1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/APSInt.h"
43#include "llvm/ADT/Triple.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58  }
59
60  llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                             llvm::Module &M, const llvm::TargetData &TD,
66                             DiagnosticsEngine &diags)
67  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69    ABI(createCXXABI(*this)),
70    Types(*this),
71    TBAA(0),
72    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74    RRData(0), CFConstantStringClassRef(0),
75    ConstantStringClassRef(0), NSConstantStringType(0),
76    VMContext(M.getContext()),
77    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78    BlockObjectAssign(0), BlockObjectDispose(0),
79    BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81  // Initialize the type cache.
82  llvm::LLVMContext &LLVMContext = M.getContext();
83  VoidTy = llvm::Type::getVoidTy(LLVMContext);
84  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88  FloatTy = llvm::Type::getFloatTy(LLVMContext);
89  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91  PointerAlignInBytes =
92  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95  Int8PtrTy = Int8Ty->getPointerTo(0);
96  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98  if (LangOpts.ObjC1)
99    createObjCRuntime();
100  if (LangOpts.OpenCL)
101    createOpenCLRuntime();
102  if (LangOpts.CUDA)
103    createCUDARuntime();
104
105  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106  if (LangOpts.ThreadSanitizer ||
107      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                           ABI.getMangleContext());
110
111  // If debug info or coverage generation is enabled, create the CGDebugInfo
112  // object.
113  if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114      CodeGenOpts.EmitGcovArcs ||
115      CodeGenOpts.EmitGcovNotes)
116    DebugInfo = new CGDebugInfo(*this);
117
118  Block.GlobalUniqueCount = 0;
119
120  if (C.getLangOpts().ObjCAutoRefCount)
121    ARCData = new ARCEntrypoints();
122  RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126  delete ObjCRuntime;
127  delete OpenCLRuntime;
128  delete CUDARuntime;
129  delete TheTargetCodeGenInfo;
130  delete &ABI;
131  delete TBAA;
132  delete DebugInfo;
133  delete ARCData;
134  delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138  // This is just isGNUFamily(), but we want to force implementors of
139  // new ABIs to decide how best to do this.
140  switch (LangOpts.ObjCRuntime.getKind()) {
141  case ObjCRuntime::GNUstep:
142  case ObjCRuntime::GCC:
143  case ObjCRuntime::ObjFW:
144    ObjCRuntime = CreateGNUObjCRuntime(*this);
145    return;
146
147  case ObjCRuntime::FragileMacOSX:
148  case ObjCRuntime::MacOSX:
149  case ObjCRuntime::iOS:
150    ObjCRuntime = CreateMacObjCRuntime(*this);
151    return;
152  }
153  llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157  OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161  CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165  EmitDeferred();
166  EmitCXXGlobalInitFunc();
167  EmitCXXGlobalDtorFunc();
168  if (ObjCRuntime)
169    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170      AddGlobalCtor(ObjCInitFunction);
171  EmitCtorList(GlobalCtors, "llvm.global_ctors");
172  EmitCtorList(GlobalDtors, "llvm.global_dtors");
173  EmitGlobalAnnotations();
174  EmitLLVMUsed();
175
176  SimplifyPersonality();
177
178  if (getCodeGenOpts().EmitDeclMetadata)
179    EmitDeclMetadata();
180
181  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182    EmitCoverageFile();
183
184  if (DebugInfo)
185    DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189  // Make sure that this type is translated.
190  Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194  if (!TBAA)
195    return 0;
196  return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200  if (!TBAA)
201    return 0;
202  return TBAA->getTBAAInfoForVTablePtr();
203}
204
205void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
206                                        llvm::MDNode *TBAAInfo) {
207  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
208}
209
210bool CodeGenModule::isTargetDarwin() const {
211  return getContext().getTargetInfo().getTriple().isOSDarwin();
212}
213
214void CodeGenModule::Error(SourceLocation loc, StringRef error) {
215  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
216  getDiags().Report(Context.getFullLoc(loc), diagID);
217}
218
219/// ErrorUnsupported - Print out an error that codegen doesn't support the
220/// specified stmt yet.
221void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
222                                     bool OmitOnError) {
223  if (OmitOnError && getDiags().hasErrorOccurred())
224    return;
225  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
226                                               "cannot compile this %0 yet");
227  std::string Msg = Type;
228  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
229    << Msg << S->getSourceRange();
230}
231
232/// ErrorUnsupported - Print out an error that codegen doesn't support the
233/// specified decl yet.
234void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
235                                     bool OmitOnError) {
236  if (OmitOnError && getDiags().hasErrorOccurred())
237    return;
238  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
239                                               "cannot compile this %0 yet");
240  std::string Msg = Type;
241  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
242}
243
244llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
245  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
246}
247
248void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
249                                        const NamedDecl *D) const {
250  // Internal definitions always have default visibility.
251  if (GV->hasLocalLinkage()) {
252    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
253    return;
254  }
255
256  // Set visibility for definitions.
257  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
258  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
259    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
260}
261
262static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
263  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
264      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
265      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
266      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
267      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
268}
269
270static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
271    CodeGenOptions::TLSModel M) {
272  switch (M) {
273  case CodeGenOptions::GeneralDynamicTLSModel:
274    return llvm::GlobalVariable::GeneralDynamicTLSModel;
275  case CodeGenOptions::LocalDynamicTLSModel:
276    return llvm::GlobalVariable::LocalDynamicTLSModel;
277  case CodeGenOptions::InitialExecTLSModel:
278    return llvm::GlobalVariable::InitialExecTLSModel;
279  case CodeGenOptions::LocalExecTLSModel:
280    return llvm::GlobalVariable::LocalExecTLSModel;
281  }
282  llvm_unreachable("Invalid TLS model!");
283}
284
285void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
286                               const VarDecl &D) const {
287  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
288
289  llvm::GlobalVariable::ThreadLocalMode TLM;
290  TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
291
292  // Override the TLS model if it is explicitly specified.
293  if (D.hasAttr<TLSModelAttr>()) {
294    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
295    TLM = GetLLVMTLSModel(Attr->getModel());
296  }
297
298  GV->setThreadLocalMode(TLM);
299}
300
301/// Set the symbol visibility of type information (vtable and RTTI)
302/// associated with the given type.
303void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
304                                      const CXXRecordDecl *RD,
305                                      TypeVisibilityKind TVK) const {
306  setGlobalVisibility(GV, RD);
307
308  if (!CodeGenOpts.HiddenWeakVTables)
309    return;
310
311  // We never want to drop the visibility for RTTI names.
312  if (TVK == TVK_ForRTTIName)
313    return;
314
315  // We want to drop the visibility to hidden for weak type symbols.
316  // This isn't possible if there might be unresolved references
317  // elsewhere that rely on this symbol being visible.
318
319  // This should be kept roughly in sync with setThunkVisibility
320  // in CGVTables.cpp.
321
322  // Preconditions.
323  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
324      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
325    return;
326
327  // Don't override an explicit visibility attribute.
328  if (RD->getExplicitVisibility())
329    return;
330
331  switch (RD->getTemplateSpecializationKind()) {
332  // We have to disable the optimization if this is an EI definition
333  // because there might be EI declarations in other shared objects.
334  case TSK_ExplicitInstantiationDefinition:
335  case TSK_ExplicitInstantiationDeclaration:
336    return;
337
338  // Every use of a non-template class's type information has to emit it.
339  case TSK_Undeclared:
340    break;
341
342  // In theory, implicit instantiations can ignore the possibility of
343  // an explicit instantiation declaration because there necessarily
344  // must be an EI definition somewhere with default visibility.  In
345  // practice, it's possible to have an explicit instantiation for
346  // an arbitrary template class, and linkers aren't necessarily able
347  // to deal with mixed-visibility symbols.
348  case TSK_ExplicitSpecialization:
349  case TSK_ImplicitInstantiation:
350    if (!CodeGenOpts.HiddenWeakTemplateVTables)
351      return;
352    break;
353  }
354
355  // If there's a key function, there may be translation units
356  // that don't have the key function's definition.  But ignore
357  // this if we're emitting RTTI under -fno-rtti.
358  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
359    if (Context.getKeyFunction(RD))
360      return;
361  }
362
363  // Otherwise, drop the visibility to hidden.
364  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
365  GV->setUnnamedAddr(true);
366}
367
368StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
369  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
370
371  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
372  if (!Str.empty())
373    return Str;
374
375  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
376    IdentifierInfo *II = ND->getIdentifier();
377    assert(II && "Attempt to mangle unnamed decl.");
378
379    Str = II->getName();
380    return Str;
381  }
382
383  SmallString<256> Buffer;
384  llvm::raw_svector_ostream Out(Buffer);
385  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
386    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
387  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
388    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
389  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
390    getCXXABI().getMangleContext().mangleBlock(BD, Out,
391      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
392  else
393    getCXXABI().getMangleContext().mangleName(ND, Out);
394
395  // Allocate space for the mangled name.
396  Out.flush();
397  size_t Length = Buffer.size();
398  char *Name = MangledNamesAllocator.Allocate<char>(Length);
399  std::copy(Buffer.begin(), Buffer.end(), Name);
400
401  Str = StringRef(Name, Length);
402
403  return Str;
404}
405
406void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
407                                        const BlockDecl *BD) {
408  MangleContext &MangleCtx = getCXXABI().getMangleContext();
409  const Decl *D = GD.getDecl();
410  llvm::raw_svector_ostream Out(Buffer.getBuffer());
411  if (D == 0)
412    MangleCtx.mangleGlobalBlock(BD,
413      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
414  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
415    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
416  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
417    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
418  else
419    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
420}
421
422llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
423  return getModule().getNamedValue(Name);
424}
425
426/// AddGlobalCtor - Add a function to the list that will be called before
427/// main() runs.
428void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
429  // FIXME: Type coercion of void()* types.
430  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
431}
432
433/// AddGlobalDtor - Add a function to the list that will be called
434/// when the module is unloaded.
435void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
436  // FIXME: Type coercion of void()* types.
437  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
438}
439
440void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
441  // Ctor function type is void()*.
442  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
443  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
444
445  // Get the type of a ctor entry, { i32, void ()* }.
446  llvm::StructType *CtorStructTy =
447    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
448
449  // Construct the constructor and destructor arrays.
