1/*
2******************************************************************************
3*
4*   Copyright (C) 2000-2011, International Business Machines
5*   Corporation and others.  All Rights Reserved.
6*
7******************************************************************************
8*   file name:  ucnvmbcs.c
9*   encoding:   US-ASCII
10*   tab size:   8 (not used)
11*   indentation:4
12*
13*   created on: 2000jul03
14*   created by: Markus W. Scherer
15*
16*   The current code in this file replaces the previous implementation
17*   of conversion code from multi-byte codepages to Unicode and back.
18*   This implementation supports the following:
19*   - legacy variable-length codepages with up to 4 bytes per character
20*   - all Unicode code points (up to 0x10ffff)
21*   - efficient distinction of unassigned vs. illegal byte sequences
22*   - it is possible in fromUnicode() to directly deal with simple
23*     stateful encodings (used for EBCDIC_STATEFUL)
24*   - it is possible to convert Unicode code points
25*     to a single zero byte (but not as a fallback except for SBCS)
26*
27*   Remaining limitations in fromUnicode:
28*   - byte sequences must not have leading zero bytes
29*   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
30*   - limitation to up to 4 bytes per character
31*
32*   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
33*   limitations and adds m:n character mappings and other features.
34*   See ucnv_ext.h for details.
35*
36*   Change history:
37*
38*    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
39*                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
40*                             macros to ucnvmbcs.h file
41*/
42
43#include "unicode/utypes.h"
44
45#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
46
47#include "unicode/ucnv.h"
48#include "unicode/ucnv_cb.h"
49#include "unicode/udata.h"
50#include "unicode/uset.h"
51#include "ucnv_bld.h"
52#include "ucnvmbcs.h"
53#include "ucnv_ext.h"
54#include "ucnv_cnv.h"
55#include "umutex.h"
56#include "cmemory.h"
57#include "cstring.h"
58
59/* control optimizations according to the platform */
60#define MBCS_UNROLL_SINGLE_TO_BMP 1
61#define MBCS_UNROLL_SINGLE_FROM_BMP 0
62
63/*
64 * _MBCSHeader versions 5.3 & 4.3
65 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
66 *
67 * This version is optional. Version 5 is used for incompatible data format changes.
68 * makeconv will continue to generate version 4 files if possible.
69 *
70 * Changes from version 4:
71 *
72 * The main difference is an additional _MBCSHeader field with
73 * - the length (number of uint32_t) of the _MBCSHeader
74 * - flags for further incompatible data format changes
75 * - flags for further, backward compatible data format changes
76 *
77 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
78 * the file and needs to be reconstituted at load time.
79 * This requires a utf8Friendly format with an additional mbcsIndex table for fast
80 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
81 * (For details about these structures see below, and see ucnvmbcs.h.)
82 *
83 *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
84 *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
85 *   precision markers for all mappings.)
86 *
87 *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
88 *   omitted data that can be reconstituted from the toUnicode data.
89 *
90 *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
91 *   With only roundtrip mappings in the base fromUnicode data, this part is fully
92 *   redundant with the mbcsIndex and will be reconstituted from that (also using the
93 *   stage 1 table which contains the information about how stage 2 was compacted).
94 *
95 *   The rest of the stage 2 table, the part for code points above maxFastUChar,
96 *   is stored in the file and will be appended to the reconstituted part.
97 *
98 *   The entire fromUBytes array is omitted from the file and will be reconstitued.
99 *   This is done by enumerating all toUnicode roundtrip mappings, performing
100 *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
101 *   writing instead of reading the byte values.
102 *
103 * _MBCSHeader version 4.3
104 *
105 * Change from version 4.2:
106 * - Optional utf8Friendly data structures, with 64-entry stage 3 block
107 *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
108 *   files which can be used instead of stages 1 & 2.
109 *   Faster lookups for roundtrips from most commonly used characters,
110 *   and lookups from UTF-8 byte sequences with a natural bit distribution.
111 *   See ucnvmbcs.h for more details.
112 *
113 * Change from version 4.1:
114 * - Added an optional extension table structure at the end of the .cnv file.
115 *   It is present if the upper bits of the header flags field contains a non-zero
116 *   byte offset to it.
117 *   Files that contain only a conversion table and no base table
118 *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
119 *   These contain the base table name between the MBCS header and the extension
120 *   data.
121 *
122 * Change from version 4.0:
123 * - Replace header.reserved with header.fromUBytesLength so that all
124 *   fields in the data have length.
125 *
126 * Changes from version 3 (for performance improvements):
127 * - new bit distribution for state table entries
128 * - reordered action codes
129 * - new data structure for single-byte fromUnicode
130 *   + stage 2 only contains indexes
131 *   + stage 3 stores 16 bits per character with classification bits 15..8
132 * - no multiplier for stage 1 entries
133 * - stage 2 for non-single-byte codepages contains the index and the flags in
134 *   one 32-bit value
135 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
136 *
137 * For more details about old versions of the MBCS data structure, see
138 * the corresponding versions of this file.
139 *
140 * Converting stateless codepage data ---------------------------------------***
141 * (or codepage data with simple states) to Unicode.
142 *
143 * Data structure and algorithm for converting from complex legacy codepages
144 * to Unicode. (Designed before 2000-may-22.)
145 *
146 * The basic idea is that the structure of legacy codepages can be described
147 * with state tables.
148 * When reading a byte stream, each input byte causes a state transition.
149 * Some transitions result in the output of a code point, some result in
150 * "unassigned" or "illegal" output.
151 * This is used here for character conversion.
152 *
153 * The data structure begins with a state table consisting of a row
154 * per state, with 256 entries (columns) per row for each possible input
155 * byte value.
156 * Each entry is 32 bits wide, with two formats distinguished by
157 * the sign bit (bit 31):
158 *
159 * One format for transitional entries (bit 31 not set) for non-final bytes, and
160 * one format for final entries (bit 31 set).
161 * Both formats contain the number of the next state in the same bit
162 * positions.
163 * State 0 is the initial state.
164 *
165 * Most of the time, the offset values of subsequent states are added
166 * up to a scalar value. This value will eventually be the index of
167 * the Unicode code point in a table that follows the state table.
168 * The effect is that the code points for final state table rows
169 * are contiguous. The code points of final state rows follow each other
170 * in the order of the references to those final states by previous
171 * states, etc.
172 *
173 * For some terminal states, the offset is itself the output Unicode
174 * code point (16 bits for a BMP code point or 20 bits for a supplementary
175 * code point (stored as code point minus 0x10000 so that 20 bits are enough).
176 * For others, the code point in the Unicode table is stored with either
177 * one or two code units: one for BMP code points, two for a pair of
178 * surrogates.
179 * All code points for a final state entry take up the same number of code
180 * units, regardless of whether they all actually _use_ the same number
181 * of code units. This is necessary for simple array access.
182 *
183 * An additional feature comes in with what in ICU is called "fallback"
184 * mappings:
185 *
186 * In addition to round-trippable, precise, 1:1 mappings, there are often
187 * mappings defined between similar, though not the same, characters.
188 * Typically, such mappings occur only in fromUnicode mapping tables because
189 * Unicode has a superset repertoire of most other codepages. However, it
190 * is possible to provide such mappings in the toUnicode tables, too.
191 * In this case, the fallback mappings are partly integrated into the
192 * general state tables because the structure of the encoding includes their
193 * byte sequences.
194 * For final entries in an initial state, fallback mappings are stored in
195 * the entry itself like with roundtrip mappings.
196 * For other final entries, they are stored in the code units table if
197 * the entry is for a pair of code units.
198 * For single-unit results in the code units table, there is no space to
199 * alternatively hold a fallback mapping; in this case, the code unit
200 * is stored as U+fffe (unassigned), and the fallback mapping needs to
201 * be looked up by the scalar offset value in a separate table.
202 *
203 * "Unassigned" state entries really mean "structurally unassigned",
204 * i.e., such a byte sequence will never have a mapping result.
205 *
206 * The interpretation of the bits in each entry is as follows:
207 *
208 * Bit 31 not set, not a terminal entry ("transitional"):
209 * 30..24 next state
210 * 23..0  offset delta, to be added up
211 *
212 * Bit 31 set, terminal ("final") entry:
213 * 30..24 next state (regardless of action code)
214 * 23..20 action code:
215 *        action codes 0 and 1 result in precise-mapping Unicode code points
216 *        0  valid byte sequence
217 *           19..16 not used, 0
218 *           15..0  16-bit Unicode BMP code point
219 *                  never U+fffe or U+ffff
220 *        1  valid byte sequence
221 *           19..0  20-bit Unicode supplementary code point
222 *                  never U+fffe or U+ffff
223 *
224 *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
225 *        2  valid byte sequence (fallback)
226 *           19..16 not used, 0
227 *           15..0  16-bit Unicode BMP code point as fallback result
228 *        3  valid byte sequence (fallback)
229 *           19..0  20-bit Unicode supplementary code point as fallback result
230 *
231 *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
232 *        depending on the code units they result in
233 *        4  valid byte sequence
234 *           19..9  not used, 0
235 *            8..0  final offset delta
236 *                  pointing to one 16-bit code unit which may be
237 *                  fffe  unassigned -- look for a fallback for this offset
238 *                  ffff  illegal
239 *        5  valid byte sequence
240 *           19..9  not used, 0
241 *            8..0  final offset delta
242 *                  pointing to two 16-bit code units
243 *                  (typically UTF-16 surrogates)
244 *                  the result depends on the first code unit as follows:
245 *                  0000..d7ff  roundtrip BMP code point (1st alone)
246 *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
247 *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
248 *                  e000        roundtrip BMP code point (2nd alone)
249 *                  e001        fallback BMP code point (2nd alone)
250 *                  fffe        unassigned
251 *                  ffff        illegal
252 *           (the final offset deltas are at most 255 * 2,
253 *            times 2 because of storing code unit pairs)
254 *
255 *        6  unassigned byte sequence
256 *           19..16 not used, 0
257 *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
258 *                  this does not contain a final offset delta because the main
259 *                  purpose of this action code is to save scalar offset values;
260 *                  therefore, fallback values cannot be assigned to byte
261 *                  sequences that result in this action code
262 *        7  illegal byte sequence
263 *           19..16 not used, 0
264 *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
265 *        8  state change only
266 *           19..0  not used, 0
267 *           useful for state changes in simple stateful encodings,
268 *           at Shift-In/Shift-Out codes
269 *
270 *
271 *        9..15 reserved for future use
272 *           current implementations will only perform a state change
273 *           and ignore bits 19..0
274 *
275 * An encoding with contiguous ranges of unassigned byte sequences, like
276 * Shift-JIS and especially EUC-TW, can be stored efficiently by having
277 * at least two states for the trail bytes:
278 * One trail byte state that results in code points, and one that only
279 * has "unassigned" and "illegal" terminal states.
280 *
281 * Note: partly by accident, this data structure supports simple stateful
282 * encodings without any additional logic.
283 * Currently, only simple Shift-In/Shift-Out schemes are handled with
284 * appropriate state tables (especially EBCDIC_STATEFUL!).
285 *
286 * MBCS version 2 added:
287 * unassigned and illegal action codes have U+fffe and U+ffff
288 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
289 *
290 * Converting from Unicode to codepage bytes --------------------------------***
291 *
292 * The conversion data structure for fromUnicode is designed for the known
293 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
294 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
295 * a roundtrip mapping.
296 *
297 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
298 * like in the character properties table.
299 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
300 * with the resulting bytes is at offsetFromUBytes.
