1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/* Please send bug reports to David M. Gay (dmg at acm dot org,
21 * with " at " changed at "@" and " dot " changed to ".").	*/
22
23/* On a machine with IEEE extended-precision registers, it is
24 * necessary to specify double-precision (53-bit) rounding precision
25 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26 * of) Intel 80x87 arithmetic, the call
27 *	_control87(PC_53, MCW_PC);
28 * does this with many compilers.  Whether this or another call is
29 * appropriate depends on the compiler; for this to work, it may be
30 * necessary to #include "float.h" or another system-dependent header
31 * file.
32 */
33
34/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35 *
36 * This strtod returns a nearest machine number to the input decimal
37 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
38 * broken by the IEEE round-even rule.  Otherwise ties are broken by
39 * biased rounding (add half and chop).
40 *
41 * Inspired loosely by William D. Clinger's paper "How to Read Floating
42 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
43 *
44 * Modifications:
45 *
46 *	1. We only require IEEE, IBM, or VAX double-precision
47 *		arithmetic (not IEEE double-extended).
48 *	2. We get by with floating-point arithmetic in a case that
49 *		Clinger missed -- when we're computing d * 10^n
50 *		for a small integer d and the integer n is not too
51 *		much larger than 22 (the maximum integer k for which
52 *		we can represent 10^k exactly), we may be able to
53 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
54 *	3. Rather than a bit-at-a-time adjustment of the binary
55 *		result in the hard case, we use floating-point
56 *		arithmetic to determine the adjustment to within
57 *		one bit; only in really hard cases do we need to
58 *		compute a second residual.
59 *	4. Because of 3., we don't need a large table of powers of 10
60 *		for ten-to-e (just some small tables, e.g. of 10^k
61 *		for 0 <= k <= 22).
62 */
63
64/*
65 * #define IEEE_8087 for IEEE-arithmetic machines where the least
66 *	significant byte has the lowest address.
67 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
68 *	significant byte has the lowest address.
69 * #define Long int on machines with 32-bit ints and 64-bit longs.
70 * #define IBM for IBM mainframe-style floating-point arithmetic.
71 * #define VAX for VAX-style floating-point arithmetic (D_floating).
72 * #define No_leftright to omit left-right logic in fast floating-point
73 *	computation of dtoa.
74 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
75 *	and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
76 *	is also #defined, fegetround() will be queried for the rounding mode.
77 *	Note that both FLT_ROUNDS and fegetround() are specified by the C99
78 *	standard (and are specified to be consistent, with fesetround()
79 *	affecting the value of FLT_ROUNDS), but that some (Linux) systems
80 *	do not work correctly in this regard, so using fegetround() is more
81 *	portable than using FLT_FOUNDS directly.
82 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
83 *	and Honor_FLT_ROUNDS is not #defined.
84 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
85 *	that use extended-precision instructions to compute rounded
86 *	products and quotients) with IBM.
87 * #define ROUND_BIASED for IEEE-format with biased rounding.
88 * #define Inaccurate_Divide for IEEE-format with correctly rounded
89 *	products but inaccurate quotients, e.g., for Intel i860.
90 * #define NO_LONG_LONG on machines that do not have a "long long"
91 *	integer type (of >= 64 bits).  On such machines, you can
92 *	#define Just_16 to store 16 bits per 32-bit Long when doing
93 *	high-precision integer arithmetic.  Whether this speeds things
94 *	up or slows things down depends on the machine and the number
95 *	being converted.  If long long is available and the name is
96 *	something other than "long long", #define Llong to be the name,
97 *	and if "unsigned Llong" does not work as an unsigned version of
98 *	Llong, #define #ULLong to be the corresponding unsigned type.
99 * #define KR_headers for old-style C function headers.
100 * #define Bad_float_h if your system lacks a float.h or if it does not
101 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
102 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
103 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
104 *	if memory is available and otherwise does something you deem
105 *	appropriate.  If MALLOC is undefined, malloc will be invoked
106 *	directly -- and assumed always to succeed.  Similarly, if you
107 *	want something other than the system's free() to be called to
108 *	recycle memory acquired from MALLOC, #define FREE to be the
109 *	name of the alternate routine.  (FREE or free is only called in
110 *	pathological cases, e.g., in a dtoa call after a dtoa return in
111 *	mode 3 with thousands of digits requested.)
112 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
113 *	memory allocations from a private pool of memory when possible.
114 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
115 *	unless #defined to be a different length.  This default length
116 *	suffices to get rid of MALLOC calls except for unusual cases,
117 *	such as decimal-to-binary conversion of a very long string of
118 *	digits.  The longest string dtoa can return is about 751 bytes
119 *	long.  For conversions by strtod of strings of 800 digits and
120 *	all dtoa conversions in single-threaded executions with 8-byte
121 *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
122 *	pointers, PRIVATE_MEM >= 7112 appears adequate.
123 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
124 *	#defined automatically on IEEE systems.  On such systems,
125 *	when INFNAN_CHECK is #defined, strtod checks
126 *	for Infinity and NaN (case insensitively).  On some systems
127 *	(e.g., some HP systems), it may be necessary to #define NAN_WORD0
128 *	appropriately -- to the most significant word of a quiet NaN.
129 *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
130 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
131 *	strtod also accepts (case insensitively) strings of the form
132 *	NaN(x), where x is a string of hexadecimal digits and spaces;
133 *	if there is only one string of hexadecimal digits, it is taken
134 *	for the 52 fraction bits of the resulting NaN; if there are two
135 *	or more strings of hex digits, the first is for the high 20 bits,
136 *	the second and subsequent for the low 32 bits, with intervening
137 *	white space ignored; but if this results in none of the 52
138 *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
139 *	and NAN_WORD1 are used instead.
140 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
141 *	multiple threads.  In this case, you must provide (or suitably
142 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
143 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
144 *	in pow5mult, ensures lazy evaluation of only one copy of high
145 *	powers of 5; omitting this lock would introduce a small
146 *	probability of wasting memory, but would otherwise be harmless.)
147 *	You must also invoke freedtoa(s) to free the value s returned by
148 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
149 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
150 *	avoids underflows on inputs whose result does not underflow.
151 *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format
152 *	floating-point numbers and flushes underflows to zero rather
153 *	than implementing gradual underflow, then you must also #define
154 *	Sudden_Underflow.
155 * #define USE_LOCALE to use the current locale's decimal_point value.
156 * #define SET_INEXACT if IEEE arithmetic is being used and extra
157 *	computation should be done to set the inexact flag when the
158 *	result is inexact and avoid setting inexact when the result
159 *	is exact.  In this case, dtoa.c must be compiled in
160 *	an environment, perhaps provided by #include "dtoa.c" in a
161 *	suitable wrapper, that defines two functions,
162 *		int get_inexact(void);
163 *		void clear_inexact(void);
164 *	such that get_inexact() returns a nonzero value if the
165 *	inexact bit is already set, and clear_inexact() sets the
166 *	inexact bit to 0.  When SET_INEXACT is #defined, strtod
167 *	also does extra computations to set the underflow and overflow
168 *	flags when appropriate (i.e., when the result is tiny and
169 *	inexact or when it is a numeric value rounded to +-infinity).
170 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
171 *	the result overflows to +-Infinity or underflows to 0.
172 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
173 *	values by strtod.
174 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
175 *	to disable logic for "fast" testing of very long input strings
176 *	to strtod.  This testing proceeds by initially truncating the
177 *	input string, then if necessary comparing the whole string with
178 *	a decimal expansion to decide close cases. This logic is only
179 *	used for input more than STRTOD_DIGLIM digits long (default 40).
180 */
181
182#define IEEE_8087
183#define NO_HEX_FP
184
185#ifndef Long
186#if __LP64__
187#define Long int
188#else
189#define Long long
190#endif
191#endif
192#ifndef ULong
193typedef unsigned Long ULong;
194#endif
195
196#ifdef DEBUG
197#include "stdio.h"
198#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
199#endif
200
201#include "stdlib.h"
202#include "string.h"
203
204#ifdef USE_LOCALE
205#include "locale.h"
206#endif
207
208#ifdef Honor_FLT_ROUNDS
209#ifndef Trust_FLT_ROUNDS
210#include <fenv.h>
211#endif
212#endif
213
214#ifdef MALLOC
215#ifdef KR_headers
216extern char *MALLOC();
217#else
218extern void *MALLOC(size_t);
219#endif
220#else
221#define MALLOC malloc
222#endif
223
224#ifndef Omit_Private_Memory
225#ifndef PRIVATE_MEM
226#define PRIVATE_MEM 2304
227#endif
228#define PRIVATE_mem ((unsigned)((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)))
229static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
230#endif
231
232#undef IEEE_Arith
233#undef Avoid_Underflow
234#ifdef IEEE_MC68k
235#define IEEE_Arith
236#endif
237#ifdef IEEE_8087
238#define IEEE_Arith
239#endif
240
241#ifdef IEEE_Arith
242#ifndef NO_INFNAN_CHECK
243#undef INFNAN_CHECK
244#define INFNAN_CHECK
245#endif
246#else
247#undef INFNAN_CHECK
248#define NO_STRTOD_BIGCOMP
249#endif
250
251#include "errno.h"
252
253#ifdef Bad_float_h
254
255#ifdef IEEE_Arith
256#define DBL_DIG 15
257#define DBL_MAX_10_EXP 308
258#define DBL_MAX_EXP 1024
259#define FLT_RADIX 2
260#endif /*IEEE_Arith*/
261
262#ifdef IBM
263#define DBL_DIG 16
264#define DBL_MAX_10_EXP 75
265#define DBL_MAX_EXP 63
266#define FLT_RADIX 16
267#define DBL_MAX 7.2370055773322621e+75
268#endif
269
270#ifdef VAX
271#define DBL_DIG 16
272#define DBL_MAX_10_EXP 38
273#define DBL_MAX_EXP 127
274#define FLT_RADIX 2
275#define DBL_MAX 1.7014118346046923e+38
276#endif
277
278#ifndef LONG_MAX
279#define LONG_MAX 2147483647
280#endif
281
282#else /* ifndef Bad_float_h */
283#include "float.h"
284#endif /* Bad_float_h */
285
286#ifndef __MATH_H__
287#include "math.h"
288#endif
289
290namespace dmg_fp {
291
292#ifndef CONST
293#ifdef KR_headers
294#define CONST /* blank */
295#else
296#define CONST const
297#endif
298#endif
299
300#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
301Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
302#endif
303
304typedef union { double d; ULong L[2]; } U;
305
306#ifdef IEEE_8087
307#define word0(x) (x)->L[1]
308#define word1(x) (x)->L[0]
309#else
310#define word0(x) (x)->L[0]
311#define word1(x) (x)->L[1]
312#endif
313#define dval(x) (x)->d
314
315#ifndef STRTOD_DIGLIM
316#define STRTOD_DIGLIM 40
317#endif
318
319#ifdef DIGLIM_DEBUG
320extern int strtod_diglim;
321#else
322#define strtod_diglim STRTOD_DIGLIM
323#endif
324
325/* The following definition of Storeinc is appropriate for MIPS processors.
326 * An alternative that might be better on some machines is
327 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
328 */
329#if defined(IEEE_8087) + defined(VAX)
330#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
331((unsigned short *)a)[0] = (unsigned short)c, a++)
332#else
333#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
334((unsigned short *)a)[1] = (unsigned short)c, a++)
335#endif
336
337/* #define P DBL_MANT_DIG */
338/* Ten_pmax = floor(P*log(2)/log(5)) */
339/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
340/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
341/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
342
343#ifdef IEEE_Arith
344#define Exp_shift  20
345#define Exp_shift1 20
346#define Exp_msk1    0x100000
347#define Exp_msk11   0x100000
348#define Exp_mask  0x7ff00000
349#define P 53
350#define Nbits 53
351#define Bias 1023
352#define Emax 1023
353#define Emin (-1022)
354#define Exp_1  0x3ff00000
355#define Exp_11 0x3ff00000
356#define Ebits 11
357#define Frac_mask  0xfffff
358#define Frac_mask1 0xfffff
359#define Ten_pmax 22
360#define Bletch 0x10
361#define Bndry_mask  0xfffff
362#define Bndry_mask1 0xfffff
363#define LSB 1
364#define Sign_bit 0x80000000
365#define Log2P 1
366#define Tiny0 0
367#define Tiny1 1
368#define Quick_max 14
369#define Int_max 14
370#ifndef NO_IEEE_Scale
371#define Avoid_Underflow
372#ifdef Flush_Denorm	/* debugging option */
373#undef Sudden_Underflow
374#endif
375#endif
376
377#ifndef Flt_Rounds
378#ifdef FLT_ROUNDS
379#define Flt_Rounds FLT_ROUNDS
380#else
381#define Flt_Rounds 1
382#endif
383#endif /*Flt_Rounds*/
384
385#ifdef Honor_FLT_ROUNDS
386#undef Check_FLT_ROUNDS
387#define Check_FLT_ROUNDS
388#else
389#define Rounding Flt_Rounds
390#endif
391
392#else /* ifndef IEEE_Arith */
393#undef Check_FLT_ROUNDS
394#undef Honor_FLT_ROUNDS
395#undef SET_INEXACT
396#undef  Sudden_Underflow
397#define Sudden_Underflow
398#ifdef IBM
399#undef Flt_Rounds
400#define Flt_Rounds 0
401#define Exp_shift  24
402#define Exp_shift1 24
403#define Exp_msk1   0x1000000
404#define Exp_msk11  0x1000000
405#define Exp_mask  0x7f000000
406#define P 14
407#define Nbits 56
408#define Bias 65
409#define Emax 248
410#define Emin (-260)
411#define Exp_1  0x41000000
412#define Exp_11 0x41000000
413#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
414#define Frac_mask  0xffffff
415#define Frac_mask1 0xffffff
416#define Bletch 4
417#define Ten_pmax 22
418#define Bndry_mask  0xefffff
419#define Bndry_mask1 0xffffff
420#define LSB 1
421#define Sign_bit 0x80000000
422#define Log2P 4
423#define Tiny0 0x100000
424#define Tiny1 0
425#define Quick_max 14
426#define Int_max 15
427#else /* VAX */
428#undef Flt_Rounds
429#define Flt_Rounds 1
430#define Exp_shift  23
431#define Exp_shift1 7
432#define Exp_msk1    0x80
433#define Exp_msk11   0x800000
434#define Exp_mask  0x7f80
435#define P 56
436#define Nbits 56
437#define Bias 129
438#define Emax 126
439#define Emin (-129)
440#define Exp_1  0x40800000
441#define Exp_11 0x4080
442#define Ebits 8
443#define Frac_mask  0x7fffff
444#define Frac_mask1 0xffff007f
445#define Ten_pmax 24
446#define Bletch 2
447#define Bndry_mask  0xffff007f
448#define Bndry_mask1 0xffff007f
449#define LSB 0x10000
450#define Sign_bit 0x8000
451#define Log2P 1
452#define Tiny0 0x80
453#define Tiny1 0
454#define Quick_max 15
455#define Int_max 15
456#endif /* IBM, VAX */
457#endif /* IEEE_Arith */
458
459#ifndef IEEE_Arith
460#define ROUND_BIASED
461#endif
462
463#ifdef RND_PRODQUOT
464#define rounded_product(a,b) a = rnd_prod(a, b)
465#define rounded_quotient(a,b) a = rnd_quot(a, b)
466#ifdef KR_headers
467extern double rnd_prod(), rnd_quot();
468#else
469extern double rnd_prod(double, double), rnd_quot(double, double);
470#endif
471#else
472#define rounded_product(a,b) a *= b
473#define rounded_quotient(a,b) a /= b
474#endif
475
476#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
477#define Big1 0xffffffff
478
479#ifndef Pack_32
480#define Pack_32
481#endif
482
483typedef struct BCinfo BCinfo;
484 struct
485BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
486
487#ifdef KR_headers
488#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
489#else
490#define FFFFFFFF 0xffffffffUL
491#endif
492
493#ifdef NO_LONG_LONG
494#undef ULLong
495#ifdef Just_16
496#undef Pack_32
497/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
498 * This makes some inner loops simpler and sometimes saves work
499 * during multiplications, but it often seems to make things slightly
500 * slower.  Hence the default is now to store 32 bits per Long.
