1/*
2 * Dropbear SSH
3 *
4 * Copyright (c) 2002-2004 Matt Johnston
5 * Portions Copyright (c) 2004 by Mihnea Stoenescu
6 * All rights reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE. */
25
26#include "includes.h"
27#include "dbutil.h"
28#include "algo.h"
29#include "buffer.h"
30#include "session.h"
31#include "kex.h"
32#include "ssh.h"
33#include "packet.h"
34#include "bignum.h"
35#include "random.h"
36
37/* diffie-hellman-group1-sha1 value for p */
38static const unsigned char dh_p_val[] = {
39	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
40    0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
41	0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
42	0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
43	0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
44	0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
45	0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
46	0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
47	0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
48	0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81,
49	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
50#define DH_P_LEN sizeof(dh_p_val)
51
52static const int DH_G_VAL = 2;
53
54static void kexinitialise();
55void gen_new_keys();
56#ifndef DISABLE_ZLIB
57static void gen_new_zstreams();
58#endif
59static void read_kex_algos();
60/* helper function for gen_new_keys */
61static void hashkeys(unsigned char *out, int outlen,
62		const hash_state * hs, unsigned const char X);
63
64
65/* Send our list of algorithms we can use */
66void send_msg_kexinit() {
67
68	CHECKCLEARTOWRITE();
69	buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT);
70
71	/* cookie */
72	genrandom(buf_getwriteptr(ses.writepayload, 16), 16);
73	buf_incrwritepos(ses.writepayload, 16);
74
75	/* kex algos */
76	buf_put_algolist(ses.writepayload, sshkex);
77
78	/* server_host_key_algorithms */
79	buf_put_algolist(ses.writepayload, sshhostkey);
80
81	/* encryption_algorithms_client_to_server */
82	buf_put_algolist(ses.writepayload, sshciphers);
83
84	/* encryption_algorithms_server_to_client */
85	buf_put_algolist(ses.writepayload, sshciphers);
86
87	/* mac_algorithms_client_to_server */
88	buf_put_algolist(ses.writepayload, sshhashes);
89
90	/* mac_algorithms_server_to_client */
91	buf_put_algolist(ses.writepayload, sshhashes);
92
93	/* compression_algorithms_client_to_server */
94	buf_put_algolist(ses.writepayload, sshcompress);
95
96	/* compression_algorithms_server_to_client */
97	buf_put_algolist(ses.writepayload, sshcompress);
98
99	/* languages_client_to_server */
100	buf_putstring(ses.writepayload, "", 0);
101
102	/* languages_server_to_client */
103	buf_putstring(ses.writepayload, "", 0);
104
105	/* first_kex_packet_follows - unimplemented for now */
106	buf_putbyte(ses.writepayload, 0x00);
107
108	/* reserved unit32 */
109	buf_putint(ses.writepayload, 0);
110
111	/* set up transmitted kex packet buffer for hashing.
112	 * This is freed after the end of the kex */
113	ses.transkexinit = buf_newcopy(ses.writepayload);
114
115	encrypt_packet();
116	ses.dataallowed = 0; /* don't send other packets during kex */
117
118	TRACE(("DATAALLOWED=0"))
119	TRACE(("-> KEXINIT"))
120	ses.kexstate.sentkexinit = 1;
121}
122
123/* *** NOTE regarding (send|recv)_msg_newkeys ***
124 * Changed by mihnea from the original kex.c to set dataallowed after a
125 * completed key exchange, no matter the order in which it was performed.
126 * This enables client mode without affecting server functionality.
