     * We should never reach here through fall-through code, so insert
3844     * a bomb to signal troubles immediately.
3845     */
3846    if (numElems) {
3847        newLIR0(cUnit, kThumbUndefined);
3848    }
3849
3850    for (i = 0; i < numElems; i++) {
3851        dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3852        /* r0 = dalvik PC */
3853        loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
3854        genUnconditionalBranch(cUnit, targetLabel);
3855    }
3856}
3857
3858static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3859    "kMirOpPhi",
3860    "kMirOpNullNRangeUpCheck",
3861    "kMirOpNullNRangeDownCheck",
3862    "kMirOpLowerBound",
3863    "kMirOpPunt",
3864    "kMirOpCheckInlinePrediction",
3865};
3866
3867/*
3868 * vA = arrayReg;
3869 * vB = idxReg;
3870 * vC = endConditionReg;
3871 * arg[0] = maxC
3872 * arg[1] = minC
3873 * arg[2] = loopBranchConditionCode
3874 */
3875static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3876{
3877    /*
3878     * NOTE: these synthesized blocks don't have ssa names assigned
3879     * for Dalvik registers.  However, because they dominate the following
3880     * blocks we can simply use the Dalvik name w/ subscript 0 as the
3881     * ssa name.
3882     */
3883    DecodedInstruction *dInsn = &mir->dalvikInsn;
3884    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3885    const int maxC = dInsn->arg[0];
3886    int regLength;
3887    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3888    RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3889
3890    /* regArray <- arrayRef */
3891    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3892    rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3893    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3894                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3895
3896    /* regLength <- len(arrayRef) */
3897    regLength = dvmCompilerAllocTemp(cUnit);
3898    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3899
3900    int delta = maxC;
3901    /*
3902     * If the loop end condition is ">=" instead of ">", then the largest value
3903     * of the index is "endCondition - 1".
3904     */
3905    if (dInsn->arg[2] == OP_IF_GE) {
3906        delta--;
3907    }
3908
3909    if (delta) {
3910        int tReg = dvmCompilerAllocTemp(cUnit);
3911        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
3912        rlIdxEnd.lowReg = tReg;
3913        dvmCompilerFreeTemp(cUnit, tReg);
3914    }
3915    /* Punt if "regIdxEnd < len(Array)" is false */
3916    genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
3917                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3918}
3919
3920/*
3921 * vA = arrayReg;
3922 * vB = idxReg;
3923 * vC = endConditionReg;
3924 * arg[0] = maxC
3925 * arg[1] = minC
3926 * arg[2] = loopBranchConditionCode
3927 */
3928static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
3929{
3930    DecodedInstruction *dInsn = &mir->dalvikInsn;
3931    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3932    const int regLength = dvmCompilerAllocTemp(cUnit);
3933    const int maxC = dInsn->arg[0];
3934    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3935    RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
3936
3937    /* regArray <- arrayRef */
3938    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3939    rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
3940    genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
3941                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3942
3943    /* regLength <- len(arrayRef) */
3944    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
3945
3946    if (maxC) {
3947        int tReg = dvmCompilerAllocTemp(cUnit);
3948        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
3949        rlIdxInit.lowReg = tReg;
3950        dvmCompilerFreeTemp(cUnit, tReg);
3951    }
3952
3953    /* Punt if "regIdxInit < len(Array)" is false */
3954    genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
3955                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3956}
3957
3958/*
3959 * vA = idxReg;
3960 * vB = minC;
3961 */
3962static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
3963{
3964    DecodedInstruction *dInsn = &mir->dalvikInsn;
3965    const int minC = dInsn->vB;
3966    RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
3967
3968    /* regIdx <- initial index value */
3969    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3970
3971    /* Punt if "regIdxInit + minC >= 0" is false */
3972    genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
3973                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
3974}
3975
3976/*
3977 * vC = this
3978 *
3979 * A predicted inlining target looks like the following, where instructions
3980 * between 0x4858de66 and 0x4858de72 are checking if the predicted class
3981 * matches "this", and the verificaion code is generated by this routine.