301 *
302 * Beginning with version 4, single-byte codepages have a significantly different
303 * trie compared to other codepages.
304 * In all cases, the entry in stage 1 is directly the index of the block of
305 * 64 entries in stage 2.
306 *
307 * Single-byte lookup:
308 *
309 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
310 * Stage 3 contains one 16-bit word per result:
311 * Bits 15..8 indicate the kind of result:
312 *    f  roundtrip result
313 *    c  fallback result from private-use code point
314 *    8  fallback result from other code points
315 *    0  unassigned
316 * Bits 7..0 contain the codepage byte. A zero byte is always possible.
317 *
318 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
319 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
320 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
321 * ASCII code points can be looked up with a linear array access into stage 3.
322 * See maxFastUChar and other details in ucnvmbcs.h.
323 *
324 * Multi-byte lookup:
325 *
326 * Stage 2 contains a 32-bit word for each 16-block in stage 3:
327 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
328 *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
329 *             If this test is false, then a non-zero result will be interpreted as
330 *             a fallback mapping.
331 * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
332 *
333 * Stage 3 contains 2, 3, or 4 bytes per result.
334 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
335 * while 3 bytes are stored as bytes in big-endian order.
336 * Leading zero bytes are ignored, and the number of bytes is counted.
337 * A zero byte mapping result is possible as a roundtrip result.
338 * For some output types, the actual result is processed from this;
339 * see ucnv_MBCSFromUnicodeWithOffsets().
340 *
341 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
342 * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
343 *
344 * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
345 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
346 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
347 * ASCII code points can be looked up with a linear array access into stage 3.
348 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
349 *
350 * In version 3, stage 2 blocks may overlap by multiples of the multiplier
351 * for compaction.
352 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
353 * may overlap by any number of entries.
354 *
355 * MBCS version 2 added:
356 * the converter checks for known output types, which allows
357 * adding new ones without crashing an unaware converter
358 */
359
360static const UConverterImpl _SBCSUTF8Impl;
361static const UConverterImpl _DBCSUTF8Impl;
362
363/* GB 18030 data ------------------------------------------------------------ */
364
365/* helper macros for linear values for GB 18030 four-byte sequences */
366#define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
367
368#define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
369
370#define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
371
372/*
373 * Some ranges of GB 18030 where both the Unicode code points and the
374 * GB four-byte sequences are contiguous and are handled algorithmically by
375 * the special callback functions below.
376 * The values are start & end of Unicode & GB codes.
377 *
378 * Note that single surrogates are not mapped by GB 18030
379 * as of the re-released mapping tables from 2000-nov-30.
380 */
381static const uint32_t
382gb18030Ranges[14][4]={
383    {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
384    {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
385    {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
386    {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
387    {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
388    {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
389    {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
390    {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
391    {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
392    {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
393    {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
394    {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
395    {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
396    {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
397};
398
399/* bit flag for UConverter.options indicating GB 18030 special handling */
400#define _MBCS_OPTION_GB18030 0x8000
401
402/* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
403#define _MBCS_OPTION_KEIS 0x01000
404#define _MBCS_OPTION_JEF  0x02000
405#define _MBCS_OPTION_JIPS 0x04000
406
407#define KEIS_SO_CHAR_1 0x0A
408#define KEIS_SO_CHAR_2 0x42
409#define KEIS_SI_CHAR_1 0x0A
410#define KEIS_SI_CHAR_2 0x41
411
412#define JEF_SO_CHAR 0x28
413#define JEF_SI_CHAR 0x29
414
415#define JIPS_SO_CHAR_1 0x1A
416#define JIPS_SO_CHAR_2 0x70
417#define JIPS_SI_CHAR_1 0x1A
418#define JIPS_SI_CHAR_2 0x71
419
420enum SISO_Option {
421    SI,
422    SO
423};
424typedef enum SISO_Option SISO_Option;
425
426static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
427    int32_t SISOLength = 0;
428
429    switch (option) {
430        case SI:
431            if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
432                value[0] = KEIS_SI_CHAR_1;
433                value[1] = KEIS_SI_CHAR_2;
434                SISOLength = 2;
435            } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
436                value[0] = JEF_SI_CHAR;
437                SISOLength = 1;
438            } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
439                value[0] = JIPS_SI_CHAR_1;
440                value[1] = JIPS_SI_CHAR_2;
441                SISOLength = 2;
442            } else {
443                value[0] = UCNV_SI;
444                SISOLength = 1;
445            }
446            break;
447        case SO:
448            if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
449                value[0] = KEIS_SO_CHAR_1;
450                value[1] = KEIS_SO_CHAR_2;
451                SISOLength = 2;
452            } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
453                value[0] = JEF_SO_CHAR;
454                SISOLength = 1;
455            } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
456                value[0] = JIPS_SO_CHAR_1;
457                value[1] = JIPS_SO_CHAR_2;
458                SISOLength = 2;
459            } else {
460                value[0] = UCNV_SO;
461                SISOLength = 1;
462            }
463            break;
464        default:
465            /* Should never happen. */
466            break;
467    }
468
469    return SISOLength;
470}
471
472/* Miscellaneous ------------------------------------------------------------ */
473
474/**
475 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
476 * consecutive sequences of bytes, starting from the one encoded in value,
477 * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
478 * Does not currently support m:n mappings or reverse fallbacks.
479 * This function will not be called for sequences of bytes with leading zeros.
480 *
481 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
482 * @param value contains 1..4 bytes of the first byte sequence, right-aligned
483 * @param codePoints resulting Unicode code points, or negative if a byte sequence does
484 *        not map to anything
485 * @return TRUE to continue enumeration, FALSE to stop
486 */
487typedef UBool U_CALLCONV
488UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
489
490/* similar to ucnv_MBCSGetNextUChar() but recursive */
491static UBool
492enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
493        int32_t state, uint32_t offset,
494        uint32_t value,
495        UConverterEnumToUCallback *callback, const void *context,
496        UErrorCode *pErrorCode) {
497    UChar32 codePoints[32];
498    const int32_t *row;
499    const uint16_t *unicodeCodeUnits;
500    UChar32 anyCodePoints;
501    int32_t b, limit;
502
503    row=mbcsTable->stateTable[state];
504    unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
505
506    value<<=8;
507    anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
508
509    b=(stateProps[state]&0x38)<<2;
510    if(b==0 && stateProps[state]>=0x40) {
511        /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
512        codePoints[0]=U_SENTINEL;
513        b=1;
514    }
515    limit=((stateProps[state]&7)+1)<<5;
516    while(b<limit) {
517        int32_t entry=row[b];
518        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
519            int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
520            if(stateProps[nextState]>=0) {
521                /* recurse to a state with non-ignorable actions */
522                if(!enumToU(
523                        mbcsTable, stateProps, nextState,
524                        offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
525                        value|(uint32_t)b,
526                        callback, context,
527                        pErrorCode)) {
528                    return FALSE;
529                }
530            }
531            codePoints[b&0x1f]=U_SENTINEL;
532        } else {
533            UChar32 c;
534            int32_t action;
535
536            /*
537             * An if-else-if chain provides more reliable performance for
538             * the most common cases compared to a switch.
539             */
540            action=MBCS_ENTRY_FINAL_ACTION(entry);
541            if(action==MBCS_STATE_VALID_DIRECT_16) {
542                /* output BMP code point */
543                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
544            } else if(action==MBCS_STATE_VALID_16) {
545                int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
546                c=unicodeCodeUnits[finalOffset];
547                if(c<0xfffe) {
548                    /* output BMP code point */
549                } else {
550                    c=U_SENTINEL;
551                }
552            } else if(action==MBCS_STATE_VALID_16_PAIR) {
553                int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
554                c=unicodeCodeUnits[finalOffset++];
555                if(c<0xd800) {
556                    /* output BMP code point below 0xd800 */
557                } else if(c<=0xdbff) {
558                    /* output roundtrip or fallback supplementary code point */
559                    c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
560                } else if(c==0xe000) {
561                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
562                    c=unicodeCodeUnits[finalOffset];
563                } else {
564                    c=U_SENTINEL;
565                }
566            } else if(action==MBCS_STATE_VALID_DIRECT_20) {
567                /* output supplementary code point */
568                c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
569            } else {
570                c=U_SENTINEL;
571            }
572
573            codePoints[b&0x1f]=c;
574            anyCodePoints&=c;
575        }
576        if(((++b)&0x1f)==0) {
577            if(anyCodePoints>=0) {
578                if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
579                    return FALSE;
580                }
581                anyCodePoints=-1;
582            }
583        }
584    }
585    return TRUE;
586}
587
588/*
589 * Only called if stateProps[state]==-1.
590 * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
591 * MBCS_STATE_CHANGE_ONLY.
592 */
593static int8_t
594getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
595    const int32_t *row;
596    int32_t min, max, entry, nextState;
597
598    row=stateTable[state];
599    stateProps[state]=0;
600
601    /* find first non-ignorable state */
602    for(min=0;; ++min) {
603        entry=row[min];
604        nextState=MBCS_ENTRY_STATE(entry);
605        if(stateProps[nextState]==-1) {
606            getStateProp(stateTable, stateProps, nextState);
607        }
608        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
609            if(stateProps[nextState]>=0) {
610                break;
611            }
612        } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
613            break;
614        }
615        if(min==0xff) {
616            stateProps[state]=-0x40;  /* (int8_t)0xc0 */
617            return stateProps[state];
618        }
619    }
620    stateProps[state]|=(int8_t)((min>>5)<<3);
621
622    /* find last non-ignorable state */
623    for(max=0xff; min<max; --max) {
624        entry=row[max];
625        nextState=MBCS_ENTRY_STATE(entry);
626        if(stateProps[nextState]==-1) {
627            getStateProp(stateTable, stateProps, nextState);
628        }
629        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
630            if(stateProps[nextState]>=0) {
631                break;
632            }
633        } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
634            break;
635        }
636    }
637    stateProps[state]|=(int8_t)(max>>5);
638
639    /* recurse further and collect direct-state information */
640    while(min<=max) {
641        entry=row[min];
642        nextState=MBCS_ENTRY_STATE(entry);
643        if(stateProps[nextState]==-1) {
644            getStateProp(stateTable, stateProps, nextState);
645        }
646        if(MBCS_ENTRY_IS_FINAL(entry)) {
647            stateProps[nextState]|=0x40;
648            if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
649                stateProps[state]|=0x40;
650            }
651        }
652        ++min;
653    }
654    return stateProps[state];
655}
656
657/*
658 * Internal function enumerating the toUnicode data of an MBCS converter.
659 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
660 * table, but could also be used for a future ucnv_getUnicodeSet() option
661 * that includes reverse fallbacks (after updating this function's implementation).
662 * Currently only handles roundtrip mappings.
663 * Does not currently handle extensions.
664 */
665static void
666ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
667                       UConverterEnumToUCallback *callback, const void *context,
668                       UErrorCode *pErrorCode) {
669    /*
670     * Properties for each state, to speed up the enumeration.
671     * Ignorable actions are unassigned/illegal/state-change-only:
672     * They do not lead to mappings.
673     *
674     * Bits 7..6:
675     * 1 direct/initial state (stateful converters have multiple)
676     * 0 non-initial state with transitions or with non-ignorable result actions
677     * -1 final state with only ignorable actions
678     *
679     * Bits 5..3:
680     * The lowest byte value with non-ignorable actions is
681     * value<<5 (rounded down).