450  SmallVector<llvm::Constant*, 8> Ctors;
451  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
452    llvm::Constant *S[] = {
453      llvm::ConstantInt::get(Int32Ty, I->second, false),
454      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
455    };
456    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
457  }
458
459  if (!Ctors.empty()) {
460    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
461    new llvm::GlobalVariable(TheModule, AT, false,
462                             llvm::GlobalValue::AppendingLinkage,
463                             llvm::ConstantArray::get(AT, Ctors),
464                             GlobalName);
465  }
466}
467
468llvm::GlobalValue::LinkageTypes
469CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
470  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
471
472  if (Linkage == GVA_Internal)
473    return llvm::Function::InternalLinkage;
474
475  if (D->hasAttr<DLLExportAttr>())
476    return llvm::Function::DLLExportLinkage;
477
478  if (D->hasAttr<WeakAttr>())
479    return llvm::Function::WeakAnyLinkage;
480
481  // In C99 mode, 'inline' functions are guaranteed to have a strong
482  // definition somewhere else, so we can use available_externally linkage.
483  if (Linkage == GVA_C99Inline)
484    return llvm::Function::AvailableExternallyLinkage;
485
486  // Note that Apple's kernel linker doesn't support symbol
487  // coalescing, so we need to avoid linkonce and weak linkages there.
488  // Normally, this means we just map to internal, but for explicit
489  // instantiations we'll map to external.
490
491  // In C++, the compiler has to emit a definition in every translation unit
492  // that references the function.  We should use linkonce_odr because
493  // a) if all references in this translation unit are optimized away, we
494  // don't need to codegen it.  b) if the function persists, it needs to be
495  // merged with other definitions. c) C++ has the ODR, so we know the
496  // definition is dependable.
497  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
498    return !Context.getLangOpts().AppleKext
499             ? llvm::Function::LinkOnceODRLinkage
500             : llvm::Function::InternalLinkage;
501
502  // An explicit instantiation of a template has weak linkage, since
503  // explicit instantiations can occur in multiple translation units
504  // and must all be equivalent. However, we are not allowed to
505  // throw away these explicit instantiations.
506  if (Linkage == GVA_ExplicitTemplateInstantiation)
507    return !Context.getLangOpts().AppleKext
508             ? llvm::Function::WeakODRLinkage
509             : llvm::Function::ExternalLinkage;
510
511  // Otherwise, we have strong external linkage.
512  assert(Linkage == GVA_StrongExternal);
513  return llvm::Function::ExternalLinkage;
514}
515
516
517/// SetFunctionDefinitionAttributes - Set attributes for a global.
518///
519/// FIXME: This is currently only done for aliases and functions, but not for
520/// variables (these details are set in EmitGlobalVarDefinition for variables).
521void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
522                                                    llvm::GlobalValue *GV) {
523  SetCommonAttributes(D, GV);
524}
525
526void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
527                                              const CGFunctionInfo &Info,
528                                              llvm::Function *F) {
529  unsigned CallingConv;
530  AttributeListType AttributeList;
531  ConstructAttributeList(Info, D, AttributeList, CallingConv);
532  F->setAttributes(llvm::AttrListPtr::get(AttributeList));
533  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
534}
535
536/// Determines whether the language options require us to model
537/// unwind exceptions.  We treat -fexceptions as mandating this
538/// except under the fragile ObjC ABI with only ObjC exceptions
539/// enabled.  This means, for example, that C with -fexceptions
540/// enables this.
541static bool hasUnwindExceptions(const LangOptions &LangOpts) {
542  // If exceptions are completely disabled, obviously this is false.
543  if (!LangOpts.Exceptions) return false;
544
545  // If C++ exceptions are enabled, this is true.
546  if (LangOpts.CXXExceptions) return true;
547
548  // If ObjC exceptions are enabled, this depends on the ABI.
549  if (LangOpts.ObjCExceptions) {
550    return LangOpts.ObjCRuntime.hasUnwindExceptions();
551  }
552
553  return true;
554}
555
556void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
557                                                           llvm::Function *F) {
558  if (CodeGenOpts.UnwindTables)
559    F->setHasUWTable();
560
561  if (!hasUnwindExceptions(LangOpts))
562    F->addFnAttr(llvm::Attribute::NoUnwind);
563
564  if (D->hasAttr<NakedAttr>()) {
565    // Naked implies noinline: we should not be inlining such functions.
566    F->addFnAttr(llvm::Attribute::Naked);
567    F->addFnAttr(llvm::Attribute::NoInline);
568  }
569
570  if (D->hasAttr<NoInlineAttr>())
571    F->addFnAttr(llvm::Attribute::NoInline);
572
573  // (noinline wins over always_inline, and we can't specify both in IR)
574  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
575      !F->hasFnAttr(llvm::Attribute::NoInline))
576    F->addFnAttr(llvm::Attribute::AlwaysInline);
577
578  // FIXME: Communicate hot and cold attributes to LLVM more directly.
579  if (D->hasAttr<ColdAttr>())
580    F->addFnAttr(llvm::Attribute::OptimizeForSize);
581
582  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
583    F->setUnnamedAddr(true);
584
585  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
586    F->addFnAttr(llvm::Attribute::StackProtect);
587  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
588    F->addFnAttr(llvm::Attribute::StackProtectReq);
589
590  if (LangOpts.AddressSanitizer) {
591    // When AddressSanitizer is enabled, set AddressSafety attribute
592    // unless __attribute__((no_address_safety_analysis)) is used.
593    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
594      F->addFnAttr(llvm::Attribute::AddressSafety);
595  }
596
597  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
598  if (alignment)
599    F->setAlignment(alignment);
600
601  // C++ ABI requires 2-byte alignment for member functions.
602  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
603    F->setAlignment(2);
604}
605
606void CodeGenModule::SetCommonAttributes(const Decl *D,
607                                        llvm::GlobalValue *GV) {
608  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
609    setGlobalVisibility(GV, ND);
610  else
611    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
612
613  if (D->hasAttr<UsedAttr>())
614    AddUsedGlobal(GV);
615
616  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
617    GV->setSection(SA->getName());
618
619  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
620}
621
622void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
623                                                  llvm::Function *F,
624                                                  const CGFunctionInfo &FI) {
625  SetLLVMFunctionAttributes(D, FI, F);
626  SetLLVMFunctionAttributesForDefinition(D, F);
627
628  F->setLinkage(llvm::Function::InternalLinkage);
629
630  SetCommonAttributes(D, F);
631}
632
633void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
634                                          llvm::Function *F,
635                                          bool IsIncompleteFunction) {
636  if (unsigned IID = F->getIntrinsicID()) {
637    // If this is an intrinsic function, set the function's attributes
638    // to the intrinsic's attributes.
639    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
640    return;
641  }
642
643  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
644
645  if (!IsIncompleteFunction)
646    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
647
648  // Only a few attributes are set on declarations; these may later be
649  // overridden by a definition.
650
651  if (FD->hasAttr<DLLImportAttr>()) {
652    F->setLinkage(llvm::Function::DLLImportLinkage);
653  } else if (FD->hasAttr<WeakAttr>() ||
654             FD->isWeakImported()) {
655    // "extern_weak" is overloaded in LLVM; we probably should have
656    // separate linkage types for this.
657    F->setLinkage(llvm::Function::ExternalWeakLinkage);
658  } else {
659    F->setLinkage(llvm::Function::ExternalLinkage);
660
661    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
662    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
663      F->setVisibility(GetLLVMVisibility(LV.visibility()));
664    }
665  }
666
667  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
668    F->setSection(SA->getName());
669}
670
671void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
672  assert(!GV->isDeclaration() &&
673         "Only globals with definition can force usage.");
674  LLVMUsed.push_back(GV);
675}
676
677void CodeGenModule::EmitLLVMUsed() {
678  // Don't create llvm.used if there is no need.
679  if (LLVMUsed.empty())
680    return;
681
682  // Convert LLVMUsed to what ConstantArray needs.
683  SmallVector<llvm::Constant*, 8> UsedArray;
684  UsedArray.resize(LLVMUsed.size());
685  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
686    UsedArray[i] =
687     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
688                                    Int8PtrTy);
689  }
690
691  if (UsedArray.empty())
692    return;
693  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
694
695  llvm::GlobalVariable *GV =
696    new llvm::GlobalVariable(getModule(), ATy, false,
697                             llvm::GlobalValue::AppendingLinkage,
698                             llvm::ConstantArray::get(ATy, UsedArray),
699                             "llvm.used");
700
701  GV->setSection("llvm.metadata");
702}
703
704void CodeGenModule::EmitDeferred() {
705  // Emit code for any potentially referenced deferred decls.  Since a
706  // previously unused static decl may become used during the generation of code
707  // for a static function, iterate until no changes are made.
708
709  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
710    if (!DeferredVTables.empty()) {
711      const CXXRecordDecl *RD = DeferredVTables.back();
712      DeferredVTables.pop_back();
713      getCXXABI().EmitVTables(RD);
714      continue;
715    }
716
717    GlobalDecl D = DeferredDeclsToEmit.back();
718    DeferredDeclsToEmit.pop_back();
719
720    // Check to see if we've already emitted this.  This is necessary
721    // for a couple of reasons: first, decls can end up in the
722    // deferred-decls queue multiple times, and second, decls can end
723    // up with definitions in unusual ways (e.g. by an extern inline
724    // function acquiring a strong function redefinition).  Just
725    // ignore these cases.
726    //
727    // TODO: That said, looking this up multiple times is very wasteful.
728    StringRef Name = getMangledName(D);
729    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
730    assert(CGRef && "Deferred decl wasn't referenced?");
731
732    if (!CGRef->isDeclaration())
733      continue;
734
735    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
736    // purposes an alias counts as a definition.
737    if (isa<llvm::GlobalAlias>(CGRef))
738      continue;
739
740    // Otherwise, emit the definition and move on to the next one.
741    EmitGlobalDefinition(D);
742  }
743}
744
745void CodeGenModule::EmitGlobalAnnotations() {
746  if (Annotations.empty())
747    return;
748
749  // Create a new global variable for the ConstantStruct in the Module.
750  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
751    Annotations[0]->getType(), Annotations.size()), Annotations);
752  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
753    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
754    "llvm.global.annotations");
755  gv->setSection(AnnotationSection);
756}
757
758llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
759  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
760  if (i != AnnotationStrings.end())
761    return i->second;
762
763  // Not found yet, create a new global.