501 */
502#endif
503#else	/* long long available */
504#ifndef Llong
505#define Llong long long
506#endif
507#ifndef ULLong
508#define ULLong unsigned Llong
509#endif
510#endif /* NO_LONG_LONG */
511
512#ifndef MULTIPLE_THREADS
513#define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
514#define FREE_DTOA_LOCK(n)	/*nothing*/
515#endif
516
517#define Kmax 7
518
519double strtod(const char *s00, char **se);
520char *dtoa(double d, int mode, int ndigits,
521			int *decpt, int *sign, char **rve);
522
523 struct
524Bigint {
525	struct Bigint *next;
526	int k, maxwds, sign, wds;
527	ULong x[1];
528	};
529
530 typedef struct Bigint Bigint;
531
532 static Bigint *freelist[Kmax+1];
533
534 static Bigint *
535Balloc
536#ifdef KR_headers
537	(k) int k;
538#else
539	(int k)
540#endif
541{
542	int x;
543	Bigint *rv;
544#ifndef Omit_Private_Memory
545	unsigned int len;
546#endif
547
548	ACQUIRE_DTOA_LOCK(0);
549	/* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
550	/* but this case seems very unlikely. */
551	if (k <= Kmax && (rv = freelist[k]))
552		freelist[k] = rv->next;
553	else {
554		x = 1 << k;
555#ifdef Omit_Private_Memory
556		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
557#else
558		len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
559			/sizeof(double);
560		if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
561			rv = (Bigint*)pmem_next;
562			pmem_next += len;
563			}
564		else
565			rv = (Bigint*)MALLOC(len*sizeof(double));
566#endif
567		rv->k = k;
568		rv->maxwds = x;
569		}
570	FREE_DTOA_LOCK(0);
571	rv->sign = rv->wds = 0;
572	return rv;
573	}
574
575 static void
576Bfree
577#ifdef KR_headers
578	(v) Bigint *v;
579#else
580	(Bigint *v)
581#endif
582{
583	if (v) {
584		if (v->k > Kmax)
585#ifdef FREE
586			FREE((void*)v);
587#else
588			free((void*)v);
589#endif
590		else {
591			ACQUIRE_DTOA_LOCK(0);
592			v->next = freelist[v->k];
593			freelist[v->k] = v;
594			FREE_DTOA_LOCK(0);
595			}
596		}
597	}
598
599#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
600y->wds*sizeof(Long) + 2*sizeof(int))
601
602 static Bigint *
603multadd
604#ifdef KR_headers
605	(b, m, a) Bigint *b; int m, a;
606#else
607	(Bigint *b, int m, int a)	/* multiply by m and add a */
608#endif
609{
610	int i, wds;
611#ifdef ULLong
612	ULong *x;
613	ULLong carry, y;
614#else
615	ULong carry, *x, y;
616#ifdef Pack_32
617	ULong xi, z;
618#endif
619#endif
620	Bigint *b1;
621
622	wds = b->wds;
623	x = b->x;
624	i = 0;
625	carry = a;
626	do {
627#ifdef ULLong
628		y = *x * (ULLong)m + carry;
629		carry = y >> 32;
630		*x++ = y & FFFFFFFF;
631#else
632#ifdef Pack_32
633		xi = *x;
634		y = (xi & 0xffff) * m + carry;
635		z = (xi >> 16) * m + (y >> 16);
636		carry = z >> 16;
637		*x++ = (z << 16) + (y & 0xffff);
638#else
639		y = *x * m + carry;
640		carry = y >> 16;
641		*x++ = y & 0xffff;
642#endif
643#endif
644		}
645		while(++i < wds);
646	if (carry) {
647		if (wds >= b->maxwds) {
648			b1 = Balloc(b->k+1);
649			Bcopy(b1, b);
650			Bfree(b);
651			b = b1;
652			}
653		b->x[wds++] = carry;
654		b->wds = wds;
655		}
656	return b;
657	}
658
659 static Bigint *
660s2b
661#ifdef KR_headers
662	(s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
663#else
664	(CONST char *s, int nd0, int nd, ULong y9, int dplen)
665#endif
666{
667	Bigint *b;
668	int i, k;
669	Long x, y;
670
671	x = (nd + 8) / 9;
672	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
673#ifdef Pack_32
674	b = Balloc(k);
675	b->x[0] = y9;
676	b->wds = 1;
677#else
678	b = Balloc(k+1);
679	b->x[0] = y9 & 0xffff;
680	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
681#endif
682
683	i = 9;
684	if (9 < nd0) {
685		s += 9;
686		do b = multadd(b, 10, *s++ - '0');
687			while(++i < nd0);
688		s += dplen;
689		}
690	else
691		s += dplen + 9;
692	for(; i < nd; i++)
693		b = multadd(b, 10, *s++ - '0');
694	return b;
695	}
696
697 static int
698hi0bits
699#ifdef KR_headers
700	(x) ULong x;
701#else
702	(ULong x)
703#endif
704{
705	int k = 0;
706
707	if (!(x & 0xffff0000)) {
708		k = 16;
709		x <<= 16;
710		}
711	if (!(x & 0xff000000)) {
712		k += 8;
713		x <<= 8;
714		}
715	if (!(x & 0xf0000000)) {
716		k += 4;
717		x <<= 4;
718		}
719	if (!(x & 0xc0000000)) {
720		k += 2;
721		x <<= 2;
722		}
723	if (!(x & 0x80000000)) {
724		k++;
725		if (!(x & 0x40000000))
726			return 32;
727		}
728	return k;
729	}
730
731 static int
732lo0bits
733#ifdef KR_headers
734	(y) ULong *y;
735#else
736	(ULong *y)
737#endif
738{
739	int k;
740	ULong x = *y;
741
742	if (x & 7) {
743		if (x & 1)
744			return 0;
745		if (x & 2) {
746			*y = x >> 1;
747			return 1;
748			}
749		*y = x >> 2;
750		return 2;
751		}
752	k = 0;
753	if (!(x & 0xffff)) {
754		k = 16;
755		x >>= 16;
756		}
757	if (!(x & 0xff)) {
758		k += 8;
759		x >>= 8;
760		}
761	if (!(x & 0xf)) {
762		k += 4;
763		x >>= 4;
764		}
765	if (!(x & 0x3)) {
766		k += 2;
767		x >>= 2;
768		}
769	if (!(x & 1)) {
770		k++;
771		x >>= 1;
772		if (!x)
773			return 32;
774		}
775	*y = x;
776	return k;
777	}
778
779 static Bigint *
780i2b
781#ifdef KR_headers
782	(i) int i;
783#else
784	(int i)
785#endif
786{
787	Bigint *b;
788
789	b = Balloc(1);
790	b->x[0] = i;
791	b->wds = 1;
792	return b;
793	}
794
795 static Bigint *
796mult
797#ifdef KR_headers
798	(a, b) Bigint *a, *b;
799#else
800	(Bigint *a, Bigint *b)
801#endif
802{
803	Bigint *c;
804	int k, wa, wb, wc;
805	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
806	ULong y;
807#ifdef ULLong
808	ULLong carry, z;
809#else
810	ULong carry, z;
811#ifdef Pack_32
812	ULong z2;
813#endif
814#endif
815
816	if (a->wds < b->wds) {
817		c = a;
818		a = b;
819		b = c;
820		}
821	k = a->k;
822	wa = a->wds;
823	wb = b->wds;
824	wc = wa + wb;
825	if (wc > a->maxwds)
826		k++;
827	c = Balloc(k);
828	for(x = c->x, xa = x + wc; x < xa; x++)
829		*x = 0;
830	xa = a->x;
831	xae = xa + wa;
832	xb = b->x;
833	xbe = xb + wb;
834	xc0 = c->x;
835#ifdef ULLong
836	for(; xb < xbe; xc0++) {
837		if ((y = *xb++)) {
838			x = xa;
839			xc = xc0;
840			carry = 0;
841			do {
842				z = *x++ * (ULLong)y + *xc + carry;
843				carry = z >> 32;
844				*xc++ = z & FFFFFFFF;
845				}
846				while(x < xae);
847			*xc = carry;
848			}
849		}
850#else
851#ifdef Pack_32
852	for(; xb < xbe; xb++, xc0++) {
853		if (y = *xb & 0xffff) {
854			x = xa;
855			xc = xc0;
856			carry = 0;
857			do {
858				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
859				carry = z >> 16;
860				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
861				carry = z2 >> 16;
862				Storeinc(xc, z2, z);
863				}
864				while(x < xae);
865			*xc = carry;
866			}
867		if (y = *xb >> 16) {
868			x = xa;
869			xc = xc0;
870			carry = 0;
871			z2 = *xc;
872			do {
873				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
874				carry = z >> 16;
875				Storeinc(xc, z, z2);
876				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
877				carry = z2 >> 16;
878				}
879				while(x < xae);
880			*xc = z2;
881			}
882		}
883#else
884	for(; xb < xbe; xc0++) {
885		if (y = *xb++) {
886			x = xa;
887			xc = xc0;
888			carry = 0;
889			do {
890				z = *x++ * y + *xc + carry;
891				carry = z >> 16;
892				*xc++ = z & 0xffff;
893				}
894				while(x < xae);
895			*xc = carry;
896			}
897		}
898#endif
899#endif
900	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
901	c->wds = wc;
902	return c;
903	}
904
905 static Bigint *p5s;
906
907 static Bigint *
908pow5mult
909#ifdef KR_headers
910	(b, k) Bigint *b; int k;
911#else
912	(Bigint *b, int k)
913#endif
914{
915	Bigint *b1, *p5, *p51;
916	int i;
917	static int p05[3] = { 5, 25, 125 };
918
919	if ((i = k & 3))
920		b = multadd(b, p05[i-1], 0);
921
922	if (!(k >>= 2))
923		return b;
924	if (!(p5 = p5s)) {
925		/* first time */
926#ifdef MULTIPLE_THREADS
927		ACQUIRE_DTOA_LOCK(1);
928		if (!(p5 = p5s)) {
929			p5 = p5s = i2b(625);
930			p5->next = 0;
931			}
932		FREE_DTOA_LOCK(1);
933#else
934		p5 = p5s = i2b(625);
935		p5->next = 0;
936#endif
937		}
938	for(;;) {
939		if (k & 1) {
940			b1 = mult(b, p5);
941			Bfree(b);
942			b = b1;
943			}
944		if (!(k >>= 1))
945			break;
946		if (!(p51 = p5->next)) {
947#ifdef MULTIPLE_THREADS
948			ACQUIRE_DTOA_LOCK(1);
949			if (!(p51 = p5->next)) {
950				p51 = p5->next = mult(p5,p5);
951				p51->next = 0;
952				}
953			FREE_DTOA_LOCK(1);
954#else
955			p51 = p5->next = mult(p5,p5);
956			p51->next = 0;
957#endif
958			}
959		p5 = p51;
960		}
961	return b;
962	}
963
964 static Bigint *
965lshift
966#ifdef KR_headers
967	(b, k) Bigint *b; int k;
968#else
969	(Bigint *b, int k)
970#endif
971{
972	int i, k1, n, n1;
973	Bigint *b1;
974	ULong *x, *x1, *xe, z;
975
976#ifdef Pack_32
977	n = k >> 5;
978#else
979	n = k >> 4;
980#endif
981	k1 = b->k;
982	n1 = n + b->wds + 1;
983	for(i = b->maxwds; n1 > i; i <<= 1)
984		k1++;
985	b1 = Balloc(k1);
986	x1 = b1->x;
987	for(i = 0; i < n; i++)
988		*x1++ = 0;
989	x = b->x;
990	xe = x + b->wds;
991#ifdef Pack_32
992	if (k &= 0x1f) {
993		k1 = 32 - k;
994		z = 0;
995		do {
996			*x1++ = *x << k | z;
997			z = *x++ >> k1;
998			}
999			while(x < xe);
1000		if ((*x1 = z))
1001			++n1;
1002		}
1003#else
1004	if (k &= 0xf) {
1005		k1 = 16 - k;
1006		z = 0;
1007		do {
1008			*x1++ = *x << k  & 0xffff | z;
1009			z = *x++ >> k1;
1010			}
1011			while(x < xe);
1012		if (*x1 = z)
1013			++n1;
1014		}
1015#endif
1016	else do
1017		*x1++ = *x++;
1018		while(x < xe);
1019	b1->wds = n1 - 1;
1020	Bfree(b);
1021	return b1;
1022	}
1023
1024 static int
1025cmp
1026#ifdef KR_headers
1027	(a, b) Bigint *a, *b;
1028#else
1029	(Bigint *a, Bigint *b)
1030#endif
1031{
1032	ULong *xa, *xa0, *xb, *xb0;
1033	int i, j;
1034
1035	i = a->wds;
1036	j = b->wds;
1037#ifdef DEBUG
1038	if (i > 1 && !a->x[i-1])
1039		Bug("cmp called with a->x[a->wds-1] == 0");
1040	if (j > 1 && !b->x[j-1])
1041		Bug("cmp called with b->x[b->wds-1] == 0");
1042#endif
1043	if (i -= j)
1044		return i;
1045	xa0 = a->x;
1046	xa = xa0 + j;
1047	xb0 = b->x;
1048	xb = xb0 + j;
1049	for(;;) {
1050		if (*--xa != *--xb)
1051			return *xa < *xb ? -1 : 1;
1052		if (xa <= xa0)
1053			break;
1054		}
1055	return 0;
1056	}
1057
1058 static Bigint *
1059diff
1060#ifdef KR_headers
1061	(a, b) Bigint *a, *b;
1062#else
1063	(Bigint *a, Bigint *b)
1064#endif
1065{
1066	Bigint *c;
1067	int i, wa, wb;
1068	ULong *xa, *xae, *xb, *xbe, *xc;
1069#ifdef ULLong
1070	ULLong borrow, y;
1071#else
1072	ULong borrow, y;
1073#ifdef Pack_32
1074	ULong z;
1075#endif
1076#endif
1077
1078	i = cmp(a,b);
1079	if (!i) {
1080		c = Balloc(0);
1081		c->wds = 1;
1082		c->x[0] = 0;
1083		return c;
1084		}
1085	if (i < 0) {
1086		c = a;
1087		a = b;
1088		b = c;
1089		i = 1;
1090		}
1091	else
1092		i = 0;
1093	c = Balloc(a->k);
1094	c->sign = i;
1095	wa = a->wds;
1096	xa = a->x;
1097	xae = xa + wa;
1098	wb = b->wds;
1099	xb = b->x;
1100	xbe = xb + wb;
1101	xc = c->x;
1102	borrow = 0;
1103#ifdef ULLong
1104	do {
1105		y = (ULLong)*xa++ - *xb++ - borrow;
1106		borrow = y >> 32 & (ULong)1;
1107		*xc++ = y & FFFFFFFF;
1108		}
1109		while(xb < xbe);
1110	while(xa < xae) {
1111		y = *xa++ - borrow;
1112		borrow = y >> 32 & (ULong)1;
1113		*xc++ = y & FFFFFFFF;
1114		}
1115#else
1116#ifdef Pack_32
1117	do {
1118		y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1119		borrow = (y & 0x10000) >> 16;
1120		z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1121		borrow = (z & 0x10000) >> 16;
1122		Storeinc(xc, z, y);
1123		}
1124		while(xb < xbe);
1125	while(xa < xae) {
1126		y = (*xa & 0xffff) - borrow;
1127		borrow = (y & 0x10000) >> 16;
1128		z = (*xa++ >> 16) - borrow;
1129		borrow = (z & 0x10000) >> 16;
1130		Storeinc(xc, z, y);
1131		}
1132#else
1133	do {
1134		y = *xa++ - *xb++ - borrow;
1135		borrow = (y & 0x10000) >> 16;
1136		*xc++ = y & 0xffff;
1137		}
1138		while(xb < xbe);
1139	while(xa < xae) {
1140		y = *xa++ - borrow;
1141		borrow = (y & 0x10000) >> 16;
1142		*xc++ = y & 0xffff;
1143		}
1144#endif
1145#endif
1146	while(!*--xc)
1147		wa--;
1148	c->wds = wa;
1149	return c;
1150	}
1151
1152 static double
1153ulp
1154#ifdef KR_headers
1155	(x) U *x;
1156#else
1157	(U *x)
1158#endif
1159{
1160	Long L;
1161	U u;
1162
1163	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1164#ifndef Avoid_Underflow
1165#ifndef Sudden_Underflow
1166	if (L > 0) {
1167#endif
1168#endif
1169#ifdef IBM
1170		L |= Exp_msk1 >> 4;
1171#endif
1172		word0(&u) = L;
1173		word1(&u) = 0;
1174#ifndef Avoid_Underflow
1175#ifndef Sudden_Underflow
1176		}
1177	else {
1178		L = -L >> Exp_shift;
1179		if (L < Exp_shift) {
1180			word0(&u) = 0x80000 >> L;
1181			word1(&u) = 0;
1182			}
1183		else {
1184			word0(&u) = 0;
1185			L -= Exp_shift;
1186			word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1187			}
1188		}
1189#endif
1190#endif
1191	return dval(&u);
1192	}
1193