127 */
128
129/* Bring new keys into use after a key exchange, and let the client know*/
130void send_msg_newkeys() {
131
132	TRACE(("enter send_msg_newkeys"))
133
134	/* generate the kexinit request */
135	CHECKCLEARTOWRITE();
136	buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS);
137	encrypt_packet();
138
139
140	/* set up our state */
141	if (ses.kexstate.recvnewkeys) {
142		TRACE(("while RECVNEWKEYS=1"))
143		gen_new_keys();
144		kexinitialise(); /* we've finished with this kex */
145		TRACE((" -> DATAALLOWED=1"))
146		ses.dataallowed = 1; /* we can send other packets again now */
147		ses.kexstate.donefirstkex = 1;
148	} else {
149		ses.kexstate.sentnewkeys = 1;
150		TRACE(("SENTNEWKEYS=1"))
151	}
152
153	TRACE(("-> MSG_NEWKEYS"))
154	TRACE(("leave send_msg_newkeys"))
155}
156
157/* Bring the new keys into use after a key exchange */
158void recv_msg_newkeys() {
159
160	TRACE(("<- MSG_NEWKEYS"))
161	TRACE(("enter recv_msg_newkeys"))
162
163	/* simply check if we've sent SSH_MSG_NEWKEYS, and if so,
164	 * switch to the new keys */
165	if (ses.kexstate.sentnewkeys) {
166		TRACE(("while SENTNEWKEYS=1"))
167		gen_new_keys();
168		kexinitialise(); /* we've finished with this kex */
169	    TRACE((" -> DATAALLOWED=1"))
170	    ses.dataallowed = 1; /* we can send other packets again now */
171		ses.kexstate.donefirstkex = 1;
172	} else {
173		TRACE(("RECVNEWKEYS=1"))
174		ses.kexstate.recvnewkeys = 1;
175	}
176
177	TRACE(("leave recv_msg_newkeys"))
178}
179
180
181/* Set up the kex for the first time */
182void kexfirstinitialise() {
183
184	ses.kexstate.donefirstkex = 0;
185	kexinitialise();
186}
187
188/* Reset the kex state, ready for a new negotiation */
189static void kexinitialise() {
190
191	struct timeval tv;
192
193	TRACE(("kexinitialise()"))
194
195	/* sent/recv'd MSG_KEXINIT */
196	ses.kexstate.sentkexinit = 0;
197	ses.kexstate.recvkexinit = 0;
198
199	/* sent/recv'd MSG_NEWKEYS */
200	ses.kexstate.recvnewkeys = 0;
201	ses.kexstate.sentnewkeys = 0;
202
203	/* first_packet_follows */
204	ses.kexstate.firstfollows = 0;
205
206	ses.kexstate.datatrans = 0;
207	ses.kexstate.datarecv = 0;
208
209	if (gettimeofday(&tv, 0) < 0) {
210		dropbear_exit("Error getting time");
211	}
212	ses.kexstate.lastkextime = tv.tv_sec;
213
214}
215
216/* Helper function for gen_new_keys, creates a hash. It makes a copy of the
217 * already initialised hash_state hs, which should already have processed
218 * the dh_K and hash, since these are common. X is the letter 'A', 'B' etc.
219 * out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated.
220 * The output will only be expanded once, as we are assured that
221 * outlen <= 2*SHA1_HASH_SIZE for all known hashes.
222 *
223 * See Section 7.2 of rfc4253 (ssh transport) for details */
224static void hashkeys(unsigned char *out, int outlen,
225		const hash_state * hs, const unsigned char X) {
226
227	hash_state hs2;
228	unsigned char k2[SHA1_HASH_SIZE]; /* used to extending */
229
230	memcpy(&hs2, hs, sizeof(hash_state));
231	sha1_process(&hs2, &X, 1);
232	sha1_process(&hs2, ses.session_id, SHA1_HASH_SIZE);
233	sha1_done(&hs2, out);
234	if (SHA1_HASH_SIZE < outlen) {
235		/* need to extend */
236		memcpy(&hs2, hs, sizeof(hash_state));
237		sha1_process(&hs2, out, SHA1_HASH_SIZE);
238		sha1_done(&hs2, k2);
239		memcpy(&out[SHA1_HASH_SIZE], k2, outlen - SHA1_HASH_SIZE);
240	}
241}
242
243/* Generate the actual encryption/integrity keys, using the results of the
244 * key exchange, as specified in section 5.2 of the IETF secsh-transport
245 * draft. This occurs after the DH key-exchange.
