1/*
2 * Copyright (C) 2007 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.google.common.collect;
18
19import static com.google.common.base.Preconditions.checkArgument;
20import static com.google.common.base.Preconditions.checkNotNull;
21
22import com.google.common.annotations.Beta;
23import com.google.common.annotations.GwtCompatible;
24import com.google.common.annotations.VisibleForTesting;
25import com.google.common.base.Function;
26
27import java.util.Arrays;
28import java.util.Collections;
29import java.util.Comparator;
30import java.util.HashSet;
31import java.util.Iterator;
32import java.util.List;
33import java.util.Map;
34import java.util.NoSuchElementException;
35import java.util.SortedMap;
36import java.util.SortedSet;
37import java.util.concurrent.atomic.AtomicInteger;
38
39import javax.annotation.Nullable;
40
41/**
42 * A comparator with added methods to support common functions. For example:
43 * <pre>   {@code
44 *
45 *   if (Ordering.from(comparator).reverse().isOrdered(list)) { ... }}</pre>
46 *
47 * The {@link #from(Comparator)} method returns the equivalent {@code Ordering}
48 * instance for a pre-existing comparator. You can also skip the comparator step
49 * and extend {@code Ordering} directly: <pre>   {@code
50 *
51 *   Ordering<String> byLengthOrdering = new Ordering<String>() {
52 *     public int compare(String left, String right) {
53 *       return Ints.compare(left.length(), right.length());
54 *     }
55 *   };}</pre>
56 *
57 * Except as noted, the orderings returned by the factory methods of this
58 * class are serializable if and only if the provided instances that back them
59 * are. For example, if {@code ordering} and {@code function} can themselves be
60 * serialized, then {@code ordering.onResultOf(function)} can as well.
61 *
62 * @author Jesse Wilson
63 * @author Kevin Bourrillion
64 * @since 2.0 (imported from Google Collections Library)
65 */
66@GwtCompatible
67public abstract class Ordering<T> implements Comparator<T> {
68  // Static factories
69
70  /**
71   * Returns a serializable ordering that uses the natural order of the values.
72   * The ordering throws a {@link NullPointerException} when passed a null
73   * parameter.
74   *
75   * <p>The type specification is {@code <C extends Comparable>}, instead of
76   * the technically correct {@code <C extends Comparable<? super C>>}, to
77   * support legacy types from before Java 5.
78   */
79  @GwtCompatible(serializable = true)
80  @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
81  public static <C extends Comparable> Ordering<C> natural() {
82    return (Ordering<C>) NaturalOrdering.INSTANCE;
83  }
84
85  /**
86   * Returns an ordering for a pre-existing {@code comparator}. Note
87   * that if the comparator is not pre-existing, and you don't require
88   * serialization, you can subclass {@code Ordering} and implement its
89   * {@link #compare(Object, Object) compare} method instead.
90   *
91   * @param comparator the comparator that defines the order
92   */
93  @GwtCompatible(serializable = true)
94  public static <T> Ordering<T> from(Comparator<T> comparator) {
95    return (comparator instanceof Ordering)
96        ? (Ordering<T>) comparator
97        : new ComparatorOrdering<T>(comparator);
98  }
99
100  /**
101   * Simply returns its argument.
102   *
103   * @deprecated no need to use this
104   */
105  @GwtCompatible(serializable = true)
106  @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
107    return checkNotNull(ordering);
108  }
109
110  /**
111   * Returns an ordering that compares objects according to the order in
112   * which they appear in the given list. Only objects present in the list
113   * (according to {@link Object#equals}) may be compared. This comparator
114   * imposes a "partial ordering" over the type {@code T}. Subsequent changes
115   * to the {@code valuesInOrder} list will have no effect on the returned
116   * comparator. Null values in the list are not supported.
117   *
118   * <p>The returned comparator throws an {@link ClassCastException} when it
119   * receives an input parameter that isn't among the provided values.
120   *
121   * <p>The generated comparator is serializable if all the provided values are
122   * serializable.