1194 static double
1195b2d
1196#ifdef KR_headers
1197	(a, e) Bigint *a; int *e;
1198#else
1199	(Bigint *a, int *e)
1200#endif
1201{
1202	ULong *xa, *xa0, w, y, z;
1203	int k;
1204	U d;
1205#ifdef VAX
1206	ULong d0, d1;
1207#else
1208#define d0 word0(&d)
1209#define d1 word1(&d)
1210#endif
1211
1212	xa0 = a->x;
1213	xa = xa0 + a->wds;
1214	y = *--xa;
1215#ifdef DEBUG
1216	if (!y) Bug("zero y in b2d");
1217#endif
1218	k = hi0bits(y);
1219	*e = 32 - k;
1220#ifdef Pack_32
1221	if (k < Ebits) {
1222		d0 = Exp_1 | y >> (Ebits - k);
1223		w = xa > xa0 ? *--xa : 0;
1224		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1225		goto ret_d;
1226		}
1227	z = xa > xa0 ? *--xa : 0;
1228	if (k -= Ebits) {
1229		d0 = Exp_1 | y << k | z >> (32 - k);
1230		y = xa > xa0 ? *--xa : 0;
1231		d1 = z << k | y >> (32 - k);
1232		}
1233	else {
1234		d0 = Exp_1 | y;
1235		d1 = z;
1236		}
1237#else
1238	if (k < Ebits + 16) {
1239		z = xa > xa0 ? *--xa : 0;
1240		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1241		w = xa > xa0 ? *--xa : 0;
1242		y = xa > xa0 ? *--xa : 0;
1243		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1244		goto ret_d;
1245		}
1246	z = xa > xa0 ? *--xa : 0;
1247	w = xa > xa0 ? *--xa : 0;
1248	k -= Ebits + 16;
1249	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1250	y = xa > xa0 ? *--xa : 0;
1251	d1 = w << k + 16 | y << k;
1252#endif
1253 ret_d:
1254#ifdef VAX
1255	word0(&d) = d0 >> 16 | d0 << 16;
1256	word1(&d) = d1 >> 16 | d1 << 16;
1257#else
1258#undef d0
1259#undef d1
1260#endif
1261	return dval(&d);
1262	}
1263
1264 static Bigint *
1265d2b
1266#ifdef KR_headers
1267	(d, e, bits) U *d; int *e, *bits;
1268#else
1269	(U *d, int *e, int *bits)
1270#endif
1271{
1272	Bigint *b;
1273	int de, k;
1274	ULong *x, y, z;
1275#ifndef Sudden_Underflow
1276	int i;
1277#endif
1278#ifdef VAX
1279	ULong d0, d1;
1280	d0 = word0(d) >> 16 | word0(d) << 16;
1281	d1 = word1(d) >> 16 | word1(d) << 16;
1282#else
1283#define d0 word0(d)
1284#define d1 word1(d)
1285#endif
1286
1287#ifdef Pack_32
1288	b = Balloc(1);
1289#else
1290	b = Balloc(2);
1291#endif
1292	x = b->x;
1293
1294	z = d0 & Frac_mask;
1295	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
1296#ifdef Sudden_Underflow
1297	de = (int)(d0 >> Exp_shift);
1298#ifndef IBM
1299	z |= Exp_msk11;
1300#endif
1301#else
1302	if ((de = (int)(d0 >> Exp_shift)))
1303		z |= Exp_msk1;
1304#endif
1305#ifdef Pack_32
1306	if ((y = d1)) {
1307		if ((k = lo0bits(&y))) {
1308			x[0] = y | z << (32 - k);
1309			z >>= k;
1310			}
1311		else
1312			x[0] = y;
1313#ifndef Sudden_Underflow
1314		i =
1315#endif
1316		    b->wds = (x[1] = z) ? 2 : 1;
1317		}
1318	else {
1319		k = lo0bits(&z);
1320		x[0] = z;
1321#ifndef Sudden_Underflow
1322		i =
1323#endif
1324		    b->wds = 1;
1325		k += 32;
1326		}
1327#else
1328	if (y = d1) {
1329		if (k = lo0bits(&y))
1330			if (k >= 16) {
1331				x[0] = y | z << 32 - k & 0xffff;
1332				x[1] = z >> k - 16 & 0xffff;
1333				x[2] = z >> k;
1334				i = 2;
1335				}
1336			else {
1337				x[0] = y & 0xffff;
1338				x[1] = y >> 16 | z << 16 - k & 0xffff;
1339				x[2] = z >> k & 0xffff;
1340				x[3] = z >> k+16;
1341				i = 3;
1342				}
1343		else {
1344			x[0] = y & 0xffff;
1345			x[1] = y >> 16;
1346			x[2] = z & 0xffff;
1347			x[3] = z >> 16;
1348			i = 3;
1349			}
1350		}
1351	else {
1352#ifdef DEBUG
1353		if (!z)
1354			Bug("Zero passed to d2b");
1355#endif
1356		k = lo0bits(&z);
1357		if (k >= 16) {
1358			x[0] = z;
1359			i = 0;
1360			}
1361		else {
1362			x[0] = z & 0xffff;
1363			x[1] = z >> 16;
1364			i = 1;
1365			}
1366		k += 32;
1367		}
1368	while(!x[i])
1369		--i;
1370	b->wds = i + 1;
1371#endif
1372#ifndef Sudden_Underflow
1373	if (de) {
1374#endif
1375#ifdef IBM
1376		*e = (de - Bias - (P-1) << 2) + k;
1377		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1378#else
1379		*e = de - Bias - (P-1) + k;
1380		*bits = P - k;
1381#endif
1382#ifndef Sudden_Underflow
1383		}
1384	else {
1385		*e = de - Bias - (P-1) + 1 + k;
1386#ifdef Pack_32
1387		*bits = 32*i - hi0bits(x[i-1]);
1388#else
1389		*bits = (i+2)*16 - hi0bits(x[i]);
1390#endif
1391		}
1392#endif
1393	return b;
1394	}
1395#undef d0
1396#undef d1
1397
1398 static double
1399ratio
1400#ifdef KR_headers
1401	(a, b) Bigint *a, *b;
1402#else
1403	(Bigint *a, Bigint *b)
1404#endif
1405{
1406	U da, db;
1407	int k, ka, kb;
1408
1409	dval(&da) = b2d(a, &ka);
1410	dval(&db) = b2d(b, &kb);
1411#ifdef Pack_32
1412	k = ka - kb + 32*(a->wds - b->wds);
1413#else
1414	k = ka - kb + 16*(a->wds - b->wds);
1415#endif
1416#ifdef IBM
1417	if (k > 0) {
1418		word0(&da) += (k >> 2)*Exp_msk1;
1419		if (k &= 3)
1420			dval(&da) *= 1 << k;
1421		}
1422	else {
1423		k = -k;
1424		word0(&db) += (k >> 2)*Exp_msk1;
1425		if (k &= 3)
1426			dval(&db) *= 1 << k;
1427		}
1428#else
1429	if (k > 0)
1430		word0(&da) += k*Exp_msk1;
1431	else {
1432		k = -k;
1433		word0(&db) += k*Exp_msk1;
1434		}
1435#endif
1436	return dval(&da) / dval(&db);
1437	}
1438
1439 static CONST double
1440tens[] = {
1441		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1442		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1443		1e20, 1e21, 1e22
1444#ifdef VAX
1445		, 1e23, 1e24
1446#endif
1447		};
1448
1449 static CONST double
1450#ifdef IEEE_Arith
1451bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1452static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1453#ifdef Avoid_Underflow
1454		9007199254740992.*9007199254740992.e-256
1455		/* = 2^106 * 1e-256 */
1456#else
1457		1e-256
1458#endif
1459		};
1460/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1461/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1462#define Scale_Bit 0x10
1463#define n_bigtens 5
1464#else
1465#ifdef IBM
1466bigtens[] = { 1e16, 1e32, 1e64 };
1467static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1468#define n_bigtens 3
1469#else
1470bigtens[] = { 1e16, 1e32 };
1471static CONST double tinytens[] = { 1e-16, 1e-32 };
1472#define n_bigtens 2
1473#endif
1474#endif
1475
1476#undef Need_Hexdig
1477#ifdef INFNAN_CHECK
1478#ifndef No_Hex_NaN
1479#define Need_Hexdig
1480#endif
1481#endif
1482
1483#ifndef Need_Hexdig
1484#ifndef NO_HEX_FP
1485#define Need_Hexdig
1486#endif
1487#endif
1488
1489#ifdef Need_Hexdig /*{*/
1490static unsigned char hexdig[256];
1491
1492 static void
1493#ifdef KR_headers
1494htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc;
1495#else
1496htinit(unsigned char *h, unsigned char *s, int inc)
1497#endif
1498{
1499	int i, j;
1500	for(i = 0; (j = s[i]) !=0; i++)
1501		h[j] = i + inc;
1502	}
1503
1504 static void
1505#ifdef KR_headers
1506hexdig_init()
1507#else
1508hexdig_init(void)
1509#endif
1510{
1511#define USC (unsigned char *)
1512	htinit(hexdig, USC "0123456789", 0x10);
1513	htinit(hexdig, USC "abcdef", 0x10 + 10);
1514	htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1515	}
1516#endif /* } Need_Hexdig */
1517
1518#ifdef INFNAN_CHECK
1519
1520#ifndef NAN_WORD0
1521#define NAN_WORD0 0x7ff80000
1522#endif
1523
1524#ifndef NAN_WORD1
1525#define NAN_WORD1 0
1526#endif
1527
1528 static int
1529match
1530#ifdef KR_headers
1531	(sp, t) char **sp, *t;
1532#else
1533	(CONST char **sp, CONST char *t)
1534#endif
1535{
1536	int c, d;
1537	CONST char *s = *sp;
1538
1539	while((d = *t++)) {
1540		if ((c = *++s) >= 'A' && c <= 'Z')
1541			c += 'a' - 'A';
1542		if (c != d)
1543			return 0;
1544		}
1545	*sp = s + 1;
1546	return 1;
1547	}
1548
1549#ifndef No_Hex_NaN
1550 static void
1551hexnan
1552#ifdef KR_headers
1553	(rvp, sp) U *rvp; CONST char **sp;
1554#else
1555	(U *rvp, CONST char **sp)
1556#endif
1557{
1558	ULong c, x[2];
1559	CONST char *s;
1560	int c1, havedig, udx0, xshift;
1561
1562	if (!hexdig['0'])
1563		hexdig_init();
1564	x[0] = x[1] = 0;
1565	havedig = xshift = 0;
1566	udx0 = 1;
1567	s = *sp;
1568	/* allow optional initial 0x or 0X */
1569	while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1570		++s;
1571	if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1572		s += 2;
1573	while((c = *(CONST unsigned char*)++s)) {
1574		if ((c1 = hexdig[c]))
1575			c  = c1 & 0xf;
1576		else if (c <= ' ') {
1577			if (udx0 && havedig) {
1578				udx0 = 0;
1579				xshift = 1;
1580				}
1581			continue;
1582			}
1583#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1584		else if (/*(*/ c == ')' && havedig) {
1585			*sp = s + 1;
1586			break;
1587			}
1588		else
1589			return;	/* invalid form: don't change *sp */
1590#else
1591		else {
1592			do {
1593				if (/*(*/ c == ')') {
1594					*sp = s + 1;
1595					break;
1596					}
1597				} while((c = *++s));
1598			break;
1599			}
1600#endif
1601		havedig = 1;
1602		if (xshift) {
1603			xshift = 0;
1604			x[0] = x[1];
1605			x[1] = 0;
1606			}
1607		if (udx0)
1608			x[0] = (x[0] << 4) | (x[1] >> 28);
1609		x[1] = (x[1] << 4) | c;
1610		}
1611	if ((x[0] &= 0xfffff) || x[1]) {
1612		word0(rvp) = Exp_mask | x[0];
1613		word1(rvp) = x[1];
1614		}
1615	}
1616#endif /*No_Hex_NaN*/
1617#endif /* INFNAN_CHECK */
1618
1619#ifdef Pack_32
1620#define ULbits 32
1621#define kshift 5
1622#define kmask 31
1623#else
1624#define ULbits 16
1625#define kshift 4
1626#define kmask 15
1627#endif
1628#ifndef NO_HEX_FP /*{*/
1629
1630 static void
1631#ifdef KR_headers
1632rshift(b, k) Bigint *b; int k;
1633#else
1634rshift(Bigint *b, int k)
1635#endif
1636{
1637	ULong *x, *x1, *xe, y;
1638	int n;
1639
1640	x = x1 = b->x;
1641	n = k >> kshift;
1642	if (n < b->wds) {
1643		xe = x + b->wds;
1644		x += n;
1645		if (k &= kmask) {
1646			n = 32 - k;
1647			y = *x++ >> k;
1648			while(x < xe) {
1649				*x1++ = (y | (*x << n)) & 0xffffffff;
1650				y = *x++ >> k;
1651				}
1652			if ((*x1 = y) !=0)
1653				x1++;
1654			}
1655		else
1656			while(x < xe)
1657				*x1++ = *x++;
1658		}
1659	if ((b->wds = x1 - b->x) == 0)
1660		b->x[0] = 0;
1661	}
1662
1663 static ULong
1664#ifdef KR_headers
1665any_on(b, k) Bigint *b; int k;
1666#else
1667any_on(Bigint *b, int k)
1668#endif
1669{
1670	int n, nwds;
1671	ULong *x, *x0, x1, x2;
1672
1673	x = b->x;
1674	nwds = b->wds;
1675	n = k >> kshift;
1676	if (n > nwds)
1677		n = nwds;
1678	else if (n < nwds && (k &= kmask)) {
1679		x1 = x2 = x[n];
1680		x1 >>= k;
1681		x1 <<= k;
1682		if (x1 != x2)
1683			return 1;
1684		}
1685	x0 = x;
1686	x += n;
1687	while(x > x0)
1688		if (*--x)
1689			return 1;
1690	return 0;
1691	}
1692
1693enum {	/* rounding values: same as FLT_ROUNDS */
1694	Round_zero = 0,
1695	Round_near = 1,
1696	Round_up = 2,
1697	Round_down = 3
1698	};
1699
1700 static Bigint *
1701#ifdef KR_headers
1702increment(b) Bigint *b;
1703#else
1704increment(Bigint *b)
1705#endif
1706{
1707	ULong *x, *xe;
1708	Bigint *b1;
1709
1710	x = b->x;
1711	xe = x + b->wds;
1712	do {
1713		if (*x < (ULong)0xffffffffL) {
1714			++*x;
1715			return b;
1716			}
1717		*x++ = 0;
1718		} while(x < xe);
1719	{
1720		if (b->wds >= b->maxwds) {
1721			b1 = Balloc(b->k+1);
1722			Bcopy(b1,b);
1723			Bfree(b);
1724			b = b1;
1725			}
1726		b->x[b->wds++] = 1;
1727		}
1728	return b;
1729	}
1730
1731 void
1732#ifdef KR_headers
1733gethex(sp, rvp, rounding, sign)
1734	CONST char **sp; U *rvp; int rounding, sign;
1735#else
1736gethex( CONST char **sp, U *rvp, int rounding, int sign)
1737#endif
1738{
1739	Bigint *b;
1740	CONST unsigned char *decpt, *s0, *s, *s1;
1741	Long e, e1;
1742	ULong L, lostbits, *x;
1743	int big, denorm, esign, havedig, k, n, nbits, up, zret;
1744#ifdef IBM
1745	int j;
1746#endif
1747	enum {
1748#ifdef IEEE_Arith /*{{*/
1749		emax = 0x7fe - Bias - P + 1,
1750		emin = Emin - P + 1
1751#else /*}{*/
1752		emin = Emin - P,
1753#ifdef VAX
1754		emax = 0x7ff - Bias - P + 1
1755#endif
1756#ifdef IBM
1757		emax = 0x7f - Bias - P
1758#endif
1759#endif /*}}*/
1760		};
1761#ifdef USE_LOCALE
1762	int i;
1763#ifdef NO_LOCALE_CACHE
1764	const unsigned char *decimalpoint = (unsigned char*)
1765		localeconv()->decimal_point;
1766#else
1767	const unsigned char *decimalpoint;
1768	static unsigned char *decimalpoint_cache;
1769	if (!(s0 = decimalpoint_cache)) {
1770		s0 = (unsigned char*)localeconv()->decimal_point;
1771		if ((decimalpoint_cache = (unsigned char*)
1772				MALLOC(strlen((CONST char*)s0) + 1))) {
1773			strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1774			s0 = decimalpoint_cache;
1775			}
1776		}
1777	decimalpoint = s0;
1778#endif
1779#endif
1780
1781	if (!hexdig['0'])
1782		hexdig_init();
1783	havedig = 0;
1784	s0 = *(CONST unsigned char **)sp + 2;
1785	while(s0[havedig] == '0')
1786		havedig++;
1787	s0 += havedig;
1788	s = s0;
1789	decpt = 0;
1790	zret = 0;
1791	e = 0;
1792	if (hexdig[*s])
1793		havedig++;
1794	else {
1795		zret = 1;
1796#ifdef USE_LOCALE
1797		for(i = 0; decimalpoint[i]; ++i) {
1798			if (s[i] != decimalpoint[i])
1799				goto pcheck;
1800			}
1801		decpt = s += i;
1802#else
1803		if (*s != '.')