682     *
683     * Bits 2..0:
684     * The highest byte value with non-ignorable actions is
685     * (value<<5)&0x1f (rounded up).
686     */
687    int8_t stateProps[MBCS_MAX_STATE_COUNT];
688    int32_t state;
689
690    uprv_memset(stateProps, -1, sizeof(stateProps));
691
692    /* recurse from state 0 and set all stateProps */
693    getStateProp(mbcsTable->stateTable, stateProps, 0);
694
695    for(state=0; state<mbcsTable->countStates; ++state) {
696        /*if(stateProps[state]==-1) {
697            printf("unused/unreachable <icu:state> %d\n", state);
698        }*/
699        if(stateProps[state]>=0x40) {
700            /* start from each direct state */
701            enumToU(
702                mbcsTable, stateProps, state, 0, 0,
703                callback, context,
704                pErrorCode);
705        }
706    }
707}
708
709U_CFUNC void
710ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
711                                         const USetAdder *sa,
712                                         UConverterUnicodeSet which,
713                                         UConverterSetFilter filter,
714                                         UErrorCode *pErrorCode) {
715    const UConverterMBCSTable *mbcsTable;
716    const uint16_t *table;
717
718    uint32_t st3;
719    uint16_t st1, maxStage1, st2;
720
721    UChar32 c;
722
723    /* enumerate the from-Unicode trie table */
724    mbcsTable=&sharedData->mbcs;
725    table=mbcsTable->fromUnicodeTable;
726    if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
727        maxStage1=0x440;
728    } else {
729        maxStage1=0x40;
730    }
731
732    c=0; /* keep track of the current code point while enumerating */
733
734    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
735        const uint16_t *stage2, *stage3, *results;
736        uint16_t minValue;
737
738        results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
739
740        /*
741         * Set a threshold variable for selecting which mappings to use.
742         * See ucnv_MBCSSingleFromBMPWithOffsets() and
743         * MBCS_SINGLE_RESULT_FROM_U() for details.
744         */
745        if(which==UCNV_ROUNDTRIP_SET) {
746            /* use only roundtrips */
747            minValue=0xf00;
748        } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
749            /* use all roundtrip and fallback results */
750            minValue=0x800;
751        }
752
753        for(st1=0; st1<maxStage1; ++st1) {
754            st2=table[st1];
755            if(st2>maxStage1) {
756                stage2=table+st2;
757                for(st2=0; st2<64; ++st2) {
758                    if((st3=stage2[st2])!=0) {
759                        /* read the stage 3 block */
760                        stage3=results+st3;
761
762                        do {
763                            if(*stage3++>=minValue) {
764                                sa->add(sa->set, c);
765                            }
766                        } while((++c&0xf)!=0);
767                    } else {
768                        c+=16; /* empty stage 3 block */
769                    }
770                }
771            } else {
772                c+=1024; /* empty stage 2 block */
773            }
774        }
775    } else {
776        const uint32_t *stage2;
777        const uint8_t *stage3, *bytes;
778        uint32_t st3Multiplier;
779        uint32_t value;
780        UBool useFallback;
781
782        bytes=mbcsTable->fromUnicodeBytes;
783
784        useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
785
786        switch(mbcsTable->outputType) {
787        case MBCS_OUTPUT_3:
788        case MBCS_OUTPUT_4_EUC:
789            st3Multiplier=3;
790            break;
791        case MBCS_OUTPUT_4:
792            st3Multiplier=4;
793            break;
794        default:
795            st3Multiplier=2;
796            break;
797        }
798
799        for(st1=0; st1<maxStage1; ++st1) {
800            st2=table[st1];
801            if(st2>(maxStage1>>1)) {
802                stage2=(const uint32_t *)table+st2;
803                for(st2=0; st2<64; ++st2) {
804                    if((st3=stage2[st2])!=0) {
805                        /* read the stage 3 block */
806                        stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
807
808                        /* get the roundtrip flags for the stage 3 block */
809                        st3>>=16;
810
811                        /*
812                         * Add code points for which the roundtrip flag is set,
813                         * or which map to non-zero bytes if we use fallbacks.
814                         * See ucnv_MBCSFromUnicodeWithOffsets() for details.
815                         */
816                        switch(filter) {
817                        case UCNV_SET_FILTER_NONE:
818                            do {
819                                if(st3&1) {
820                                    sa->add(sa->set, c);
821                                    stage3+=st3Multiplier;
822                                } else if(useFallback) {
823                                    uint8_t b=0;
824                                    switch(st3Multiplier) {
825                                    case 4:
826                                        b|=*stage3++;
827                                    case 3:
828                                        b|=*stage3++;
829                                    case 2:
830                                        b|=stage3[0]|stage3[1];
831                                        stage3+=2;
832                                    default:
833                                        break;
834                                    }
835                                    if(b!=0) {
836                                        sa->add(sa->set, c);
837                                    }
838                                }
839                                st3>>=1;
840                            } while((++c&0xf)!=0);
841                            break;
842                        case UCNV_SET_FILTER_DBCS_ONLY:
843                             /* Ignore single-byte results (<0x100). */
844                            do {
845                                if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
846                                    sa->add(sa->set, c);
847                                }
848                                st3>>=1;
849                                stage3+=2;  /* +=st3Multiplier */
850                            } while((++c&0xf)!=0);
851                            break;
852                        case UCNV_SET_FILTER_2022_CN:
853                             /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
854                            do {
855                                if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
856                                    sa->add(sa->set, c);
857                                }
858                                st3>>=1;
859                                stage3+=3;  /* +=st3Multiplier */
860                            } while((++c&0xf)!=0);
861                            break;
862                        case UCNV_SET_FILTER_SJIS:
863                             /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
864                            do {
865                                if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
866                                    sa->add(sa->set, c);
867                                }
868                                st3>>=1;
869                                stage3+=2;  /* +=st3Multiplier */
870                            } while((++c&0xf)!=0);
871                            break;
872                        case UCNV_SET_FILTER_GR94DBCS:
873                            /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
874                            do {
875                                if( ((st3&1)!=0 || useFallback) &&
876                                    (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
877                                    (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
878                                ) {
879                                    sa->add(sa->set, c);
880                                }
881                                st3>>=1;
882                                stage3+=2;  /* +=st3Multiplier */
883                            } while((++c&0xf)!=0);
884                            break;
885                        case UCNV_SET_FILTER_HZ:
886                            /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
887                            do {
888                                if( ((st3&1)!=0 || useFallback) &&
889                                    (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
890                                    (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
891                                ) {
892                                    sa->add(sa->set, c);
893                                }
894                                st3>>=1;
895                                stage3+=2;  /* +=st3Multiplier */
896                            } while((++c&0xf)!=0);
897                            break;
898                        default:
899                            *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
900                            return;
901                        }
902                    } else {
903                        c+=16; /* empty stage 3 block */
904                    }
905                }
906            } else {
907                c+=1024; /* empty stage 2 block */
908            }
909        }
910    }
911
912    ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
913}
914
915U_CFUNC void
916ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
917                                 const USetAdder *sa,
918                                 UConverterUnicodeSet which,
919                                 UErrorCode *pErrorCode) {
920    ucnv_MBCSGetFilteredUnicodeSetForUnicode(
921        sharedData, sa, which,
922        sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
923            UCNV_SET_FILTER_DBCS_ONLY :
924            UCNV_SET_FILTER_NONE,
925        pErrorCode);
926}
927
928static void
929ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
930                   const USetAdder *sa,
931                   UConverterUnicodeSet which,
932                   UErrorCode *pErrorCode) {
933    if(cnv->options&_MBCS_OPTION_GB18030) {
934        sa->addRange(sa->set, 0, 0xd7ff);
935        sa->addRange(sa->set, 0xe000, 0x10ffff);
936    } else {
937        ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
938    }
939}
940
941/* conversion extensions for input not in the main table -------------------- */
942
943/*
944 * Hardcoded extension handling for GB 18030.
945 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
946 *
947 * In the future, conversion extensions may handle m:n mappings and delta tables,
948 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
949 *
950 * If an input character cannot be mapped, then these functions set an error
951 * code. The framework will then call the callback function.
952 */
953
954/*
955 * @return if(U_FAILURE) return the code point for cnv->fromUChar32
956 *         else return 0 after output has been written to the target
957 */
958static UChar32
959_extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
960          UChar32 cp,
961          const UChar **source, const UChar *sourceLimit,
962          uint8_t **target, const uint8_t *targetLimit,
963          int32_t **offsets, int32_t sourceIndex,
964          UBool flush,
965          UErrorCode *pErrorCode) {
966    const int32_t *cx;
967
968    cnv->useSubChar1=FALSE;
969
970    if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
971        ucnv_extInitialMatchFromU(
972            cnv, cx,
973            cp, source, sourceLimit,
974            (char **)target, (char *)targetLimit,
975            offsets, sourceIndex,
976            flush,
977            pErrorCode)
978    ) {
979        return 0; /* an extension mapping handled the input */
980    }
981
982    /* GB 18030 */
983    if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
984        const uint32_t *range;
985        int32_t i;
986
987        range=gb18030Ranges[0];
988        for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
989            if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
990                /* found the Unicode code point, output the four-byte sequence for it */
991                uint32_t linear;
992                char bytes[4];
993
994                /* get the linear value of the first GB 18030 code in this range */
995                linear=range[2]-LINEAR_18030_BASE;
996
997                /* add the offset from the beginning of the range */
998                linear+=((uint32_t)cp-range[0]);
999
1000                /* turn this into a four-byte sequence */
1001                bytes[3]=(char)(0x30+linear%10); linear/=10;
1002                bytes[2]=(char)(0x81+linear%126); linear/=126;
1003                bytes[1]=(char)(0x30+linear%10); linear/=10;
1004                bytes[0]=(char)(0x81+linear);
1005
1006                /* output this sequence */
1007                ucnv_fromUWriteBytes(cnv,
1008                                     bytes, 4, (char **)target, (char *)targetLimit,
1009                                     offsets, sourceIndex, pErrorCode);
1010                return 0;
1011            }
1012        }
1013    }
1014
1015    /* no mapping */
1016    *pErrorCode=U_INVALID_CHAR_FOUND;
1017    return cp;
1018}
1019
1020/*
1021 * Input sequence: cnv->toUBytes[0..length[
1022 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1023 *         else return 0 after output has been written to the target
1024 */
1025static int8_t
1026_extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1027        int8_t length,
1028        const uint8_t **source, const uint8_t *sourceLimit,
1029        UChar **target, const UChar *targetLimit,
1030        int32_t **offsets, int32_t sourceIndex,
1031        UBool flush,
1032        UErrorCode *pErrorCode) {
1033    const int32_t *cx;
1034
1035    if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1036        ucnv_extInitialMatchToU(
1037            cnv, cx,
1038            length, (const char **)source, (const char *)sourceLimit,
1039            target, targetLimit,
1040            offsets, sourceIndex,
1041            flush,
1042            pErrorCode)
1043    ) {
1044        return 0; /* an extension mapping handled the input */
1045    }
1046
1047    /* GB 18030 */
1048    if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1049        const uint32_t *range;
1050        uint32_t linear;
1051        int32_t i;
1052
1053        linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1054        range=gb18030Ranges[0];
1055        for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) {
1056            if(range[2]<=linear && linear<=range[3]) {
1057                /* found the sequence, output the Unicode code point for it */
1058                *pErrorCode=U_ZERO_ERROR;
1059
1060                /* add the linear difference between the input and start sequences to the start code point */
1061                linear=range[0]+(linear-range[2]);
1062
1063                /* output this code point */
1064                ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1065
1066                return 0;
1067            }
1068        }
1069    }
1070
1071    /* no mapping */
1072    *pErrorCode=U_INVALID_CHAR_FOUND;
1073    return length;
1074}
1075
1076/* EBCDIC swap LF<->NL ------------------------------------------------------ */
1077
1078/*
1079 * This code modifies a standard EBCDIC<->Unicode mapping table for
1080 * OS/390 (z/OS) Unix System Services (Open Edition).