3982 *
3983 * (C) means the instruction is inlined from the callee, and (PI) means the
3984 * instruction is the predicted inlined invoke, whose corresponding
3985 * instructions are still generated to handle the mispredicted case.
3986 *
3987 * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
3988 * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
3989 * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
3990 * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
3991 * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
3992 * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
3993 * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
3994 * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
3995 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
3996 * v4, v17, (#8)
3997 * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
3998 * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
3999 * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
4000 * +invoke-virtual-quick/range (PI) v17..v17
4001 * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
4002 * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
4003 * D/dalvikvm(   86): -------- BARRIER
4004 * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
4005 * D/dalvikvm(   86): -------- BARRIER
4006 * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
4007 * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
4008 * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
4009 * D/dalvikvm(   86): -------- BARRIER
4010 * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
4011 * D/dalvikvm(   86): -------- BARRIER
4012 * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
4013 * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
4014 * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
4015 * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
4016 * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
4017 * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
4018 * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
4019 * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
4020 * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
4021 * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
4022 * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
4023 * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
4024 * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
4025 * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
4026 * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
4027 * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
4028 * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
4029 * D/dalvikvm(   86): 0x4858deac (0048): .align4
4030 * D/dalvikvm(   86): L0x004f:
4031 * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
4032 * v4, (#0), (#0)
4033 * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
4034 * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
4035 * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
4036 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4037 * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
4038 * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
4039 * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
4040 * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
4041 * D/dalvikvm(   86): Exception_Handling:
4042 * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
4043 * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
4044 * D/dalvikvm(   86): 0x4858debc (0058): .align4
4045 * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
4046 * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
4047 * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
4048 * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
4049 * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
4050 * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
4051 * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
4052 * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
4053 * D/dalvikvm(   86): -------- chaining cell (predicted)
4054 * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
4055 * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
4056 * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
4057 * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
4058 * :
4059 */
4060static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4061{
4062    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4063    RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4064
4065    rlThis = loadValue(cUnit, rlThis, kCoreReg);
4066    int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4067    loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4068    genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4069                 NULL);/* null object? */
4070    int regActualClass = dvmCompilerAllocTemp(cUnit);
4071    loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4072    opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4073    /*
4074     * Set the misPredBranchOver target so that it will be generated when the
4075     * code for the non-optimized invoke is generated.
4076     */
4077    callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
4078}
4079
4080/* Extended MIR instructions like PHI */
4081static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4082{
4083    int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4084    char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4085                                        false);
4086    strcpy(msg, extendedMIROpNames[opOffset]);
4087    newLIR1(cUnit, kArmPseudoExtended, (int) msg);
4088
4089    switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4090        case kMirOpPhi: {
4091            char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4092            newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4093            break;
4094        }
4095        case kMirOpNullNRangeUpCheck: {
4096            genHoistedChecksForCountUpLoop(cUnit, mir);
4097            break;
4098        }
4099        case kMirOpNullNRangeDownCheck: {
4100            genHoistedChecksForCountDownLoop(cUnit, mir);
4101            break;
4102        }
4103        case kMirOpLowerBound: {
4104            genHoistedLowerBoundCheck(cUnit, mir);
4105            break;
4106        }
4107        case kMirOpPunt: {
4108            genUnconditionalBranch(cUnit,
4109                                   (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
4110            break;
4111        }
4112        case kMirOpCheckInlinePrediction: {
4113            genValidationForPredictedInline(cUnit, mir);
4114            break;
4115        }
4116        default:
4117            break;
4118    }
4119}
4120
4121/*
4122 * Create a PC-reconstruction cell for the starting offset of this trace.
4123 * Since the PCR cell is placed near the end of the compiled code which is
4124 * usually out of range for a conditional branch, we put two branches (one
4125 * branch over to the loop body and one layover branch to the actual PCR) at the
4126 * end of the entry block.
4127 */
4128static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4129                                ArmLIR *bodyLabel)
4130{
4131    /* Set up the place holder to reconstruct this Dalvik PC */
4132    ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4133    pcrLabel->opcode = kArmPseudoPCReconstructionCell;
4134    pcrLabel->operands[0] =
4135        (int) (cUnit->method->insns + entry->startOffset);
4136    pcrLabel->operands[1] = entry->startOffset;
4137    /* Insert the place holder to the growable list */
4138    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4139
4140    /*
4141     * Next, create two branches - one branch over to the loop body and the
4142     * other branch to the PCR cell to punt.
