1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Windows Timer Primer
7//
8// A good article:  http://www.ddj.com/windows/184416651
9// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10//
11// The default windows timer, GetSystemTimeAsFileTime is not very precise.
12// It is only good to ~15.5ms.
13//
14// QueryPerformanceCounter is the logical choice for a high-precision timer.
15// However, it is known to be buggy on some hardware.  Specifically, it can
16// sometimes "jump".  On laptops, QPC can also be very expensive to call.
17// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18// on laptops.  A unittest exists which will show the relative cost of various
19// timers on any system.
20//
21// The next logical choice is timeGetTime().  timeGetTime has a precision of
22// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23// applications on the system.  By default, precision is only 15.5ms.
24// Unfortunately, we don't want to call timeBeginPeriod because we don't
25// want to affect other applications.  Further, on mobile platforms, use of
26// faster multimedia timers can hurt battery life.  See the intel
27// article about this here:
28// http://softwarecommunity.intel.com/articles/eng/1086.htm
29//
30// To work around all this, we're going to generally use timeGetTime().  We
31// will only increase the system-wide timer if we're not running on battery
32// power.  Using timeBeginPeriod(1) is a requirement in order to make our
33// message loop waits have the same resolution that our time measurements
34// do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35// there is nothing else to waken the Wait.
36
37#include "base/time.h"
38
39#pragma comment(lib, "winmm.lib")
40#include <windows.h>
41#include <mmsystem.h>
42
43#include "base/basictypes.h"
44#include "base/logging.h"
45#include "base/cpu.h"
46#include "base/memory/singleton.h"
47#include "base/synchronization/lock.h"
48
49using base::Time;
50using base::TimeDelta;
51using base::TimeTicks;
52
53namespace {
54
55// From MSDN, FILETIME "Contains a 64-bit value representing the number of
56// 100-nanosecond intervals since January 1, 1601 (UTC)."
57int64 FileTimeToMicroseconds(const FILETIME& ft) {
58  // Need to bit_cast to fix alignment, then divide by 10 to convert
59  // 100-nanoseconds to milliseconds. This only works on little-endian
60  // machines.
61  return bit_cast<int64, FILETIME>(ft) / 10;
62}
63
64void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65  DCHECK(us >= 0) << "Time is less than 0, negative values are not "
66      "representable in FILETIME";
67
68  // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69  // handle alignment problems. This only works on little-endian machines.
70  *ft = bit_cast<FILETIME, int64>(us * 10);
71}
72
73int64 CurrentWallclockMicroseconds() {
74  FILETIME ft;
75  ::GetSystemTimeAsFileTime(&ft);
76  return FileTimeToMicroseconds(ft);
77}
78
79// Time between resampling the un-granular clock for this API.  60 seconds.
80const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
81
82int64 initial_time = 0;
83TimeTicks initial_ticks;
84
85void InitializeClock() {
86  initial_ticks = TimeTicks::Now();
87  initial_time = CurrentWallclockMicroseconds();
88}
89
90}  // namespace
91
92// Time -----------------------------------------------------------------------
93
94// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95// 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97// 1700, 1800, and 1900.
98// static
99const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
100
101bool Time::high_resolution_timer_enabled_ = false;
102
103// static
104Time Time::Now() {
105  if (initial_time == 0)
106    InitializeClock();
107
108  // We implement time using the high-resolution timers so that we can get
109  // timeouts which are smaller than 10-15ms.  If we just used
110  // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
111  //
112  // To make this work, we initialize the clock (initial_time) and the
113  // counter (initial_ctr).  To compute the initial time, we can check
114  // the number of ticks that have elapsed, and compute the delta.
115  //
116  // To avoid any drift, we periodically resync the counters to the system
117  // clock.
118  while (true) {
119    TimeTicks ticks = TimeTicks::Now();
120
121    // Calculate the time elapsed since we started our timer
122    TimeDelta elapsed = ticks - initial_ticks;
123
124    // Check if enough time has elapsed that we need to resync the clock.
125    if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
126      InitializeClock();
127      continue;
128    }
129
130    return Time(elapsed + Time(initial_time));
131  }
132}
133
134// static
135Time Time::NowFromSystemTime() {
136  // Force resync.
137  InitializeClock();
138  return Time(initial_time);
139}
140
141// static
142Time Time::FromFileTime(FILETIME ft) {
143  return Time(FileTimeToMicroseconds(ft));
144}
145
146FILETIME Time::ToFileTime() const {
147  FILETIME utc_ft;
148  MicrosecondsToFileTime(us_, &utc_ft);
149  return utc_ft;
150}
151
152// static
153void Time::EnableHighResolutionTimer(bool enable) {
154  // Test for single-threaded access.