764  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
765  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
766    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
767  gv->setSection(AnnotationSection);
768  gv->setUnnamedAddr(true);
769  AnnotationStrings[Str] = gv;
770  return gv;
771}
772
773llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
774  SourceManager &SM = getContext().getSourceManager();
775  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
776  if (PLoc.isValid())
777    return EmitAnnotationString(PLoc.getFilename());
778  return EmitAnnotationString(SM.getBufferName(Loc));
779}
780
781llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
782  SourceManager &SM = getContext().getSourceManager();
783  PresumedLoc PLoc = SM.getPresumedLoc(L);
784  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
785    SM.getExpansionLineNumber(L);
786  return llvm::ConstantInt::get(Int32Ty, LineNo);
787}
788
789llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
790                                                const AnnotateAttr *AA,
791                                                SourceLocation L) {
792  // Get the globals for file name, annotation, and the line number.
793  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
794                 *UnitGV = EmitAnnotationUnit(L),
795                 *LineNoCst = EmitAnnotationLineNo(L);
796
797  // Create the ConstantStruct for the global annotation.
798  llvm::Constant *Fields[4] = {
799    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
800    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
801    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
802    LineNoCst
803  };
804  return llvm::ConstantStruct::getAnon(Fields);
805}
806
807void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
808                                         llvm::GlobalValue *GV) {
809  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
810  // Get the struct elements for these annotations.
811  for (specific_attr_iterator<AnnotateAttr>
812       ai = D->specific_attr_begin<AnnotateAttr>(),
813       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
814    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
815}
816
817bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
818  // Never defer when EmitAllDecls is specified.
819  if (LangOpts.EmitAllDecls)
820    return false;
821
822  return !getContext().DeclMustBeEmitted(Global);
823}
824
825llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
826  const AliasAttr *AA = VD->getAttr<AliasAttr>();
827  assert(AA && "No alias?");
828
829  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
830
831  // See if there is already something with the target's name in the module.
832  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
833
834  llvm::Constant *Aliasee;
835  if (isa<llvm::FunctionType>(DeclTy))
836    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
837                                      /*ForVTable=*/false);
838  else
839    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
840                                    llvm::PointerType::getUnqual(DeclTy), 0);
841  if (!Entry) {
842    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
843    F->setLinkage(llvm::Function::ExternalWeakLinkage);
844    WeakRefReferences.insert(F);
845  }
846
847  return Aliasee;
848}
849
850void CodeGenModule::EmitGlobal(GlobalDecl GD) {
851  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
852
853  // Weak references don't produce any output by themselves.
854  if (Global->hasAttr<WeakRefAttr>())
855    return;
856
857  // If this is an alias definition (which otherwise looks like a declaration)
858  // emit it now.
859  if (Global->hasAttr<AliasAttr>())
860    return EmitAliasDefinition(GD);
861
862  // If this is CUDA, be selective about which declarations we emit.
863  if (LangOpts.CUDA) {
864    if (CodeGenOpts.CUDAIsDevice) {
865      if (!Global->hasAttr<CUDADeviceAttr>() &&
866          !Global->hasAttr<CUDAGlobalAttr>() &&
867          !Global->hasAttr<CUDAConstantAttr>() &&
868          !Global->hasAttr<CUDASharedAttr>())
869        return;
870    } else {
871      if (!Global->hasAttr<CUDAHostAttr>() && (
872            Global->hasAttr<CUDADeviceAttr>() ||
873            Global->hasAttr<CUDAConstantAttr>() ||
874            Global->hasAttr<CUDASharedAttr>()))
875        return;
876    }
877  }
878
879  // Ignore declarations, they will be emitted on their first use.
880  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
881    // Forward declarations are emitted lazily on first use.
882    if (!FD->doesThisDeclarationHaveABody()) {
883      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
884        return;
885
886      const FunctionDecl *InlineDefinition = 0;
887      FD->getBody(InlineDefinition);
888
889      StringRef MangledName = getMangledName(GD);
890      DeferredDecls.erase(MangledName);
891      EmitGlobalDefinition(InlineDefinition);
892      return;
893    }
894  } else {
895    const VarDecl *VD = cast<VarDecl>(Global);
896    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
897
898    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
899      return;
900  }
901
902  // Defer code generation when possible if this is a static definition, inline
903  // function etc.  These we only want to emit if they are used.
904  if (!MayDeferGeneration(Global)) {
905    // Emit the definition if it can't be deferred.
906    EmitGlobalDefinition(GD);
907    return;
908  }
909
910  // If we're deferring emission of a C++ variable with an
911  // initializer, remember the order in which it appeared in the file.
912  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
913      cast<VarDecl>(Global)->hasInit()) {
914    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
915    CXXGlobalInits.push_back(0);
916  }
917
918  // If the value has already been used, add it directly to the
919  // DeferredDeclsToEmit list.
920  StringRef MangledName = getMangledName(GD);
921  if (GetGlobalValue(MangledName))
922    DeferredDeclsToEmit.push_back(GD);
923  else {
924    // Otherwise, remember that we saw a deferred decl with this name.  The
925    // first use of the mangled name will cause it to move into
926    // DeferredDeclsToEmit.
927    DeferredDecls[MangledName] = GD;
928  }
929}
930
931namespace {
932  struct FunctionIsDirectlyRecursive :
933    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
934    const StringRef Name;
935    const Builtin::Context &BI;
936    bool Result;
937    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
938      Name(N), BI(C), Result(false) {
939    }
940    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
941
942    bool TraverseCallExpr(CallExpr *E) {
943      const FunctionDecl *FD = E->getDirectCallee();
944      if (!FD)
945        return true;
946      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
947      if (Attr && Name == Attr->getLabel()) {
948        Result = true;
949        return false;
950      }
951      unsigned BuiltinID = FD->getBuiltinID();
952      if (!BuiltinID)
953        return true;
954      StringRef BuiltinName = BI.GetName(BuiltinID);
955      if (BuiltinName.startswith("__builtin_") &&
956          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
957        Result = true;
958        return false;
959      }
960      return true;
961    }
962  };
963}
964
965// isTriviallyRecursive - Check if this function calls another
966// decl that, because of the asm attribute or the other decl being a builtin,
967// ends up pointing to itself.
968bool
969CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
970  StringRef Name;
971  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
972    // asm labels are a special kind of mangling we have to support.
973    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
974    if (!Attr)
975      return false;
976    Name = Attr->getLabel();
977  } else {
978    Name = FD->getName();
979  }
980
981  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
982  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
983  return Walker.Result;
984}
985
986bool
987CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
988  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
989    return true;
990  if (CodeGenOpts.OptimizationLevel == 0 &&
991      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
992    return false;
993  // PR9614. Avoid cases where the source code is lying to us. An available
994  // externally function should have an equivalent function somewhere else,
995  // but a function that calls itself is clearly not equivalent to the real
996  // implementation.
997  // This happens in glibc's btowc and in some configure checks.
998  return !isTriviallyRecursive(F);
999}
1000
1001void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1002  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1003
1004  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1005                                 Context.getSourceManager(),
1006                                 "Generating code for declaration");
1007
1008  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1009    // At -O0, don't generate IR for functions with available_externally
1010    // linkage.
1011    if (!shouldEmitFunction(Function))
1012      return;
1013
1014    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1015      // Make sure to emit the definition(s) before we emit the thunks.
1016      // This is necessary for the generation of certain thunks.
1017      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1018        EmitCXXConstructor(CD, GD.getCtorType());
1019      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1020        EmitCXXDestructor(DD, GD.getDtorType());
1021      else
1022        EmitGlobalFunctionDefinition(GD);
1023
1024      if (Method->isVirtual())
1025        getVTables().EmitThunks(GD);
1026
1027      return;
1028    }
1029
1030    return EmitGlobalFunctionDefinition(GD);
1031  }
1032
1033  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1034    return EmitGlobalVarDefinition(VD);
1035
1036  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1037}
1038
1039/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1040/// module, create and return an llvm Function with the specified type. If there
1041/// is something in the module with the specified name, return it potentially
1042/// bitcasted to the right type.
1043///
1044/// If D is non-null, it specifies a decl that correspond to this.  This is used
1045/// to set the attributes on the function when it is first created.
1046llvm::Constant *
1047CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1048                                       llvm::Type *Ty,
1049                                       GlobalDecl D, bool ForVTable,
1050                                       llvm::Attributes ExtraAttrs) {
1051  // Lookup the entry, lazily creating it if necessary.
1052  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1053  if (Entry) {
1054    if (WeakRefReferences.erase(Entry)) {
1055      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1056      if (FD && !FD->hasAttr<WeakAttr>())
1057        Entry->setLinkage(llvm::Function::ExternalLinkage);
1058    }
1059
1060    if (Entry->getType()->getElementType() == Ty)
1061      return Entry;
1062
1063    // Make sure the result is of the correct type.
1064    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1065  }
1066
1067  // This function doesn't have a complete type (for example, the return
1068  // type is an incomplete struct). Use a fake type instead, and make
1069  // sure not to try to set attributes.
1070  bool IsIncompleteFunction = false;
1071
1072  llvm::FunctionType *FTy;
1073  if (isa<llvm::FunctionType>(Ty)) {
1074    FTy = cast<llvm::FunctionType>(Ty);
1075  } else {
1076    FTy = llvm::FunctionType::get(VoidTy, false);
1077    IsIncompleteFunction = true;
1078  }
1079
1080  llvm::Function *F = llvm::Function::Create(FTy,
1081                                             llvm::Function::ExternalLinkage,
1082                                             MangledName, &getModule());
1083  assert(F->getName() == MangledName && "name was uniqued!");
1084  if (D.getDecl())
1085    SetFunctionAttributes(D, F, IsIncompleteFunction);
1086  if (ExtraAttrs != llvm::Attribute::None)
1087    F->addFnAttr(ExtraAttrs);
1088
1089  // This is the first use or definition of a mangled name.  If there is a
1090  // deferred decl with this name, remember that we need to emit it at the end
1091  // of the file.
1092  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1093  if (DDI != DeferredDecls.end()) {
1094    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1095    // list, and remove it from DeferredDecls (since we don't need it anymore).
1096    DeferredDeclsToEmit.push_back(DDI->second);
1097    DeferredDecls.erase(DDI);
1098
1099  // Otherwise, there are cases we have to worry about where we're
1100  // using a declaration for which we must emit a definition but where
1101  // we might not find a top-level definition:
1102  //   - member functions defined inline in their classes
1103  //   - friend functions defined inline in some class
1104  //   - special member functions with implicit definitions
1105  // If we ever change our AST traversal to walk into class methods,
1106  // this will be unnecessary.
