time_win.cc revision c7f5f8508d98d5952d42ed7648c2a8f30a4da156
1// Copyright (c) 2009 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Windows Timer Primer
7//
8// A good article:  http://www.ddj.com/windows/184416651
9// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10//
11// The default windows timer, GetSystemTimeAsFileTime is not very precise.
12// It is only good to ~15.5ms.
13//
14// QueryPerformanceCounter is the logical choice for a high-precision timer.
15// However, it is known to be buggy on some hardware.  Specifically, it can
16// sometimes "jump".  On laptops, QPC can also be very expensive to call.
17// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18// on laptops.  A unittest exists which will show the relative cost of various
19// timers on any system.
20//
21// The next logical choice is timeGetTime().  timeGetTime has a precision of
22// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23// applications on the system.  By default, precision is only 15.5ms.
24// Unfortunately, we don't want to call timeBeginPeriod because we don't
25// want to affect other applications.  Further, on mobile platforms, use of
26// faster multimedia timers can hurt battery life.  See the intel
27// article about this here:
28// http://softwarecommunity.intel.com/articles/eng/1086.htm
29//
30// To work around all this, we're going to generally use timeGetTime().  We
31// will only increase the system-wide timer if we're not running on battery
32// power.  Using timeBeginPeriod(1) is a requirement in order to make our
33// message loop waits have the same resolution that our time measurements
34// do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35// there is nothing else to waken the Wait.
36
37#include "base/time.h"
38
39#pragma comment(lib, "winmm.lib")
40#include <windows.h>
41#include <mmsystem.h>
42
43#include "base/basictypes.h"
44#include "base/lock.h"
45#include "base/logging.h"
46#include "base/cpu.h"
47#include "base/singleton.h"
48
49using base::Time;
50using base::TimeDelta;
51using base::TimeTicks;
52
53namespace {
54
55// From MSDN, FILETIME "Contains a 64-bit value representing the number of
56// 100-nanosecond intervals since January 1, 1601 (UTC)."
57int64 FileTimeToMicroseconds(const FILETIME& ft) {
58  // Need to bit_cast to fix alignment, then divide by 10 to convert
59  // 100-nanoseconds to milliseconds. This only works on little-endian
60  // machines.
61  return bit_cast<int64, FILETIME>(ft) / 10;
62}
63
64void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65  DCHECK(us >= 0) << "Time is less than 0, negative values are not "
66      "representable in FILETIME";
67
68  // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69  // handle alignment problems. This only works on little-endian machines.
70  *ft = bit_cast<FILETIME, int64>(us * 10);
71}
72
73int64 CurrentWallclockMicroseconds() {
74  FILETIME ft;
75  ::GetSystemTimeAsFileTime(&ft);
76  return FileTimeToMicroseconds(ft);
77}
78
79// Time between resampling the un-granular clock for this API.  60 seconds.
80const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
81
82int64 initial_time = 0;
83TimeTicks initial_ticks;
84
85void InitializeClock() {
86  initial_ticks = TimeTicks::Now();
87  initial_time = CurrentWallclockMicroseconds();
88}
89
90}  // namespace
91
92// Time -----------------------------------------------------------------------
93
94// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95// 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97// 1700, 1800, and 1900.
98// static
99const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
100
101// static
102Time Time::Now() {
103  if (initial_time == 0)
104    InitializeClock();
105
106  // We implement time using the high-resolution timers so that we can get
107  // timeouts which are smaller than 10-15ms.  If we just used
108  // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
109  //
110  // To make this work, we initialize the clock (initial_time) and the
111  // counter (initial_ctr).  To compute the initial time, we can check
112  // the number of ticks that have elapsed, and compute the delta.
113  //
114  // To avoid any drift, we periodically resync the counters to the system
115  // clock.
116  while (true) {
117    TimeTicks ticks = TimeTicks::Now();
118
119    // Calculate the time elapsed since we started our timer
120    TimeDelta elapsed = ticks - initial_ticks;
121
122    // Check if enough time has elapsed that we need to resync the clock.
123    if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
124      InitializeClock();
125      continue;
126    }
127
128    return Time(elapsed + Time(initial_time));
129  }
130}
131
132// static
133Time Time::NowFromSystemTime() {
134  // Force resync.