1081 * The difference is in the mapping of Line Feed and New Line control codes:
1082 * Standard EBCDIC maps
1083 *
1084 *   <U000A> \x25 |0
1085 *   <U0085> \x15 |0
1086 *
1087 * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1088 * mapping
1089 *
1090 *   <U000A> \x15 |0
1091 *   <U0085> \x25 |0
1092 *
1093 * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1094 * by copying it into allocated memory and swapping the LF and NL values.
1095 * It allows to support the same EBCDIC charset in both versions without
1096 * duplicating the entire installed table.
1097 */
1098
1099/* standard EBCDIC codes */
1100#define EBCDIC_LF 0x25
1101#define EBCDIC_NL 0x15
1102
1103/* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1104#define EBCDIC_RT_LF 0xf25
1105#define EBCDIC_RT_NL 0xf15
1106
1107/* Unicode code points */
1108#define U_LF 0x0a
1109#define U_NL 0x85
1110
1111static UBool
1112_EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1113    UConverterMBCSTable *mbcsTable;
1114
1115    const uint16_t *table, *results;
1116    const uint8_t *bytes;
1117
1118    int32_t (*newStateTable)[256];
1119    uint16_t *newResults;
1120    uint8_t *p;
1121    char *name;
1122
1123    uint32_t stage2Entry;
1124    uint32_t size, sizeofFromUBytes;
1125
1126    mbcsTable=&sharedData->mbcs;
1127
1128    table=mbcsTable->fromUnicodeTable;
1129    bytes=mbcsTable->fromUnicodeBytes;
1130    results=(const uint16_t *)bytes;
1131
1132    /*
1133     * Check that this is an EBCDIC table with SBCS portion -
1134     * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1135     *
1136     * If not, ignore the option. Options are always ignored if they do not apply.
1137     */
1138    if(!(
1139         (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1140         mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1141         mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1142    )) {
1143        return FALSE;
1144    }
1145
1146    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1147        if(!(
1148             EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1149             EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1150        )) {
1151            return FALSE;
1152        }
1153    } else /* MBCS_OUTPUT_2_SISO */ {
1154        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1155        if(!(
1156             MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1157             EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1158        )) {
1159            return FALSE;
1160        }
1161
1162        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1163        if(!(
1164             MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1165             EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1166        )) {
1167            return FALSE;
1168        }
1169    }
1170
1171    if(mbcsTable->fromUBytesLength>0) {
1172        /*
1173         * We _know_ the number of bytes in the fromUnicodeBytes array
1174         * starting with header.version 4.1.
1175         */
1176        sizeofFromUBytes=mbcsTable->fromUBytesLength;
1177    } else {
1178        /*
1179         * Otherwise:
1180         * There used to be code to enumerate the fromUnicode
1181         * trie and find the highest entry, but it was removed in ICU 3.2
1182         * because it was not tested and caused a low code coverage number.
1183         * See Jitterbug 3674.
1184         * This affects only some .cnv file formats with a header.version
1185         * below 4.1, and only when swaplfnl is requested.
1186         *
1187         * ucnvmbcs.c revision 1.99 is the last one with the
1188         * ucnv_MBCSSizeofFromUBytes() function.
1189         */
1190        *pErrorCode=U_INVALID_FORMAT_ERROR;
1191        return FALSE;
1192    }
1193
1194    /*
1195     * The table has an appropriate format.
1196     * Allocate and build
1197     * - a modified to-Unicode state table
1198     * - a modified from-Unicode output array
1199     * - a converter name string with the swap option appended
1200     */
1201    size=
1202        mbcsTable->countStates*1024+
1203        sizeofFromUBytes+
1204        UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1205    p=(uint8_t *)uprv_malloc(size);
1206    if(p==NULL) {
1207        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1208        return FALSE;
1209    }
1210
1211    /* copy and modify the to-Unicode state table */
1212    newStateTable=(int32_t (*)[256])p;
1213    uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1214
1215    newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1216    newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1217
1218    /* copy and modify the from-Unicode result table */
1219    newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1220    uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1221
1222    /* conveniently, the table access macros work on the left side of expressions */
1223    if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1224        MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1225        MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1226    } else /* MBCS_OUTPUT_2_SISO */ {
1227        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1228        MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1229
1230        stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1231        MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1232    }
1233
1234    /* set the canonical converter name */
1235    name=(char *)newResults+sizeofFromUBytes;
1236    uprv_strcpy(name, sharedData->staticData->name);
1237    uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1238
1239    /* set the pointers */
1240    umtx_lock(NULL);
1241    if(mbcsTable->swapLFNLStateTable==NULL) {
1242        mbcsTable->swapLFNLStateTable=newStateTable;
1243        mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1244        mbcsTable->swapLFNLName=name;
1245
1246        newStateTable=NULL;
1247    }
1248    umtx_unlock(NULL);
1249
1250    /* release the allocated memory if another thread beat us to it */
1251    if(newStateTable!=NULL) {
1252        uprv_free(newStateTable);
1253    }
1254    return TRUE;
1255}
1256
1257/* reconstitute omitted fromUnicode data ------------------------------------ */
1258
1259/* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1260static UBool U_CALLCONV
1261writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1262    UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1263    const uint16_t *table;
1264    uint32_t *stage2;
1265    uint8_t *bytes, *p;
1266    UChar32 c;
1267    int32_t i, st3;
1268
1269    table=mbcsTable->fromUnicodeTable;
1270    bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1271
1272    /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1273    switch(mbcsTable->outputType) {
1274    case MBCS_OUTPUT_3_EUC:
1275        if(value<=0xffff) {
1276            /* short sequences are stored directly */
1277            /* code set 0 or 1 */
1278        } else if(value<=0x8effff) {
1279            /* code set 2 */
1280            value&=0x7fff;
1281        } else /* first byte is 0x8f */ {
1282            /* code set 3 */
1283            value&=0xff7f;
1284        }
1285        break;
1286    case MBCS_OUTPUT_4_EUC:
1287        if(value<=0xffffff) {
1288            /* short sequences are stored directly */
1289            /* code set 0 or 1 */
1290        } else if(value<=0x8effffff) {
1291            /* code set 2 */
1292            value&=0x7fffff;
1293        } else /* first byte is 0x8f */ {
1294            /* code set 3 */
1295            value&=0xff7fff;
1296        }
1297        break;
1298    default:
1299        break;
1300    }
1301
1302    for(i=0; i<=0x1f; ++value, ++i) {
1303        c=codePoints[i];
1304        if(c<0) {
1305            continue;
1306        }
1307
1308        /* locate the stage 2 & 3 data */
1309        stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1310        p=bytes;
1311        st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1312
1313        /* write the codepage bytes into stage 3 */
1314        switch(mbcsTable->outputType) {
1315        case MBCS_OUTPUT_3:
1316        case MBCS_OUTPUT_4_EUC:
1317            p+=st3*3;
1318            p[0]=(uint8_t)(value>>16);
1319            p[1]=(uint8_t)(value>>8);
1320            p[2]=(uint8_t)value;
1321            break;
1322        case MBCS_OUTPUT_4:
1323            ((uint32_t *)p)[st3]=value;
1324            break;
1325        default:
1326            /* 2 bytes per character */
1327            ((uint16_t *)p)[st3]=(uint16_t)value;
1328            break;
1329        }
1330
1331        /* set the roundtrip flag */
1332        *stage2|=(1UL<<(16+(c&0xf)));
1333    }
1334    return TRUE;
1335 }
1336
1337static void
1338reconstituteData(UConverterMBCSTable *mbcsTable,
1339                 uint32_t stage1Length, uint32_t stage2Length,
1340                 uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1341                 UErrorCode *pErrorCode) {
1342    uint16_t *stage1;
1343    uint32_t *stage2;
1344    uint8_t *bytes;
1345    uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1346    mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1347    if(mbcsTable->reconstitutedData==NULL) {
1348        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1349        return;
1350    }
1351    uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1352
1353    /* copy existing data and reroute the pointers */
1354    stage1=(uint16_t *)mbcsTable->reconstitutedData;
1355    uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1356
1357    stage2=(uint32_t *)(stage1+stage1Length);
1358    uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1359                mbcsTable->fromUnicodeTable+stage1Length,
1360                stage2Length*4);
1361
1362    mbcsTable->fromUnicodeTable=stage1;
1363    mbcsTable->fromUnicodeBytes=bytes=(uint8_t *)(stage2+fullStage2Length);
1364
1365    /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1366    stage2=(uint32_t *)stage1;
1367
1368    /* reconstitute the initial part of stage 2 from the mbcsIndex */
1369    {
1370        int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1371        int32_t stageUTF8Index=0;
1372        int32_t st1, st2, st3, i;
1373
1374        for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1375            st2=stage1[st1];
1376            if(st2!=stage1Length/2) {
1377                /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1378                for(i=0; i<16; ++i) {
1379                    st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1380                    if(st3!=0) {
1381                        /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1382                        st3>>=4;
1383                        /*
1384                         * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1385                         * allocated together as a single 64-block for access from the mbcsIndex
1386                         */
1387                        stage2[st2++]=st3++;
1388                        stage2[st2++]=st3++;
1389                        stage2[st2++]=st3++;
1390                        stage2[st2++]=st3;
1391                    } else {
1392                        /* no stage 3 block, skip */
1393                        st2+=4;
1394                    }
1395                }
1396            } else {
1397                /* no stage 2 block, skip */
1398                stageUTF8Index+=16;
1399            }
1400        }
1401    }
1402
1403    /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1404    ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1405}
1406
1407/* MBCS setup functions ----------------------------------------------------- */
1408
1409static void
1410ucnv_MBCSLoad(UConverterSharedData *sharedData,
1411          UConverterLoadArgs *pArgs,
1412          const uint8_t *raw,
1413          UErrorCode *pErrorCode) {
1414    UDataInfo info;
1415    UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1416    _MBCSHeader *header=(_MBCSHeader *)raw;
1417    uint32_t offset;
1418    uint32_t headerLength;
1419    UBool noFromU=FALSE;
1420
1421    if(header->version[0]==4) {
1422        headerLength=MBCS_HEADER_V4_LENGTH;
1423    } else if(header->version[0]==5 && header->version[1]>=3 &&
1424              (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1425        headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1426        noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1427    } else {
1428        *pErrorCode=U_INVALID_TABLE_FORMAT;
1429        return;
1430    }
1431
1432    mbcsTable->outputType=(uint8_t)header->flags;
1433    if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1434        *pErrorCode=U_INVALID_TABLE_FORMAT;
1435        return;
1436    }
1437
1438    /* extension data, header version 4.2 and higher */
1439    offset=header->flags>>8;
1440    if(offset!=0) {
1441        mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1442    }
1443
1444    if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1445        UConverterLoadArgs args={ 0 };
1446        UConverterSharedData *baseSharedData;
1447        const int32_t *extIndexes;
1448        const char *baseName;
1449
1450        /* extension-only file, load the base table and set values appropriately */
1451        if((extIndexes=mbcsTable->extIndexes)==NULL) {
1452            /* extension-only file without extension */
1453            *pErrorCode=U_INVALID_TABLE_FORMAT;
1454            return;
1455        }
1456
1457        if(pArgs->nestedLoads!=1) {
1458            /* an extension table must not be loaded as a base table */
1459            *pErrorCode=U_INVALID_TABLE_FILE;
1460            return;
1461        }
1462
1463        /* load the base table */
1464        baseName=(const char *)header+headerLength*4;
1465        if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1466            /* forbid loading this same extension-only file */
1467            *pErrorCode=U_INVALID_TABLE_FORMAT;
1468            return;
1469        }
1470
1471        /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1472        args.size=sizeof(UConverterLoadArgs);
1473        args.nestedLoads=2;
1474        args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1475        args.reserved=pArgs->reserved;
1476        args.options=pArgs->options;
1477        args.pkg=pArgs->pkg;
1478        args.name=baseName;
1479        baseSharedData=ucnv_load(&args, pErrorCode);
1480        if(U_FAILURE(*pErrorCode)) {
1481            return;
1482        }
1483        if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1484            baseSharedData->mbcs.baseSharedData!=NULL
1485        ) {
1486            ucnv_unload(baseSharedData);
1487            *pErrorCode=U_INVALID_TABLE_FORMAT;
1488            return;
1489        }
1490        if(pArgs->onlyTestIsLoadable) {
1491            /*
1492             * Exit as soon as we know that we can load the converter
1493             * and the format is valid and supported.