246 *
247 * ses.newkeys is the new set of keys which are generated, these are only
248 * taken into use after both sides have sent a newkeys message */
249
250/* Originally from kex.c, generalized for cli/svr mode --mihnea */
251void gen_new_keys() {
252
253	unsigned char C2S_IV[MAX_IV_LEN];
254	unsigned char C2S_key[MAX_KEY_LEN];
255	unsigned char S2C_IV[MAX_IV_LEN];
256	unsigned char S2C_key[MAX_KEY_LEN];
257	/* unsigned char key[MAX_KEY_LEN]; */
258	unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key;
259
260	hash_state hs;
261	unsigned int C2S_keysize, S2C_keysize;
262	char mactransletter, macrecvletter; /* Client or server specific */
263	int recv_cipher = 0, trans_cipher = 0;
264
265	TRACE(("enter gen_new_keys"))
266	/* the dh_K and hash are the start of all hashes, we make use of that */
267
268	sha1_init(&hs);
269	sha1_process_mp(&hs, ses.dh_K);
270	mp_clear(ses.dh_K);
271	m_free(ses.dh_K);
272	sha1_process(&hs, ses.hash, SHA1_HASH_SIZE);
273	m_burn(ses.hash, SHA1_HASH_SIZE);
274
275	if (IS_DROPBEAR_CLIENT) {
276	    trans_IV	= C2S_IV;
277	    recv_IV		= S2C_IV;
278	    trans_key	= C2S_key;
279	    recv_key	= S2C_key;
280	    C2S_keysize = ses.newkeys->trans_algo_crypt->keysize;
281	    S2C_keysize = ses.newkeys->recv_algo_crypt->keysize;
282		mactransletter = 'E';
283		macrecvletter = 'F';
284	} else {
285	    trans_IV	= S2C_IV;
286	    recv_IV		= C2S_IV;
287	    trans_key	= S2C_key;
288	    recv_key	= C2S_key;
289	    C2S_keysize = ses.newkeys->recv_algo_crypt->keysize;
290	    S2C_keysize = ses.newkeys->trans_algo_crypt->keysize;
291		mactransletter = 'F';
292		macrecvletter = 'E';
293	}
294
295	hashkeys(C2S_IV, SHA1_HASH_SIZE, &hs, 'A');
296	hashkeys(S2C_IV, SHA1_HASH_SIZE, &hs, 'B');
297	hashkeys(C2S_key, C2S_keysize, &hs, 'C');
298	hashkeys(S2C_key, S2C_keysize, &hs, 'D');
299
300	recv_cipher = find_cipher(ses.newkeys->recv_algo_crypt->cipherdesc->name);
301	if (recv_cipher < 0)
302	    dropbear_exit("crypto error");
303
304	if (cbc_start(recv_cipher, recv_IV, recv_key,
305			ses.newkeys->recv_algo_crypt->keysize, 0,
306			&ses.newkeys->recv_symmetric_struct) != CRYPT_OK) {
307		dropbear_exit("crypto error");
308	}
309	trans_cipher = find_cipher(ses.newkeys->trans_algo_crypt->cipherdesc->name);
310	if (trans_cipher < 0)
311	    dropbear_exit("crypto error");
312
313	if (cbc_start(trans_cipher, trans_IV, trans_key,
314			ses.newkeys->trans_algo_crypt->keysize, 0,
315			&ses.newkeys->trans_symmetric_struct) != CRYPT_OK) {
316		dropbear_exit("crypto error");
317	}
318
319	/* MAC keys */
320	hashkeys(ses.newkeys->transmackey,
321			ses.newkeys->trans_algo_mac->keysize, &hs, mactransletter);
322	hashkeys(ses.newkeys->recvmackey,
323			ses.newkeys->recv_algo_mac->keysize, &hs, macrecvletter);
324
325#ifndef DISABLE_ZLIB
326	gen_new_zstreams();
327#endif
328
329	/* Switch over to the new keys */
330	m_burn(ses.keys, sizeof(struct key_context));
331	m_free(ses.keys);
332	ses.keys = ses.newkeys;
333	ses.newkeys = NULL;
334
335	TRACE(("leave gen_new_keys"))
336}
337
338#ifndef DISABLE_ZLIB
339/* Set up new zlib compression streams, close the old ones. Only