155  static PlatformThreadId my_thread = PlatformThread::CurrentId();
156  DCHECK(PlatformThread::CurrentId() == my_thread);
157
158  if (high_resolution_timer_enabled_ == enable)
159    return;
160
161  high_resolution_timer_enabled_ = enable;
162}
163
164// static
165bool Time::ActivateHighResolutionTimer(bool activate) {
166  if (!high_resolution_timer_enabled_)
167    return false;
168
169  // Using anything other than 1ms makes timers granular
170  // to that interval.
171  const int kMinTimerIntervalMs = 1;
172  MMRESULT result;
173  if (activate)
174    result = timeBeginPeriod(kMinTimerIntervalMs);
175  else
176    result = timeEndPeriod(kMinTimerIntervalMs);
177  return result == TIMERR_NOERROR;
178}
179
180// static
181Time Time::FromExploded(bool is_local, const Exploded& exploded) {
182  // Create the system struct representing our exploded time. It will either be
183  // in local time or UTC.
184  SYSTEMTIME st;
185  st.wYear = exploded.year;
186  st.wMonth = exploded.month;
187  st.wDayOfWeek = exploded.day_of_week;
188  st.wDay = exploded.day_of_month;
189  st.wHour = exploded.hour;
190  st.wMinute = exploded.minute;
191  st.wSecond = exploded.second;
192  st.wMilliseconds = exploded.millisecond;
193
194  // Convert to FILETIME.
195  FILETIME ft;
196  if (!SystemTimeToFileTime(&st, &ft)) {
197    NOTREACHED() << "Unable to convert time";
198    return Time(0);
199  }
200
201  // Ensure that it's in UTC.
202  if (is_local) {
203    FILETIME utc_ft;
204    LocalFileTimeToFileTime(&ft, &utc_ft);
205    return Time(FileTimeToMicroseconds(utc_ft));
206  }
207  return Time(FileTimeToMicroseconds(ft));
208}
209
210void Time::Explode(bool is_local, Exploded* exploded) const {
211  // FILETIME in UTC.
212  FILETIME utc_ft;
213  MicrosecondsToFileTime(us_, &utc_ft);
214
215  // FILETIME in local time if necessary.
216  BOOL success = TRUE;
217  FILETIME ft;
218  if (is_local)
219    success = FileTimeToLocalFileTime(&utc_ft, &ft);
220  else
221    ft = utc_ft;
222
223  // FILETIME in SYSTEMTIME (exploded).
224  SYSTEMTIME st;
225  if (!success || !FileTimeToSystemTime(&ft, &st)) {
226    NOTREACHED() << "Unable to convert time, don't know why";
227    ZeroMemory(exploded, sizeof(exploded));
228    return;
229  }
230
231  exploded->year = st.wYear;
232  exploded->month = st.wMonth;
233  exploded->day_of_week = st.wDayOfWeek;
234  exploded->day_of_month = st.wDay;
235  exploded->hour = st.wHour;
236  exploded->minute = st.wMinute;
237  exploded->second = st.wSecond;
238  exploded->millisecond = st.wMilliseconds;
239}
240
241// TimeTicks ------------------------------------------------------------------
242namespace {
243
244// We define a wrapper to adapt between the __stdcall and __cdecl call of the
245// mock function, and to avoid a static constructor.  Assigning an import to a
246// function pointer directly would require setup code to fetch from the IAT.
247DWORD timeGetTimeWrapper() {
248  return timeGetTime();
249}
250
251DWORD (*tick_function)(void) = &timeGetTimeWrapper;
252
253// Accumulation of time lost due to rollover (in milliseconds).
254int64 rollover_ms = 0;
255
256// The last timeGetTime value we saw, to detect rollover.
257DWORD last_seen_now = 0;
258
259// Lock protecting rollover_ms and last_seen_now.
260// Note: this is a global object, and we usually avoid these. However, the time
261// code is low-level, and we don't want to use Singletons here (it would be too
262// easy to use a Singleton without even knowing it, and that may lead to many
263// gotchas). Its impact on startup time should be negligible due to low-level
264// nature of time code.
265base::Lock rollover_lock;
266
267// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
268// because it returns the number of milliseconds since Windows has started,
269// which will roll over the 32-bit value every ~49 days.  We try to track
270// rollover ourselves, which works if TimeTicks::Now() is called at least every
271// 49 days.