1494             * The worst that can happen in the following code is a memory
1495             * allocation error.
1496             */
1497            ucnv_unload(baseSharedData);
1498            return;
1499        }
1500
1501        /* copy the base table data */
1502        uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1503
1504        /* overwrite values with relevant ones for the extension converter */
1505        mbcsTable->baseSharedData=baseSharedData;
1506        mbcsTable->extIndexes=extIndexes;
1507
1508        /*
1509         * It would be possible to share the swapLFNL data with a base converter,
1510         * but the generated name would have to be different, and the memory
1511         * would have to be free'd only once.
1512         * It is easier to just create the data for the extension converter
1513         * separately when it is requested.
1514         */
1515        mbcsTable->swapLFNLStateTable=NULL;
1516        mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1517        mbcsTable->swapLFNLName=NULL;
1518
1519        /*
1520         * The reconstitutedData must be deleted only when the base converter
1521         * is unloaded.
1522         */
1523        mbcsTable->reconstitutedData=NULL;
1524
1525        /*
1526         * Set a special, runtime-only outputType if the extension converter
1527         * is a DBCS version of a base converter that also maps single bytes.
1528         */
1529        if( sharedData->staticData->conversionType==UCNV_DBCS ||
1530                (sharedData->staticData->conversionType==UCNV_MBCS &&
1531                 sharedData->staticData->minBytesPerChar>=2)
1532        ) {
1533            if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1534                /* the base converter is SI/SO-stateful */
1535                int32_t entry;
1536
1537                /* get the dbcs state from the state table entry for SO=0x0e */
1538                entry=mbcsTable->stateTable[0][0xe];
1539                if( MBCS_ENTRY_IS_FINAL(entry) &&
1540                    MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1541                    MBCS_ENTRY_FINAL_STATE(entry)!=0
1542                ) {
1543                    mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1544
1545                    mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1546                }
1547            } else if(
1548                baseSharedData->staticData->conversionType==UCNV_MBCS &&
1549                baseSharedData->staticData->minBytesPerChar==1 &&
1550                baseSharedData->staticData->maxBytesPerChar==2 &&
1551                mbcsTable->countStates<=127
1552            ) {
1553                /* non-stateful base converter, need to modify the state table */
1554                int32_t (*newStateTable)[256];
1555                int32_t *state;
1556                int32_t i, count;
1557
1558                /* allocate a new state table and copy the base state table contents */
1559                count=mbcsTable->countStates;
1560                newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1561                if(newStateTable==NULL) {
1562                    ucnv_unload(baseSharedData);
1563                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1564                    return;
1565                }
1566
1567                uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1568
1569                /* change all final single-byte entries to go to a new all-illegal state */
1570                state=newStateTable[0];
1571                for(i=0; i<256; ++i) {
1572                    if(MBCS_ENTRY_IS_FINAL(state[i])) {
1573                        state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1574                    }
1575                }
1576
1577                /* build the new all-illegal state */
1578                state=newStateTable[count];
1579                for(i=0; i<256; ++i) {
1580                    state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1581                }
1582                mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1583                mbcsTable->countStates=(uint8_t)(count+1);
1584                mbcsTable->stateTableOwned=TRUE;
1585
1586                mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1587            }
1588        }
1589
1590        /*
1591         * unlike below for files with base tables, do not get the unicodeMask
1592         * from the sharedData; instead, use the base table's unicodeMask,
1593         * which we copied in the memcpy above;
1594         * this is necessary because the static data unicodeMask, especially
1595         * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1596         */
1597    } else {
1598        /* conversion file with a base table; an additional extension table is optional */
1599        /* make sure that the output type is known */
1600        switch(mbcsTable->outputType) {
1601        case MBCS_OUTPUT_1:
1602        case MBCS_OUTPUT_2:
1603        case MBCS_OUTPUT_3:
1604        case MBCS_OUTPUT_4:
1605        case MBCS_OUTPUT_3_EUC:
1606        case MBCS_OUTPUT_4_EUC:
1607        case MBCS_OUTPUT_2_SISO:
1608            /* OK */
1609            break;
1610        default:
1611            *pErrorCode=U_INVALID_TABLE_FORMAT;
1612            return;
1613        }
1614        if(pArgs->onlyTestIsLoadable) {
1615            /*
1616             * Exit as soon as we know that we can load the converter
1617             * and the format is valid and supported.
1618             * The worst that can happen in the following code is a memory
1619             * allocation error.
1620             */
1621            return;
1622        }
1623
1624        mbcsTable->countStates=(uint8_t)header->countStates;
1625        mbcsTable->countToUFallbacks=header->countToUFallbacks;
1626        mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1627        mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1628        mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1629
1630        mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1631        mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1632        mbcsTable->fromUBytesLength=header->fromUBytesLength;
1633
1634        /*
1635         * converter versions 6.1 and up contain a unicodeMask that is
1636         * used here to select the most efficient function implementations
1637         */
1638        info.size=sizeof(UDataInfo);
1639        udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1640        if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1641            /* mask off possible future extensions to be safe */
1642            mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1643        } else {
1644            /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1645            mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1646        }
1647
1648        /*
1649         * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1650         * Check for the header version, SBCS vs. MBCS, and for whether the
1651         * data structures are optimized for code points as high as what the
1652         * runtime code is designed for.
1653         * The implementation does not handle mapping tables with entries for
1654         * unpaired surrogates.
1655         */
1656        if( header->version[1]>=3 &&
1657            (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1658            (mbcsTable->countStates==1 ?
1659                (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1660                (header->version[2]>=(MBCS_FAST_MAX>>8))
1661            )
1662        ) {
1663            mbcsTable->utf8Friendly=TRUE;
1664
1665            if(mbcsTable->countStates==1) {
1666                /*
1667                 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1668                 * Build a table with indexes to each block, to be used instead of
1669                 * the regular stage 1/2 table.
1670                 */
1671                int32_t i;
1672                for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1673                    mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1674                }
1675                /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1676                mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1677            } else {
1678                /*
1679                 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1680                 * The .cnv file is prebuilt with an additional stage table with indexes
1681                 * to each block.
1682                 */
1683                mbcsTable->mbcsIndex=(const uint16_t *)
1684                    (mbcsTable->fromUnicodeBytes+
1685                     (noFromU ? 0 : mbcsTable->fromUBytesLength));
1686                mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1687            }
1688        }
1689
1690        /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1691        {
1692            uint32_t asciiRoundtrips=0xffffffff;
1693            int32_t i;
1694
1695            for(i=0; i<0x80; ++i) {
1696                if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1697                    asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1698                }
1699            }
1700            mbcsTable->asciiRoundtrips=asciiRoundtrips;
1701        }
1702
1703        if(noFromU) {
1704            uint32_t stage1Length=
1705                mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1706                    0x440 : 0x40;
1707            uint32_t stage2Length=
1708                (header->offsetFromUBytes-header->offsetFromUTable)/4-
1709                stage1Length/2;
1710            reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1711        }
1712    }
1713
1714    /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1715    if(mbcsTable->utf8Friendly) {
1716        if(mbcsTable->countStates==1) {
1717            sharedData->impl=&_SBCSUTF8Impl;
1718        } else {
1719            if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1720                sharedData->impl=&_DBCSUTF8Impl;
1721            }
1722        }
1723    }
1724
1725    if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1726        /*
1727         * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1728         * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1729         */
1730        mbcsTable->asciiRoundtrips=0;
1731    }
1732}
1733
1734static void
1735ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1736    UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1737
1738    if(mbcsTable->swapLFNLStateTable!=NULL) {
1739        uprv_free(mbcsTable->swapLFNLStateTable);
1740    }
1741    if(mbcsTable->stateTableOwned) {
1742        uprv_free((void *)mbcsTable->stateTable);
1743    }
1744    if(mbcsTable->baseSharedData!=NULL) {
1745        ucnv_unload(mbcsTable->baseSharedData);
1746    }
1747    if(mbcsTable->reconstitutedData!=NULL) {
1748        uprv_free(mbcsTable->reconstitutedData);
1749    }
1750}
1751
1752static void
1753ucnv_MBCSOpen(UConverter *cnv,
1754              UConverterLoadArgs *pArgs,
1755              UErrorCode *pErrorCode) {
1756    UConverterMBCSTable *mbcsTable;
1757    const int32_t *extIndexes;
1758    uint8_t outputType;
1759    int8_t maxBytesPerUChar;
1760
1761    if(pArgs->onlyTestIsLoadable) {
1762        return;
1763    }
1764
1765    mbcsTable=&cnv->sharedData->mbcs;
1766    outputType=mbcsTable->outputType;
1767
1768    if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1769        /* the swaplfnl option does not apply, remove it */
1770        cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1771    }
1772
1773    if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1774        /* do this because double-checked locking is broken */
1775        UBool isCached;
1776
1777        umtx_lock(NULL);
1778        isCached=mbcsTable->swapLFNLStateTable!=NULL;
1779        umtx_unlock(NULL);
1780
1781        if(!isCached) {
1782            if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1783                if(U_FAILURE(*pErrorCode)) {
1784                    return; /* something went wrong */
1785                }
1786
1787                /* the option does not apply, remove it */
1788                cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1789            }
1790        }
1791    }
1792
1793    if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1794        if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1795            /* set a flag for GB 18030 mode, which changes the callback behavior */
1796            cnv->options|=_MBCS_OPTION_GB18030;
1797        }
1798    } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1799        /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1800        cnv->options|=_MBCS_OPTION_KEIS;
1801    } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1802        /* set a flag for JEF converter, which changes the SI/SO character sequence */
1803        cnv->options|=_MBCS_OPTION_JEF;
1804    } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1805        /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1806        cnv->options|=_MBCS_OPTION_JIPS;
1807    }
1808
1809    /* fix maxBytesPerUChar depending on outputType and options etc. */
1810    if(outputType==MBCS_OUTPUT_2_SISO) {
1811        cnv->maxBytesPerUChar=3; /* SO+DBCS */
1812    }
1813
1814    extIndexes=mbcsTable->extIndexes;
1815    if(extIndexes!=NULL) {
1816        maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1817        if(outputType==MBCS_OUTPUT_2_SISO) {
1818            ++maxBytesPerUChar; /* SO + multiple DBCS */
1819        }
1820
1821        if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1822            cnv->maxBytesPerUChar=maxBytesPerUChar;
1823        }
1824    }
1825
1826#if 0
1827    /*
1828     * documentation of UConverter fields used for status
1829     * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1830     */
1831
1832    /* toUnicode */
1833    cnv->toUnicodeStatus=0;     /* offset */
1834    cnv->mode=0;                /* state */
1835    cnv->toULength=0;           /* byteIndex */
1836
1837    /* fromUnicode */
1838    cnv->fromUChar32=0;
1839    cnv->fromUnicodeStatus=1;   /* prevLength */
1840#endif
1841}
1842
1843static const char *
1844ucnv_MBCSGetName(const UConverter *cnv) {
1845    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1846        return cnv->sharedData->mbcs.swapLFNLName;
1847    } else {
1848        return cnv->sharedData->staticData->name;
1849    }
1850}
1851
1852/* MBCS-to-Unicode conversion functions ------------------------------------- */
1853
1854static UChar32
1855ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
1856    const _MBCSToUFallback *toUFallbacks;
1857    uint32_t i, start, limit;
1858
1859    limit=mbcsTable->countToUFallbacks;
1860    if(limit>0) {
1861        /* do a binary search for the fallback mapping */
1862        toUFallbacks=mbcsTable->toUFallbacks;
1863        start=0;
1864        while(start<limit-1) {
1865            i=(start+limit)/2;
1866            if(offset<toUFallbacks[i].offset) {
1867                limit=i;
1868            } else {
1869                start=i;
1870            }
1871        }
1872
1873        /* did we really find it? */
1874        if(offset==toUFallbacks[start].offset) {
1875            return toUFallbacks[start].codePoint;
1876        }
1877    }
1878
1879    return 0xfffe;
1880}
1881
1882/* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
1883static void
1884ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
1885                                UErrorCode *pErrorCode) {
1886    UConverter *cnv;
1887    const uint8_t *source, *sourceLimit;
1888    UChar *target;
1889    const UChar *targetLimit;
1890    int32_t *offsets;
1891
1892    const int32_t (*stateTable)[256];
1893
1894    int32_t sourceIndex;
1895
1896    int32_t entry;
1897    UChar c;
1898    uint8_t action;
1899
1900    /* set up the local pointers */
1901    cnv=pArgs->converter;
1902    source=(const uint8_t *)pArgs->source;
1903    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
1904    target=pArgs->target;
1905    targetLimit=pArgs->targetLimit;
1906    offsets=pArgs->offsets;
1907
1908    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1909        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
1910    } else {
1911        stateTable=cnv->sharedData->mbcs.stateTable;
1912    }
1913
1914    /* sourceIndex=-1 if the current character began in the previous buffer */
1915    sourceIndex=0;
1916
1917    /* conversion loop */
1918    while(source<sourceLimit) {
1919        /*
1920         * This following test is to see if available input would overflow the output.