1804			goto pcheck;
1805		decpt = ++s;
1806#endif
1807		if (!hexdig[*s])
1808			goto pcheck;
1809		while(*s == '0')
1810			s++;
1811		if (hexdig[*s])
1812			zret = 0;
1813		havedig = 1;
1814		s0 = s;
1815		}
1816	while(hexdig[*s])
1817		s++;
1818#ifdef USE_LOCALE
1819	if (*s == *decimalpoint && !decpt) {
1820		for(i = 1; decimalpoint[i]; ++i) {
1821			if (s[i] != decimalpoint[i])
1822				goto pcheck;
1823			}
1824		decpt = s += i;
1825#else
1826	if (*s == '.' && !decpt) {
1827		decpt = ++s;
1828#endif
1829		while(hexdig[*s])
1830			s++;
1831		}/*}*/
1832	if (decpt)
1833		e = -(((Long)(s-decpt)) << 2);
1834 pcheck:
1835	s1 = s;
1836	big = esign = 0;
1837	switch(*s) {
1838	  case 'p':
1839	  case 'P':
1840		switch(*++s) {
1841		  case '-':
1842			esign = 1;
1843			/* no break */
1844		  case '+':
1845			s++;
1846		  }
1847		if ((n = hexdig[*s]) == 0 || n > 0x19) {
1848			s = s1;
1849			break;
1850			}
1851		e1 = n - 0x10;
1852		while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1853			if (e1 & 0xf8000000)
1854				big = 1;
1855			e1 = 10*e1 + n - 0x10;
1856			}
1857		if (esign)
1858			e1 = -e1;
1859		e += e1;
1860	  }
1861	*sp = (char*)s;
1862	if (!havedig)
1863		*sp = (char*)s0 - 1;
1864	if (zret)
1865		goto retz1;
1866	if (big) {
1867		if (esign) {
1868#ifdef IEEE_Arith
1869			switch(rounding) {
1870			  case Round_up:
1871				if (sign)
1872					break;
1873				goto ret_tiny;
1874			  case Round_down:
1875				if (!sign)
1876					break;
1877				goto ret_tiny;
1878			  }
1879#endif
1880			goto retz;
1881#ifdef IEEE_Arith
1882 ret_tiny:
1883#ifndef NO_ERRNO
1884			errno = ERANGE;
1885#endif
1886			word0(rvp) = 0;
1887			word1(rvp) = 1;
1888			return;
1889#endif /* IEEE_Arith */
1890			}
1891		switch(rounding) {
1892		  case Round_near:
1893			goto ovfl1;
1894		  case Round_up:
1895			if (!sign)
1896				goto ovfl1;
1897			goto ret_big;
1898		  case Round_down:
1899			if (sign)
1900				goto ovfl1;
1901			goto ret_big;
1902		  }
1903 ret_big:
1904		word0(rvp) = Big0;
1905		word1(rvp) = Big1;
1906		return;
1907		}
1908	n = s1 - s0 - 1;
1909	for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1910		k++;
1911	b = Balloc(k);
1912	x = b->x;
1913	n = 0;
1914	L = 0;
1915#ifdef USE_LOCALE
1916	for(i = 0; decimalpoint[i+1]; ++i);
1917#endif
1918	while(s1 > s0) {
1919#ifdef USE_LOCALE
1920		if (*--s1 == decimalpoint[i]) {
1921			s1 -= i;
1922			continue;
1923			}
1924#else
1925		if (*--s1 == '.')
1926			continue;
1927#endif
1928		if (n == ULbits) {
1929			*x++ = L;
1930			L = 0;
1931			n = 0;
1932			}
1933		L |= (hexdig[*s1] & 0x0f) << n;
1934		n += 4;
1935		}
1936	*x++ = L;
1937	b->wds = n = x - b->x;
1938	n = ULbits*n - hi0bits(L);
1939	nbits = Nbits;
1940	lostbits = 0;
1941	x = b->x;
1942	if (n > nbits) {
1943		n -= nbits;
1944		if (any_on(b,n)) {
1945			lostbits = 1;
1946			k = n - 1;
1947			if (x[k>>kshift] & 1 << (k & kmask)) {
1948				lostbits = 2;
1949				if (k > 0 && any_on(b,k))
1950					lostbits = 3;
1951				}
1952			}
1953		rshift(b, n);
1954		e += n;
1955		}
1956	else if (n < nbits) {
1957		n = nbits - n;
1958		b = lshift(b, n);
1959		e -= n;
1960		x = b->x;
1961		}
1962	if (e > Emax) {
1963 ovfl:
1964		Bfree(b);
1965 ovfl1:
1966#ifndef NO_ERRNO
1967		errno = ERANGE;
1968#endif
1969		word0(rvp) = Exp_mask;
1970		word1(rvp) = 0;
1971		return;
1972		}
1973	denorm = 0;
1974	if (e < emin) {
1975		denorm = 1;
1976		n = emin - e;
1977		if (n >= nbits) {
1978#ifdef IEEE_Arith /*{*/
1979			switch (rounding) {
1980			  case Round_near:
1981				if (n == nbits && (n < 2 || any_on(b,n-1)))
1982					goto ret_tiny;
1983				break;
1984			  case Round_up:
1985				if (!sign)
1986					goto ret_tiny;
1987				break;
1988			  case Round_down:
1989				if (sign)
1990					goto ret_tiny;
1991			  }
1992#endif /* } IEEE_Arith */
1993			Bfree(b);
1994 retz:
1995#ifndef NO_ERRNO
1996			errno = ERANGE;
1997#endif
1998 retz1:
1999			rvp->d = 0.;
2000			return;
2001			}
2002		k = n - 1;
2003		if (lostbits)
2004			lostbits = 1;
2005		else if (k > 0)
2006			lostbits = any_on(b,k);
2007		if (x[k>>kshift] & 1 << (k & kmask))
2008			lostbits |= 2;
2009		nbits -= n;
2010		rshift(b,n);
2011		e = emin;
2012		}
2013	if (lostbits) {
2014		up = 0;
2015		switch(rounding) {
2016		  case Round_zero:
2017			break;
2018		  case Round_near:
2019			if (lostbits & 2
2020			 && (lostbits & 1) | (x[0] & 1))
2021				up = 1;
2022			break;
2023		  case Round_up:
2024			up = 1 - sign;
2025			break;
2026		  case Round_down:
2027			up = sign;
2028		  }
2029		if (up) {
2030			k = b->wds;
2031			b = increment(b);
2032			x = b->x;
2033			if (denorm) {
2034#if 0
2035				if (nbits == Nbits - 1
2036				 && x[nbits >> kshift] & 1 << (nbits & kmask))
2037					denorm = 0; /* not currently used */
2038#endif
2039				}
2040			else if (b->wds > k
2041			 || ((n = nbits & kmask) !=0
2042			     && hi0bits(x[k-1]) < 32-n)) {
2043				rshift(b,1);
2044				if (++e > Emax)
2045					goto ovfl;
2046				}
2047			}
2048		}
2049#ifdef IEEE_Arith
2050	if (denorm)
2051		word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2052	else
2053		word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2054	word1(rvp) = b->x[0];
2055#endif
2056#ifdef IBM
2057	if ((j = e & 3)) {
2058		k = b->x[0] & ((1 << j) - 1);
2059		rshift(b,j);
2060		if (k) {
2061			switch(rounding) {
2062			  case Round_up:
2063				if (!sign)
2064					increment(b);
2065				break;
2066			  case Round_down:
2067				if (sign)
2068					increment(b);
2069				break;
2070			  case Round_near:
2071				j = 1 << (j-1);
2072				if (k & j && ((k & (j-1)) | lostbits))
2073					increment(b);
2074			  }
2075			}
2076		}
2077	e >>= 2;
2078	word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2079	word1(rvp) = b->x[0];
2080#endif
2081#ifdef VAX
2082	/* The next two lines ignore swap of low- and high-order 2 bytes. */
2083	/* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2084	/* word1(rvp) = b->x[0]; */
2085	word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2086	word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2087#endif
2088	Bfree(b);
2089	}
2090#endif /*}!NO_HEX_FP*/
2091
2092 static int
2093#ifdef KR_headers
2094dshift(b, p2) Bigint *b; int p2;
2095#else
2096dshift(Bigint *b, int p2)
2097#endif
2098{
2099	int rv = hi0bits(b->x[b->wds-1]) - 4;
2100	if (p2 > 0)
2101		rv -= p2;
2102	return rv & kmask;
2103	}
2104
2105 static int
2106quorem
2107#ifdef KR_headers
2108	(b, S) Bigint *b, *S;
2109#else
2110	(Bigint *b, Bigint *S)
2111#endif
2112{
2113	int n;
2114	ULong *bx, *bxe, q, *sx, *sxe;
2115#ifdef ULLong
2116	ULLong borrow, carry, y, ys;
2117#else
2118	ULong borrow, carry, y, ys;
2119#ifdef Pack_32
2120	ULong si, z, zs;
2121#endif
2122#endif
2123
2124	n = S->wds;
2125#ifdef DEBUG
2126	/*debug*/ if (b->wds > n)
2127	/*debug*/	Bug("oversize b in quorem");
2128#endif
2129	if (b->wds < n)
2130		return 0;
2131	sx = S->x;
2132	sxe = sx + --n;
2133	bx = b->x;
2134	bxe = bx + n;
2135	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
2136#ifdef DEBUG
2137	/*debug*/ if (q > 9)
2138	/*debug*/	Bug("oversized quotient in quorem");
2139#endif
2140	if (q) {
2141		borrow = 0;
2142		carry = 0;
2143		do {
2144#ifdef ULLong
2145			ys = *sx++ * (ULLong)q + carry;
2146			carry = ys >> 32;
2147			y = *bx - (ys & FFFFFFFF) - borrow;
2148			borrow = y >> 32 & (ULong)1;
2149			*bx++ = y & FFFFFFFF;
2150#else
2151#ifdef Pack_32
2152			si = *sx++;
2153			ys = (si & 0xffff) * q + carry;
2154			zs = (si >> 16) * q + (ys >> 16);
2155			carry = zs >> 16;
2156			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2157			borrow = (y & 0x10000) >> 16;
2158			z = (*bx >> 16) - (zs & 0xffff) - borrow;
2159			borrow = (z & 0x10000) >> 16;
2160			Storeinc(bx, z, y);
2161#else
2162			ys = *sx++ * q + carry;
2163			carry = ys >> 16;
2164			y = *bx - (ys & 0xffff) - borrow;
2165			borrow = (y & 0x10000) >> 16;
2166			*bx++ = y & 0xffff;
2167#endif
2168#endif
2169			}
2170			while(sx <= sxe);
2171		if (!*bxe) {
2172			bx = b->x;
2173			while(--bxe > bx && !*bxe)
2174				--n;
2175			b->wds = n;
2176			}
2177		}
2178	if (cmp(b, S) >= 0) {
2179		q++;
2180		borrow = 0;
2181		carry = 0;
2182		bx = b->x;
2183		sx = S->x;
2184		do {
2185#ifdef ULLong
2186			ys = *sx++ + carry;
2187			carry = ys >> 32;
2188			y = *bx - (ys & FFFFFFFF) - borrow;
2189			borrow = y >> 32 & (ULong)1;
2190			*bx++ = y & FFFFFFFF;
2191#else
2192#ifdef Pack_32
2193			si = *sx++;
2194			ys = (si & 0xffff) + carry;
2195			zs = (si >> 16) + (ys >> 16);
2196			carry = zs >> 16;
2197			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2198			borrow = (y & 0x10000) >> 16;
2199			z = (*bx >> 16) - (zs & 0xffff) - borrow;
2200			borrow = (z & 0x10000) >> 16;
2201			Storeinc(bx, z, y);
2202#else
2203			ys = *sx++ + carry;
2204			carry = ys >> 16;
2205			y = *bx - (ys & 0xffff) - borrow;
2206			borrow = (y & 0x10000) >> 16;
2207			*bx++ = y & 0xffff;
2208#endif
2209#endif
2210			}
2211			while(sx <= sxe);
2212		bx = b->x;
2213		bxe = bx + n;
2214		if (!*bxe) {
2215			while(--bxe > bx && !*bxe)
2216				--n;
2217			b->wds = n;
2218			}
2219		}
2220	return q;
2221	}
2222
2223#ifndef NO_STRTOD_BIGCOMP
2224
2225 static void
2226bigcomp
2227#ifdef KR_headers
2228	(rv, s0, bc)
2229	U *rv; CONST char *s0; BCinfo *bc;
2230#else
2231	(U *rv, CONST char *s0, BCinfo *bc)
2232#endif
2233{
2234	Bigint *b, *d;
2235	int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2236
2237	dsign = bc->dsign;
2238	nd = bc->nd;
2239	nd0 = bc->nd0;
2240	p5 = nd + bc->e0 - 1;
2241	dd = speccase = 0;
2242#ifndef Sudden_Underflow
2243	if (rv->d == 0.) {	/* special case: value near underflow-to-zero */
2244				/* threshold was rounded to zero */
2245		b = i2b(1);
2246		p2 = Emin - P + 1;
2247		bbits = 1;
2248#ifdef Avoid_Underflow
2249		word0(rv) = (P+2) << Exp_shift;
2250#else
2251		word1(rv) = 1;
2252#endif
2253		i = 0;
2254#ifdef Honor_FLT_ROUNDS
2255		if (bc->rounding == 1)
2256#endif
2257			{
2258			speccase = 1;
2259			--p2;
2260			dsign = 0;
2261			goto have_i;
2262			}
2263		}
2264	else
2265#endif
2266		b = d2b(rv, &p2, &bbits);
2267#ifdef Avoid_Underflow
2268	p2 -= bc->scale;
2269#endif
2270	/* floor(log2(rv)) == bbits - 1 + p2 */
2271	/* Check for denormal case. */
2272	i = P - bbits;
2273	if (i > (j = P - Emin - 1 + p2)) {
2274#ifdef Sudden_Underflow
2275		Bfree(b);
2276		b = i2b(1);
2277		p2 = Emin;
2278		i = P - 1;
2279#ifdef Avoid_Underflow
2280		word0(rv) = (1 + bc->scale) << Exp_shift;
2281#else
2282		word0(rv) = Exp_msk1;
2283#endif
2284		word1(rv) = 0;
2285#else
2286		i = j;
2287#endif
2288		}
2289#ifdef Honor_FLT_ROUNDS
2290	if (bc->rounding != 1) {
2291		if (i > 0)
2292			b = lshift(b, i);
2293		if (dsign)
2294			b = increment(b);
2295		}
2296	else
2297#endif
2298		{
2299		b = lshift(b, ++i);
2300		b->x[0] |= 1;
2301		}
2302#ifndef Sudden_Underflow
2303 have_i:
2304#endif
2305	p2 -= p5 + i;
2306	d = i2b(1);
2307	/* Arrange for convenient computation of quotients:
2308	 * shift left if necessary so divisor has 4 leading 0 bits.