272TimeDelta RolloverProtectedNow() {
273  base::AutoLock locked(rollover_lock);
274  // We should hold the lock while calling tick_function to make sure that
275  // we keep last_seen_now stay correctly in sync.
276  DWORD now = tick_function();
277  if (now < last_seen_now)
278    rollover_ms += 0x100000000I64;  // ~49.7 days.
279  last_seen_now = now;
280  return TimeDelta::FromMilliseconds(now + rollover_ms);
281}
282
283// Overview of time counters:
284// (1) CPU cycle counter. (Retrieved via RDTSC)
285// The CPU counter provides the highest resolution time stamp and is the least
286// expensive to retrieve. However, the CPU counter is unreliable and should not
287// be used in production. Its biggest issue is that it is per processor and it
288// is not synchronized between processors. Also, on some computers, the counters
289// will change frequency due to thermal and power changes, and stop in some
290// states.
291//
292// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
293// resolution (100 nanoseconds) time stamp but is comparatively more expensive
294// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
295// (with some help from ACPI).
296// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
297// in the worst case, it gets the counter from the rollover interrupt on the
298// programmable interrupt timer. In best cases, the HAL may conclude that the
299// RDTSC counter runs at a constant frequency, then it uses that instead. On
300// multiprocessor machines, it will try to verify the values returned from
301// RDTSC on each processor are consistent with each other, and apply a handful
302// of workarounds for known buggy hardware. In other words, QPC is supposed to
303// give consistent result on a multiprocessor computer, but it is unreliable in
304// reality due to bugs in BIOS or HAL on some, especially old computers.
305// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
306// it should be used with caution.
307//
308// (3) System time. The system time provides a low-resolution (typically 10ms
309// to 55 milliseconds) time stamp but is comparatively less expensive to
310// retrieve and more reliable.
311class HighResNowSingleton {
312 public:
313  static HighResNowSingleton* GetInstance() {
314    return Singleton<HighResNowSingleton>::get();
315  }
316
317  bool IsUsingHighResClock() {
318    return ticks_per_microsecond_ != 0.0;
319  }
320
321  void DisableHighResClock() {
322    ticks_per_microsecond_ = 0.0;
323  }
324
325  TimeDelta Now() {
326    if (IsUsingHighResClock())
327      return TimeDelta::FromMicroseconds(UnreliableNow());
328
329    // Just fallback to the slower clock.
330    return RolloverProtectedNow();
331  }
332
333  int64 GetQPCDriftMicroseconds() {
334    if (!IsUsingHighResClock())
335      return 0;
336
337    return abs((UnreliableNow() - ReliableNow()) - skew_);
338  }
339
340 private:
341  HighResNowSingleton()
342    : ticks_per_microsecond_(0.0),
343      skew_(0) {
344    InitializeClock();
345
346    // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
347    // unreliable.  Fallback to low-res clock.
348    base::CPU cpu;
349    if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
350      DisableHighResClock();
351  }
352
353  // Synchronize the QPC clock with GetSystemTimeAsFileTime.
354  void InitializeClock() {
355    LARGE_INTEGER ticks_per_sec = {0};
356    if (!QueryPerformanceFrequency(&ticks_per_sec))
357      return;  // Broken, we don't guarantee this function works.
358    ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
359      static_cast<float>(Time::kMicrosecondsPerSecond);
360
361    skew_ = UnreliableNow() - ReliableNow();
362  }
363
364  // Get the number of microseconds since boot in an unreliable fashion.
365  int64 UnreliableNow() {
366    LARGE_INTEGER now;
367    QueryPerformanceCounter(&now);
368    return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
369  }
370
371  // Get the number of microseconds since boot in a reliable fashion.
372  int64 ReliableNow() {
373    return RolloverProtectedNow().InMicroseconds();
374  }
375
376  // Cached clock frequency -> microseconds. This assumes that the clock
377  // frequency is faster than one microsecond (which is 1MHz, should be OK).
378  float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
379  int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
380
381  friend struct DefaultSingletonTraits<HighResNowSingleton>;
382};
383
384}  // namespace
385
386// static
387TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
388    TickFunctionType ticker) {
389  TickFunctionType old = tick_function;
390  tick_function = ticker;
391  return old;
392}
393
394// static
395TimeTicks TimeTicks::Now() {
396  return TimeTicks() + RolloverProtectedNow();
397}
398
399// static
400TimeTicks TimeTicks::HighResNow() {
401  return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
402}
403
404// static
405int64 TimeTicks::GetQPCDriftMicroseconds() {
406  return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
407}
408
409// static
410bool TimeTicks::IsHighResClockWorking() {
411  return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
412}
413