1921         * It does not catch output of more than one code unit that
1922         * overflows as a result of a surrogate pair or callback output
1923         * from the last source byte.
1924         * Therefore, those situations also test for overflows and will
1925         * then break the loop, too.
1926         */
1927        if(target>=targetLimit) {
1928            /* target is full */
1929            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1930            break;
1931        }
1932
1933        entry=stateTable[0][*source++];
1934        /* MBCS_ENTRY_IS_FINAL(entry) */
1935
1936        /* test the most common case first */
1937        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
1938            /* output BMP code point */
1939            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1940            if(offsets!=NULL) {
1941                *offsets++=sourceIndex;
1942            }
1943
1944            /* normal end of action codes: prepare for a new character */
1945            ++sourceIndex;
1946            continue;
1947        }
1948
1949        /*
1950         * An if-else-if chain provides more reliable performance for
1951         * the most common cases compared to a switch.
1952         */
1953        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
1954        if(action==MBCS_STATE_VALID_DIRECT_20 ||
1955           (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
1956        ) {
1957            entry=MBCS_ENTRY_FINAL_VALUE(entry);
1958            /* output surrogate pair */
1959            *target++=(UChar)(0xd800|(UChar)(entry>>10));
1960            if(offsets!=NULL) {
1961                *offsets++=sourceIndex;
1962            }
1963            c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
1964            if(target<targetLimit) {
1965                *target++=c;
1966                if(offsets!=NULL) {
1967                    *offsets++=sourceIndex;
1968                }
1969            } else {
1970                /* target overflow */
1971                cnv->UCharErrorBuffer[0]=c;
1972                cnv->UCharErrorBufferLength=1;
1973                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
1974                break;
1975            }
1976
1977            ++sourceIndex;
1978            continue;
1979        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
1980            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
1981                /* output BMP code point */
1982                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
1983                if(offsets!=NULL) {
1984                    *offsets++=sourceIndex;
1985                }
1986
1987                ++sourceIndex;
1988                continue;
1989            }
1990        } else if(action==MBCS_STATE_UNASSIGNED) {
1991            /* just fall through */
1992        } else if(action==MBCS_STATE_ILLEGAL) {
1993            /* callback(illegal) */
1994            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
1995        } else {
1996            /* reserved, must never occur */
1997            ++sourceIndex;
1998            continue;
1999        }
2000
2001        if(U_FAILURE(*pErrorCode)) {
2002            /* callback(illegal) */
2003            break;
2004        } else /* unassigned sequences indicated with byteIndex>0 */ {
2005            /* try an extension mapping */
2006            pArgs->source=(const char *)source;
2007            cnv->toUBytes[0]=*(source-1);
2008            cnv->toULength=_extToU(cnv, cnv->sharedData,
2009                                    1, &source, sourceLimit,
2010                                    &target, targetLimit,
2011                                    &offsets, sourceIndex,
2012                                    pArgs->flush,
2013                                    pErrorCode);
2014            sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2015
2016            if(U_FAILURE(*pErrorCode)) {
2017                /* not mappable or buffer overflow */
2018                break;
2019            }
2020        }
2021    }
2022
2023    /* write back the updated pointers */
2024    pArgs->source=(const char *)source;
2025    pArgs->target=target;
2026    pArgs->offsets=offsets;
2027}
2028
2029/*
2030 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2031 * that only map to and from the BMP.
2032 * In addition to single-byte optimizations, the offset calculations
2033 * become much easier.
2034 */
2035static void
2036ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2037                            UErrorCode *pErrorCode) {
2038    UConverter *cnv;
2039    const uint8_t *source, *sourceLimit, *lastSource;
2040    UChar *target;
2041    int32_t targetCapacity, length;
2042    int32_t *offsets;
2043
2044    const int32_t (*stateTable)[256];
2045
2046    int32_t sourceIndex;
2047
2048    int32_t entry;
2049    uint8_t action;
2050
2051    /* set up the local pointers */
2052    cnv=pArgs->converter;
2053    source=(const uint8_t *)pArgs->source;
2054    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2055    target=pArgs->target;
2056    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2057    offsets=pArgs->offsets;
2058
2059    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2060        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2061    } else {
2062        stateTable=cnv->sharedData->mbcs.stateTable;
2063    }
2064
2065    /* sourceIndex=-1 if the current character began in the previous buffer */
2066    sourceIndex=0;
2067    lastSource=source;
2068
2069    /*
2070     * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2071     * for the minimum of the sourceLength and targetCapacity
2072     */
2073    length=(int32_t)(sourceLimit-source);
2074    if(length<targetCapacity) {
2075        targetCapacity=length;
2076    }
2077
2078#if MBCS_UNROLL_SINGLE_TO_BMP
2079    /* unrolling makes it faster on Pentium III/Windows 2000 */
2080    /* unroll the loop with the most common case */
2081unrolled:
2082    if(targetCapacity>=16) {
2083        int32_t count, loops, oredEntries;
2084
2085        loops=count=targetCapacity>>4;
2086        do {
2087            oredEntries=entry=stateTable[0][*source++];
2088            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2089            oredEntries|=entry=stateTable[0][*source++];
2090            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2091            oredEntries|=entry=stateTable[0][*source++];
2092            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2093            oredEntries|=entry=stateTable[0][*source++];
2094            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2095            oredEntries|=entry=stateTable[0][*source++];
2096            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2097            oredEntries|=entry=stateTable[0][*source++];
2098            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2099            oredEntries|=entry=stateTable[0][*source++];
2100            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2101            oredEntries|=entry=stateTable[0][*source++];
2102            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2103            oredEntries|=entry=stateTable[0][*source++];
2104            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2105            oredEntries|=entry=stateTable[0][*source++];
2106            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2107            oredEntries|=entry=stateTable[0][*source++];
2108            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2109            oredEntries|=entry=stateTable[0][*source++];
2110            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2111            oredEntries|=entry=stateTable[0][*source++];
2112            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2113            oredEntries|=entry=stateTable[0][*source++];
2114            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2115            oredEntries|=entry=stateTable[0][*source++];
2116            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2117            oredEntries|=entry=stateTable[0][*source++];
2118            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2119
2120            /* were all 16 entries really valid? */
2121            if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2122                /* no, return to the first of these 16 */
2123                source-=16;
2124                target-=16;
2125                break;
2126            }
2127        } while(--count>0);
2128        count=loops-count;
2129        targetCapacity-=16*count;
2130
2131        if(offsets!=NULL) {
2132            lastSource+=16*count;
2133            while(count>0) {
2134                *offsets++=sourceIndex++;
2135                *offsets++=sourceIndex++;
2136                *offsets++=sourceIndex++;
2137                *offsets++=sourceIndex++;
2138                *offsets++=sourceIndex++;
2139                *offsets++=sourceIndex++;
2140                *offsets++=sourceIndex++;
2141                *offsets++=sourceIndex++;
2142                *offsets++=sourceIndex++;
2143                *offsets++=sourceIndex++;
2144                *offsets++=sourceIndex++;
2145                *offsets++=sourceIndex++;
2146                *offsets++=sourceIndex++;
2147                *offsets++=sourceIndex++;
2148                *offsets++=sourceIndex++;
2149                *offsets++=sourceIndex++;
2150                --count;
2151            }
2152        }
2153    }
2154#endif
2155
2156    /* conversion loop */
2157    while(targetCapacity > 0 && source < sourceLimit) {
2158        entry=stateTable[0][*source++];
2159        /* MBCS_ENTRY_IS_FINAL(entry) */
2160
2161        /* test the most common case first */
2162        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2163            /* output BMP code point */
2164            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2165            --targetCapacity;
2166            continue;
2167        }
2168
2169        /*
2170         * An if-else-if chain provides more reliable performance for
2171         * the most common cases compared to a switch.