123   *
124   * @param valuesInOrder the values that the returned comparator will be able
125   *     to compare, in the order the comparator should induce
126   * @return the comparator described above
127   * @throws NullPointerException if any of the provided values is null
128   * @throws IllegalArgumentException if {@code valuesInOrder} contains any
129   *     duplicate values (according to {@link Object#equals})
130   */
131  @GwtCompatible(serializable = true)
132  public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
133    return new ExplicitOrdering<T>(valuesInOrder);
134  }
135
136  /**
137   * Returns an ordering that compares objects according to the order in
138   * which they are given to this method. Only objects present in the argument
139   * list (according to {@link Object#equals}) may be compared. This comparator
140   * imposes a "partial ordering" over the type {@code T}. Null values in the
141   * argument list are not supported.
142   *
143   * <p>The returned comparator throws a {@link ClassCastException} when it
144   * receives an input parameter that isn't among the provided values.
145   *
146   * <p>The generated comparator is serializable if all the provided values are
147   * serializable.
148   *
149   * @param leastValue the value which the returned comparator should consider
150   *     the "least" of all values
151   * @param remainingValuesInOrder the rest of the values that the returned
152   *     comparator will be able to compare, in the order the comparator should
153   *     follow
154   * @return the comparator described above
155   * @throws NullPointerException if any of the provided values is null
156   * @throws IllegalArgumentException if any duplicate values (according to
157   *     {@link Object#equals(Object)}) are present among the method arguments
158   */
159  @GwtCompatible(serializable = true)
160  public static <T> Ordering<T> explicit(
161      T leastValue, T... remainingValuesInOrder) {
162    return explicit(Lists.asList(leastValue, remainingValuesInOrder));
163  }
164
165  /**
166   * Exception thrown by a {@link Ordering#explicit(List)} or {@link
167   * Ordering#explicit(Object, Object[])} comparator when comparing a value
168   * outside the set of values it can compare. Extending {@link
169   * ClassCastException} may seem odd, but it is required.
170   */
171  // TODO(kevinb): make this public, document it right
172  @VisibleForTesting
173  static class IncomparableValueException extends ClassCastException {
174    final Object value;
175
176    IncomparableValueException(Object value) {
177      super("Cannot compare value: " + value);
178      this.value = value;
179    }
180
181    private static final long serialVersionUID = 0;
182  }
183
184  /**
185   * Returns an arbitrary ordering over all objects, for which {@code compare(a,
186   * b) == 0} implies {@code a == b} (identity equality). There is no meaning
187   * whatsoever to the order imposed, but it is constant for the life of the VM.
188   *
189   * <p>Because the ordering is identity-based, it is not "consistent with
190   * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
191   * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
192   * the resulting collection will not behave exactly according to spec.
193   *
194   * <p>This ordering is not serializable, as its implementation relies on
195   * {@link System#identityHashCode(Object)}, so its behavior cannot be
196   * preserved across serialization.
197   *
198   * @since 2.0
199   */
200  public static Ordering<Object> arbitrary() {
201    return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
202  }
203
204  private static class ArbitraryOrderingHolder {
205    static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
206  }
207
208  @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
209    @SuppressWarnings("deprecation") // TODO(kevinb): ?
210    private Map<Object, Integer> uids =
211        Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
212            new Function<Object, Integer>() {
213              final AtomicInteger counter = new AtomicInteger(0);
214              @Override
215              public Integer apply(Object from) {
216                return counter.getAndIncrement();
217              }
218            });
219
220    @Override public int compare(Object left, Object right) {
221      if (left == right) {
222        return 0;
223      }
224      int leftCode = identityHashCode(left);
225      int rightCode = identityHashCode(right);
226      if (leftCode != rightCode) {
227        return leftCode < rightCode ? -1 : 1;
228      }
229
230      // identityHashCode collision (rare, but not as rare as you'd think)
231      int result = uids.get(left).compareTo(uids.get(right));
232      if (result == 0) {
233        throw new AssertionError(); // extremely, extremely unlikely.
234      }
235      return result;
236    }
237
238    @Override public String toString() {
239      return "Ordering.arbitrary()";
240    }
241
242    /*
243     * We need to be able to mock identityHashCode() calls for tests, because it
244     * can take 1-10 seconds to find colliding objects. Mocking frameworks that
245     * can do magic to mock static method calls still can't do so for a system
246     * class, so we need the indirection. In production, Hotspot should still
247     * recognize that the call is 1-morphic and should still be willing to
248     * inline it if necessary.