2309	 */
2310	if (p5 > 0)
2311		d = pow5mult(d, p5);
2312	else if (p5 < 0)
2313		b = pow5mult(b, -p5);
2314	if (p2 > 0) {
2315		b2 = p2;
2316		d2 = 0;
2317		}
2318	else {
2319		b2 = 0;
2320		d2 = -p2;
2321		}
2322	i = dshift(d, d2);
2323	if ((b2 += i) > 0)
2324		b = lshift(b, b2);
2325	if ((d2 += i) > 0)
2326		d = lshift(d, d2);
2327
2328	/* Now b/d = exactly half-way between the two floating-point values */
2329	/* on either side of the input string.  Compute first digit of b/d. */
2330
2331	if (!(dig = quorem(b,d))) {
2332		b = multadd(b, 10, 0);	/* very unlikely */
2333		dig = quorem(b,d);
2334		}
2335
2336	/* Compare b/d with s0 */
2337
2338	for(i = 0; i < nd0; ) {
2339		if ((dd = s0[i++] - '0' - dig))
2340			goto ret;
2341		if (!b->x[0] && b->wds == 1) {
2342			if (i < nd)
2343				dd = 1;
2344			goto ret;
2345			}
2346		b = multadd(b, 10, 0);
2347		dig = quorem(b,d);
2348		}
2349	for(j = bc->dp1; i++ < nd;) {
2350		if ((dd = s0[j++] - '0' - dig))
2351			goto ret;
2352		if (!b->x[0] && b->wds == 1) {
2353			if (i < nd)
2354				dd = 1;
2355			goto ret;
2356			}
2357		b = multadd(b, 10, 0);
2358		dig = quorem(b,d);
2359		}
2360	if (b->x[0] || b->wds > 1)
2361		dd = -1;
2362 ret:
2363	Bfree(b);
2364	Bfree(d);
2365#ifdef Honor_FLT_ROUNDS
2366	if (bc->rounding != 1) {
2367		if (dd < 0) {
2368			if (bc->rounding == 0) {
2369				if (!dsign)
2370					goto retlow1;
2371				}
2372			else if (dsign)
2373				goto rethi1;
2374			}
2375		else if (dd > 0) {
2376			if (bc->rounding == 0) {
2377				if (dsign)
2378					goto rethi1;
2379				goto ret1;
2380				}
2381			if (!dsign)
2382				goto rethi1;
2383			dval(rv) += 2.*ulp(rv);
2384			}
2385		else {
2386			bc->inexact = 0;
2387			if (dsign)
2388				goto rethi1;
2389			}
2390		}
2391	else
2392#endif
2393	if (speccase) {
2394		if (dd <= 0)
2395			rv->d = 0.;
2396		}
2397	else if (dd < 0) {
2398		if (!dsign)	/* does not happen for round-near */
2399retlow1:
2400			dval(rv) -= ulp(rv);
2401		}
2402	else if (dd > 0) {
2403		if (dsign) {
2404 rethi1:
2405			dval(rv) += ulp(rv);
2406			}
2407		}
2408	else {
2409		/* Exact half-way case:  apply round-even rule. */
2410		if (word1(rv) & 1) {
2411			if (dsign)
2412				goto rethi1;
2413			goto retlow1;
2414			}
2415		}
2416
2417#ifdef Honor_FLT_ROUNDS
2418 ret1:
2419#endif
2420	return;
2421	}
2422#endif /* NO_STRTOD_BIGCOMP */
2423
2424 double
2425strtod
2426#ifdef KR_headers
2427	(s00, se) CONST char *s00; char **se;
2428#else
2429	(CONST char *s00, char **se)
2430#endif
2431{
2432	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2433	int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
2434	CONST char *s, *s0, *s1;
2435	double aadj, aadj1;
2436	Long L;
2437	U aadj2, adj, rv, rv0;
2438	ULong y, z;
2439	BCinfo bc;
2440	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2441#ifdef SET_INEXACT
2442	int oldinexact;
2443#endif
2444#ifdef Honor_FLT_ROUNDS /*{*/
2445#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2446	bc.rounding = Flt_Rounds;
2447#else /*}{*/
2448	bc.rounding = 1;
2449	switch(fegetround()) {
2450	  case FE_TOWARDZERO:	bc.rounding = 0; break;
2451	  case FE_UPWARD:	bc.rounding = 2; break;
2452	  case FE_DOWNWARD:	bc.rounding = 3;
2453	  }
2454#endif /*}}*/
2455#endif /*}*/
2456#ifdef USE_LOCALE
2457	CONST char *s2;
2458#endif
2459
2460	sign = nz0 = nz = bc.dplen = bc.uflchk = 0;
2461	dval(&rv) = 0.;
2462	for(s = s00;;s++) switch(*s) {
2463		case '-':
2464			sign = 1;
2465			/* no break */
2466		case '+':
2467			if (*++s)
2468				goto break2;
2469			/* no break */
2470		case 0:
2471			goto ret0;
2472		case '\t':
2473		case '\n':
2474		case '\v':
2475		case '\f':
2476		case '\r':
2477		case ' ':
2478			continue;
2479		default:
2480			goto break2;
2481		}
2482 break2:
2483	if (*s == '0') {
2484#ifndef NO_HEX_FP /*{*/
2485		switch(s[1]) {
2486		  case 'x':
2487		  case 'X':
2488#ifdef Honor_FLT_ROUNDS
2489			gethex(&s, &rv, bc.rounding, sign);
2490#else
2491			gethex(&s, &rv, 1, sign);
2492#endif
2493			goto ret;
2494		  }
2495#endif /*}*/
2496		nz0 = 1;
2497		while(*++s == '0') ;
2498		if (!*s)
2499			goto ret;
2500		}
2501	s0 = s;
2502	y = z = 0;
2503	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2504		if (nd < 9)
2505			y = 10*y + c - '0';
2506		else if (nd < 16)
2507			z = 10*z + c - '0';
2508	nd0 = nd;
2509	bc.dp0 = bc.dp1 = s - s0;
2510#ifdef USE_LOCALE
2511	s1 = localeconv()->decimal_point;
2512	if (c == *s1) {
2513		c = '.';
2514		if (*++s1) {
2515			s2 = s;
2516			for(;;) {
2517				if (*++s2 != *s1) {
2518					c = 0;
2519					break;
2520					}
2521				if (!*++s1) {
2522					s = s2;
2523					break;
2524					}
2525				}
2526			}
2527		}
2528#endif
2529	if (c == '.') {
2530		c = *++s;
2531		bc.dp1 = s - s0;
2532		bc.dplen = bc.dp1 - bc.dp0;
2533		if (!nd) {
2534			for(; c == '0'; c = *++s)
2535				nz++;
2536			if (c > '0' && c <= '9') {
2537				s0 = s;
2538				nf += nz;
2539				nz = 0;
2540				goto have_dig;
2541				}
2542			goto dig_done;
2543			}
2544		for(; c >= '0' && c <= '9'; c = *++s) {
2545 have_dig:
2546			nz++;
2547			if (c -= '0') {
2548				nf += nz;
2549				for(i = 1; i < nz; i++)
2550					if (nd++ < 9)
2551						y *= 10;
2552					else if (nd <= DBL_DIG + 1)
2553						z *= 10;
2554				if (nd++ < 9)
2555					y = 10*y + c;
2556				else if (nd <= DBL_DIG + 1)
2557					z = 10*z + c;
2558				nz = 0;
2559				}
2560			}
2561		}
2562 dig_done:
2563	e = 0;
2564	if (c == 'e' || c == 'E') {
2565		if (!nd && !nz && !nz0) {
2566			goto ret0;
2567			}
2568		s00 = s;
2569		esign = 0;
2570		switch(c = *++s) {
2571			case '-':
2572				esign = 1;
2573			case '+':
2574				c = *++s;
2575			}
2576		if (c >= '0' && c <= '9') {
2577			while(c == '0')
2578				c = *++s;
2579			if (c > '0' && c <= '9') {
2580				L = c - '0';
2581				s1 = s;
2582				while((c = *++s) >= '0' && c <= '9')
2583					L = 10*L + c - '0';
2584				if (s - s1 > 8 || L > 19999)
2585					/* Avoid confusion from exponents
2586					 * so large that e might overflow.
2587					 */
2588					e = 19999; /* safe for 16 bit ints */
2589				else
2590					e = (int)L;
2591				if (esign)
2592					e = -e;
2593				}
2594			else
2595				e = 0;
2596			}
2597		else
2598			s = s00;
2599		}
2600	if (!nd) {
2601		if (!nz && !nz0) {
2602#ifdef INFNAN_CHECK
2603			/* Check for Nan and Infinity */
2604			if (!bc.dplen)
2605			 switch(c) {
2606			  case 'i':
2607			  case 'I':
2608				if (match(&s,"nf")) {
2609					--s;
2610					if (!match(&s,"inity"))
2611						++s;
2612					word0(&rv) = 0x7ff00000;
2613					word1(&rv) = 0;
2614					goto ret;
2615					}
2616				break;
2617			  case 'n':
2618			  case 'N':
2619				if (match(&s, "an")) {
2620					word0(&rv) = NAN_WORD0;
2621					word1(&rv) = NAN_WORD1;
2622#ifndef No_Hex_NaN
2623					if (*s == '(') /*)*/
2624						hexnan(&rv, &s);
2625#endif
2626					goto ret;
2627					}
2628			  }
2629#endif /* INFNAN_CHECK */
2630 ret0:
2631			s = s00;
2632			sign = 0;
2633			}
2634		goto ret;
2635		}
2636	bc.e0 = e1 = e -= nf;
2637
2638	/* Now we have nd0 digits, starting at s0, followed by a
2639	 * decimal point, followed by nd-nd0 digits.  The number we're
2640	 * after is the integer represented by those digits times
2641	 * 10**e */
2642
2643	if (!nd0)
2644		nd0 = nd;
2645	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
2646	dval(&rv) = y;
2647	if (k > 9) {
2648#ifdef SET_INEXACT
2649		if (k > DBL_DIG)
2650			oldinexact = get_inexact();
2651#endif
2652		dval(&rv) = tens[k - 9] * dval(&rv) + z;
2653		}
2654	bd0 = 0;
2655	if (nd <= DBL_DIG
2656#ifndef RND_PRODQUOT
2657#ifndef Honor_FLT_ROUNDS
2658		&& Flt_Rounds == 1
2659#endif
2660#endif
2661			) {
2662		if (!e)
2663			goto ret;
2664		if (e > 0) {
2665			if (e <= Ten_pmax) {
2666#ifdef VAX
2667				goto vax_ovfl_check;
2668#else
2669#ifdef Honor_FLT_ROUNDS
2670				/* round correctly FLT_ROUNDS = 2 or 3 */
2671				if (sign) {
2672					rv.d = -rv.d;
2673					sign = 0;
2674					}
2675#endif
2676				/* rv = */ rounded_product(dval(&rv), tens[e]);
2677				goto ret;
2678#endif
2679				}
2680			i = DBL_DIG - nd;
2681			if (e <= Ten_pmax + i) {
2682				/* A fancier test would sometimes let us do
2683				 * this for larger i values.
2684				 */
2685#ifdef Honor_FLT_ROUNDS
2686				/* round correctly FLT_ROUNDS = 2 or 3 */
2687				if (sign) {
2688					rv.d = -rv.d;
2689					sign = 0;
2690					}
2691#endif
2692				e -= i;
2693				dval(&rv) *= tens[i];
2694#ifdef VAX
2695				/* VAX exponent range is so narrow we must
2696				 * worry about overflow here...