4143     */
4144    ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4145    branchToBody->opcode = kThumbBUncond;
4146    branchToBody->generic.target = (LIR *) bodyLabel;
4147    setupResourceMasks(branchToBody);
4148    cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4149
4150    ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
4151    branchToPCR->opcode = kThumbBUncond;
4152    branchToPCR->generic.target = (LIR *) pcrLabel;
4153    setupResourceMasks(branchToPCR);
4154    cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4155}
4156
4157#if defined(WITH_SELF_VERIFICATION)
4158static bool selfVerificationPuntOps(MIR *mir)
4159{
4160    DecodedInstruction *decInsn = &mir->dalvikInsn;
4161
4162    /*
4163     * All opcodes that can throw exceptions and use the
4164     * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4165     * under self-verification mode.
4166     */
4167    switch (decInsn->opcode) {
4168        case OP_MONITOR_ENTER:
4169        case OP_MONITOR_EXIT:
4170        case OP_NEW_INSTANCE:
4171        case OP_NEW_ARRAY:
4172        case OP_CHECK_CAST:
4173        case OP_MOVE_EXCEPTION:
4174        case OP_FILL_ARRAY_DATA:
4175        case OP_EXECUTE_INLINE:
4176        case OP_EXECUTE_INLINE_RANGE:
4177            return true;
4178        default:
4179            return false;
4180    }
4181}
4182#endif
4183
4184void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4185{
4186    /* Used to hold the labels of each block */
4187    ArmLIR *labelList =
4188        (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
4189    ArmLIR *headLIR = NULL;
4190    GrowableList chainingListByType[kChainingCellGap];
4191    int i;
4192
4193    /*
4194     * Initialize various types chaining lists.
4195     */
4196    for (i = 0; i < kChainingCellGap; i++) {
4197        dvmInitGrowableList(&chainingListByType[i], 2);
4198    }
4199
4200    /* Clear the visited flag for each block */
4201    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4202                                          kAllNodes, false /* isIterative */);
4203
4204    GrowableListIterator iterator;
4205    dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4206
4207    /* Traces start with a profiling entry point.  Generate it here */
4208    cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4209
4210    /* Handle the content in each basic block */
4211    for (i = 0; ; i++) {
4212        MIR *mir;
4213        BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4214        if (bb == NULL) break;
4215        if (bb->visited == true) continue;
4216
4217        labelList[i].operands[0] = bb->startOffset;
4218
4219        if (bb->blockType >= kChainingCellGap) {
4220            if (bb->isFallThroughFromInvoke == true) {
4221                /* Align this block first since it is a return chaining cell */
4222                newLIR0(cUnit, kArmPseudoPseudoAlign4);
4223            }
4224            /*
4225             * Append the label pseudo LIR first. Chaining cells will be handled
4226             * separately afterwards.
4227             */
4228            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4229        }
4230
4231        if (bb->blockType == kEntryBlock) {
4232            labelList[i].opcode = kArmPseudoEntryBlock;
4233            if (bb->firstMIRInsn == NULL) {
4234                continue;
4235            } else {
4236              setupLoopEntryBlock(cUnit, bb,
4237                                  &labelList[bb->fallThrough->id]);
4238            }
4239        } else if (bb->blockType == kExitBlock) {
4240            labelList[i].opcode = kArmPseudoExitBlock;
4241            goto gen_fallthrough;
4242        } else if (bb->blockType == kDalvikByteCode) {
4243            if (bb->hidden == true) continue;
4244            labelList[i].opcode = kArmPseudoNormalBlockLabel;
4245            /* Reset the register state */
4246            dvmCompilerResetRegPool(cUnit);
4247            dvmCompilerClobberAllRegs(cUnit);
4248            dvmCompilerResetNullCheck(cUnit);
4249        } else {
4250            switch (bb->blockType) {
4251                case kChainingCellNormal:
4252                    labelList[i].opcode = kArmPseudoChainingCellNormal;
4253                    /* handle the codegen later */
4254                    dvmInsertGrowableList(
4255                        &chainingListByType[kChainingCellNormal], i);
4256                    break;
4257                case kChainingCellInvokeSingleton:
4258                    labelList[i].opcode =
4259                        kArmPseudoChainingCellInvokeSingleton;
4260                    labelList[i].operands[0] =
4261                        (int) bb->containingMethod;
4262                    /* handle the codegen later */
4263                    dvmInsertGrowableList(
4264                        &chainingListByType[kChainingCellInvokeSingleton], i);
4265                    break;
4266                case kChainingCellInvokePredicted:
4267                    labelList[i].opcode =
4268                        kArmPseudoChainingCellInvokePredicted;
4269                    /*
4270                     * Move the cached method pointer from operand 1 to 0.