135  InitializeClock();
136  return Time(initial_time);
137}
138
139// static
140Time Time::FromFileTime(FILETIME ft) {
141  return Time(FileTimeToMicroseconds(ft));
142}
143
144FILETIME Time::ToFileTime() const {
145  FILETIME utc_ft;
146  MicrosecondsToFileTime(us_, &utc_ft);
147  return utc_ft;
148}
149
150// static
151bool Time::UseHighResolutionTimer(bool use) {
152  // TODO(mbelshe): Make sure that switching the system timer resolution
153  // doesn't break Timer firing order etc. An example test would be to have
154  // two threads. One would have a bunch of timers, and another would turn the
155  // high resolution timer on and off.
156
157  MMRESULT result;
158  if (use)
159    result = timeBeginPeriod(1);
160  else
161    result = timeEndPeriod(1);
162  return (result == TIMERR_NOERROR);
163}
164
165// static
166Time Time::FromExploded(bool is_local, const Exploded& exploded) {
167  // Create the system struct representing our exploded time. It will either be
168  // in local time or UTC.
169  SYSTEMTIME st;
170  st.wYear = exploded.year;
171  st.wMonth = exploded.month;
172  st.wDayOfWeek = exploded.day_of_week;
173  st.wDay = exploded.day_of_month;
174  st.wHour = exploded.hour;
175  st.wMinute = exploded.minute;
176  st.wSecond = exploded.second;
177  st.wMilliseconds = exploded.millisecond;
178
179  // Convert to FILETIME.
180  FILETIME ft;
181  if (!SystemTimeToFileTime(&st, &ft)) {
182    NOTREACHED() << "Unable to convert time";
183    return Time(0);
184  }
185
186  // Ensure that it's in UTC.
187  if (is_local) {
188    FILETIME utc_ft;
189    LocalFileTimeToFileTime(&ft, &utc_ft);
190    return Time(FileTimeToMicroseconds(utc_ft));
191  }
192  return Time(FileTimeToMicroseconds(ft));
193}
194
195void Time::Explode(bool is_local, Exploded* exploded) const {
196  // FILETIME in UTC.
197  FILETIME utc_ft;
198  MicrosecondsToFileTime(us_, &utc_ft);
199
200  // FILETIME in local time if necessary.
201  BOOL success = TRUE;
202  FILETIME ft;
203  if (is_local)
204    success = FileTimeToLocalFileTime(&utc_ft, &ft);
205  else
206    ft = utc_ft;
207
208  // FILETIME in SYSTEMTIME (exploded).
209  SYSTEMTIME st;
210  if (!success || !FileTimeToSystemTime(&ft, &st)) {
211    NOTREACHED() << "Unable to convert time, don't know why";
212    ZeroMemory(exploded, sizeof(exploded));
213    return;
214  }
215
216  exploded->year = st.wYear;
217  exploded->month = st.wMonth;
218  exploded->day_of_week = st.wDayOfWeek;
219  exploded->day_of_month = st.wDay;
220  exploded->hour = st.wHour;
221  exploded->minute = st.wMinute;
222  exploded->second = st.wSecond;
223  exploded->millisecond = st.wMilliseconds;
224}
225
226// TimeTicks ------------------------------------------------------------------
227namespace {
228
229// We define a wrapper to adapt between the __stdcall and __cdecl call of the
230// mock function, and to avoid a static constructor.  Assigning an import to a
231// function pointer directly would require setup code to fetch from the IAT.
232DWORD timeGetTimeWrapper() {
233  return timeGetTime();
234}
235
236
237DWORD (*tick_function)(void) = &timeGetTimeWrapper;
238
239// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
240// because it returns the number of milliseconds since Windows has started,
241// which will roll over the 32-bit value every ~49 days.  We try to track
242// rollover ourselves, which works if TimeTicks::Now() is called at least every
243// 49 days.
244class NowSingleton {
245 public:
246  NowSingleton()
247    : rollover_(TimeDelta::FromMilliseconds(0)),
248      last_seen_(0) {
249  }
250
251  ~NowSingleton() {
252  }
253
254  TimeDelta Now() {
255    AutoLock locked(lock_);
256    // We should hold the lock while calling tick_function to make sure that
257    // we keep our last_seen_ stay correctly in sync.
258    DWORD now = tick_function();
259    if (now < last_seen_)
260      rollover_ += TimeDelta::FromMilliseconds(0x100000000I64);  // ~49.7 days.