2697				 */
2698 vax_ovfl_check:
2699				word0(&rv) -= P*Exp_msk1;
2700				/* rv = */ rounded_product(dval(&rv), tens[e]);
2701				if ((word0(&rv) & Exp_mask)
2702				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2703					goto ovfl;
2704				word0(&rv) += P*Exp_msk1;
2705#else
2706				/* rv = */ rounded_product(dval(&rv), tens[e]);
2707#endif
2708				goto ret;
2709				}
2710			}
2711#ifndef Inaccurate_Divide
2712		else if (e >= -Ten_pmax) {
2713#ifdef Honor_FLT_ROUNDS
2714			/* round correctly FLT_ROUNDS = 2 or 3 */
2715			if (sign) {
2716				rv.d = -rv.d;
2717				sign = 0;
2718				}
2719#endif
2720			/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2721			goto ret;
2722			}
2723#endif
2724		}
2725	e1 += nd - k;
2726
2727#ifdef IEEE_Arith
2728#ifdef SET_INEXACT
2729	bc.inexact = 1;
2730	if (k <= DBL_DIG)
2731		oldinexact = get_inexact();
2732#endif
2733#ifdef Avoid_Underflow
2734	bc.scale = 0;
2735#endif
2736#ifdef Honor_FLT_ROUNDS
2737	if (bc.rounding >= 2) {
2738		if (sign)
2739			bc.rounding = bc.rounding == 2 ? 0 : 2;
2740		else
2741			if (bc.rounding != 2)
2742				bc.rounding = 0;
2743		}
2744#endif
2745#endif /*IEEE_Arith*/
2746
2747	/* Get starting approximation = rv * 10**e1 */
2748
2749	if (e1 > 0) {
2750		if ((i = e1 & 15))
2751			dval(&rv) *= tens[i];
2752		if (e1 &= ~15) {
2753			if (e1 > DBL_MAX_10_EXP) {
2754 ovfl:
2755#ifndef NO_ERRNO
2756				errno = ERANGE;
2757#endif
2758				/* Can't trust HUGE_VAL */
2759#ifdef IEEE_Arith
2760#ifdef Honor_FLT_ROUNDS
2761				switch(bc.rounding) {
2762				  case 0: /* toward 0 */
2763				  case 3: /* toward -infinity */
2764					word0(&rv) = Big0;
2765					word1(&rv) = Big1;
2766					break;
2767				  default:
2768					word0(&rv) = Exp_mask;
2769					word1(&rv) = 0;
2770				  }
2771#else /*Honor_FLT_ROUNDS*/
2772				word0(&rv) = Exp_mask;
2773				word1(&rv) = 0;
2774#endif /*Honor_FLT_ROUNDS*/
2775#ifdef SET_INEXACT
2776				/* set overflow bit */
2777				dval(&rv0) = 1e300;
2778				dval(&rv0) *= dval(&rv0);
2779#endif
2780#else /*IEEE_Arith*/
2781				word0(&rv) = Big0;
2782				word1(&rv) = Big1;
2783#endif /*IEEE_Arith*/
2784				goto ret;
2785				}
2786			e1 >>= 4;
2787			for(j = 0; e1 > 1; j++, e1 >>= 1)
2788				if (e1 & 1)
2789					dval(&rv) *= bigtens[j];
2790		/* The last multiplication could overflow. */
2791			word0(&rv) -= P*Exp_msk1;
2792			dval(&rv) *= bigtens[j];
2793			if ((z = word0(&rv) & Exp_mask)
2794			 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2795				goto ovfl;
2796			if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2797				/* set to largest number */
2798				/* (Can't trust DBL_MAX) */
2799				word0(&rv) = Big0;
2800				word1(&rv) = Big1;
2801				}
2802			else
2803				word0(&rv) += P*Exp_msk1;
2804			}
2805		}
2806	else if (e1 < 0) {
2807		e1 = -e1;
2808		if ((i = e1 & 15))
2809			dval(&rv) /= tens[i];
2810		if (e1 >>= 4) {
2811			if (e1 >= 1 << n_bigtens)
2812				goto undfl;
2813#ifdef Avoid_Underflow
2814			if (e1 & Scale_Bit)
2815				bc.scale = 2*P;
2816			for(j = 0; e1 > 0; j++, e1 >>= 1)
2817				if (e1 & 1)
2818					dval(&rv) *= tinytens[j];
2819			if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2820						>> Exp_shift)) > 0) {
2821				/* scaled rv is denormal; clear j low bits */
2822				if (j >= 32) {
2823					word1(&rv) = 0;
2824					if (j >= 53)
2825					 word0(&rv) = (P+2)*Exp_msk1;
2826					else
2827					 word0(&rv) &= 0xffffffff << (j-32);
2828					}
2829				else
2830					word1(&rv) &= 0xffffffff << j;
2831				}
2832#else
2833			for(j = 0; e1 > 1; j++, e1 >>= 1)
2834				if (e1 & 1)
2835					dval(&rv) *= tinytens[j];
2836			/* The last multiplication could underflow. */
2837			dval(&rv0) = dval(&rv);
2838			dval(&rv) *= tinytens[j];
2839			if (!dval(&rv)) {
2840				dval(&rv) = 2.*dval(&rv0);
2841				dval(&rv) *= tinytens[j];
2842#endif
2843				if (!dval(&rv)) {
2844 undfl:
2845					dval(&rv) = 0.;
2846#ifndef NO_ERRNO
2847					errno = ERANGE;
2848#endif
2849					goto ret;
2850					}
2851#ifndef Avoid_Underflow
2852				word0(&rv) = Tiny0;
2853				word1(&rv) = Tiny1;
2854				/* The refinement below will clean
2855				 * this approximation up.
2856				 */
2857				}
2858#endif
2859			}
2860		}
2861
2862	/* Now the hard part -- adjusting rv to the correct value.*/
2863
2864	/* Put digits into bd: true value = bd * 10^e */
2865
2866	bc.nd = nd;
2867#ifndef NO_STRTOD_BIGCOMP
2868	bc.nd0 = nd0;	/* Only needed if nd > strtod_diglim, but done here */
2869			/* to silence an erroneous warning about bc.nd0 */
2870			/* possibly not being initialized. */
2871	if (nd > strtod_diglim) {
2872		/* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2873		/* minimum number of decimal digits to distinguish double values */
2874		/* in IEEE arithmetic. */
2875		i = j = 18;
2876		if (i > nd0)
2877			j += bc.dplen;
2878		for(;;) {
2879			if (--j <= bc.dp1 && j >= bc.dp0)
2880				j = bc.dp0 - 1;
2881			if (s0[j] != '0')
2882				break;
2883			--i;
2884			}
2885		e += nd - i;
2886		nd = i;
2887		if (nd0 > nd)
2888			nd0 = nd;
2889		if (nd < 9) { /* must recompute y */
2890			y = 0;
2891			for(i = 0; i < nd0; ++i)
2892				y = 10*y + s0[i] - '0';
2893			for(j = bc.dp1; i < nd; ++i)
2894				y = 10*y + s0[j++] - '0';
2895			}
2896		}
2897#endif
2898	bd0 = s2b(s0, nd0, nd, y, bc.dplen);
2899
2900	for(;;) {
2901		bd = Balloc(bd0->k);
2902		Bcopy(bd, bd0);
2903		bb = d2b(&rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
2904		bs = i2b(1);
2905
2906		if (e >= 0) {
2907			bb2 = bb5 = 0;
2908			bd2 = bd5 = e;
2909			}
2910		else {
2911			bb2 = bb5 = -e;
2912			bd2 = bd5 = 0;
2913			}
2914		if (bbe >= 0)
2915			bb2 += bbe;
2916		else
2917			bd2 -= bbe;
2918		bs2 = bb2;
2919#ifdef Honor_FLT_ROUNDS
2920		if (bc.rounding != 1)
2921			bs2++;
2922#endif
2923#ifdef Avoid_Underflow
2924		j = bbe - bc.scale;
2925		i = j + bbbits - 1;	/* logb(rv) */
2926		if (i < Emin)	/* denormal */
2927			j += P - Emin;
2928		else
2929			j = P + 1 - bbbits;
2930#else /*Avoid_Underflow*/
2931#ifdef Sudden_Underflow
2932#ifdef IBM
2933		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
2934#else
2935		j = P + 1 - bbbits;
2936#endif
2937#else /*Sudden_Underflow*/
2938		j = bbe;
2939		i = j + bbbits - 1;	/* logb(rv) */
2940		if (i < Emin)	/* denormal */
2941			j += P - Emin;
2942		else
2943			j = P + 1 - bbbits;
2944#endif /*Sudden_Underflow*/
2945#endif /*Avoid_Underflow*/
2946		bb2 += j;
2947		bd2 += j;
2948#ifdef Avoid_Underflow
2949		bd2 += bc.scale;
2950#endif
2951		i = bb2 < bd2 ? bb2 : bd2;
2952		if (i > bs2)
2953			i = bs2;
2954		if (i > 0) {
2955			bb2 -= i;
2956			bd2 -= i;
2957			bs2 -= i;
2958			}
2959		if (bb5 > 0) {
2960			bs = pow5mult(bs, bb5);
2961			bb1 = mult(bs, bb);
2962			Bfree(bb);
2963			bb = bb1;
2964			}
2965		if (bb2 > 0)
2966			bb = lshift(bb, bb2);
2967		if (bd5 > 0)
2968			bd = pow5mult(bd, bd5);
2969		if (bd2 > 0)
2970			bd = lshift(bd, bd2);
2971		if (bs2 > 0)
2972			bs = lshift(bs, bs2);
2973		delta = diff(bb, bd);
2974		bc.dsign = delta->sign;
2975		delta->sign = 0;
2976		i = cmp(delta, bs);
2977#ifndef NO_STRTOD_BIGCOMP
2978		if (bc.nd > nd && i <= 0) {
2979			if (bc.dsign)
2980				break;	/* Must use bigcomp(). */
2981#ifdef Honor_FLT_ROUNDS
2982			if (bc.rounding != 1) {
2983				if (i < 0)
2984					break;
2985				}
2986			else
2987#endif
2988				{
2989				bc.nd = nd;
2990				i = -1;	/* Discarded digits make delta smaller. */
2991				}
2992			}
2993#endif
2994#ifdef Honor_FLT_ROUNDS
2995		if (bc.rounding != 1) {
2996			if (i < 0) {
2997				/* Error is less than an ulp */
2998				if (!delta->x[0] && delta->wds <= 1) {
2999					/* exact */
3000#ifdef SET_INEXACT
3001					bc.inexact = 0;
3002#endif
3003					break;
3004					}
3005				if (bc.rounding) {
3006					if (bc.dsign) {
3007						adj.d = 1.;
3008						goto apply_adj;
3009						}
3010					}
3011				else if (!bc.dsign) {
3012					adj.d = -1.;
3013					if (!word1(&rv)
3014					 && !(word0(&rv) & Frac_mask)) {
3015						y = word0(&rv) & Exp_mask;
3016#ifdef Avoid_Underflow
3017						if (!bc.scale || y > 2*P*Exp_msk1)
3018#else
3019						if (y)
3020#endif
3021						  {
3022						  delta = lshift(delta,Log2P);
3023						  if (cmp(delta, bs) <= 0)
3024							adj.d = -0.5;
3025						  }
3026						}
3027 apply_adj:
3028#ifdef Avoid_Underflow
3029					if (bc.scale && (y = word0(&rv) & Exp_mask)
3030						<= 2*P*Exp_msk1)
3031					  word0(&adj) += (2*P+1)*Exp_msk1 - y;
3032#else
3033#ifdef Sudden_Underflow
3034					if ((word0(&rv) & Exp_mask) <=
3035							P*Exp_msk1) {
3036						word0(&rv) += P*Exp_msk1;
3037						dval(&rv) += adj.d*ulp(dval(&rv));
3038						word0(&rv) -= P*Exp_msk1;
3039						}
3040					else
3041#endif /*Sudden_Underflow*/
3042#endif /*Avoid_Underflow*/
3043					dval(&rv) += adj.d*ulp(&rv);
3044					}
3045				break;
3046				}
3047			adj.d = ratio(delta, bs);
3048			if (adj.d < 1.)
3049				adj.d = 1.;
3050			if (adj.d <= 0x7ffffffe) {
3051				/* adj = rounding ? ceil(adj) : floor(adj); */
3052				y = adj.d;
3053				if (y != adj.d) {
3054					if (!((bc.rounding>>1) ^ bc.dsign))
3055						y++;
3056					adj.d = y;
3057					}
3058				}
3059#ifdef Avoid_Underflow
3060			if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3061				word0(&adj) += (2*P+1)*Exp_msk1 - y;
3062#else
3063#ifdef Sudden_Underflow
3064			if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3065				word0(&rv) += P*Exp_msk1;
3066				adj.d *= ulp(dval(&rv));
3067				if (bc.dsign)
3068					dval(&rv) += adj.d;
3069				else
3070					dval(&rv) -= adj.d;
3071				word0(&rv) -= P*Exp_msk1;
3072				goto cont;
3073				}
3074#endif /*Sudden_Underflow*/
3075#endif /*Avoid_Underflow*/
3076			adj.d *= ulp(&rv);
3077			if (bc.dsign) {
3078				if (word0(&rv) == Big0 && word1(&rv) == Big1)
3079					goto ovfl;
3080				dval(&rv) += adj.d;
3081				}
3082			else
3083				dval(&rv) -= adj.d;
3084			goto cont;
3085			}
3086#endif /*Honor_FLT_ROUNDS*/
3087
3088		if (i < 0) {
3089			/* Error is less than half an ulp -- check for
3090			 * special case of mantissa a power of two.