249     */
250    int identityHashCode(Object object) {
251      return System.identityHashCode(object);
252    }
253  }
254
255  /**
256   * Returns an ordering that compares objects by the natural ordering of their
257   * string representations as returned by {@code toString()}. It does not
258   * support null values.
259   *
260   * <p>The comparator is serializable.
261   */
262  @GwtCompatible(serializable = true)
263  public static Ordering<Object> usingToString() {
264    return UsingToStringOrdering.INSTANCE;
265  }
266
267  /**
268   * Returns an ordering which tries each given comparator in order until a
269   * non-zero result is found, returning that result, and returning zero only if
270   * all comparators return zero. The returned ordering is based on the state of
271   * the {@code comparators} iterable at the time it was provided to this
272   * method.
273   *
274   * <p>The returned ordering is equivalent to that produced using {@code
275   * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
276   *
277   * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
278   * such as a {@link HashSet}, will produce non-deterministic results.
279   *
280   * @param comparators the comparators to try in order
281   */
282  @GwtCompatible(serializable = true)
283  public static <T> Ordering<T> compound(
284      Iterable<? extends Comparator<? super T>> comparators) {
285    return new CompoundOrdering<T>(comparators);
286  }
287
288  /**
289   * Constructs a new instance of this class (only invokable by the subclass
290   * constructor, typically implicit).
291   */
292  protected Ordering() {}
293
294  // Non-static factories
295
296  /**
297   * Returns an ordering which first uses the ordering {@code this}, but which
298   * in the event of a "tie", then delegates to {@code secondaryComparator}.
299   * For example, to sort a bug list first by status and second by priority, you
300   * might use {@code byStatus.compound(byPriority)}. For a compound ordering
301   * with three or more components, simply chain multiple calls to this method.
302   *
303   * <p>An ordering produced by this method, or a chain of calls to this method,
304   * is equivalent to one created using {@link Ordering#compound(Iterable)} on
305   * the same component comparators.
306   */
307  @GwtCompatible(serializable = true)
308  public <U extends T> Ordering<U> compound(
309      Comparator<? super U> secondaryComparator) {
310    return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
311  }
312
313  /**
314   * Returns the reverse of this ordering; the {@code Ordering} equivalent to
315   * {@link Collections#reverseOrder(Comparator)}.
316   */
317  // type parameter <S> lets us avoid the extra <String> in statements like:
318  // Ordering<String> o = Ordering.<String>natural().reverse();
319  @GwtCompatible(serializable = true)
320  public <S extends T> Ordering<S> reverse() {
321    return new ReverseOrdering<S>(this);
322  }
323
324  /**
325   * Returns a new ordering on {@code F} which orders elements by first applying
326   * a function to them, then comparing those results using {@code this}. For
327   * example, to compare objects by their string forms, in a case-insensitive
328   * manner, use: <pre>   {@code
329   *
330   *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
331   *       .onResultOf(Functions.toStringFunction())}</pre>
332   */
333  @GwtCompatible(serializable = true)
334  public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
335    return new ByFunctionOrdering<F, T>(function, this);
336  }
337
338  /**
339   * Returns a new ordering which sorts iterables by comparing corresponding
340   * elements pairwise until a nonzero result is found; imposes "dictionary
341   * order". If the end of one iterable is reached, but not the other, the
342   * shorter iterable is considered to be less than the longer one. For example,
343   * a lexicographical natural ordering over integers considers {@code
344   * [] < [1] < [1, 1] < [1, 2] < [2]}.
345   *
346   * <p>Note that {@code ordering.lexicographical().reverse()} is not
347   * equivalent to {@code ordering.reverse().lexicographical()} (consider how
348   * each would order {@code [1]} and {@code [1, 1]}).
349   *
350   * @since 2.0
351   */
352  @GwtCompatible(serializable = true)
353  // type parameter <S> lets us avoid the extra <String> in statements like:
354  // Ordering<Iterable<String>> o =
355  //     Ordering.<String>natural().lexicographical();
356  public <S extends T> Ordering<Iterable<S>> lexicographical() {
357    /*
358     * Note that technically the returned ordering should be capable of
359     * handling not just {@code Iterable<S>} instances, but also any {@code
360     * Iterable<? extends S>}. However, the need for this comes up so rarely
361     * that it doesn't justify making everyone else deal with the very ugly
362     * wildcard.