1107  //
1108  // We also don't emit a definition for a function if it's going to be an entry
1109  // in a vtable, unless it's already marked as used.
1110  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1111    // Look for a declaration that's lexically in a record.
1112    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1113    FD = FD->getMostRecentDecl();
1114    do {
1115      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1116        if (FD->isImplicit() && !ForVTable) {
1117          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1118          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1119          break;
1120        } else if (FD->doesThisDeclarationHaveABody()) {
1121          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1122          break;
1123        }
1124      }
1125      FD = FD->getPreviousDecl();
1126    } while (FD);
1127  }
1128
1129  // Make sure the result is of the requested type.
1130  if (!IsIncompleteFunction) {
1131    assert(F->getType()->getElementType() == Ty);
1132    return F;
1133  }
1134
1135  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1136  return llvm::ConstantExpr::getBitCast(F, PTy);
1137}
1138
1139/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1140/// non-null, then this function will use the specified type if it has to
1141/// create it (this occurs when we see a definition of the function).
1142llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1143                                                 llvm::Type *Ty,
1144                                                 bool ForVTable) {
1145  // If there was no specific requested type, just convert it now.
1146  if (!Ty)
1147    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1148
1149  StringRef MangledName = getMangledName(GD);
1150  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1151}
1152
1153/// CreateRuntimeFunction - Create a new runtime function with the specified
1154/// type and name.
1155llvm::Constant *
1156CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1157                                     StringRef Name,
1158                                     llvm::Attributes ExtraAttrs) {
1159  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1160                                 ExtraAttrs);
1161}
1162
1163/// isTypeConstant - Determine whether an object of this type can be emitted
1164/// as a constant.
1165///
1166/// If ExcludeCtor is true, the duration when the object's constructor runs
1167/// will not be considered. The caller will need to verify that the object is
1168/// not written to during its construction.
1169bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1170  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1171    return false;
1172
1173  if (Context.getLangOpts().CPlusPlus) {
1174    if (const CXXRecordDecl *Record
1175          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1176      return ExcludeCtor && !Record->hasMutableFields() &&
1177             Record->hasTrivialDestructor();
1178  }
1179
1180  return true;
1181}
1182
1183/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1184/// create and return an llvm GlobalVariable with the specified type.  If there
1185/// is something in the module with the specified name, return it potentially
1186/// bitcasted to the right type.
1187///
1188/// If D is non-null, it specifies a decl that correspond to this.  This is used
1189/// to set the attributes on the global when it is first created.
1190llvm::Constant *
1191CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1192                                     llvm::PointerType *Ty,
1193                                     const VarDecl *D,
1194                                     bool UnnamedAddr) {
1195  // Lookup the entry, lazily creating it if necessary.
1196  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1197  if (Entry) {
1198    if (WeakRefReferences.erase(Entry)) {
1199      if (D && !D->hasAttr<WeakAttr>())
1200        Entry->setLinkage(llvm::Function::ExternalLinkage);
1201    }
1202
1203    if (UnnamedAddr)
1204      Entry->setUnnamedAddr(true);
1205
1206    if (Entry->getType() == Ty)
1207      return Entry;
1208
1209    // Make sure the result is of the correct type.
1210    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1211  }
1212
1213  // This is the first use or definition of a mangled name.  If there is a
1214  // deferred decl with this name, remember that we need to emit it at the end
1215  // of the file.
1216  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1217  if (DDI != DeferredDecls.end()) {
1218    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1219    // list, and remove it from DeferredDecls (since we don't need it anymore).
1220    DeferredDeclsToEmit.push_back(DDI->second);
1221    DeferredDecls.erase(DDI);
1222  }
1223
1224  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1225  llvm::GlobalVariable *GV =
1226    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1227                             llvm::GlobalValue::ExternalLinkage,
1228                             0, MangledName, 0,
1229                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1230
1231  // Handle things which are present even on external declarations.
1232  if (D) {
1233    // FIXME: This code is overly simple and should be merged with other global
1234    // handling.
1235    GV->setConstant(isTypeConstant(D->getType(), false));
1236
1237    // Set linkage and visibility in case we never see a definition.
1238    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1239    if (LV.linkage() != ExternalLinkage) {
1240      // Don't set internal linkage on declarations.
1241    } else {
1242      if (D->hasAttr<DLLImportAttr>())
1243        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1244      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1245        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1246
1247      // Set visibility on a declaration only if it's explicit.
1248      if (LV.visibilityExplicit())
1249        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1250    }
1251
1252    if (D->isThreadSpecified())
1253      setTLSMode(GV, *D);
1254  }
1255
1256  if (AddrSpace != Ty->getAddressSpace())
1257    return llvm::ConstantExpr::getBitCast(GV, Ty);
1258  else
1259    return GV;
1260}
1261
1262
1263llvm::GlobalVariable *
1264CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1265                                      llvm::Type *Ty,
1266                                      llvm::GlobalValue::LinkageTypes Linkage) {
1267  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1268  llvm::GlobalVariable *OldGV = 0;
1269
1270
1271  if (GV) {
1272    // Check if the variable has the right type.
1273    if (GV->getType()->getElementType() == Ty)
1274      return GV;
1275
1276    // Because C++ name mangling, the only way we can end up with an already
1277    // existing global with the same name is if it has been declared extern "C".
1278      assert(GV->isDeclaration() && "Declaration has wrong type!");
1279    OldGV = GV;
1280  }
1281
1282  // Create a new variable.
1283  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1284                                Linkage, 0, Name);
1285
1286  if (OldGV) {
1287    // Replace occurrences of the old variable if needed.
1288    GV->takeName(OldGV);
1289
1290    if (!OldGV->use_empty()) {
1291      llvm::Constant *NewPtrForOldDecl =
1292      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1293      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1294    }
1295
1296    OldGV->eraseFromParent();
1297  }
1298
1299  return GV;
1300}
1301
1302/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1303/// given global variable.  If Ty is non-null and if the global doesn't exist,
1304/// then it will be created with the specified type instead of whatever the
1305/// normal requested type would be.
1306llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1307                                                  llvm::Type *Ty) {
1308  assert(D->hasGlobalStorage() && "Not a global variable");
1309  QualType ASTTy = D->getType();
1310  if (Ty == 0)
1311    Ty = getTypes().ConvertTypeForMem(ASTTy);
1312
1313  llvm::PointerType *PTy =
1314    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1315
1316  StringRef MangledName = getMangledName(D);
1317  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1318}
1319
1320/// CreateRuntimeVariable - Create a new runtime global variable with the
1321/// specified type and name.
1322llvm::Constant *
1323CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1324                                     StringRef Name) {
1325  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1326                               true);
1327}
1328
1329void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1330  assert(!D->getInit() && "Cannot emit definite definitions here!");
1331
1332  if (MayDeferGeneration(D)) {
1333    // If we have not seen a reference to this variable yet, place it
1334    // into the deferred declarations table to be emitted if needed
1335    // later.
1336    StringRef MangledName = getMangledName(D);
1337    if (!GetGlobalValue(MangledName)) {
1338      DeferredDecls[MangledName] = D;
1339      return;
1340    }
1341  }
1342
1343  // The tentative definition is the only definition.
1344  EmitGlobalVarDefinition(D);
1345}
1346
1347void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1348  if (DefinitionRequired)
1349    getCXXABI().EmitVTables(Class);
1350}
1351
1352llvm::GlobalVariable::LinkageTypes
1353CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1354  if (RD->getLinkage() != ExternalLinkage)
1355    return llvm::GlobalVariable::InternalLinkage;
1356
1357  if (const CXXMethodDecl *KeyFunction
1358                                    = RD->getASTContext().getKeyFunction(RD)) {
1359    // If this class has a key function, use that to determine the linkage of
1360    // the vtable.
1361    const FunctionDecl *Def = 0;
1362    if (KeyFunction->hasBody(Def))
1363      KeyFunction = cast<CXXMethodDecl>(Def);
1364
1365    switch (KeyFunction->getTemplateSpecializationKind()) {
1366      case TSK_Undeclared:
1367      case TSK_ExplicitSpecialization:
1368        // When compiling with optimizations turned on, we emit all vtables,
1369        // even if the key function is not defined in the current translation
1370        // unit. If this is the case, use available_externally linkage.
1371        if (!Def && CodeGenOpts.OptimizationLevel)
1372          return llvm::GlobalVariable::AvailableExternallyLinkage;
1373
1374        if (KeyFunction->isInlined())
1375          return !Context.getLangOpts().AppleKext ?
1376                   llvm::GlobalVariable::LinkOnceODRLinkage :
1377                   llvm::Function::InternalLinkage;
1378
1379        return llvm::GlobalVariable::ExternalLinkage;
1380
1381      case TSK_ImplicitInstantiation:
1382        return !Context.getLangOpts().AppleKext ?
1383                 llvm::GlobalVariable::LinkOnceODRLinkage :
1384                 llvm::Function::InternalLinkage;
1385
1386      case TSK_ExplicitInstantiationDefinition:
1387        return !Context.getLangOpts().AppleKext ?
1388                 llvm::GlobalVariable::WeakODRLinkage :
1389                 llvm::Function::InternalLinkage;
1390
1391      case TSK_ExplicitInstantiationDeclaration:
1392        // FIXME: Use available_externally linkage. However, this currently
1393        // breaks LLVM's build due to undefined symbols.
1394        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1395        return !Context.getLangOpts().AppleKext ?
1396                 llvm::GlobalVariable::LinkOnceODRLinkage :
1397                 llvm::Function::InternalLinkage;
1398    }
1399  }
1400
1401  if (Context.getLangOpts().AppleKext)
1402    return llvm::Function::InternalLinkage;
1403
1404  switch (RD->getTemplateSpecializationKind()) {
1405  case TSK_Undeclared:
1406  case TSK_ExplicitSpecialization:
1407  case TSK_ImplicitInstantiation:
1408    // FIXME: Use available_externally linkage. However, this currently
1409    // breaks LLVM's build due to undefined symbols.