340 * called from gen_new_keys() */
341static void gen_new_zstreams() {
342
343	/* create new zstreams */
344	if (ses.newkeys->recv_algo_comp == DROPBEAR_COMP_ZLIB) {
345		ses.newkeys->recv_zstream = (z_streamp)m_malloc(sizeof(z_stream));
346		ses.newkeys->recv_zstream->zalloc = Z_NULL;
347		ses.newkeys->recv_zstream->zfree = Z_NULL;
348
349		if (inflateInit(ses.newkeys->recv_zstream) != Z_OK) {
350			dropbear_exit("zlib error");
351		}
352	} else {
353		ses.newkeys->recv_zstream = NULL;
354	}
355
356	if (ses.newkeys->trans_algo_comp == DROPBEAR_COMP_ZLIB) {
357		ses.newkeys->trans_zstream = (z_streamp)m_malloc(sizeof(z_stream));
358		ses.newkeys->trans_zstream->zalloc = Z_NULL;
359		ses.newkeys->trans_zstream->zfree = Z_NULL;
360
361		if (deflateInit(ses.newkeys->trans_zstream, Z_DEFAULT_COMPRESSION)
362				!= Z_OK) {
363			dropbear_exit("zlib error");
364		}
365	} else {
366		ses.newkeys->trans_zstream = NULL;
367	}
368
369	/* clean up old keys */
370	if (ses.keys->recv_zstream != NULL) {
371		if (inflateEnd(ses.keys->recv_zstream) == Z_STREAM_ERROR) {
372			/* Z_DATA_ERROR is ok, just means that stream isn't ended */
373			dropbear_exit("crypto error");
374		}
375		m_free(ses.keys->recv_zstream);
376	}
377	if (ses.keys->trans_zstream != NULL) {
378		if (deflateEnd(ses.keys->trans_zstream) == Z_STREAM_ERROR) {
379			/* Z_DATA_ERROR is ok, just means that stream isn't ended */
380			dropbear_exit("crypto error");
381		}
382		m_free(ses.keys->trans_zstream);
383	}
384}
385#endif
386
387
388/* Executed upon receiving a kexinit message from the client to initiate
389 * key exchange. If we haven't already done so, we send the list of our
390 * preferred algorithms. The client's requested algorithms are processed,
391 * and we calculate the first portion of the key-exchange-hash for used
392 * later in the key exchange. No response is sent, as the client should
393 * initiate the diffie-hellman key exchange */
394
395/* Originally from kex.c, generalized for cli/svr mode --mihnea  */
396/* Belongs in common_kex.c where it should be moved after review */
397void recv_msg_kexinit() {
398
399	unsigned int kexhashbuf_len = 0;
400	unsigned int remote_ident_len = 0;
401	unsigned int local_ident_len = 0;
402
403	TRACE(("<- KEXINIT"))
404	TRACE(("enter recv_msg_kexinit"))
405
406	if (!ses.kexstate.sentkexinit) {
407		/* we need to send a kex packet */
408		send_msg_kexinit();
409		TRACE(("continue recv_msg_kexinit: sent kexinit"))
410	}
411
412	/* start the kex hash */
413	local_ident_len = strlen(LOCAL_IDENT);
414	remote_ident_len = strlen((char*)ses.remoteident);
415
416	kexhashbuf_len = local_ident_len + remote_ident_len
417		+ ses.transkexinit->len + ses.payload->len
418		+ KEXHASHBUF_MAX_INTS;
419
420	ses.kexhashbuf = buf_new(kexhashbuf_len);
421
422	if (IS_DROPBEAR_CLIENT) {
423
424		/* read the peer's choice of algos */
425		read_kex_algos();
426
427		/* V_C, the client's version string (CR and NL excluded) */
428	    buf_putstring(ses.kexhashbuf,
429			(unsigned char*)LOCAL_IDENT, local_ident_len);
430		/* V_S, the server's version string (CR and NL excluded) */
431	    buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