3091			 */
3092			if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3093#ifdef IEEE_Arith
3094#ifdef Avoid_Underflow
3095			 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3096#else
3097			 || (word0(&rv) & Exp_mask) <= Exp_msk1
3098#endif
3099#endif
3100				) {
3101#ifdef SET_INEXACT
3102				if (!delta->x[0] && delta->wds <= 1)
3103					bc.inexact = 0;
3104#endif
3105				break;
3106				}
3107			if (!delta->x[0] && delta->wds <= 1) {
3108				/* exact result */
3109#ifdef SET_INEXACT
3110				bc.inexact = 0;
3111#endif
3112				break;
3113				}
3114			delta = lshift(delta,Log2P);
3115			if (cmp(delta, bs) > 0)
3116				goto drop_down;
3117			break;
3118			}
3119		if (i == 0) {
3120			/* exactly half-way between */
3121			if (bc.dsign) {
3122				if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3123				 &&  word1(&rv) == (
3124#ifdef Avoid_Underflow
3125			(bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3126		? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3127#endif
3128						   0xffffffff)) {
3129					/*boundary case -- increment exponent*/
3130					word0(&rv) = (word0(&rv) & Exp_mask)
3131						+ Exp_msk1
3132#ifdef IBM
3133						| Exp_msk1 >> 4
3134#endif
3135						;
3136					word1(&rv) = 0;
3137#ifdef Avoid_Underflow
3138					bc.dsign = 0;
3139#endif
3140					break;
3141					}
3142				}
3143			else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3144 drop_down:
3145				/* boundary case -- decrement exponent */
3146#ifdef Sudden_Underflow /*{{*/
3147				L = word0(&rv) & Exp_mask;
3148#ifdef IBM
3149				if (L <  Exp_msk1)
3150#else
3151#ifdef Avoid_Underflow
3152				if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3153#else
3154				if (L <= Exp_msk1)
3155#endif /*Avoid_Underflow*/
3156#endif /*IBM*/
3157					{
3158					if (bc.nd >nd) {
3159						bc.uflchk = 1;
3160						break;
3161						}
3162					goto undfl;
3163					}
3164				L -= Exp_msk1;
3165#else /*Sudden_Underflow}{*/
3166#ifdef Avoid_Underflow
3167				if (bc.scale) {
3168					L = word0(&rv) & Exp_mask;
3169					if (L <= (2*P+1)*Exp_msk1) {
3170						if (L > (P+2)*Exp_msk1)
3171							/* round even ==> */
3172							/* accept rv */
3173							break;
3174						/* rv = smallest denormal */
3175						if (bc.nd >nd) {
3176							bc.uflchk = 1;
3177							break;
3178							}
3179						goto undfl;
3180						}
3181					}
3182#endif /*Avoid_Underflow*/
3183				L = (word0(&rv) & Exp_mask) - Exp_msk1;
3184#endif /*Sudden_Underflow}}*/
3185				word0(&rv) = L | Bndry_mask1;
3186				word1(&rv) = 0xffffffff;
3187#ifdef IBM
3188				goto cont;
3189#else
3190				break;
3191#endif
3192				}
3193#ifndef ROUND_BIASED
3194			if (!(word1(&rv) & LSB))
3195				break;
3196#endif
3197			if (bc.dsign)
3198				dval(&rv) += ulp(&rv);
3199#ifndef ROUND_BIASED
3200			else {
3201				dval(&rv) -= ulp(&rv);
3202#ifndef Sudden_Underflow
3203				if (!dval(&rv)) {
3204					if (bc.nd >nd) {
3205						bc.uflchk = 1;
3206						break;
3207						}
3208					goto undfl;
3209					}
3210#endif
3211				}
3212#ifdef Avoid_Underflow
3213			bc.dsign = 1 - bc.dsign;
3214#endif
3215#endif
3216			break;
3217			}
3218		if ((aadj = ratio(delta, bs)) <= 2.) {
3219			if (bc.dsign)
3220				aadj = aadj1 = 1.;
3221			else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3222#ifndef Sudden_Underflow
3223				if (word1(&rv) == Tiny1 && !word0(&rv)) {
3224					if (bc.nd >nd) {
3225						bc.uflchk = 1;
3226						break;
3227						}
3228					goto undfl;
3229					}
3230#endif
3231				aadj = 1.;
3232				aadj1 = -1.;
3233				}
3234			else {
3235				/* special case -- power of FLT_RADIX to be */
3236				/* rounded down... */
3237
3238				if (aadj < 2./FLT_RADIX)
3239					aadj = 1./FLT_RADIX;
3240				else
3241					aadj *= 0.5;
3242				aadj1 = -aadj;
3243				}
3244			}
3245		else {
3246			aadj *= 0.5;
3247			aadj1 = bc.dsign ? aadj : -aadj;
3248#ifdef Check_FLT_ROUNDS
3249			switch(bc.rounding) {
3250				case 2: /* towards +infinity */
3251					aadj1 -= 0.5;
3252					break;
3253				case 0: /* towards 0 */
3254				case 3: /* towards -infinity */
3255					aadj1 += 0.5;
3256				}
3257#else
3258			if (Flt_Rounds == 0)
3259				aadj1 += 0.5;
3260#endif /*Check_FLT_ROUNDS*/
3261			}
3262		y = word0(&rv) & Exp_mask;
3263
3264		/* Check for overflow */
3265
3266		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3267			dval(&rv0) = dval(&rv);
3268			word0(&rv) -= P*Exp_msk1;
3269			adj.d = aadj1 * ulp(&rv);
3270			dval(&rv) += adj.d;
3271			if ((word0(&rv) & Exp_mask) >=
3272					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3273				if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3274					goto ovfl;
3275				word0(&rv) = Big0;
3276				word1(&rv) = Big1;
3277				goto cont;
3278				}
3279			else
3280				word0(&rv) += P*Exp_msk1;
3281			}
3282		else {
3283#ifdef Avoid_Underflow
3284			if (bc.scale && y <= 2*P*Exp_msk1) {
3285				if (aadj <= 0x7fffffff) {
3286					if ((z = aadj) <= 0)
3287						z = 1;
3288					aadj = z;
3289					aadj1 = bc.dsign ? aadj : -aadj;
3290					}
3291				dval(&aadj2) = aadj1;
3292				word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3293				aadj1 = dval(&aadj2);
3294				}
3295			adj.d = aadj1 * ulp(&rv);
3296			dval(&rv) += adj.d;
3297#else
3298#ifdef Sudden_Underflow
3299			if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3300				dval(&rv0) = dval(&rv);
3301				word0(&rv) += P*Exp_msk1;
3302				adj.d = aadj1 * ulp(&rv);
3303				dval(&rv) += adj.d;
3304#ifdef IBM
3305				if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3306#else
3307				if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3308#endif
3309					{
3310					if (word0(&rv0) == Tiny0
3311					 && word1(&rv0) == Tiny1) {
3312						if (bc.nd >nd) {
3313							bc.uflchk = 1;
3314							break;
3315							}
3316						goto undfl;
3317						}
3318					word0(&rv) = Tiny0;
3319					word1(&rv) = Tiny1;
3320					goto cont;
3321					}
3322				else
3323					word0(&rv) -= P*Exp_msk1;
3324				}
3325			else {
3326				adj.d = aadj1 * ulp(&rv);
3327				dval(&rv) += adj.d;
3328				}
3329#else /*Sudden_Underflow*/
3330			/* Compute adj so that the IEEE rounding rules will
3331			 * correctly round rv + adj in some half-way cases.
3332			 * If rv * ulp(rv) is denormalized (i.e.,
3333			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3334			 * trouble from bits lost to denormalization;
3335			 * example: 1.2e-307 .
3336			 */
3337			if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3338				aadj1 = (double)(int)(aadj + 0.5);
3339				if (!bc.dsign)
3340					aadj1 = -aadj1;
3341				}
3342			adj.d = aadj1 * ulp(&rv);
3343			dval(&rv) += adj.d;
3344#endif /*Sudden_Underflow*/
3345#endif /*Avoid_Underflow*/
3346			}
3347		z = word0(&rv) & Exp_mask;
3348#ifndef SET_INEXACT
3349		if (bc.nd == nd) {
3350#ifdef Avoid_Underflow
3351		if (!bc.scale)
3352#endif
3353		if (y == z) {
3354			/* Can we stop now? */
3355			L = (Long)aadj;
3356			aadj -= L;
3357			/* The tolerances below are conservative. */
3358			if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3359				if (aadj < .4999999 || aadj > .5000001)
3360					break;
3361				}
3362			else if (aadj < .4999999/FLT_RADIX)
3363				break;
3364			}
3365		}
3366#endif
3367 cont:
3368		Bfree(bb);
3369		Bfree(bd);
3370		Bfree(bs);
3371		Bfree(delta);
3372		}
3373	Bfree(bb);
3374	Bfree(bd);
3375	Bfree(bs);
3376	Bfree(bd0);
3377	Bfree(delta);
3378#ifndef NO_STRTOD_BIGCOMP
3379	if (bc.nd > nd)
3380		bigcomp(&rv, s0, &bc);
3381#endif
3382#ifdef SET_INEXACT
3383	if (bc.inexact) {
3384		if (!oldinexact) {
3385			word0(&rv0) = Exp_1 + (70 << Exp_shift);
3386			word1(&rv0) = 0;
3387			dval(&rv0) += 1.;
3388			}
3389		}
3390	else if (!oldinexact)
3391		clear_inexact();
3392#endif
3393#ifdef Avoid_Underflow
3394	if (bc.scale) {
3395		word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3396		word1(&rv0) = 0;
3397		dval(&rv) *= dval(&rv0);
3398#ifndef NO_ERRNO
3399		/* try to avoid the bug of testing an 8087 register value */
3400#ifdef IEEE_Arith
3401		if (!(word0(&rv) & Exp_mask))
3402#else
3403		if (word0(&rv) == 0 && word1(&rv) == 0)
3404#endif
3405			errno = ERANGE;
3406#endif
3407		}
3408#endif /* Avoid_Underflow */
3409#ifdef SET_INEXACT
3410	if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3411		/* set underflow bit */
3412		dval(&rv0) = 1e-300;
3413		dval(&rv0) *= dval(&rv0);
3414		}
3415#endif
3416 ret:
3417	if (se)
3418		*se = (char *)s;
3419	return sign ? -dval(&rv) : dval(&rv);
3420	}
3421
3422#ifndef MULTIPLE_THREADS
3423 static char *dtoa_result;
3424#endif
3425
3426 static char *
3427#ifdef KR_headers
3428rv_alloc(i) int i;
3429#else
3430rv_alloc(int i)
3431#endif
3432{
3433	int j, k, *r;
3434
3435	j = sizeof(ULong);
3436	for(k = 0;
3437		sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (size_t)i;
3438		j <<= 1)
3439			k++;
3440	r = (int*)Balloc(k);
3441	*r = k;
3442	return
3443#ifndef MULTIPLE_THREADS
3444	dtoa_result =
3445#endif
3446		(char *)(r+1);
3447	}
3448
3449 static char *
3450#ifdef KR_headers
3451nrv_alloc(s, rve, n) char *s, **rve; int n;
3452#else
3453nrv_alloc(CONST char *s, char **rve, int n)
3454#endif
3455{
3456	char *rv, *t;
3457
3458	t = rv = rv_alloc(n);
3459	while((*t = *s++)) t++;
3460	if (rve)
3461		*rve = t;
3462	return rv;
3463	}
3464
3465/* freedtoa(s) must be used to free values s returned by dtoa
3466 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3467 * but for consistency with earlier versions of dtoa, it is optional
3468 * when MULTIPLE_THREADS is not defined.
3469 */
3470
3471 void
3472#ifdef KR_headers
3473freedtoa(s) char *s;
3474#else
3475freedtoa(char *s)
3476#endif
3477{
3478	Bigint *b = (Bigint *)((int *)s - 1);
3479	b->maxwds = 1 << (b->k = *(int*)b);
3480	Bfree(b);
3481#ifndef MULTIPLE_THREADS
3482	if (s == dtoa_result)
3483		dtoa_result = 0;
3484#endif
3485	}
3486
3487/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3488 *
3489 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3490 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3491 *
3492 * Modifications:
3493 *	1. Rather than iterating, we use a simple numeric overestimate
3494 *	   to determine k = floor(log10(d)).  We scale relevant
3495 *	   quantities using O(log2(k)) rather than O(k) multiplications.
3496 *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3497 *	   try to generate digits strictly left to right.  Instead, we
3498 *	   compute with fewer bits and propagate the carry if necessary
3499 *	   when rounding the final digit up.  This is often faster.
3500 *	3. Under the assumption that input will be rounded nearest,
3501 *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3502 *	   That is, we allow equality in stopping tests when the
3503 *	   round-nearest rule will give the same floating-point value
3504 *	   as would satisfaction of the stopping test with strict
3505 *	   inequality.
3506 *	4. We remove common factors of powers of 2 from relevant
3507 *	   quantities.
3508 *	5. When converting floating-point integers less than 1e16,
3509 *	   we use floating-point arithmetic rather than resorting
3510 *	   to multiple-precision integers.
3511 *	6. When asked to produce fewer than 15 digits, we first try
3512 *	   to get by with floating-point arithmetic; we resort to
3513 *	   multiple-precision integer arithmetic only if we cannot
3514 *	   guarantee that the floating-point calculation has given
3515 *	   the correctly rounded result.  For k requested digits and
3516 *	   "uniformly" distributed input, the probability is
3517 *	   something like 10^(k-15) that we must resort to the Long
3518 *	   calculation.
3519 */
3520
3521 char *
3522dtoa
3523#ifdef KR_headers
3524	(dd, mode, ndigits, decpt, sign, rve)
3525	double dd; int mode, ndigits, *decpt, *sign; char **rve;
3526#else
3527	(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
3528#endif
3529{
3530 /*	Arguments ndigits, decpt, sign are similar to those
3531	of ecvt and fcvt; trailing zeros are suppressed from
3532	the returned string.  If not null, *rve is set to point
3533	to the end of the return value.  If d is +-Infinity or NaN,
3534	then *decpt is set to 9999.
3535
3536	mode:
3537		0 ==> shortest string that yields d when read in
3538			and rounded to nearest.
3539		1 ==> like 0, but with Steele & White stopping rule;
3540			e.g. with IEEE P754 arithmetic , mode 0 gives
3541			1e23 whereas mode 1 gives 9.999999999999999e22.
3542		2 ==> max(1,ndigits) significant digits.  This gives a
3543			return value similar to that of ecvt, except
3544			that trailing zeros are suppressed.
3545		3 ==> through ndigits past the decimal point.  This
3546			gives a return value similar to that from fcvt,
3547			except that trailing zeros are suppressed, and
3548			ndigits can be negative.
3549		4,5 ==> similar to 2 and 3, respectively, but (in
3550			round-nearest mode) with the tests of mode 0 to
3551			possibly return a shorter string that rounds to d.
3552			With IEEE arithmetic and compilation with
3553			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3554			as modes 2 and 3 when FLT_ROUNDS != 1.
3555		6-9 ==> Debugging modes similar to mode - 4:  don't try
3556			fast floating-point estimate (if applicable).
3557
3558		Values of mode other than 0-9 are treated as mode 0.
3559
3560		Sufficient space is allocated to the return value
3561		to hold the suppressed trailing zeros.
3562	*/
3563
3564	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
3565		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
3566		spec_case, try_quick;
3567	Long L;
3568#ifndef Sudden_Underflow
3569	int denorm;
3570	ULong x;
3571#endif
3572	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3573	U d2, eps, u;
3574	double ds;
3575	char *s, *s0;
3576#ifdef SET_INEXACT
3577	int inexact, oldinexact;
3578#endif
3579#ifdef Honor_FLT_ROUNDS /*{*/
3580	int Rounding;
3581#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3582	Rounding = Flt_Rounds;
3583#else /*}{*/
3584	Rounding = 1;
3585	switch(fegetround()) {
3586	  case FE_TOWARDZERO:	Rounding = 0; break;
3587	  case FE_UPWARD:	Rounding = 2; break;
3588	  case FE_DOWNWARD:	Rounding = 3;
3589	  }
3590#endif /*}}*/
3591#endif /*}*/
3592
3593#ifndef MULTIPLE_THREADS
3594	if (dtoa_result) {
3595		freedtoa(dtoa_result);
3596		dtoa_result = 0;
3597		}
3598#endif
3599
3600	u.d = dd;
3601	if (word0(&u) & Sign_bit) {
3602		/* set sign for everything, including 0's and NaNs */
3603		*sign = 1;
3604		word0(&u) &= ~Sign_bit;	/* clear sign bit */
3605		}
3606	else
3607		*sign = 0;
3608
3609#if defined(IEEE_Arith) + defined(VAX)
3610#ifdef IEEE_Arith
3611	if ((word0(&u) & Exp_mask) == Exp_mask)
3612#else
3613	if (word0(&u)  == 0x8000)
3614#endif
3615		{
3616		/* Infinity or NaN */
3617		*decpt = 9999;
3618#ifdef IEEE_Arith
3619		if (!word1(&u) && !(word0(&u) & 0xfffff))
3620			return nrv_alloc("Infinity", rve, 8);
3621#endif
3622		return nrv_alloc("NaN", rve, 3);
3623		}
3624#endif
3625#ifdef IBM
3626	dval(&u) += 0; /* normalize */
3627#endif
3628	if (!dval(&u)) {
3629		*decpt = 1;
3630		return nrv_alloc("0", rve, 1);
3631		}
3632
3633#ifdef SET_INEXACT
3634	try_quick = oldinexact = get_inexact();
3635	inexact = 1;
3636#endif
3637#ifdef Honor_FLT_ROUNDS
3638	if (Rounding >= 2) {
3639		if (*sign)
3640			Rounding = Rounding == 2 ? 0 : 2;
3641		else
3642			if (Rounding != 2)
3643				Rounding = 0;
3644		}
3645#endif
3646
3647	b = d2b(&u, &be, &bbits);
3648#ifdef Sudden_Underflow
3649	i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3650#else
3651	if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3652#endif
3653		dval(&d2) = dval(&u);
3654		word0(&d2) &= Frac_mask1;
3655		word0(&d2) |= Exp_11;
3656#ifdef IBM
3657		if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3658			dval(&d2) /= 1 << j;
3659#endif
3660
3661		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
3662		 * log10(x)	 =  log(x) / log(10)
3663		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3664		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3665		 *
3666		 * This suggests computing an approximation k to log10(d) by
3667		 *
3668		 * k = (i - Bias)*0.301029995663981
3669		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3670		 *
3671		 * We want k to be too large rather than too small.
3672		 * The error in the first-order Taylor series approximation
3673		 * is in our favor, so we just round up the constant enough
3674		 * to compensate for any error in the multiplication of
3675		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3676		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3677		 * adding 1e-13 to the constant term more than suffices.
3678		 * Hence we adjust the constant term to 0.1760912590558.