1410    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1411  case TSK_ExplicitInstantiationDeclaration:
1412    return llvm::GlobalVariable::LinkOnceODRLinkage;
1413
1414  case TSK_ExplicitInstantiationDefinition:
1415      return llvm::GlobalVariable::WeakODRLinkage;
1416  }
1417
1418  llvm_unreachable("Invalid TemplateSpecializationKind!");
1419}
1420
1421CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1422    return Context.toCharUnitsFromBits(
1423      TheTargetData.getTypeStoreSizeInBits(Ty));
1424}
1425
1426llvm::Constant *
1427CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1428                                                       const Expr *rawInit) {
1429  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1430  if (const ExprWithCleanups *withCleanups =
1431          dyn_cast<ExprWithCleanups>(rawInit)) {
1432    cleanups = withCleanups->getObjects();
1433    rawInit = withCleanups->getSubExpr();
1434  }
1435
1436  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1437  if (!init || !init->initializesStdInitializerList() ||
1438      init->getNumInits() == 0)
1439    return 0;
1440
1441  ASTContext &ctx = getContext();
1442  unsigned numInits = init->getNumInits();
1443  // FIXME: This check is here because we would otherwise silently miscompile
1444  // nested global std::initializer_lists. Better would be to have a real
1445  // implementation.
1446  for (unsigned i = 0; i < numInits; ++i) {
1447    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1448    if (inner && inner->initializesStdInitializerList()) {
1449      ErrorUnsupported(inner, "nested global std::initializer_list");
1450      return 0;
1451    }
1452  }
1453
1454  // Synthesize a fake VarDecl for the array and initialize that.
1455  QualType elementType = init->getInit(0)->getType();
1456  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1457  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1458                                                ArrayType::Normal, 0);
1459
1460  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1461  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1462                                              arrayType, D->getLocation());
1463  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1464                                                          D->getDeclContext()),
1465                                          D->getLocStart(), D->getLocation(),
1466                                          name, arrayType, sourceInfo,
1467                                          SC_Static, SC_Static);
1468
1469  // Now clone the InitListExpr to initialize the array instead.
1470  // Incredible hack: we want to use the existing InitListExpr here, so we need
1471  // to tell it that it no longer initializes a std::initializer_list.
1472  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1473                        init->getNumInits());
1474  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1475                                           init->getRBraceLoc());
1476  arrayInit->setType(arrayType);
1477
1478  if (!cleanups.empty())
1479    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1480
1481  backingArray->setInit(arrayInit);
1482
1483  // Emit the definition of the array.
1484  EmitGlobalVarDefinition(backingArray);
1485
1486  // Inspect the initializer list to validate it and determine its type.
1487  // FIXME: doing this every time is probably inefficient; caching would be nice
1488  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1489  RecordDecl::field_iterator field = record->field_begin();
1490  if (field == record->field_end()) {
1491    ErrorUnsupported(D, "weird std::initializer_list");
1492    return 0;
1493  }
1494  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1495  // Start pointer.
1496  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1497    ErrorUnsupported(D, "weird std::initializer_list");
1498    return 0;
1499  }
1500  ++field;
1501  if (field == record->field_end()) {
1502    ErrorUnsupported(D, "weird std::initializer_list");
1503    return 0;
1504  }
1505  bool isStartEnd = false;
1506  if (ctx.hasSameType(field->getType(), elementPtr)) {
1507    // End pointer.
1508    isStartEnd = true;
1509  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1510    ErrorUnsupported(D, "weird std::initializer_list");
1511    return 0;
1512  }
1513
1514  // Now build an APValue representing the std::initializer_list.
1515  APValue initListValue(APValue::UninitStruct(), 0, 2);
1516  APValue &startField = initListValue.getStructField(0);
1517  APValue::LValuePathEntry startOffsetPathEntry;
1518  startOffsetPathEntry.ArrayIndex = 0;
1519  startField = APValue(APValue::LValueBase(backingArray),
1520                       CharUnits::fromQuantity(0),
1521                       llvm::makeArrayRef(startOffsetPathEntry),
1522                       /*IsOnePastTheEnd=*/false, 0);
1523
1524  if (isStartEnd) {
1525    APValue &endField = initListValue.getStructField(1);
1526    APValue::LValuePathEntry endOffsetPathEntry;
1527    endOffsetPathEntry.ArrayIndex = numInits;
1528    endField = APValue(APValue::LValueBase(backingArray),
1529                       ctx.getTypeSizeInChars(elementType) * numInits,
1530                       llvm::makeArrayRef(endOffsetPathEntry),
1531                       /*IsOnePastTheEnd=*/true, 0);
1532  } else {
1533    APValue &sizeField = initListValue.getStructField(1);
1534    sizeField = APValue(llvm::APSInt(numElements));
1535  }
1536
1537  // Emit the constant for the initializer_list.
1538  llvm::Constant *llvmInit =
1539      EmitConstantValueForMemory(initListValue, D->getType());
1540  assert(llvmInit && "failed to initialize as constant");
1541  return llvmInit;
1542}
1543
1544unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1545                                                 unsigned AddrSpace) {
1546  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1547    if (D->hasAttr<CUDAConstantAttr>())
1548      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1549    else if (D->hasAttr<CUDASharedAttr>())
1550      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1551    else
1552      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1553  }
1554
1555  return AddrSpace;
1556}
1557
1558void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1559  llvm::Constant *Init = 0;
1560  QualType ASTTy = D->getType();
1561  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1562  bool NeedsGlobalCtor = false;
1563  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1564
1565  const VarDecl *InitDecl;
1566  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1567
1568  if (!InitExpr) {
1569    // This is a tentative definition; tentative definitions are
1570    // implicitly initialized with { 0 }.
1571    //
1572    // Note that tentative definitions are only emitted at the end of
1573    // a translation unit, so they should never have incomplete
1574    // type. In addition, EmitTentativeDefinition makes sure that we
1575    // never attempt to emit a tentative definition if a real one
1576    // exists. A use may still exists, however, so we still may need
1577    // to do a RAUW.
1578    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1579    Init = EmitNullConstant(D->getType());
1580  } else {
1581    // If this is a std::initializer_list, emit the special initializer.
1582    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1583    // An empty init list will perform zero-initialization, which happens
1584    // to be exactly what we want.
1585    // FIXME: It does so in a global constructor, which is *not* what we
1586    // want.
1587
1588    if (!Init) {
1589      initializedGlobalDecl = GlobalDecl(D);
1590      Init = EmitConstantInit(*InitDecl);
1591    }
1592    if (!Init) {
1593      QualType T = InitExpr->getType();
1594      if (D->getType()->isReferenceType())
1595        T = D->getType();
1596
1597      if (getLangOpts().CPlusPlus) {
1598        Init = EmitNullConstant(T);
1599        NeedsGlobalCtor = true;
1600      } else {
1601        ErrorUnsupported(D, "static initializer");
1602        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1603      }
1604    } else {
1605      // We don't need an initializer, so remove the entry for the delayed
1606      // initializer position (just in case this entry was delayed) if we
1607      // also don't need to register a destructor.
1608      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1609        DelayedCXXInitPosition.erase(D);
1610    }
1611  }
1612
1613  llvm::Type* InitType = Init->getType();
1614  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1615
1616  // Strip off a bitcast if we got one back.
1617  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1618    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1619           // all zero index gep.
1620           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1621    Entry = CE->getOperand(0);
1622  }
1623
1624  // Entry is now either a Function or GlobalVariable.
1625  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1626
1627  // We have a definition after a declaration with the wrong type.
1628  // We must make a new GlobalVariable* and update everything that used OldGV
1629  // (a declaration or tentative definition) with the new GlobalVariable*
1630  // (which will be a definition).
1631  //
1632  // This happens if there is a prototype for a global (e.g.
1633  // "extern int x[];") and then a definition of a different type (e.g.
1634  // "int x[10];"). This also happens when an initializer has a different type
1635  // from the type of the global (this happens with unions).
1636  if (GV == 0 ||
1637      GV->getType()->getElementType() != InitType ||
1638      GV->getType()->getAddressSpace() !=
1639       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1640
1641    // Move the old entry aside so that we'll create a new one.
1642    Entry->setName(StringRef());
1643
1644    // Make a new global with the correct type, this is now guaranteed to work.
1645    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1646
1647    // Replace all uses of the old global with the new global
1648    llvm::Constant *NewPtrForOldDecl =
1649        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1650    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1651
1652    // Erase the old global, since it is no longer used.
1653    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1654  }
1655
1656  if (D->hasAttr<AnnotateAttr>())
1657    AddGlobalAnnotations(D, GV);
1658
1659  GV->setInitializer(Init);
1660
1661  // If it is safe to mark the global 'constant', do so now.
1662  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1663                  isTypeConstant(D->getType(), true));
1664
1665  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1666
1667  // Set the llvm linkage type as appropriate.
1668  llvm::GlobalValue::LinkageTypes Linkage =
1669    GetLLVMLinkageVarDefinition(D, GV);
1670  GV->setLinkage(Linkage);
1671  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1672    // common vars aren't constant even if declared const.
1673    GV->setConstant(false);
1674
1675  SetCommonAttributes(D, GV);
1676
1677  // Emit the initializer function if necessary.
1678  if (NeedsGlobalCtor || NeedsGlobalDtor)
1679    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1680
1681  // If we are compiling with ASan, add metadata indicating dynamically
1682  // initialized globals.
1683  if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1684    llvm::Module &M = getModule();
1685
1686    llvm::NamedMDNode *DynamicInitializers =
1687        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1688    llvm::Value *GlobalToAdd[] = { GV };
1689    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1690    DynamicInitializers->addOperand(ThisGlobal);
1691  }
1692
1693  // Emit global variable debug information.
1694  if (CGDebugInfo *DI = getModuleDebugInfo())
1695    if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1696      DI->EmitGlobalVariable(GV, D);
1697}
1698
1699llvm::GlobalValue::LinkageTypes
1700CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1701                                           llvm::GlobalVariable *GV) {
1702  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1703  if (Linkage == GVA_Internal)
1704    return llvm::Function::InternalLinkage;
1705  else if (D->hasAttr<DLLImportAttr>())
1706    return llvm::Function::DLLImportLinkage;
1707  else if (D->hasAttr<DLLExportAttr>())
1708    return llvm::Function::DLLExportLinkage;
1709  else if (D->hasAttr<WeakAttr>()) {
1710    if (GV->isConstant())
1711      return llvm::GlobalVariable::WeakODRLinkage;
1712    else
1713      return llvm::GlobalVariable::WeakAnyLinkage;
1714  } else if (Linkage == GVA_TemplateInstantiation ||
1715             Linkage == GVA_ExplicitTemplateInstantiation)
1716    return llvm::GlobalVariable::WeakODRLinkage;
1717  else if (!getLangOpts().CPlusPlus &&
1718           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1719             D->getAttr<CommonAttr>()) &&
1720           !D->hasExternalStorage() && !D->getInit() &&
1721           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1722           !D->getAttr<WeakImportAttr>()) {
1723    // Thread local vars aren't considered common linkage.