4271                     * Operand 0 was clobbered earlier in this routine to store
4272                     * the block starting offset, which is not applicable to
4273                     * predicted chaining cell.
4274                     */
4275                    labelList[i].operands[0] = labelList[i].operands[1];
4276                    /* handle the codegen later */
4277                    dvmInsertGrowableList(
4278                        &chainingListByType[kChainingCellInvokePredicted], i);
4279                    break;
4280                case kChainingCellHot:
4281                    labelList[i].opcode =
4282                        kArmPseudoChainingCellHot;
4283                    /* handle the codegen later */
4284                    dvmInsertGrowableList(
4285                        &chainingListByType[kChainingCellHot], i);
4286                    break;
4287                case kPCReconstruction:
4288                    /* Make sure exception handling block is next */
4289                    labelList[i].opcode =
4290                        kArmPseudoPCReconstructionBlockLabel;
4291                    handlePCReconstruction(cUnit,
4292                                           &labelList[cUnit->puntBlock->id]);
4293                    break;
4294                case kExceptionHandling:
4295                    labelList[i].opcode = kArmPseudoEHBlockLabel;
4296                    if (cUnit->pcReconstructionList.numUsed) {
4297                        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4298                                     jitToInterpEntries.dvmJitToInterpPunt),
4299                                     r1);
4300                        opReg(cUnit, kOpBlx, r1);
4301                    }
4302                    break;
4303                case kChainingCellBackwardBranch:
4304                    labelList[i].opcode =
4305                        kArmPseudoChainingCellBackwardBranch;
4306                    /* handle the codegen later */
4307                    dvmInsertGrowableList(
4308                        &chainingListByType[kChainingCellBackwardBranch],
4309                        i);
4310                    break;
4311                default:
4312                    break;
4313            }
4314            continue;
4315        }
4316
4317        /*
4318         * Try to build a longer optimization unit. Currently if the previous
4319         * block ends with a goto, we continue adding instructions and don't
4320         * reset the register allocation pool.
4321         */
4322        for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4323            bb = nextBB;
4324            bb->visited = true;
4325            cUnit->nextCodegenBlock = NULL;
4326
4327            for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4328
4329                dvmCompilerResetRegPool(cUnit);
4330                if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4331                    dvmCompilerClobberAllRegs(cUnit);
4332                }
4333
4334                if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4335                    dvmCompilerResetDefTracking(cUnit);
4336                }
4337
4338                if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4339                    handleExtendedMIR(cUnit, mir);
4340                    continue;
4341                }
4342
4343                Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4344                InstructionFormat dalvikFormat =
4345                    dexGetFormatFromOpcode(dalvikOpcode);
4346                const char *note;
4347                if (mir->OptimizationFlags & MIR_INLINED) {
4348                    note = " (I)";
4349                } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4350                    note = " (PI)";
4351                } else if (mir->OptimizationFlags & MIR_CALLEE) {
4352                    note = " (C)";
4353                } else {
4354                    note = NULL;
4355                }
4356
4357                ArmLIR *boundaryLIR;
4358
4359                /*
4360                 * Don't generate the boundary LIR unless we are debugging this
4361                 * trace or we need a scheduling barrier.