2172         */
2173        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2174        if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2175            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2176                /* output BMP code point */
2177                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2178                --targetCapacity;
2179                continue;
2180            }
2181        } else if(action==MBCS_STATE_UNASSIGNED) {
2182            /* just fall through */
2183        } else if(action==MBCS_STATE_ILLEGAL) {
2184            /* callback(illegal) */
2185            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2186        } else {
2187            /* reserved, must never occur */
2188            continue;
2189        }
2190
2191        /* set offsets since the start or the last extension */
2192        if(offsets!=NULL) {
2193            int32_t count=(int32_t)(source-lastSource);
2194
2195            /* predecrement: do not set the offset for the callback-causing character */
2196            while(--count>0) {
2197                *offsets++=sourceIndex++;
2198            }
2199            /* offset and sourceIndex are now set for the current character */
2200        }
2201
2202        if(U_FAILURE(*pErrorCode)) {
2203            /* callback(illegal) */
2204            break;
2205        } else /* unassigned sequences indicated with byteIndex>0 */ {
2206            /* try an extension mapping */
2207            lastSource=source;
2208            cnv->toUBytes[0]=*(source-1);
2209            cnv->toULength=_extToU(cnv, cnv->sharedData,
2210                                    1, &source, sourceLimit,
2211                                    &target, pArgs->targetLimit,
2212                                    &offsets, sourceIndex,
2213                                    pArgs->flush,
2214                                    pErrorCode);
2215            sourceIndex+=1+(int32_t)(source-lastSource);
2216
2217            if(U_FAILURE(*pErrorCode)) {
2218                /* not mappable or buffer overflow */
2219                break;
2220            }
2221
2222            /* recalculate the targetCapacity after an extension mapping */
2223            targetCapacity=(int32_t)(pArgs->targetLimit-target);
2224            length=(int32_t)(sourceLimit-source);
2225            if(length<targetCapacity) {
2226                targetCapacity=length;
2227            }
2228        }
2229
2230#if MBCS_UNROLL_SINGLE_TO_BMP
2231        /* unrolling makes it faster on Pentium III/Windows 2000 */
2232        goto unrolled;
2233#endif
2234    }
2235
2236    if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2237        /* target is full */
2238        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2239    }
2240
2241    /* set offsets since the start or the last callback */
2242    if(offsets!=NULL) {
2243        size_t count=source-lastSource;
2244        while(count>0) {
2245            *offsets++=sourceIndex++;
2246            --count;
2247        }
2248    }
2249
2250    /* write back the updated pointers */
2251    pArgs->source=(const char *)source;
2252    pArgs->target=target;
2253    pArgs->offsets=offsets;
2254}
2255
2256static UBool
2257hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2258    const int32_t *row=stateTable[state];
2259    int32_t b, entry;
2260    /* First test for final entries in this state for some commonly valid byte values. */
2261    entry=row[0xa1];
2262    if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2263        MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2264    ) {
2265        return TRUE;
2266    }
2267    entry=row[0x41];
2268    if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2269        MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2270    ) {
2271        return TRUE;
2272    }
2273    /* Then test for final entries in this state. */
2274    for(b=0; b<=0xff; ++b) {
2275        entry=row[b];
2276        if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2277            MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2278        ) {
2279            return TRUE;
2280        }
2281    }
2282    /* Then recurse for transition entries. */
2283    for(b=0; b<=0xff; ++b) {
2284        entry=row[b];
2285        if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2286            hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2287        ) {
2288            return TRUE;
2289        }
2290    }
2291    return FALSE;
2292}
2293
2294/*
2295 * Is byte b a single/lead byte in this state?
2296 * Recurse for transition states, because here we don't want to say that
2297 * b is a lead byte if all byte sequences that start with b are illegal.
2298 */
2299static UBool
2300isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2301    const int32_t *row=stateTable[state];
2302    int32_t entry=row[b];
2303    if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2304        return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2305    } else {
2306        uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2307        if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2308            return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2309        } else {
2310            return action!=MBCS_STATE_ILLEGAL;
2311        }
2312    }
2313}
2314
2315U_CFUNC void
2316ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2317                          UErrorCode *pErrorCode) {
2318    UConverter *cnv;
2319    const uint8_t *source, *sourceLimit;
2320    UChar *target;
2321    const UChar *targetLimit;
2322    int32_t *offsets;
2323
2324    const int32_t (*stateTable)[256];
2325    const uint16_t *unicodeCodeUnits;
2326
2327    uint32_t offset;
2328    uint8_t state;
2329    int8_t byteIndex;
2330    uint8_t *bytes;
2331
2332    int32_t sourceIndex, nextSourceIndex;
2333
2334    int32_t entry;
2335    UChar c;
2336    uint8_t action;
2337
2338    /* use optimized function if possible */
2339    cnv=pArgs->converter;
2340
2341    if(cnv->preToULength>0) {
2342        /*
2343         * pass sourceIndex=-1 because we continue from an earlier buffer
2344         * in the future, this may change with continuous offsets
2345         */
2346        ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2347
2348        if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2349            return;
2350        }
2351    }
2352
2353    if(cnv->sharedData->mbcs.countStates==1) {
2354        if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2355            ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2356        } else {
2357            ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2358        }
2359        return;
2360    }
2361
2362    /* set up the local pointers */
2363    source=(const uint8_t *)pArgs->source;
2364    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2365    target=pArgs->target;
2366    targetLimit=pArgs->targetLimit;
2367    offsets=pArgs->offsets;
2368
2369    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2370        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2371    } else {
2372        stateTable=cnv->sharedData->mbcs.stateTable;
2373    }
2374    unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2375
2376    /* get the converter state from UConverter */
2377    offset=cnv->toUnicodeStatus;
2378    byteIndex=cnv->toULength;
2379    bytes=cnv->toUBytes;
2380
2381    /*
2382     * if we are in the SBCS state for a DBCS-only converter,
2383     * then load the DBCS state from the MBCS data
2384     * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2385     */
2386    if((state=(uint8_t)(cnv->mode))==0) {
2387        state=cnv->sharedData->mbcs.dbcsOnlyState;
2388    }
2389
2390    /* sourceIndex=-1 if the current character began in the previous buffer */
2391    sourceIndex=byteIndex==0 ? 0 : -1;
2392    nextSourceIndex=0;
2393
2394    /* conversion loop */
2395    while(source<sourceLimit) {
2396        /*
2397         * This following test is to see if available input would overflow the output.
2398         * It does not catch output of more than one code unit that
2399         * overflows as a result of a surrogate pair or callback output
2400         * from the last source byte.
2401         * Therefore, those situations also test for overflows and will
2402         * then break the loop, too.
2403         */
2404        if(target>=targetLimit) {
2405            /* target is full */
2406            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2407            break;
2408        }
2409
2410        if(byteIndex==0) {
2411            /* optimized loop for 1/2-byte input and BMP output */
2412            if(offsets==NULL) {
2413                do {
2414                    entry=stateTable[state][*source];
2415                    if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2416                        state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2417                        offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2418
2419                        ++source;
2420                        if( source<sourceLimit &&
2421                            MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2422                            MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2423                            (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2424                        ) {
2425                            ++source;
2426                            *target++=c;
2427                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2428                            offset=0;
2429                        } else {
2430                            /* set the state and leave the optimized loop */
2431                            bytes[0]=*(source-1);
2432                            byteIndex=1;
2433                            break;
2434                        }
2435                    } else {
2436                        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2437                            /* output BMP code point */
2438                            ++source;
2439                            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2440                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2441                        } else {
2442                            /* leave the optimized loop */
2443                            break;
2444                        }
2445                    }
2446                } while(source<sourceLimit && target<targetLimit);
2447            } else /* offsets!=NULL */ {
2448                do {
2449                    entry=stateTable[state][*source];
2450                    if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2451                        state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2452                        offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2453
2454                        ++source;
2455                        if( source<sourceLimit &&
2456                            MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2457                            MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2458                            (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2459                        ) {
2460                            ++source;
2461                            *target++=c;
2462                            if(offsets!=NULL) {
2463                                *offsets++=sourceIndex;
2464                                sourceIndex=(nextSourceIndex+=2);
2465                            }
2466                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2467                            offset=0;
2468                        } else {
2469                            /* set the state and leave the optimized loop */
2470                            ++nextSourceIndex;
2471                            bytes[0]=*(source-1);
2472                            byteIndex=1;
2473                            break;
2474                        }
2475                    } else {
2476                        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2477                            /* output BMP code point */
2478                            ++source;
2479                            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2480                            if(offsets!=NULL) {
2481                                *offsets++=sourceIndex;
2482                                sourceIndex=++nextSourceIndex;
2483                            }
2484                            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2485                        } else {
2486                            /* leave the optimized loop */
2487                            break;
2488                        }
2489                    }
2490                } while(source<sourceLimit && target<targetLimit);
2491            }
2492
2493            /*
2494             * these tests and break statements could be put inside the loop
2495             * if C had "break outerLoop" like Java
2496             */
2497            if(source>=sourceLimit) {
2498                break;
2499            }
2500            if(target>=targetLimit) {
2501                /* target is full */
2502                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2503                break;
2504            }
2505
2506            ++nextSourceIndex;
2507            bytes[byteIndex++]=*source++;
2508        } else /* byteIndex>0 */ {
2509            ++nextSourceIndex;
2510            entry=stateTable[state][bytes[byteIndex++]=*source++];
2511        }
2512
2513        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2514            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2515            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2516            continue;
2517        }
2518
2519        /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2520        cnv->mode=state;
2521
2522        /* set the next state early so that we can reuse the entry variable */
2523        state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2524
2525        /*
2526         * An if-else-if chain provides more reliable performance for
2527         * the most common cases compared to a switch.
2528         */
2529        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2530        if(action==MBCS_STATE_VALID_16) {
2531            offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2532            c=unicodeCodeUnits[offset];
2533            if(c<0xfffe) {
2534                /* output BMP code point */
2535                *target++=c;
2536                if(offsets!=NULL) {
2537                    *offsets++=sourceIndex;
2538                }
2539                byteIndex=0;
2540            } else if(c==0xfffe) {
2541                if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2542                    /* output fallback BMP code point */
2543                    *target++=(UChar)entry;
2544                    if(offsets!=NULL) {
2545                        *offsets++=sourceIndex;
2546                    }
2547                    byteIndex=0;
2548                }
2549            } else {
2550                /* callback(illegal) */
2551                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2552            }
2553        } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2554            /* output BMP code point */
2555            *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2556            if(offsets!=NULL) {
2557                *offsets++=sourceIndex;
2558            }
2559            byteIndex=0;
2560        } else if(action==MBCS_STATE_VALID_16_PAIR) {
2561            offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2562            c=unicodeCodeUnits[offset++];
2563            if(c<0xd800) {
2564                /* output BMP code point below 0xd800 */
2565                *target++=c;
2566                if(offsets!=NULL) {
2567                    *offsets++=sourceIndex;
2568                }
2569                byteIndex=0;
2570            } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2571                /* output roundtrip or fallback surrogate pair */
2572                *target++=(UChar)(c&0xdbff);
2573                if(offsets!=NULL) {
2574                    *offsets++=sourceIndex;
2575                }
2576                byteIndex=0;
2577                if(target<targetLimit) {
2578                    *target++=unicodeCodeUnits[offset];
2579                    if(offsets!=NULL) {
2580                        *offsets++=sourceIndex;
2581                    }
2582                } else {
2583                    /* target overflow */
2584                    cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2585                    cnv->UCharErrorBufferLength=1;
2586                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2587
2588                    offset=0;
2589                    break;
2590                }
2591            } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2592                /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2593                *target++=unicodeCodeUnits[offset];
2594                if(offsets!=NULL) {
2595                    *offsets++=sourceIndex;
2596                }
2597                byteIndex=0;
2598            } else if(c==0xffff) {
2599                /* callback(illegal) */
2600                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2601            }
2602        } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2603                  (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2604        ) {
2605            entry=MBCS_ENTRY_FINAL_VALUE(entry);
2606            /* output surrogate pair */
2607            *target++=(UChar)(0xd800|(UChar)(entry>>10));
2608            if(offsets!=NULL) {
2609                *offsets++=sourceIndex;
2610            }
2611            byteIndex=0;
2612            c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2613            if(target<targetLimit) {
2614                *target++=c;
2615                if(offsets!=NULL) {
2616                    *offsets++=sourceIndex;
2617                }
2618            } else {
2619                /* target overflow */
2620                cnv->UCharErrorBuffer[0]=c;
2621                cnv->UCharErrorBufferLength=1;
2622                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2623
2624                offset=0;
2625                break;
2626            }
2627        } else if(action==MBCS_STATE_CHANGE_ONLY) {
2628            /*
2629             * This serves as a state change without any output.