1724    return llvm::GlobalVariable::CommonLinkage;
1725  }
1726  return llvm::GlobalVariable::ExternalLinkage;
1727}
1728
1729/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1730/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1731/// existing call uses of the old function in the module, this adjusts them to
1732/// call the new function directly.
1733///
1734/// This is not just a cleanup: the always_inline pass requires direct calls to
1735/// functions to be able to inline them.  If there is a bitcast in the way, it
1736/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1737/// run at -O0.
1738static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1739                                                      llvm::Function *NewFn) {
1740  // If we're redefining a global as a function, don't transform it.
1741  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1742  if (OldFn == 0) return;
1743
1744  llvm::Type *NewRetTy = NewFn->getReturnType();
1745  SmallVector<llvm::Value*, 4> ArgList;
1746
1747  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1748       UI != E; ) {
1749    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1750    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1751    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1752    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1753    llvm::CallSite CS(CI);
1754    if (!CI || !CS.isCallee(I)) continue;
1755
1756    // If the return types don't match exactly, and if the call isn't dead, then
1757    // we can't transform this call.
1758    if (CI->getType() != NewRetTy && !CI->use_empty())
1759      continue;
1760
1761    // Get the attribute list.
1762    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1763    llvm::AttrListPtr AttrList = CI->getAttributes();
1764
1765    // Get any return attributes.
1766    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1767
1768    // Add the return attributes.
1769    if (RAttrs)
1770      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1771
1772    // If the function was passed too few arguments, don't transform.  If extra
1773    // arguments were passed, we silently drop them.  If any of the types
1774    // mismatch, we don't transform.
1775    unsigned ArgNo = 0;
1776    bool DontTransform = false;
1777    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1778         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1779      if (CS.arg_size() == ArgNo ||
1780          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1781        DontTransform = true;
1782        break;
1783      }
1784
1785      // Add any parameter attributes.
1786      if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1787        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1788    }
1789    if (DontTransform)
1790      continue;
1791
1792    if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1793      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1794
1795    // Okay, we can transform this.  Create the new call instruction and copy
1796    // over the required information.
1797    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1798    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1799    ArgList.clear();
1800    if (!NewCall->getType()->isVoidTy())
1801      NewCall->takeName(CI);
1802    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1803    NewCall->setCallingConv(CI->getCallingConv());
1804
1805    // Finally, remove the old call, replacing any uses with the new one.
1806    if (!CI->use_empty())
1807      CI->replaceAllUsesWith(NewCall);
1808
1809    // Copy debug location attached to CI.
1810    if (!CI->getDebugLoc().isUnknown())
1811      NewCall->setDebugLoc(CI->getDebugLoc());
1812    CI->eraseFromParent();
1813  }
1814}
1815
1816void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1817  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1818  // If we have a definition, this might be a deferred decl. If the
1819  // instantiation is explicit, make sure we emit it at the end.
1820  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1821    GetAddrOfGlobalVar(VD);
1822}
1823
1824void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1825  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1826
1827  // Compute the function info and LLVM type.
1828  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1829  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1830
1831  // Get or create the prototype for the function.
1832  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1833
1834  // Strip off a bitcast if we got one back.
1835  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1836    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1837    Entry = CE->getOperand(0);
1838  }
1839
1840
1841  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1842    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1843
1844    // If the types mismatch then we have to rewrite the definition.
1845    assert(OldFn->isDeclaration() &&
1846           "Shouldn't replace non-declaration");
1847
1848    // F is the Function* for the one with the wrong type, we must make a new
1849    // Function* and update everything that used F (a declaration) with the new
1850    // Function* (which will be a definition).
1851    //
1852    // This happens if there is a prototype for a function
1853    // (e.g. "int f()") and then a definition of a different type
1854    // (e.g. "int f(int x)").  Move the old function aside so that it
1855    // doesn't interfere with GetAddrOfFunction.
1856    OldFn->setName(StringRef());
1857    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1858
1859    // If this is an implementation of a function without a prototype, try to
1860    // replace any existing uses of the function (which may be calls) with uses
1861    // of the new function
1862    if (D->getType()->isFunctionNoProtoType()) {
1863      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1864      OldFn->removeDeadConstantUsers();
1865    }
1866
1867    // Replace uses of F with the Function we will endow with a body.
1868    if (!Entry->use_empty()) {
1869      llvm::Constant *NewPtrForOldDecl =
1870        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1871      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1872    }
1873
1874    // Ok, delete the old function now, which is dead.
1875    OldFn->eraseFromParent();
1876
1877    Entry = NewFn;
1878  }
1879
1880  // We need to set linkage and visibility on the function before
1881  // generating code for it because various parts of IR generation
1882  // want to propagate this information down (e.g. to local static
1883  // declarations).
1884  llvm::Function *Fn = cast<llvm::Function>(Entry);
1885  setFunctionLinkage(D, Fn);
1886
1887  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1888  setGlobalVisibility(Fn, D);
1889
1890  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1891
1892  SetFunctionDefinitionAttributes(D, Fn);
1893  SetLLVMFunctionAttributesForDefinition(D, Fn);
1894
1895  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1896    AddGlobalCtor(Fn, CA->getPriority());
1897  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1898    AddGlobalDtor(Fn, DA->getPriority());
1899  if (D->hasAttr<AnnotateAttr>())
1900    AddGlobalAnnotations(D, Fn);
1901}
1902
1903void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1904  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1905  const AliasAttr *AA = D->getAttr<AliasAttr>();
1906  assert(AA && "Not an alias?");
1907
1908  StringRef MangledName = getMangledName(GD);
1909
1910  // If there is a definition in the module, then it wins over the alias.
1911  // This is dubious, but allow it to be safe.  Just ignore the alias.
1912  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1913  if (Entry && !Entry->isDeclaration())
1914    return;
1915
1916  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1917
1918  // Create a reference to the named value.  This ensures that it is emitted
1919  // if a deferred decl.
1920  llvm::Constant *Aliasee;
1921  if (isa<llvm::FunctionType>(DeclTy))
1922    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1923                                      /*ForVTable=*/false);
1924  else
1925    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1926                                    llvm::PointerType::getUnqual(DeclTy), 0);
1927
1928  // Create the new alias itself, but don't set a name yet.
1929  llvm::GlobalValue *GA =
1930    new llvm::GlobalAlias(Aliasee->getType(),
1931                          llvm::Function::ExternalLinkage,
1932                          "", Aliasee, &getModule());
1933
1934  if (Entry) {
1935    assert(Entry->isDeclaration());
1936
1937    // If there is a declaration in the module, then we had an extern followed
1938    // by the alias, as in:
1939    //   extern int test6();
1940    //   ...
1941    //   int test6() __attribute__((alias("test7")));
1942    //
1943    // Remove it and replace uses of it with the alias.
1944    GA->takeName(Entry);
1945
1946    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1947                                                          Entry->getType()));
1948    Entry->eraseFromParent();
1949  } else {
1950    GA->setName(MangledName);
1951  }
1952
1953  // Set attributes which are particular to an alias; this is a
1954  // specialization of the attributes which may be set on a global
1955  // variable/function.
1956  if (D->hasAttr<DLLExportAttr>()) {
1957    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1958      // The dllexport attribute is ignored for undefined symbols.
1959      if (FD->hasBody())
1960        GA->setLinkage(llvm::Function::DLLExportLinkage);
1961    } else {
1962      GA->setLinkage(llvm::Function::DLLExportLinkage);
1963    }
1964  } else if (D->hasAttr<WeakAttr>() ||
1965             D->hasAttr<WeakRefAttr>() ||
1966             D->isWeakImported()) {
1967    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1968  }
1969
1970  SetCommonAttributes(D, GA);
1971}
1972
1973llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1974                                            ArrayRef<llvm::Type*> Tys) {
1975  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1976                                         Tys);
1977}
1978
1979static llvm::StringMapEntry<llvm::Constant*> &
1980GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1981                         const StringLiteral *Literal,
1982                         bool TargetIsLSB,
1983                         bool &IsUTF16,
1984                         unsigned &StringLength) {
1985  StringRef String = Literal->getString();
1986  unsigned NumBytes = String.size();
1987
1988  // Check for simple case.
1989  if (!Literal->containsNonAsciiOrNull()) {
1990    StringLength = NumBytes;
1991    return Map.GetOrCreateValue(String);
1992  }
1993
1994  // Otherwise, convert the UTF8 literals into a string of shorts.
1995  IsUTF16 = true;
1996
1997  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1998  const UTF8 *FromPtr = (const UTF8 *)String.data();
1999  UTF16 *ToPtr = &ToBuf[0];
2000
2001  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2002                           &ToPtr, ToPtr + NumBytes,
2003                           strictConversion);
2004
2005  // ConvertUTF8toUTF16 returns the length in ToPtr.
2006  StringLength = ToPtr - &ToBuf[0];
2007
2008  // Add an explicit null.
2009  *ToPtr = 0;
2010  return Map.
2011    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2012                               (StringLength + 1) * 2));
2013}
2014
2015static llvm::StringMapEntry<llvm::Constant*> &
2016GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2017                       const StringLiteral *Literal,
2018                       unsigned &StringLength) {
2019  StringRef String = Literal->getString();
2020  StringLength = String.size();
2021  return Map.GetOrCreateValue(String);
2022}
2023
2024llvm::Constant *
2025CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2026  unsigned StringLength = 0;
2027  bool isUTF16 = false;
2028  llvm::StringMapEntry<llvm::Constant*> &Entry =
2029    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2030                             getTargetData().isLittleEndian(),
2031                             isUTF16, StringLength);
2032
2033  if (llvm::Constant *C = Entry.getValue())
2034    return C;
2035
2036  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2037  llvm::Constant *Zeros[] = { Zero, Zero };
2038
2039  // If we don't already have it, get __CFConstantStringClassReference.
2040  if (!CFConstantStringClassRef) {
2041    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2042    Ty = llvm::ArrayType::get(Ty, 0);
2043    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2044                                           "__CFConstantStringClassReference");
2045    // Decay array -> ptr
2046    CFConstantStringClassRef =
2047      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2048  }
2049
2050  QualType CFTy = getContext().getCFConstantStringType();
2051
2052  llvm::StructType *STy =
2053    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2054
2055  llvm::Constant *Fields[4];
2056
2057  // Class pointer.