261    last_seen_ = now;
262    return TimeDelta::FromMilliseconds(now) + rollover_;
263  }
264
265 private:
266  Lock lock_;  // To protected last_seen_ and rollover_.
267  TimeDelta rollover_;  // Accumulation of time lost due to rollover.
268  DWORD last_seen_;  // The last timeGetTime value we saw, to detect rollover.
269
270  DISALLOW_COPY_AND_ASSIGN(NowSingleton);
271};
272
273// Overview of time counters:
274// (1) CPU cycle counter. (Retrieved via RDTSC)
275// The CPU counter provides the highest resolution time stamp and is the least
276// expensive to retrieve. However, the CPU counter is unreliable and should not
277// be used in production. Its biggest issue is that it is per processor and it
278// is not synchronized between processors. Also, on some computers, the counters
279// will change frequency due to thermal and power changes, and stop in some
280// states.
281//
282// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
283// resolution (100 nanoseconds) time stamp but is comparatively more expensive
284// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
285// (with some help from ACPI).
286// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
287// in the worst case, it gets the counter from the rollover interrupt on the
288// programmable interrupt timer. In best cases, the HAL may conclude that the
289// RDTSC counter runs at a constant frequency, then it uses that instead. On
290// multiprocessor machines, it will try to verify the values returned from
291// RDTSC on each processor are consistent with each other, and apply a handful
292// of workarounds for known buggy hardware. In other words, QPC is supposed to
293// give consistent result on a multiprocessor computer, but it is unreliable in
294// reality due to bugs in BIOS or HAL on some, especially old computers.
295// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
296// it should be used with caution.
297//
298// (3) System time. The system time provides a low-resolution (typically 10ms
299// to 55 milliseconds) time stamp but is comparatively less expensive to
300// retrieve and more reliable.
301class HighResNowSingleton {
302 public:
303  HighResNowSingleton()
304    : ticks_per_microsecond_(0.0),
305      skew_(0) {
306    InitializeClock();
307
308    // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
309    // unreliable.  Fallback to low-res clock.
310    base::CPU cpu;
311    if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
312      DisableHighResClock();
313  }
314
315  bool IsUsingHighResClock() {
316    return ticks_per_microsecond_ != 0.0;
317  }
318
319  void DisableHighResClock() {
320    ticks_per_microsecond_ = 0.0;
321  }
322
323  TimeDelta Now() {
324    // Our maximum tolerance for QPC drifting.
325    const int kMaxTimeDrift = 50 * Time::kMicrosecondsPerMillisecond;
326
327    if (IsUsingHighResClock()) {
328      int64 now = UnreliableNow();
329
330      // Verify that QPC does not seem to drift.
331      DCHECK(now - ReliableNow() - skew_ < kMaxTimeDrift);
332
333      return TimeDelta::FromMicroseconds(now);
334    }
335
336    // Just fallback to the slower clock.
337    return Singleton<NowSingleton>::get()->Now();
338  }
339
340 private:
341  // Synchronize the QPC clock with GetSystemTimeAsFileTime.
342  void InitializeClock() {
343    LARGE_INTEGER ticks_per_sec = {0};
344    if (!QueryPerformanceFrequency(&ticks_per_sec))
345      return;  // Broken, we don't guarantee this function works.
346    ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
347      static_cast<float>(Time::kMicrosecondsPerSecond);
348
349    skew_ = UnreliableNow() - ReliableNow();
350  }
351
352  // Get the number of microseconds since boot in a reliable fashion
353  int64 UnreliableNow() {
354    LARGE_INTEGER now;
355    QueryPerformanceCounter(&now);
356    return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
357  }
358
359  // Get the number of microseconds since boot in a reliable fashion
360  int64 ReliableNow() {
361    return Singleton<NowSingleton>::get()->Now().InMicroseconds();
362  }
363
364  // Cached clock frequency -> microseconds. This assumes that the clock
365  // frequency is faster than one microsecond (which is 1MHz, should be OK).
366  float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
367  int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
368
369  DISALLOW_COPY_AND_ASSIGN(HighResNowSingleton);
370};
371
372}  // namespace
373
374// static
375TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
376    TickFunctionType ticker) {
377  TickFunctionType old = tick_function;
378  tick_function = ticker;
379  return old;
380}
381
382// static
383TimeTicks TimeTicks::Now() {
384  return TimeTicks() + Singleton<NowSingleton>::get()->Now();
385}
386
387// static
388TimeTicks TimeTicks::HighResNow() {
389  return TimeTicks() + Singleton<HighResNowSingleton>::get()->Now();
390}
391