363     */
364    return new LexicographicalOrdering<S>(this);
365  }
366
367  /**
368   * Returns an ordering that treats {@code null} as less than all other values
369   * and uses {@code this} to compare non-null values.
370   */
371  // type parameter <S> lets us avoid the extra <String> in statements like:
372  // Ordering<String> o = Ordering.<String>natural().nullsFirst();
373  @GwtCompatible(serializable = true)
374  public <S extends T> Ordering<S> nullsFirst() {
375    return new NullsFirstOrdering<S>(this);
376  }
377
378  /**
379   * Returns an ordering that treats {@code null} as greater than all other
380   * values and uses this ordering to compare non-null values.
381   */
382  // type parameter <S> lets us avoid the extra <String> in statements like:
383  // Ordering<String> o = Ordering.<String>natural().nullsLast();
384  @GwtCompatible(serializable = true)
385  public <S extends T> Ordering<S> nullsLast() {
386    return new NullsLastOrdering<S>(this);
387  }
388
389  // Regular instance methods
390
391  // Override to add @Nullable
392  @Override public abstract int compare(@Nullable T left, @Nullable T right);
393
394  /**
395   * Returns the {@code k} least elements of the given iterable according to
396   * this ordering, in order from least to greatest.  If there are fewer than
397   * {@code k} elements present, all will be included.
398   *
399   * <p>The implementation does not necessarily use a <i>stable</i> sorting
400   * algorithm; when multiple elements are equivalent, it is undefined which
401   * will come first.
402   *
403   * @return an immutable {@code RandomAccess} list of the {@code k} least
404   *     elements in ascending order
405   * @throws IllegalArgumentException if {@code k} is negative
406   * @since 8.0
407   */
408  @Beta
409  public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
410    checkArgument(k >= 0, "%d is negative", k);
411
412    // values is not an E[], but we use it as such for readability. Hack.
413    @SuppressWarnings("unchecked")
414    E[] values = (E[]) Iterables.toArray(iterable);
415
416    // TODO(nshupe): also sort whole list if k is *near* values.length?
417    // TODO(kevinb): benchmark this impl against hand-coded heap
418    E[] resultArray;
419    if (values.length <= k) {
420      Arrays.sort(values, this);
421      resultArray = values;
422    } else {
423      quicksortLeastK(values, 0, values.length - 1, k);
424
425      // this is not an E[], but we use it as such for readability. Hack.
426      @SuppressWarnings("unchecked")
427      E[] tmp = (E[]) new Object[k];
428      resultArray = tmp;
429      System.arraycopy(values, 0, resultArray, 0, k);
430    }
431
432    return Collections.unmodifiableList(Arrays.asList(resultArray));
433  }
434
435  /**
436   * Returns the {@code k} greatest elements of the given iterable according to
437   * this ordering, in order from greatest to least. If there are fewer than
438   * {@code k} elements present, all will be included.
439   *
440   * <p>The implementation does not necessarily use a <i>stable</i> sorting
441   * algorithm; when multiple elements are equivalent, it is undefined which
442   * will come first.
443   *
444   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
445   *     elements in <i>descending order</i>
446   * @throws IllegalArgumentException if {@code k} is negative
447   * @since 8.0
448   */
449  @Beta
450  public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
451    // TODO(kevinb): see if delegation is hurting performance noticeably
452    // TODO(kevinb): if we change this implementation, add full unit tests.
453    return reverse().leastOf(iterable, k);
454  }
455
456  private <E extends T> void quicksortLeastK(
457      E[] values, int left, int right, int k) {
458    if (right > left) {
459      int pivotIndex = (left + right) >>> 1; // left + ((right - left) / 2)
460      int pivotNewIndex = partition(values, left, right, pivotIndex);
461      quicksortLeastK(values, left, pivotNewIndex - 1, k);
462      if (pivotNewIndex < k) {
463        quicksortLeastK(values, pivotNewIndex + 1, right, k);
464      }
465    }
466  }
467
468  private <E extends T> int partition(
469      E[] values, int left, int right, int pivotIndex) {
470    E pivotValue = values[pivotIndex];
471
472    values[pivotIndex] = values[right];
473    values[right] = pivotValue;
474
475    int storeIndex = left;
476    for (int i = left; i < right; i++) {
477      if (compare(values[i], pivotValue) < 0) {
478        ObjectArrays.swap(values, storeIndex, i);
479        storeIndex++;
480      }
481    }
482    ObjectArrays.swap(values, right, storeIndex);
483    return storeIndex;
484  }
485
486  /**
487   * {@link Collections#binarySearch(List, Object, Comparator) Searches}
488   * {@code sortedList} for {@code key} using the binary search algorithm. The
489   * list must be sorted using this ordering.