2058  Fields[0] = CFConstantStringClassRef;
2059
2060  // Flags.
2061  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2062  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2063    llvm::ConstantInt::get(Ty, 0x07C8);
2064
2065  // String pointer.
2066  llvm::Constant *C = 0;
2067  if (isUTF16) {
2068    ArrayRef<uint16_t> Arr =
2069      llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2070                                   Entry.getKey().size() / 2);
2071    C = llvm::ConstantDataArray::get(VMContext, Arr);
2072  } else {
2073    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2074  }
2075
2076  llvm::GlobalValue::LinkageTypes Linkage;
2077  if (isUTF16)
2078    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2079    Linkage = llvm::GlobalValue::InternalLinkage;
2080  else
2081    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2082    // when using private linkage. It is not clear if this is a bug in ld
2083    // or a reasonable new restriction.
2084    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2085
2086  // Note: -fwritable-strings doesn't make the backing store strings of
2087  // CFStrings writable. (See <rdar://problem/10657500>)
2088  llvm::GlobalVariable *GV =
2089    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2090                             Linkage, C, ".str");
2091  GV->setUnnamedAddr(true);
2092  if (isUTF16) {
2093    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2094    GV->setAlignment(Align.getQuantity());
2095  } else {
2096    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2097    GV->setAlignment(Align.getQuantity());
2098  }
2099
2100  // String.
2101  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2102
2103  if (isUTF16)
2104    // Cast the UTF16 string to the correct type.
2105    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2106
2107  // String length.
2108  Ty = getTypes().ConvertType(getContext().LongTy);
2109  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2110
2111  // The struct.
2112  C = llvm::ConstantStruct::get(STy, Fields);
2113  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2114                                llvm::GlobalVariable::PrivateLinkage, C,
2115                                "_unnamed_cfstring_");
2116  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2117    GV->setSection(Sect);
2118  Entry.setValue(GV);
2119
2120  return GV;
2121}
2122
2123static RecordDecl *
2124CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2125                 DeclContext *DC, IdentifierInfo *Id) {
2126  SourceLocation Loc;
2127  if (Ctx.getLangOpts().CPlusPlus)
2128    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2129  else
2130    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2131}
2132
2133llvm::Constant *
2134CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2135  unsigned StringLength = 0;
2136  llvm::StringMapEntry<llvm::Constant*> &Entry =
2137    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2138
2139  if (llvm::Constant *C = Entry.getValue())
2140    return C;
2141
2142  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2143  llvm::Constant *Zeros[] = { Zero, Zero };
2144
2145  // If we don't already have it, get _NSConstantStringClassReference.
2146  if (!ConstantStringClassRef) {
2147    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2148    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2149    llvm::Constant *GV;
2150    if (LangOpts.ObjCRuntime.isNonFragile()) {
2151      std::string str =
2152        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2153                            : "OBJC_CLASS_$_" + StringClass;
2154      GV = getObjCRuntime().GetClassGlobal(str);
2155      // Make sure the result is of the correct type.
2156      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2157      ConstantStringClassRef =
2158        llvm::ConstantExpr::getBitCast(GV, PTy);
2159    } else {
2160      std::string str =
2161        StringClass.empty() ? "_NSConstantStringClassReference"
2162                            : "_" + StringClass + "ClassReference";
2163      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2164      GV = CreateRuntimeVariable(PTy, str);
2165      // Decay array -> ptr
2166      ConstantStringClassRef =
2167        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2168    }
2169  }
2170
2171  if (!NSConstantStringType) {
2172    // Construct the type for a constant NSString.
2173    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2174                                     Context.getTranslationUnitDecl(),
2175                                   &Context.Idents.get("__builtin_NSString"));
2176    D->startDefinition();
2177
2178    QualType FieldTypes[3];
2179
2180    // const int *isa;
2181    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2182    // const char *str;
2183    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2184    // unsigned int length;
2185    FieldTypes[2] = Context.UnsignedIntTy;
2186
2187    // Create fields
2188    for (unsigned i = 0; i < 3; ++i) {
2189      FieldDecl *Field = FieldDecl::Create(Context, D,
2190                                           SourceLocation(),
2191                                           SourceLocation(), 0,
2192                                           FieldTypes[i], /*TInfo=*/0,
2193                                           /*BitWidth=*/0,
2194                                           /*Mutable=*/false,
2195                                           ICIS_NoInit);
2196      Field->setAccess(AS_public);
2197      D->addDecl(Field);
2198    }
2199
2200    D->completeDefinition();
2201    QualType NSTy = Context.getTagDeclType(D);
2202    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2203  }
2204
2205  llvm::Constant *Fields[3];
2206
2207  // Class pointer.
2208  Fields[0] = ConstantStringClassRef;
2209
2210  // String pointer.
2211  llvm::Constant *C =
2212    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2213
2214  llvm::GlobalValue::LinkageTypes Linkage;
2215  bool isConstant;
2216  Linkage = llvm::GlobalValue::PrivateLinkage;
2217  isConstant = !LangOpts.WritableStrings;
2218
2219  llvm::GlobalVariable *GV =
2220  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2221                           ".str");
2222  GV->setUnnamedAddr(true);
2223  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2224  GV->setAlignment(Align.getQuantity());
2225  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2226
2227  // String length.
2228  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2229  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2230
2231  // The struct.
2232  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2233  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2234                                llvm::GlobalVariable::PrivateLinkage, C,
2235                                "_unnamed_nsstring_");
2236  // FIXME. Fix section.
2237  if (const char *Sect =
2238        LangOpts.ObjCRuntime.isNonFragile()
2239          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2240          : getContext().getTargetInfo().getNSStringSection())
2241    GV->setSection(Sect);
2242  Entry.setValue(GV);
2243
2244  return GV;
2245}
2246
2247QualType CodeGenModule::getObjCFastEnumerationStateType() {
2248  if (ObjCFastEnumerationStateType.isNull()) {
2249    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2250                                     Context.getTranslationUnitDecl(),
2251                      &Context.Idents.get("__objcFastEnumerationState"));
2252    D->startDefinition();
2253
2254    QualType FieldTypes[] = {
2255      Context.UnsignedLongTy,
2256      Context.getPointerType(Context.getObjCIdType()),
2257      Context.getPointerType(Context.UnsignedLongTy),
2258      Context.getConstantArrayType(Context.UnsignedLongTy,
2259                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2260    };
2261
2262    for (size_t i = 0; i < 4; ++i) {
2263      FieldDecl *Field = FieldDecl::Create(Context,
2264                                           D,
2265                                           SourceLocation(),
2266                                           SourceLocation(), 0,
2267                                           FieldTypes[i], /*TInfo=*/0,
2268                                           /*BitWidth=*/0,
2269                                           /*Mutable=*/false,
2270                                           ICIS_NoInit);
2271      Field->setAccess(AS_public);
2272      D->addDecl(Field);
2273    }
2274
2275    D->completeDefinition();
2276    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2277  }
2278
2279  return ObjCFastEnumerationStateType;
2280}
2281
2282llvm::Constant *
2283CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2284  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2285
2286  // Don't emit it as the address of the string, emit the string data itself
2287  // as an inline array.
2288  if (E->getCharByteWidth() == 1) {
2289    SmallString<64> Str(E->getString());
2290
2291    // Resize the string to the right size, which is indicated by its type.
2292    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2293    Str.resize(CAT->getSize().getZExtValue());
2294    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2295  }
2296
2297  llvm::ArrayType *AType =
2298    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2299  llvm::Type *ElemTy = AType->getElementType();
2300  unsigned NumElements = AType->getNumElements();
2301
2302  // Wide strings have either 2-byte or 4-byte elements.
2303  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2304    SmallVector<uint16_t, 32> Elements;
2305    Elements.reserve(NumElements);
2306
2307    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2308      Elements.push_back(E->getCodeUnit(i));
2309    Elements.resize(NumElements);
2310    return llvm::ConstantDataArray::get(VMContext, Elements);
2311  }
2312
2313  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2314  SmallVector<uint32_t, 32> Elements;
2315  Elements.reserve(NumElements);
2316
2317  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2318    Elements.push_back(E->getCodeUnit(i));
2319  Elements.resize(NumElements);
2320  return llvm::ConstantDataArray::get(VMContext, Elements);
2321}
2322
2323/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2324/// constant array for the given string literal.
2325llvm::Constant *
2326CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2327  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2328  if (S->isAscii() || S->isUTF8()) {
2329    SmallString<64> Str(S->getString());
2330
2331    // Resize the string to the right size, which is indicated by its type.
2332    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2333    Str.resize(CAT->getSize().getZExtValue());
2334    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2335  }
2336
2337  // FIXME: the following does not memoize wide strings.
2338  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2339  llvm::GlobalVariable *GV =
2340    new llvm::GlobalVariable(getModule(),C->getType(),
2341                             !LangOpts.WritableStrings,
2342                             llvm::GlobalValue::PrivateLinkage,
2343                             C,".str");
2344
2345  GV->setAlignment(Align.getQuantity());
2346  GV->setUnnamedAddr(true);
2347  return GV;
2348}
2349
2350/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2351/// array for the given ObjCEncodeExpr node.
2352llvm::Constant *
2353CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2354  std::string Str;
2355  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2356
2357  return GetAddrOfConstantCString(Str);
2358}
2359
2360
2361/// GenerateWritableString -- Creates storage for a string literal.
2362static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2363                                             bool constant,
2364                                             CodeGenModule &CGM,
2365                                             const char *GlobalName,
2366                                             unsigned Alignment) {
2367  // Create Constant for this string literal. Don't add a '\0'.
2368  llvm::Constant *C =
2369      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2370
2371  // Create a global variable for this string
2372  llvm::GlobalVariable *GV =
2373    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2374                             llvm::GlobalValue::PrivateLinkage,
2375                             C, GlobalName);
2376  GV->setAlignment(Alignment);
2377  GV->setUnnamedAddr(true);
2378  return GV;
2379}
2380
2381/// GetAddrOfConstantString - Returns a pointer to a character array
2382/// containing the literal. This contents are exactly that of the
2383/// given string, i.e. it will not be null terminated automatically;
2384/// see GetAddrOfConstantCString. Note that whether the result is
2385/// actually a pointer to an LLVM constant depends on
2386/// Feature.WriteableStrings.
2387///
2388/// The result has pointer to array type.
2389llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2390                                                       const char *GlobalName,
2391                                                       unsigned Alignment) {
2392  // Get the default prefix if a name wasn't specified.