432
433		/* I_C, the payload of the client's SSH_MSG_KEXINIT */
434	    buf_putstring(ses.kexhashbuf,
435			ses.transkexinit->data, ses.transkexinit->len);
436		/* I_S, the payload of the server's SSH_MSG_KEXINIT */
437	    buf_setpos(ses.payload, 0);
438	    buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len);
439
440	} else {
441		/* SERVER */
442
443		/* read the peer's choice of algos */
444		read_kex_algos();
445		/* V_C, the client's version string (CR and NL excluded) */
446	    buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
447		/* V_S, the server's version string (CR and NL excluded) */
448	    buf_putstring(ses.kexhashbuf,
449				(unsigned char*)LOCAL_IDENT, local_ident_len);
450
451		/* I_C, the payload of the client's SSH_MSG_KEXINIT */
452	    buf_setpos(ses.payload, 0);
453	    buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len);
454
455		/* I_S, the payload of the server's SSH_MSG_KEXINIT */
456	    buf_putstring(ses.kexhashbuf,
457			ses.transkexinit->data, ses.transkexinit->len);
458
459		ses.requirenext = SSH_MSG_KEXDH_INIT;
460	}
461
462	buf_free(ses.transkexinit);
463	ses.transkexinit = NULL;
464	/* the rest of ses.kexhashbuf will be done after DH exchange */
465
466	ses.kexstate.recvkexinit = 1;
467
468	TRACE(("leave recv_msg_kexinit"))
469}
470
471/* Initialises and generate one side of the diffie-hellman key exchange values.
472 * See the ietf-secsh-transport draft, section 6, for details */
473/* dh_pub and dh_priv MUST be already initialised */
474void gen_kexdh_vals(mp_int *dh_pub, mp_int *dh_priv) {
475
476	DEF_MP_INT(dh_p);
477	DEF_MP_INT(dh_q);
478	DEF_MP_INT(dh_g);
479
480	TRACE(("enter send_msg_kexdh_reply"))
481
482	m_mp_init_multi(&dh_g, &dh_p, &dh_q, NULL);
483
484	/* read the prime and generator*/
485	bytes_to_mp(&dh_p, (unsigned char*)dh_p_val, DH_P_LEN);
486
487	if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) {
488		dropbear_exit("Diffie-Hellman error");
489	}
490
491	/* calculate q = (p-1)/2 */
492	/* dh_priv is just a temp var here */
493	if (mp_sub_d(&dh_p, 1, dh_priv) != MP_OKAY) {
494		dropbear_exit("Diffie-Hellman error");
495	}
496	if (mp_div_2(dh_priv, &dh_q) != MP_OKAY) {
497		dropbear_exit("Diffie-Hellman error");
498	}
499
500	/* Generate a private portion 0 < dh_priv < dh_q */
501	gen_random_mpint(&dh_q, dh_priv);
502
503	/* f = g^y mod p */
504	if (mp_exptmod(&dh_g, dh_priv, &dh_p, dh_pub) != MP_OKAY) {
505		dropbear_exit("Diffie-Hellman error");
506	}
507	mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL);
508}
509
510/* This function is fairly common between client/server, with some substitution
511 * of dh_e/dh_f etc. Hence these arguments:
512 * dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is
513 * vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */
514void kexdh_comb_key(mp_int *dh_pub_us, mp_int *dh_priv, mp_int *dh_pub_them,
515		sign_key *hostkey) {
516
517	mp_int dh_p;
518	mp_int *dh_e = NULL, *dh_f = NULL;
519	hash_state hs;
520
521	/* read the prime and generator*/
522	m_mp_init(&dh_p);
523	bytes_to_mp(&dh_p, dh_p_val, DH_P_LEN);
524