4362                 */
4363                if (headLIR == NULL || cUnit->printMe == true) {
4364                    boundaryLIR =
4365                        newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
4366                                mir->offset,
4367                                (int) dvmCompilerGetDalvikDisassembly(
4368                                    &mir->dalvikInsn, note));
4369                    /* Remember the first LIR for this block */
4370                    if (headLIR == NULL) {
4371                        headLIR = boundaryLIR;
4372                        /* Set the first boundaryLIR as a scheduling barrier */
4373                        headLIR->defMask = ENCODE_ALL;
4374                    }
4375                }
4376
4377                /*
4378                 * Don't generate the SSA annotation unless verbose mode is on
4379                 */
4380                if (cUnit->printMe && mir->ssaRep) {
4381                    char *ssaString = dvmCompilerGetSSAString(cUnit,
4382                                                              mir->ssaRep);
4383                    newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
4384                }
4385
4386                bool notHandled;
4387                /*
4388                 * Debugging: screen the opcode first to see if it is in the
4389                 * do[-not]-compile list
4390                 */
4391                bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4392#if defined(WITH_SELF_VERIFICATION)
4393              if (singleStepMe == false) {
4394                  singleStepMe = selfVerificationPuntOps(mir);
4395              }
4396#endif
4397                if (singleStepMe || cUnit->allSingleStep) {
4398                    notHandled = false;
4399                    genInterpSingleStep(cUnit, mir);
4400                } else {
4401                    opcodeCoverage[dalvikOpcode]++;
4402                    switch (dalvikFormat) {
4403                        case kFmt10t:
4404                        case kFmt20t:
4405                        case kFmt30t:
4406                            notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4407                                      mir, bb, labelList);
4408                            break;
4409                        case kFmt10x:
4410                            notHandled = handleFmt10x(cUnit, mir);
4411                            break;
4412                        case kFmt11n:
4413                        case kFmt31i:
4414                            notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4415                            break;
4416                        case kFmt11x:
4417                            notHandled = handleFmt11x(cUnit, mir);
4418                            break;
4419                        case kFmt12x:
4420                            notHandled = handleFmt12x(cUnit, mir);
4421                            break;
4422                        case kFmt20bc:
4423                            notHandled = handleFmt20bc(cUnit, mir);
4424                            break;
4425                        case kFmt21c:
4426                        case kFmt31c:
4427                            notHandled = handleFmt21c_Fmt31c(cUnit, mir);
4428                            break;
4429                        case kFmt21h:
4430                            notHandled = handleFmt21h(cUnit, mir);
4431                            break;
4432                        case kFmt21s:
4433                            notHandled = handleFmt21s(cUnit, mir);
4434                            break;
4435                        case kFmt21t:
4436                            notHandled = handleFmt21t(cUnit, mir, bb,
4437                                                      labelList);
4438                            break;
4439                        case kFmt22b:
4440                        case kFmt22s:
4441                            notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4442                            break;
4443                        case kFmt22c:
4444                            notHandled = handleFmt22c(cUnit, mir);
4445                            break;
4446                        case kFmt22cs:
4447                            notHandled = handleFmt22cs(cUnit, mir);
4448                            break;
4449                        case kFmt22t:
4450                            notHandled = handleFmt22t(cUnit, mir, bb,
4451                                                      labelList);
4452                            break;
4453                        case kFmt22x:
4454                        case kFmt32x:
4455                            notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4456                            break;
4457                        case kFmt23x:
4458                            notHandled = handleFmt23x(cUnit, mir);
4459                            break;
4460                        case kFmt31t:
4461                            notHandled = handleFmt31t(cUnit, mir);
4462                            break;
4463                        case kFmt3rc:
4464                        case kFmt35c:
4465                            notHandled = handleFmt35c_3rc(cUnit, mir, bb,
4466                                                          labelList);
4467                            break;
4468                        case kFmt3rms:
4469                        case kFmt35ms:
4470                            notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
4471                                                            labelList);
4472                            break;
4473                        case kFmt35mi:
4474                        case kFmt3rmi:
4475                            notHandled = handleExecuteInline(cUnit, mir);
4476                            break;
4477                        case kFmt51l:
4478                            notHandled = handleFmt51l(cUnit, mir);
4479                            break;
4480                        default:
4481                            notHandled = true;
4482                            break;
4483                    }
4484                }
4485                if (notHandled) {
4486                    ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4487                         mir->offset,
4488                         dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4489                         dalvikFormat);
4490                    dvmCompilerAbort(cUnit);
4491                    break;
4492                }
4493            }
4494        }
4495
4496        if (bb->blockType == kEntryBlock) {
4497            dvmCompilerAppendLIR(cUnit,
4498                                 (LIR *) cUnit->loopAnalysis->branchToBody);
4499            dvmCompilerAppendLIR(cUnit,
4500                                 (LIR *) cUnit->loopAnalysis->branchToPCR);
4501        }
4502
4503        if (headLIR) {
4504            /*
4505             * Eliminate redundant loads/stores and delay stores into later
4506             * slots
4507             */
4508            dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4509                                               cUnit->lastLIRInsn);
4510            /* Reset headLIR which is also the optimization boundary */
4511            headLIR = NULL;
4512        }
4513
4514gen_fallthrough:
4515        /*
4516         * Check if the block is terminated due to trace length constraint -
4517         * insert an unconditional branch to the chaining cell.