2393  if (!GlobalName)
2394    GlobalName = ".str";
2395
2396  // Don't share any string literals if strings aren't constant.
2397  if (LangOpts.WritableStrings)
2398    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2399
2400  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2401    ConstantStringMap.GetOrCreateValue(Str);
2402
2403  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2404    if (Alignment > GV->getAlignment()) {
2405      GV->setAlignment(Alignment);
2406    }
2407    return GV;
2408  }
2409
2410  // Create a global variable for this.
2411  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2412                                                   Alignment);
2413  Entry.setValue(GV);
2414  return GV;
2415}
2416
2417/// GetAddrOfConstantCString - Returns a pointer to a character
2418/// array containing the literal and a terminating '\0'
2419/// character. The result has pointer to array type.
2420llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2421                                                        const char *GlobalName,
2422                                                        unsigned Alignment) {
2423  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2424  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2425}
2426
2427/// EmitObjCPropertyImplementations - Emit information for synthesized
2428/// properties for an implementation.
2429void CodeGenModule::EmitObjCPropertyImplementations(const
2430                                                    ObjCImplementationDecl *D) {
2431  for (ObjCImplementationDecl::propimpl_iterator
2432         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2433    ObjCPropertyImplDecl *PID = *i;
2434
2435    // Dynamic is just for type-checking.
2436    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2437      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2438
2439      // Determine which methods need to be implemented, some may have
2440      // been overridden. Note that ::isSynthesized is not the method
2441      // we want, that just indicates if the decl came from a
2442      // property. What we want to know is if the method is defined in
2443      // this implementation.
2444      if (!D->getInstanceMethod(PD->getGetterName()))
2445        CodeGenFunction(*this).GenerateObjCGetter(
2446                                 const_cast<ObjCImplementationDecl *>(D), PID);
2447      if (!PD->isReadOnly() &&
2448          !D->getInstanceMethod(PD->getSetterName()))
2449        CodeGenFunction(*this).GenerateObjCSetter(
2450                                 const_cast<ObjCImplementationDecl *>(D), PID);
2451    }
2452  }
2453}
2454
2455static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2456  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2457  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2458       ivar; ivar = ivar->getNextIvar())
2459    if (ivar->getType().isDestructedType())
2460      return true;
2461
2462  return false;
2463}
2464
2465/// EmitObjCIvarInitializations - Emit information for ivar initialization
2466/// for an implementation.
2467void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2468  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2469  if (needsDestructMethod(D)) {
2470    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2471    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2472    ObjCMethodDecl *DTORMethod =
2473      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2474                             cxxSelector, getContext().VoidTy, 0, D,
2475                             /*isInstance=*/true, /*isVariadic=*/false,
2476                          /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2477                             /*isDefined=*/false, ObjCMethodDecl::Required);
2478    D->addInstanceMethod(DTORMethod);
2479    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2480    D->setHasCXXStructors(true);
2481  }
2482
2483  // If the implementation doesn't have any ivar initializers, we don't need
2484  // a .cxx_construct.
2485  if (D->getNumIvarInitializers() == 0)
2486    return;
2487
2488  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2489  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2490  // The constructor returns 'self'.
2491  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2492                                                D->getLocation(),
2493                                                D->getLocation(),
2494                                                cxxSelector,
2495                                                getContext().getObjCIdType(), 0,
2496                                                D, /*isInstance=*/true,
2497                                                /*isVariadic=*/false,
2498                                                /*isSynthesized=*/true,
2499                                                /*isImplicitlyDeclared=*/true,
2500                                                /*isDefined=*/false,
2501                                                ObjCMethodDecl::Required);
2502  D->addInstanceMethod(CTORMethod);
2503  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2504  D->setHasCXXStructors(true);
2505}
2506
2507/// EmitNamespace - Emit all declarations in a namespace.
2508void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2509  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2510       I != E; ++I)
2511    EmitTopLevelDecl(*I);
2512}
2513
2514// EmitLinkageSpec - Emit all declarations in a linkage spec.
2515void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2516  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2517      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2518    ErrorUnsupported(LSD, "linkage spec");
2519    return;
2520  }
2521
2522  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2523       I != E; ++I)
2524    EmitTopLevelDecl(*I);
2525}
2526
2527/// EmitTopLevelDecl - Emit code for a single top level declaration.
2528void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2529  // If an error has occurred, stop code generation, but continue
2530  // parsing and semantic analysis (to ensure all warnings and errors
2531  // are emitted).
2532  if (Diags.hasErrorOccurred())
2533    return;
2534
2535  // Ignore dependent declarations.
2536  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2537    return;
2538
2539  switch (D->getKind()) {
2540  case Decl::CXXConversion:
2541  case Decl::CXXMethod:
2542  case Decl::Function:
2543    // Skip function templates
2544    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2545        cast<FunctionDecl>(D)->isLateTemplateParsed())
2546      return;
2547
2548    EmitGlobal(cast<FunctionDecl>(D));
2549    break;
2550
2551  case Decl::Var:
2552    EmitGlobal(cast<VarDecl>(D));
2553    break;
2554
2555  // Indirect fields from global anonymous structs and unions can be
2556  // ignored; only the actual variable requires IR gen support.
2557  case Decl::IndirectField:
2558    break;
2559
2560  // C++ Decls
2561  case Decl::Namespace:
2562    EmitNamespace(cast<NamespaceDecl>(D));
2563    break;
2564    // No code generation needed.
2565  case Decl::UsingShadow:
2566  case Decl::Using:
2567  case Decl::UsingDirective:
2568  case Decl::ClassTemplate:
2569  case Decl::FunctionTemplate:
2570  case Decl::TypeAliasTemplate:
2571  case Decl::NamespaceAlias:
2572  case Decl::Block:
2573  case Decl::Import:
2574    break;
2575  case Decl::CXXConstructor:
2576    // Skip function templates
2577    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2578        cast<FunctionDecl>(D)->isLateTemplateParsed())
2579      return;
2580
2581    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2582    break;
2583  case Decl::CXXDestructor:
2584    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2585      return;
2586    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2587    break;
2588
2589  case Decl::StaticAssert:
2590    // Nothing to do.
2591    break;
2592
2593  // Objective-C Decls
2594
2595  // Forward declarations, no (immediate) code generation.
2596  case Decl::ObjCInterface:
2597  case Decl::ObjCCategory:
2598    break;
2599
2600  case Decl::ObjCProtocol: {
2601    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2602    if (Proto->isThisDeclarationADefinition())
2603      ObjCRuntime->GenerateProtocol(Proto);
2604    break;
2605  }
2606
2607  case Decl::ObjCCategoryImpl:
2608    // Categories have properties but don't support synthesize so we
2609    // can ignore them here.
2610    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2611    break;
2612
2613  case Decl::ObjCImplementation: {
2614    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2615    EmitObjCPropertyImplementations(OMD);
2616    EmitObjCIvarInitializations(OMD);
2617    ObjCRuntime->GenerateClass(OMD);
2618    // Emit global variable debug information.
2619    if (CGDebugInfo *DI = getModuleDebugInfo())
2620      DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2621				   OMD->getLocation());
2622
2623    break;
2624  }
2625  case Decl::ObjCMethod: {
2626    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2627    // If this is not a prototype, emit the body.
2628    if (OMD->getBody())
2629      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2630    break;
2631  }
2632  case Decl::ObjCCompatibleAlias:
2633    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2634    break;
2635
2636  case Decl::LinkageSpec:
2637    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2638    break;
2639
2640  case Decl::FileScopeAsm: {
2641    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2642    StringRef AsmString = AD->getAsmString()->getString();
2643
2644    const std::string &S = getModule().getModuleInlineAsm();
2645    if (S.empty())
2646      getModule().setModuleInlineAsm(AsmString);
2647    else if (S.end()[-1] == '\n')
2648      getModule().setModuleInlineAsm(S + AsmString.str());
2649    else
2650      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2651    break;
2652  }
2653
2654  default:
2655    // Make sure we handled everything we should, every other kind is a
2656    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2657    // function. Need to recode Decl::Kind to do that easily.
2658    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2659  }
2660}
2661
2662/// Turns the given pointer into a constant.
2663static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2664                                          const void *Ptr) {
2665  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2666  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2667  return llvm::ConstantInt::get(i64, PtrInt);
2668}
2669
2670static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2671                                   llvm::NamedMDNode *&GlobalMetadata,
2672                                   GlobalDecl D,
2673                                   llvm::GlobalValue *Addr) {
2674  if (!GlobalMetadata)
2675    GlobalMetadata =
2676      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2677
2678  // TODO: should we report variant information for ctors/dtors?
2679  llvm::Value *Ops[] = {
2680    Addr,
2681    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2682  };
2683  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2684}
2685
2686/// Emits metadata nodes associating all the global values in the
2687/// current module with the Decls they came from.  This is useful for
2688/// projects using IR gen as a subroutine.
2689///
2690/// Since there's currently no way to associate an MDNode directly
2691/// with an llvm::GlobalValue, we create a global named metadata
2692/// with the name 'clang.global.decl.ptrs'.
2693void CodeGenModule::EmitDeclMetadata() {
2694  llvm::NamedMDNode *GlobalMetadata = 0;
2695
2696  // StaticLocalDeclMap
2697  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2698         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2699       I != E; ++I) {
2700    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2701    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2702  }
2703}
2704
2705/// Emits metadata nodes for all the local variables in the current
2706/// function.
2707void CodeGenFunction::EmitDeclMetadata() {
2708  if (LocalDeclMap.empty()) return;
2709
2710  llvm::LLVMContext &Context = getLLVMContext();
2711
2712  // Find the unique metadata ID for this name.
2713  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2714
2715  llvm::NamedMDNode *GlobalMetadata = 0;
2716
2717  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2718         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2719    const Decl *D = I->first;
2720    llvm::Value *Addr = I->second;
2721
2722    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2723      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2724      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2725    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2726      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2727      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2728    }
2729  }
2730}
2731
2732void CodeGenModule::EmitCoverageFile() {
2733  if (!getCodeGenOpts().CoverageFile.empty()) {
2734    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2735      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2736      llvm::LLVMContext &Ctx = TheModule.getContext();
2737      llvm::MDString *CoverageFile =
2738          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2739      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2740        llvm::MDNode *CU = CUNode->getOperand(i);
2741        llvm::Value *node[] = { CoverageFile, CU };
2742        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2743        GCov->addOperand(N);
2744      }
2745    }
2746  }
2747}
2748