490   *
491   * @param sortedList the list to be searched
492   * @param key the key to be searched for
493   */
494  public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
495    return Collections.binarySearch(sortedList, key, this);
496  }
497
498  /**
499   * Returns a copy of the given iterable sorted by this ordering. The input is
500   * not modified. The returned list is modifiable, serializable, and has random
501   * access.
502   *
503   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
504   * elements that are duplicates according to the comparator. The sort
505   * performed is <i>stable</i>, meaning that such elements will appear in the
506   * resulting list in the same order they appeared in the input.
507   *
508   * @param iterable the elements to be copied and sorted
509   * @return a new list containing the given elements in sorted order
510   */
511  public <E extends T> List<E> sortedCopy(Iterable<E> iterable) {
512    List<E> list = Lists.newArrayList(iterable);
513    Collections.sort(list, this);
514    return list;
515  }
516
517  /**
518   * Returns an <i>immutable</i> copy of the given iterable sorted by this
519   * ordering. The input is not modified.
520   *
521   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
522   * elements that are duplicates according to the comparator. The sort
523   * performed is <i>stable</i>, meaning that such elements will appear in the
524   * resulting list in the same order they appeared in the input.
525   *
526   * @param iterable the elements to be copied and sorted
527   * @return a new immutable list containing the given elements in sorted order
528   * @throws NullPointerException if {@code iterable} or any of its elements is
529   *     null
530   * @since 3.0
531   */
532  public <E extends T> ImmutableList<E> immutableSortedCopy(
533      Iterable<E> iterable) {
534    return ImmutableList.copyOf(sortedCopy(iterable));
535  }
536
537  /**
538   * Returns {@code true} if each element in {@code iterable} after the first is
539   * greater than or equal to the element that preceded it, according to this
540   * ordering. Note that this is always true when the iterable has fewer than
541   * two elements.
542   */
543  public boolean isOrdered(Iterable<? extends T> iterable) {
544    Iterator<? extends T> it = iterable.iterator();
545    if (it.hasNext()) {
546      T prev = it.next();
547      while (it.hasNext()) {
548        T next = it.next();
549        if (compare(prev, next) > 0) {
550          return false;
551        }
552        prev = next;
553      }
554    }
555    return true;
556  }
557
558  /**
559   * Returns {@code true} if each element in {@code iterable} after the first is
560   * <i>strictly</i> greater than the element that preceded it, according to
561   * this ordering. Note that this is always true when the iterable has fewer
562   * than two elements.
563   */
564  public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
565    Iterator<? extends T> it = iterable.iterator();
566    if (it.hasNext()) {
567      T prev = it.next();
568      while (it.hasNext()) {
569        T next = it.next();
570        if (compare(prev, next) >= 0) {
571          return false;
572        }
573        prev = next;
574      }
575    }
576    return true;
577  }
578
579  /**
580   * Returns the greatest of the specified values according to this ordering. If
581   * there are multiple greatest values, the first of those is returned. The
582   * iterator will be left exhausted: its {@code hasNext()} method will return
583   * {@code false}.
584   *
585   * @param iterator the iterator whose maximum element is to be determined
586   * @throws NoSuchElementException if {@code iterator} is empty
587   * @throws ClassCastException if the parameters are not <i>mutually
588   *     comparable</i> under this ordering.
589   *
590   * @since 11.0
591   */
592  @Beta
593  public <E extends T> E max(Iterator<E> iterator) {
594    // let this throw NoSuchElementException as necessary
595    E maxSoFar = iterator.next();
596
597    while (iterator.hasNext()) {
598      maxSoFar = max(maxSoFar, iterator.next());
599    }
600
601    return maxSoFar;
602  }
603
604  /**
605   * Returns the greatest of the specified values according to this ordering. If
606   * there are multiple greatest values, the first of those is returned.