525	/* Check that dh_pub_them (dh_e or dh_f) is in the range [1, p-1] */
526	if (mp_cmp(dh_pub_them, &dh_p) != MP_LT
527			|| mp_cmp_d(dh_pub_them, 0) != MP_GT) {
528		dropbear_exit("Diffie-Hellman error");
529	}
530
531	/* K = e^y mod p = f^x mod p */
532	ses.dh_K = (mp_int*)m_malloc(sizeof(mp_int));
533	m_mp_init(ses.dh_K);
534	if (mp_exptmod(dh_pub_them, dh_priv, &dh_p, ses.dh_K) != MP_OKAY) {
535		dropbear_exit("Diffie-Hellman error");
536	}
537
538	/* clear no longer needed vars */
539	mp_clear_multi(&dh_p, NULL);
540
541	/* From here on, the code needs to work with the _same_ vars on each side,
542	 * not vice-versaing for client/server */
543	if (IS_DROPBEAR_CLIENT) {
544		dh_e = dh_pub_us;
545		dh_f = dh_pub_them;
546	} else {
547		dh_e = dh_pub_them;
548		dh_f = dh_pub_us;
549	}
550
551	/* Create the remainder of the hash buffer, to generate the exchange hash */
552	/* K_S, the host key */
553	buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey);
554	/* e, exchange value sent by the client */
555	buf_putmpint(ses.kexhashbuf, dh_e);
556	/* f, exchange value sent by the server */
557	buf_putmpint(ses.kexhashbuf, dh_f);
558	/* K, the shared secret */
559	buf_putmpint(ses.kexhashbuf, ses.dh_K);
560
561	/* calculate the hash H to sign */
562	sha1_init(&hs);
563	buf_setpos(ses.kexhashbuf, 0);
564	sha1_process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len),
565			ses.kexhashbuf->len);
566	sha1_done(&hs, ses.hash);
567
568	buf_burn(ses.kexhashbuf);
569	buf_free(ses.kexhashbuf);
570	ses.kexhashbuf = NULL;
571
572	/* first time around, we set the session_id to H */
573	if (ses.session_id == NULL) {
574		/* create the session_id, this never needs freeing */
575		ses.session_id = (unsigned char*)m_malloc(SHA1_HASH_SIZE);
576		memcpy(ses.session_id, ses.hash, SHA1_HASH_SIZE);
577	}
578}
579
580/* read the other side's algo list. buf_match_algo is a callback to match
581 * algos for the client or server. */
582static void read_kex_algos() {
583
584	/* for asymmetry */
585	algo_type * c2s_hash_algo = NULL;
586	algo_type * s2c_hash_algo = NULL;
587	algo_type * c2s_cipher_algo = NULL;
588	algo_type * s2c_cipher_algo = NULL;
589	algo_type * c2s_comp_algo = NULL;
590	algo_type * s2c_comp_algo = NULL;
591	/* the generic one */
592	algo_type * algo = NULL;
593
594	/* which algo couldn't match */
595	char * erralgo = NULL;
596
597	int goodguess = 0;
598	int allgood = 1; /* we AND this with each goodguess and see if its still
599						true after */
600
601	buf_incrpos(ses.payload, 16); /* start after the cookie */
602
603	ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context));
604
605	/* kex_algorithms */
606	algo = ses.buf_match_algo(ses.payload, sshkex, &goodguess);
607	allgood &= goodguess;
608	if (algo == NULL) {
609		erralgo = "kex";
610		goto error;
611	}
612	TRACE(("kex algo %s", algo->name))
613	ses.newkeys->algo_kex = algo->val;
614
615	/* server_host_key_algorithms */
616	algo = ses.buf_match_algo(ses.payload, sshhostkey, &goodguess);
617	allgood &= goodguess;
618	if (algo == NULL) {
619		erralgo = "hostkey";
620		goto error;
621	}
622	TRACE(("hostkey algo %s", algo->name))