4518         */
4519        if (bb->needFallThroughBranch) {
4520            genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4521        }
4522    }
4523
4524    /* Handle the chaining cells in predefined order */
4525    for (i = 0; i < kChainingCellGap; i++) {
4526        size_t j;
4527        int *blockIdList = (int *) chainingListByType[i].elemList;
4528
4529        cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4530
4531        /* No chaining cells of this type */
4532        if (cUnit->numChainingCells[i] == 0)
4533            continue;
4534
4535        /* Record the first LIR for a new type of chaining cell */
4536        cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4537
4538        for (j = 0; j < chainingListByType[i].numUsed; j++) {
4539            int blockId = blockIdList[j];
4540            BasicBlock *chainingBlock =
4541                (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4542                                                         blockId);
4543
4544            /* Align this chaining cell first */
4545            newLIR0(cUnit, kArmPseudoPseudoAlign4);
4546
4547            /* Insert the pseudo chaining instruction */
4548            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4549
4550
4551            switch (chainingBlock->blockType) {
4552                case kChainingCellNormal:
4553                    handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4554                    break;
4555                case kChainingCellInvokeSingleton:
4556                    handleInvokeSingletonChainingCell(cUnit,
4557                        chainingBlock->containingMethod);
4558                    break;
4559                case kChainingCellInvokePredicted:
4560                    handleInvokePredictedChainingCell(cUnit);
4561                    break;
4562                case kChainingCellHot:
4563                    handleHotChainingCell(cUnit, chainingBlock->startOffset);
4564                    break;
4565                case kChainingCellBackwardBranch:
4566                    handleBackwardBranchChainingCell(cUnit,
4567                        chainingBlock->startOffset);
4568                    break;
4569                default:
4570                    ALOGE("Bad blocktype %d", chainingBlock->blockType);
4571                    dvmCompilerAbort(cUnit);
4572            }
4573        }
4574    }
4575
4576    /* Mark the bottom of chaining cells */
4577    cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
4578
4579    /*
4580     * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4581     * of all chaining cells for the overflow cases.
4582     */
4583    if (cUnit->switchOverflowPad) {
4584        loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
4585        loadWordDisp(cUnit, r6SELF, offsetof(Thread,
4586                     jitToInterpEntries.dvmJitToInterpNoChain), r2);
4587        opRegReg(cUnit, kOpAdd, r1, r1);
4588        opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
4589#if defined(WITH_JIT_TUNING)
4590        loadConstant(cUnit, r0, kSwitchOverflow);
4591#endif
4592        opReg(cUnit, kOpBlx, r2);
4593    }
4594
4595    dvmCompilerApplyGlobalOptimizations(cUnit);
4596
4597#if defined(WITH_SELF_VERIFICATION)
4598    selfVerificationBranchInsertPass(cUnit);
4599#endif
4600}
4601
4602/*
4603 * Accept the work and start compiling.  Returns true if compilation
4604 * is attempted.