3679		 * (We could get a more accurate k by invoking log10,
3680		 *  but this is probably not worthwhile.)
3681		 */
3682
3683		i -= Bias;
3684#ifdef IBM
3685		i <<= 2;
3686		i += j;
3687#endif
3688#ifndef Sudden_Underflow
3689		denorm = 0;
3690		}
3691	else {
3692		/* d is denormalized */
3693
3694		i = bbits + be + (Bias + (P-1) - 1);
3695		x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3696			    : word1(&u) << (32 - i);
3697		dval(&d2) = x;
3698		word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3699		i -= (Bias + (P-1) - 1) + 1;
3700		denorm = 1;
3701		}
3702#endif
3703	ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3704	k = (int)ds;
3705	if (ds < 0. && ds != k)
3706		k--;	/* want k = floor(ds) */
3707	k_check = 1;
3708	if (k >= 0 && k <= Ten_pmax) {
3709		if (dval(&u) < tens[k])
3710			k--;
3711		k_check = 0;
3712		}
3713	j = bbits - i - 1;
3714	if (j >= 0) {
3715		b2 = 0;
3716		s2 = j;
3717		}
3718	else {
3719		b2 = -j;
3720		s2 = 0;
3721		}
3722	if (k >= 0) {
3723		b5 = 0;
3724		s5 = k;
3725		s2 += k;
3726		}
3727	else {
3728		b2 -= k;
3729		b5 = -k;
3730		s5 = 0;
3731		}
3732	if (mode < 0 || mode > 9)
3733		mode = 0;
3734
3735#ifndef SET_INEXACT
3736#ifdef Check_FLT_ROUNDS
3737	try_quick = Rounding == 1;
3738#else
3739	try_quick = 1;
3740#endif
3741#endif /*SET_INEXACT*/
3742
3743	if (mode > 5) {
3744		mode -= 4;
3745		try_quick = 0;
3746		}
3747	leftright = 1;
3748	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */
3749				/* silence erroneous "gcc -Wall" warning. */
3750	switch(mode) {
3751		case 0:
3752		case 1:
3753			i = 18;
3754			ndigits = 0;
3755			break;
3756		case 2:
3757			leftright = 0;
3758			/* no break */
3759		case 4:
3760			if (ndigits <= 0)
3761				ndigits = 1;
3762			ilim = ilim1 = i = ndigits;
3763			break;
3764		case 3:
3765			leftright = 0;
3766			/* no break */
3767		case 5:
3768			i = ndigits + k + 1;
3769			ilim = i;
3770			ilim1 = i - 1;
3771			if (i <= 0)
3772				i = 1;
3773		}
3774	s = s0 = rv_alloc(i);
3775
3776#ifdef Honor_FLT_ROUNDS
3777	if (mode > 1 && Rounding != 1)
3778		leftright = 0;
3779#endif
3780
3781	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3782
3783		/* Try to get by with floating-point arithmetic. */
3784
3785		i = 0;
3786		dval(&d2) = dval(&u);
3787		k0 = k;
3788		ilim0 = ilim;
3789		ieps = 2; /* conservative */
3790		if (k > 0) {
3791			ds = tens[k&0xf];
3792			j = k >> 4;
3793			if (j & Bletch) {
3794				/* prevent overflows */
3795				j &= Bletch - 1;
3796				dval(&u) /= bigtens[n_bigtens-1];
3797				ieps++;
3798				}
3799			for(; j; j >>= 1, i++)
3800				if (j & 1) {
3801					ieps++;
3802					ds *= bigtens[i];
3803					}
3804			dval(&u) /= ds;
3805			}
3806		else if ((j1 = -k)) {
3807			dval(&u) *= tens[j1 & 0xf];
3808			for(j = j1 >> 4; j; j >>= 1, i++)
3809				if (j & 1) {
3810					ieps++;
3811					dval(&u) *= bigtens[i];
3812					}
3813			}
3814		if (k_check && dval(&u) < 1. && ilim > 0) {
3815			if (ilim1 <= 0)
3816				goto fast_failed;
3817			ilim = ilim1;
3818			k--;
3819			dval(&u) *= 10.;
3820			ieps++;
3821			}
3822		dval(&eps) = ieps*dval(&u) + 7.;
3823		word0(&eps) -= (P-1)*Exp_msk1;
3824		if (ilim == 0) {
3825			S = mhi = 0;
3826			dval(&u) -= 5.;
3827			if (dval(&u) > dval(&eps))
3828				goto one_digit;
3829			if (dval(&u) < -dval(&eps))
3830				goto no_digits;
3831			goto fast_failed;
3832			}
3833#ifndef No_leftright
3834		if (leftright) {
3835			/* Use Steele & White method of only
3836			 * generating digits needed.
3837			 */
3838			dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
3839			for(i = 0;;) {
3840				L = dval(&u);
3841				dval(&u) -= L;
3842				*s++ = '0' + (int)L;
3843				if (dval(&u) < dval(&eps))
3844					goto ret1;
3845				if (1. - dval(&u) < dval(&eps))
3846					goto bump_up;
3847				if (++i >= ilim)
3848					break;
3849				dval(&eps) *= 10.;
3850				dval(&u) *= 10.;
3851				}
3852			}
3853		else {
3854#endif
3855			/* Generate ilim digits, then fix them up. */
3856			dval(&eps) *= tens[ilim-1];
3857			for(i = 1;; i++, dval(&u) *= 10.) {
3858				L = (Long)(dval(&u));
3859				if (!(dval(&u) -= L))
3860					ilim = i;
3861				*s++ = '0' + (int)L;
3862				if (i == ilim) {
3863					if (dval(&u) > 0.5 + dval(&eps))
3864						goto bump_up;
3865					else if (dval(&u) < 0.5 - dval(&eps)) {
3866						while(*--s == '0') {}
3867						s++;
3868						goto ret1;
3869						}
3870					break;
3871					}
3872				}
3873#ifndef No_leftright
3874			}
3875#endif
3876 fast_failed:
3877		s = s0;
3878		dval(&u) = dval(&d2);
3879		k = k0;
3880		ilim = ilim0;
3881		}
3882
3883	/* Do we have a "small" integer? */
3884
3885	if (be >= 0 && k <= Int_max) {
3886		/* Yes. */
3887		ds = tens[k];
3888		if (ndigits < 0 && ilim <= 0) {
3889			S = mhi = 0;
3890			if (ilim < 0 || dval(&u) <= 5*ds)
3891				goto no_digits;
3892			goto one_digit;
3893			}
3894		for(i = 1;; i++, dval(&u) *= 10.) {
3895			L = (Long)(dval(&u) / ds);
3896			dval(&u) -= L*ds;
3897#ifdef Check_FLT_ROUNDS
3898			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
3899			if (dval(&u) < 0) {
3900				L--;
3901				dval(&u) += ds;
3902				}
3903#endif
3904			*s++ = '0' + (int)L;
3905			if (!dval(&u)) {
3906#ifdef SET_INEXACT
3907				inexact = 0;
3908#endif
3909				break;
3910				}
3911			if (i == ilim) {
3912#ifdef Honor_FLT_ROUNDS
3913				if (mode > 1)
3914				switch(Rounding) {
3915				  case 0: goto ret1;
3916				  case 2: goto bump_up;
3917				  }
3918#endif
3919				dval(&u) += dval(&u);
3920				if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
3921 bump_up:
3922					while(*--s == '9')
3923						if (s == s0) {
3924							k++;
3925							*s = '0';
3926							break;
3927							}
3928					++*s++;
3929					}
3930				break;
3931				}
3932			}
3933		goto ret1;
3934		}
3935
3936	m2 = b2;
3937	m5 = b5;
3938	mhi = mlo = 0;
3939	if (leftright) {
3940		i =
3941#ifndef Sudden_Underflow
3942			denorm ? be + (Bias + (P-1) - 1 + 1) :
3943#endif
3944#ifdef IBM
3945			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3946#else
3947			1 + P - bbits;
3948#endif
3949		b2 += i;
3950		s2 += i;
3951		mhi = i2b(1);
3952		}
3953	if (m2 > 0 && s2 > 0) {
3954		i = m2 < s2 ? m2 : s2;
3955		b2 -= i;
3956		m2 -= i;
3957		s2 -= i;
3958		}
3959	if (b5 > 0) {
3960		if (leftright) {
3961			if (m5 > 0) {
3962				mhi = pow5mult(mhi, m5);
3963				b1 = mult(mhi, b);
3964				Bfree(b);
3965				b = b1;
3966				}
3967			if ((j = b5 - m5))
3968				b = pow5mult(b, j);
3969			}
3970		else
3971			b = pow5mult(b, b5);
3972		}
3973	S = i2b(1);
3974	if (s5 > 0)
3975		S = pow5mult(S, s5);
3976
3977	/* Check for special case that d is a normalized power of 2. */
3978
3979	spec_case = 0;
3980	if ((mode < 2 || leftright)
3981#ifdef Honor_FLT_ROUNDS
3982			&& Rounding == 1
3983#endif
3984				) {
3985		if (!word1(&u) && !(word0(&u) & Bndry_mask)
3986#ifndef Sudden_Underflow
3987		 && word0(&u) & (Exp_mask & ~Exp_msk1)
3988#endif
3989				) {
3990			/* The special case */
3991			b2 += Log2P;
3992			s2 += Log2P;
3993			spec_case = 1;
3994			}
3995		}
3996
3997	/* Arrange for convenient computation of quotients:
3998	 * shift left if necessary so divisor has 4 leading 0 bits.
3999	 *
4000	 * Perhaps we should just compute leading 28 bits of S once
4001	 * and for all and pass them and a shift to quorem, so it
4002	 * can do shifts and ors to compute the numerator for q.
4003	 */
4004#ifdef Pack_32
4005	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
4006		i = 32 - i;
4007#define iInc 28
4008#else
4009	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
4010		i = 16 - i;
4011#define iInc 12
4012#endif
4013	i = dshift(S, s2);
4014	b2 += i;
4015	m2 += i;
4016	s2 += i;
4017	if (b2 > 0)
4018		b = lshift(b, b2);
4019	if (s2 > 0)
4020		S = lshift(S, s2);
4021	if (k_check) {
4022		if (cmp(b,S) < 0) {
4023			k--;
4024			b = multadd(b, 10, 0);	/* we botched the k estimate */
4025			if (leftright)
4026				mhi = multadd(mhi, 10, 0);
4027			ilim = ilim1;
4028			}
4029		}
4030	if (ilim <= 0 && (mode == 3 || mode == 5)) {
4031		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4032			/* no digits, fcvt style */
4033 no_digits:
4034			k = -1 - ndigits;
4035			goto ret;
4036			}
4037 one_digit:
4038		*s++ = '1';
4039		k++;
4040		goto ret;
4041		}
4042	if (leftright) {
4043		if (m2 > 0)
4044			mhi = lshift(mhi, m2);
4045
4046		/* Compute mlo -- check for special case
4047		 * that d is a normalized power of 2.
4048		 */
4049
4050		mlo = mhi;
4051		if (spec_case) {
4052			mhi = Balloc(mhi->k);
4053			Bcopy(mhi, mlo);
4054			mhi = lshift(mhi, Log2P);
4055			}
4056
4057		for(i = 1;;i++) {
4058			dig = quorem(b,S) + '0';
4059			/* Do we yet have the shortest decimal string
4060			 * that will round to d?
4061			 */
4062			j = cmp(b, mlo);
4063			delta = diff(S, mhi);
4064			j1 = delta->sign ? 1 : cmp(b, delta);
4065			Bfree(delta);
4066#ifndef ROUND_BIASED
4067			if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4068#ifdef Honor_FLT_ROUNDS
4069				&& Rounding >= 1
4070#endif
4071								   ) {
4072				if (dig == '9')
4073					goto round_9_up;
4074				if (j > 0)
4075					dig++;
4076#ifdef SET_INEXACT
4077				else if (!b->x[0] && b->wds <= 1)
4078					inexact = 0;
4079#endif
4080				*s++ = dig;
4081				goto ret;
4082				}
4083#endif
4084			if (j < 0 || (j == 0 && mode != 1
4085#ifndef ROUND_BIASED
4086							&& !(word1(&u) & 1)
4087#endif
4088					)) {
4089				if (!b->x[0] && b->wds <= 1) {
4090#ifdef SET_INEXACT
4091					inexact = 0;
4092#endif
4093					goto accept_dig;
4094					}
4095#ifdef Honor_FLT_ROUNDS
4096				if (mode > 1)
4097				 switch(Rounding) {
4098				  case 0: goto accept_dig;
4099				  case 2: goto keep_dig;
4100				  }
4101#endif /*Honor_FLT_ROUNDS*/
4102				if (j1 > 0) {
4103					b = lshift(b, 1);
4104					j1 = cmp(b, S);
4105					if ((j1 > 0 || (j1 == 0 && dig & 1))
4106					&& dig++ == '9')
4107						goto round_9_up;
4108					}
4109 accept_dig:
4110				*s++ = dig;
4111				goto ret;
4112				}
4113			if (j1 > 0) {
4114#ifdef Honor_FLT_ROUNDS
4115				if (!Rounding)
4116					goto accept_dig;
4117#endif
4118				if (dig == '9') { /* possible if i == 1 */
4119 round_9_up:
4120					*s++ = '9';
4121					goto roundoff;
4122					}
4123				*s++ = dig + 1;
4124				goto ret;
4125				}
4126#ifdef Honor_FLT_ROUNDS
4127 keep_dig:
4128#endif
4129			*s++ = dig;
4130			if (i == ilim)
4131				break;
4132			b = multadd(b, 10, 0);
4133			if (mlo == mhi)
4134				mlo = mhi = multadd(mhi, 10, 0);
4135			else {
4136				mlo = multadd(mlo, 10, 0);
4137				mhi = multadd(mhi, 10, 0);
4138				}
4139			}
4140		}
4141	else
4142		for(i = 1;; i++) {
4143			*s++ = dig = quorem(b,S) + '0';
4144			if (!b->x[0] && b->wds <= 1) {
4145#ifdef SET_INEXACT
4146				inexact = 0;
4147#endif
4148				goto ret;
4149				}
4150			if (i >= ilim)
4151				break;
4152			b = multadd(b, 10, 0);
4153			}
4154
4155	/* Round off last digit */
4156
4157#ifdef Honor_FLT_ROUNDS
4158	switch(Rounding) {
4159	  case 0: goto trimzeros;
4160	  case 2: goto roundoff;
4161	  }
4162#endif
4163	b = lshift(b, 1);
4164	j = cmp(b, S);
4165	if (j > 0 || (j == 0 && dig & 1)) {
4166 roundoff:
4167		while(*--s == '9')
4168			if (s == s0) {
4169				k++;
4170				*s++ = '1';
4171				goto ret;
4172				}
4173		++*s++;
4174		}
4175	else {
4176#ifdef Honor_FLT_ROUNDS
4177 trimzeros:
4178#endif
4179		while(*--s == '0') {}
4180		s++;
4181		}
4182 ret:
4183	Bfree(S);
4184	if (mhi) {
4185		if (mlo && mlo != mhi)
4186			Bfree(mlo);
4187		Bfree(mhi);
4188		}
4189 ret1:
4190#ifdef SET_INEXACT
4191	if (inexact) {
4192		if (!oldinexact) {
4193			word0(&u) = Exp_1 + (70 << Exp_shift);
4194			word1(&u) = 0;
4195			dval(&u) += 1.;
4196			}
4197		}
4198	else if (!oldinexact)
4199		clear_inexact();
4200#endif
4201	Bfree(b);
4202	*s = 0;
4203	*decpt = k + 1;
4204	if (rve)
4205		*rve = s;
4206	return s0;
4207	}
4208
4209}  // namespace dmg_fp
4210