623	ses.newkeys->algo_hostkey = algo->val;
624
625	/* encryption_algorithms_client_to_server */
626	c2s_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess);
627	if (c2s_cipher_algo == NULL) {
628		erralgo = "enc c->s";
629		goto error;
630	}
631	TRACE(("enc c2s is  %s", c2s_cipher_algo->name))
632
633	/* encryption_algorithms_server_to_client */
634	s2c_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess);
635	if (s2c_cipher_algo == NULL) {
636		erralgo = "enc s->c";
637		goto error;
638	}
639	TRACE(("enc s2c is  %s", s2c_cipher_algo->name))
640
641	/* mac_algorithms_client_to_server */
642	c2s_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess);
643	if (c2s_hash_algo == NULL) {
644		erralgo = "mac c->s";
645		goto error;
646	}
647	TRACE(("hash c2s is  %s", c2s_hash_algo->name))
648
649	/* mac_algorithms_server_to_client */
650	s2c_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess);
651	if (s2c_hash_algo == NULL) {
652		erralgo = "mac s->c";
653		goto error;
654	}
655	TRACE(("hash s2c is  %s", s2c_hash_algo->name))
656
657	/* compression_algorithms_client_to_server */
658	c2s_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess);
659	if (c2s_comp_algo == NULL) {
660		erralgo = "comp c->s";
661		goto error;
662	}
663	TRACE(("hash c2s is  %s", c2s_comp_algo->name))
664
665	/* compression_algorithms_server_to_client */
666	s2c_comp_algo = ses.buf_match_algo(ses.payload, sshcompress, &goodguess);
667	if (s2c_comp_algo == NULL) {
668		erralgo = "comp s->c";
669		goto error;
670	}
671	TRACE(("hash s2c is  %s", s2c_comp_algo->name))
672
673	/* languages_client_to_server */
674	buf_eatstring(ses.payload);
675
676	/* languages_server_to_client */
677	buf_eatstring(ses.payload);
678
679	/* first_kex_packet_follows */
680	if (buf_getbool(ses.payload)) {
681		ses.kexstate.firstfollows = 1;
682		/* if the guess wasn't good, we ignore the packet sent */
683		if (!allgood) {
684			ses.ignorenext = 1;
685		}
686	}
687
688	/* Handle the asymmetry */
689	if (IS_DROPBEAR_CLIENT) {
690		ses.newkeys->recv_algo_crypt =
691			(struct dropbear_cipher*)s2c_cipher_algo->data;
692		ses.newkeys->trans_algo_crypt =
693			(struct dropbear_cipher*)c2s_cipher_algo->data;
694		ses.newkeys->recv_algo_mac =
695			(struct dropbear_hash*)s2c_hash_algo->data;
696		ses.newkeys->trans_algo_mac =
697			(struct dropbear_hash*)c2s_hash_algo->data;
698		ses.newkeys->recv_algo_comp = s2c_comp_algo->val;
699		ses.newkeys->trans_algo_comp = c2s_comp_algo->val;
700	} else {
701		/* SERVER */
702		ses.newkeys->recv_algo_crypt =
703			(struct dropbear_cipher*)c2s_cipher_algo->data;
704		ses.newkeys->trans_algo_crypt =
705			(struct dropbear_cipher*)s2c_cipher_algo->data;
706		ses.newkeys->recv_algo_mac =
707			(struct dropbear_hash*)c2s_hash_algo->data;
708		ses.newkeys->trans_algo_mac =
709			(struct dropbear_hash*)s2c_hash_algo->data;
710		ses.newkeys->recv_algo_comp = c2s_comp_algo->val;
711		ses.newkeys->trans_algo_comp = s2c_comp_algo->val;
712	}
713
714	/* reserved for future extensions */
715	buf_getint(ses.payload);
716	return;
717
718error:
719	dropbear_exit("no matching algo %s", erralgo);
720}
721