4605 */
4606bool dvmCompilerDoWork(CompilerWorkOrder *work)
4607{
4608    JitTraceDescription *desc;
4609    bool isCompile;
4610    bool success = true;
4611
4612    if (gDvmJit.codeCacheFull) {
4613        return false;
4614    }
4615
4616    switch (work->kind) {
4617        case kWorkOrderTrace:
4618            isCompile = true;
4619            /* Start compilation with maximally allowed trace length */
4620            desc = (JitTraceDescription *)work->info;
4621            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4622                                        work->bailPtr, 0 /* no hints */);
4623            break;
4624        case kWorkOrderTraceDebug: {
4625            bool oldPrintMe = gDvmJit.printMe;
4626            gDvmJit.printMe = true;
4627            isCompile = true;
4628            /* Start compilation with maximally allowed trace length */
4629            desc = (JitTraceDescription *)work->info;
4630            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4631                                        work->bailPtr, 0 /* no hints */);
4632            gDvmJit.printMe = oldPrintMe;
4633            break;
4634        }
4635        case kWorkOrderProfileMode:
4636            dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4637            isCompile = false;
4638            break;
4639        default:
4640            isCompile = false;
4641            ALOGE("Jit: unknown work order type");
4642            assert(0);  // Bail if debug build, discard otherwise
4643    }
4644    if (!success)
4645        work->result.codeAddress = NULL;
4646    return isCompile;
4647}
4648
4649/* Architectural-specific debugging helpers go here */
4650void dvmCompilerArchDump(void)
4651{
4652    /* Print compiled opcode in this VM instance */
4653    int i, start, streak;
4654    char buf[1024];
4655
4656    streak = i = 0;
4657    buf[0] = 0;
4658    while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4659        i++;
4660    }
4661    if (i == kNumPackedOpcodes) {
4662        return;
4663    }
4664    for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
4665        if (opcodeCoverage[i]) {
4666            streak++;
4667        } else {
4668            if (streak == 1) {
4669                sprintf(buf+strlen(buf), "%x,", start);
4670            } else {
4671                sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4672            }
4673            streak = 0;
4674            while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
4675                i++;
4676            }
4677            if (i < kNumPackedOpcodes) {
4678                streak = 1;
4679                start = i;
4680            }
4681        }
4682    }
4683    if (streak) {
4684        if (streak == 1) {
4685            sprintf(buf+strlen(buf), "%x", start);
4686        } else {
4687            sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4688        }
4689    }
4690    if (strlen(buf)) {
4691        ALOGD("dalvik.vm.jit.op = %s", buf);
4692    }
4693}
4694
4695/* Common initialization routine for an architecture family */
4696bool dvmCompilerArchInit()
4697{
4698    int i;
4699
4700    for (i = 0; i < kArmLast; i++) {
4701        if (EncodingMap[i].opcode != i) {
4702            ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4703                 EncodingMap[i].name, i, EncodingMap[i].opcode);
4704            dvmAbort();  // OK to dvmAbort - build error
4705        }
4706    }
4707
4708    return dvmCompilerArchVariantInit();
4709}
4710
4711void *dvmCompilerGetInterpretTemplate()
4712{
4713      return (void*) ((int)gDvmJit.codeCache +
4714                      templateEntryOffsets[TEMPLATE_INTERPRET]);
4715}
4716
4717JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4718{
4719    return DALVIK_JIT_ARM;
4720}
4721
4722/* Needed by the Assembler */
4723void dvmCompilerSetupResourceMasks(ArmLIR *lir)
4724{
4725    setupResourceMasks(lir);
4726}
4727
4728/* Needed by the ld/st optmizatons */
4729ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4730{
4731    return genRegCopyNoInsert(cUnit, rDest, rSrc);
4732}
4733
4734/* Needed by the register allocator */
4735ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4736{
4737    return genRegCopy(cUnit, rDest, rSrc);
4738}
4739
4740/* Needed by the register allocator */
4741void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4742                            int srcLo, int srcHi)
4743{
4744    genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4745}
4746
4747void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4748                             int displacement, int rSrc, OpSize size)
4749{
4750    storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4751}
4752
4753void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4754                                 int displacement, int rSrcLo, int rSrcHi)
4755{
4756    storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4757}
4758