607   *
608   * @param iterable the iterable whose maximum element is to be determined
609   * @throws NoSuchElementException if {@code iterable} is empty
610   * @throws ClassCastException if the parameters are not <i>mutually
611   *     comparable</i> under this ordering.
612   */
613  public <E extends T> E max(Iterable<E> iterable) {
614    return max(iterable.iterator());
615  }
616
617  /**
618   * Returns the greatest of the specified values according to this ordering. If
619   * there are multiple greatest values, the first of those is returned.
620   *
621   * @param a value to compare, returned if greater than or equal to the rest.
622   * @param b value to compare
623   * @param c value to compare
624   * @param rest values to compare
625   * @throws ClassCastException if the parameters are not <i>mutually
626   *     comparable</i> under this ordering.
627   */
628  public <E extends T> E max(
629      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
630    E maxSoFar = max(max(a, b), c);
631
632    for (E r : rest) {
633      maxSoFar = max(maxSoFar, r);
634    }
635
636    return maxSoFar;
637  }
638
639  /**
640   * Returns the greater of the two values according to this ordering. If the
641   * values compare as 0, the first is returned.
642   *
643   * <p><b>Implementation note:</b> this method is invoked by the default
644   * implementations of the other {@code max} overloads, so overriding it will
645   * affect their behavior.
646   *
647   * @param a value to compare, returned if greater than or equal to b.
648   * @param b value to compare.
649   * @throws ClassCastException if the parameters are not <i>mutually
650   *     comparable</i> under this ordering.
651   */
652  public <E extends T> E max(@Nullable E a, @Nullable E b) {
653    return compare(a, b) >= 0 ? a : b;
654  }
655
656  /**
657   * Returns the least of the specified values according to this ordering. If
658   * there are multiple least values, the first of those is returned. The
659   * iterator will be left exhausted: its {@code hasNext()} method will return
660   * {@code false}.
661   *
662   * @param iterator the iterator whose minimum element is to be determined
663   * @throws NoSuchElementException if {@code iterator} is empty
664   * @throws ClassCastException if the parameters are not <i>mutually
665   *     comparable</i> under this ordering.
666   *
667   * @since 11.0
668   */
669  @Beta
670  public <E extends T> E min(Iterator<E> iterator) {
671    // let this throw NoSuchElementException as necessary
672    E minSoFar = iterator.next();
673
674    while (iterator.hasNext()) {
675      minSoFar = min(minSoFar, iterator.next());
676    }
677
678    return minSoFar;
679  }
680
681  /**
682   * Returns the least of the specified values according to this ordering. If
683   * there are multiple least values, the first of those is returned.
684   *
685   * @param iterable the iterable whose minimum element is to be determined
686   * @throws NoSuchElementException if {@code iterable} is empty
687   * @throws ClassCastException if the parameters are not <i>mutually
688   *     comparable</i> under this ordering.
689   */
690  public <E extends T> E min(Iterable<E> iterable) {
691    return min(iterable.iterator());
692  }
693
694  /**
695   * Returns the least of the specified values according to this ordering. If
696   * there are multiple least values, the first of those is returned.
697   *
698   * @param a value to compare, returned if less than or equal to the rest.
699   * @param b value to compare
700   * @param c value to compare
701   * @param rest values to compare
702   * @throws ClassCastException if the parameters are not <i>mutually
703   *     comparable</i> under this ordering.
704   */
705  public <E extends T> E min(
706      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
707    E minSoFar = min(min(a, b), c);
708
709    for (E r : rest) {
710      minSoFar = min(minSoFar, r);
711    }
712
713    return minSoFar;
714  }
715
716  /**
717   * Returns the lesser of the two values according to this ordering. If the
718   * values compare as 0, the first is returned.
719   *
720   * <p><b>Implementation note:</b> this method is invoked by the default
721   * implementations of the other {@code min} overloads, so overriding it will
722   * affect their behavior.
723   *
724   * @param a value to compare, returned if less than or equal to b.
725   * @param b value to compare.
726   * @throws ClassCastException if the parameters are not <i>mutually
727   *     comparable</i> under this ordering.
728   */
729  public <E extends T> E min(@Nullable E a, @Nullable E b) {
730    return compare(a, b) <= 0 ? a : b;
731  }
732
733  // Never make these public
734  static final int LEFT_IS_GREATER = 1;
735  static final int RIGHT_IS_GREATER = -1;
736}
737