2630             * It is useful for reading simple stateful encodings,
2631             * for example using just Shift-In/Shift-Out codes.
2632             * The 21 unused bits may later be used for more sophisticated
2633             * state transitions.
2634             */
2635            if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2636                byteIndex=0;
2637            } else {
2638                /* SI/SO are illegal for DBCS-only conversion */
2639                state=(uint8_t)(cnv->mode); /* restore the previous state */
2640
2641                /* callback(illegal) */
2642                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2643            }
2644        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2645            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2646                /* output BMP code point */
2647                *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2648                if(offsets!=NULL) {
2649                    *offsets++=sourceIndex;
2650                }
2651                byteIndex=0;
2652            }
2653        } else if(action==MBCS_STATE_UNASSIGNED) {
2654            /* just fall through */
2655        } else if(action==MBCS_STATE_ILLEGAL) {
2656            /* callback(illegal) */
2657            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2658        } else {
2659            /* reserved, must never occur */
2660            byteIndex=0;
2661        }
2662
2663        /* end of action codes: prepare for a new character */
2664        offset=0;
2665
2666        if(byteIndex==0) {
2667            sourceIndex=nextSourceIndex;
2668        } else if(U_FAILURE(*pErrorCode)) {
2669            /* callback(illegal) */
2670            if(byteIndex>1) {
2671                /*
2672                 * Ticket 5691: consistent illegal sequences:
2673                 * - We include at least the first byte in the illegal sequence.
2674                 * - If any of the non-initial bytes could be the start of a character,
2675                 *   we stop the illegal sequence before the first one of those.
2676                 */
2677                UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2678                int8_t i;
2679                for(i=1;
2680                    i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2681                    ++i) {}
2682                if(i<byteIndex) {
2683                    /* Back out some bytes. */
2684                    int8_t backOutDistance=byteIndex-i;
2685                    int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2686                    byteIndex=i;  /* length of reported illegal byte sequence */
2687                    if(backOutDistance<=bytesFromThisBuffer) {
2688                        source-=backOutDistance;
2689                    } else {
2690                        /* Back out bytes from the previous buffer: Need to replay them. */
2691                        cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2692                        /* preToULength is negative! */
2693                        uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2694                        source=(const uint8_t *)pArgs->source;
2695                    }
2696                }
2697            }
2698            break;
2699        } else /* unassigned sequences indicated with byteIndex>0 */ {
2700            /* try an extension mapping */
2701            pArgs->source=(const char *)source;
2702            byteIndex=_extToU(cnv, cnv->sharedData,
2703                              byteIndex, &source, sourceLimit,
2704                              &target, targetLimit,
2705                              &offsets, sourceIndex,
2706                              pArgs->flush,
2707                              pErrorCode);
2708            sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2709
2710            if(U_FAILURE(*pErrorCode)) {
2711                /* not mappable or buffer overflow */
2712                break;
2713            }
2714        }
2715    }
2716
2717    /* set the converter state back into UConverter */
2718    cnv->toUnicodeStatus=offset;
2719    cnv->mode=state;
2720    cnv->toULength=byteIndex;
2721
2722    /* write back the updated pointers */
2723    pArgs->source=(const char *)source;
2724    pArgs->target=target;
2725    pArgs->offsets=offsets;
2726}
2727
2728/*
2729 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2730 * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2731 */
2732static UChar32
2733ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2734                        UErrorCode *pErrorCode) {
2735    UConverter *cnv;
2736    const int32_t (*stateTable)[256];
2737    const uint8_t *source, *sourceLimit;
2738
2739    int32_t entry;
2740    uint8_t action;
2741
2742    /* set up the local pointers */
2743    cnv=pArgs->converter;
2744    source=(const uint8_t *)pArgs->source;
2745    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2746    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2747        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2748    } else {
2749        stateTable=cnv->sharedData->mbcs.stateTable;
2750    }
2751
2752    /* conversion loop */
2753    while(source<sourceLimit) {
2754        entry=stateTable[0][*source++];
2755        /* MBCS_ENTRY_IS_FINAL(entry) */
2756
2757        /* write back the updated pointer early so that we can return directly */
2758        pArgs->source=(const char *)source;
2759
2760        if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2761            /* output BMP code point */
2762            return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2763        }
2764
2765        /*
2766         * An if-else-if chain provides more reliable performance for
2767         * the most common cases compared to a switch.
2768         */
2769        action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2770        if( action==MBCS_STATE_VALID_DIRECT_20 ||
2771            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2772        ) {
2773            /* output supplementary code point */
2774            return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2775        } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2776            if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2777                /* output BMP code point */
2778                return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2779            }
2780        } else if(action==MBCS_STATE_UNASSIGNED) {
2781            /* just fall through */
2782        } else if(action==MBCS_STATE_ILLEGAL) {
2783            /* callback(illegal) */
2784            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2785        } else {
2786            /* reserved, must never occur */
2787            continue;
2788        }
2789
2790        if(U_FAILURE(*pErrorCode)) {
2791            /* callback(illegal) */
2792            break;
2793        } else /* unassigned sequence */ {
2794            /* defer to the generic implementation */
2795            pArgs->source=(const char *)source-1;
2796            return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2797        }
2798    }
2799
2800    /* no output because of empty input or only state changes */
2801    *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2802    return 0xffff;
2803}
2804
2805/*
2806 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2807 * conversion without offset handling.
2808 *
2809 * When a character does not have a mapping to Unicode, then we return to the
2810 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2811 * handling.
2812 * We also defer to the generic code in other complicated cases and have them
2813 * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2814 *
2815 * All normal mappings and errors are handled here.
2816 */
2817static UChar32
2818ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2819                  UErrorCode *pErrorCode) {
2820    UConverter *cnv;
2821    const uint8_t *source, *sourceLimit, *lastSource;
2822
2823    const int32_t (*stateTable)[256];
2824    const uint16_t *unicodeCodeUnits;
2825
2826    uint32_t offset;
2827    uint8_t state;
2828
2829    int32_t entry;
2830    UChar32 c;
2831    uint8_t action;
2832
2833    /* use optimized function if possible */
2834    cnv=pArgs->converter;
2835
2836    if(cnv->preToULength>0) {
2837        /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2838        return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2839    }
2840
2841    if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2842        /*
2843         * Using the generic ucnv_getNextUChar() code lets us deal correctly
2844         * with the rare case of a codepage that maps single surrogates
2845         * without adding the complexity to this already complicated function here.
2846         */
2847        return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2848    } else if(cnv->sharedData->mbcs.countStates==1) {
2849        return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2850    }
2851
2852    /* set up the local pointers */
2853    source=lastSource=(const uint8_t *)pArgs->source;
2854    sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2855
2856    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2857        stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2858    } else {
2859        stateTable=cnv->sharedData->mbcs.stateTable;
2860    }
2861    unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2862
2863    /* get the converter state from UConverter */
2864    offset=cnv->toUnicodeStatus;
2865
2866    /*
2867     * if we are in the SBCS state for a DBCS-only converter,
2868     * then load the DBCS state from the MBCS data
2869     * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2870     */
2871    if((state=(uint8_t)(cnv->mode))==0) {
2872        state=cnv->sharedData->mbcs.dbcsOnlyState;
2873    }
2874
2875    /* conversion loop */
2876    c=U_SENTINEL;
2877    while(source<sourceLimit) {
2878        entry=stateTable[state][*source++];
2879        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2880            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2881            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2882
2883            /* optimization for 1/2-byte input and BMP output */
2884            if( source<sourceLimit &&
2885                MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2886                MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2887                (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2888            ) {
2889                ++source;
2890                state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2891                /* output BMP code point */
2892                break;
2893            }
2894        } else {
2895            /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2896            cnv->mode=state;
2897
2898            /* set the next state early so that we can reuse the entry variable */
2899            state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2900
2901            /*
2902             * An if-else-if chain provides more reliable performance for
2903             * the most common cases compared to a switch.
2904             */
2905            action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2906            if(action==MBCS_STATE_VALID_DIRECT_16) {
2907                /* output BMP code point */
2908                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2909                break;
2910            } else if(action==MBCS_STATE_VALID_16) {
2911                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2912                c=unicodeCodeUnits[offset];
2913                if(c<0xfffe) {
2914                    /* output BMP code point */
2915                    break;
2916                } else if(c==0xfffe) {
2917                    if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2918                        break;
2919                    }
2920                } else {
2921                    /* callback(illegal) */
2922                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2923                }
2924            } else if(action==MBCS_STATE_VALID_16_PAIR) {
2925                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2926                c=unicodeCodeUnits[offset++];
2927                if(c<0xd800) {
2928                    /* output BMP code point below 0xd800 */
2929                    break;
2930                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2931                    /* output roundtrip or fallback supplementary code point */
2932                    c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
2933                    break;
2934                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2935                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2936                    c=unicodeCodeUnits[offset];
2937                    break;
2938                } else if(c==0xffff) {
2939                    /* callback(illegal) */
2940                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2941                }
2942            } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2943                      (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2944            ) {
2945                /* output supplementary code point */
2946                c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2947                break;
2948            } else if(action==MBCS_STATE_CHANGE_ONLY) {
2949                /*
2950                 * This serves as a state change without any output.
2951                 * It is useful for reading simple stateful encodings,
2952                 * for example using just Shift-In/Shift-Out codes.
2953                 * The 21 unused bits may later be used for more sophisticated
2954                 * state transitions.
2955                 */
2956                if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
2957                    /* SI/SO are illegal for DBCS-only conversion */
2958                    state=(uint8_t)(cnv->mode); /* restore the previous state */
2959
2960                    /* callback(illegal) */
2961                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2962                }
2963            } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2964                if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2965                    /* output BMP code point */
2966                    c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2967                    break;
2968                }
2969            } else if(action==MBCS_STATE_UNASSIGNED) {
2970                /* just fall through */
2971            } else if(action==MBCS_STATE_ILLEGAL) {
2972                /* callback(illegal) */
2973                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2974            } else {
2975                /* reserved (must never occur), or only state change */
2976                offset=0;
2977                lastSource=source;
2978                continue;
2979            }
2980
2981            /* end of action codes: prepare for a new character */
2982            offset=0;
2983
2984            if(U_FAILURE(*pErrorCode)) {
2985                /* callback(illegal) */
2986                break;
2987            } else /* unassigned sequence */ {
2988                /* defer to the generic implementation */
2989                cnv->toUnicodeStatus=0;
2990                cnv->mode=state;
2991                pArgs->source=(const char *)lastSource;
2992                return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2993            }
2994        }
2995    }
2996
2997    if(c<0) {
2998        if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
2999            /* incomplete character byte sequence */
3000            uint8_t *bytes=cnv->toUBytes;
3001            cnv->toULength=(int8_t)(source-lastSource);
3002            do {
3003                *bytes++=*lastSource++;
3004            } while(lastSource<source);
3005            *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3006        } else if(U_FAILURE(*pErrorCode)) {
3007            /* callback(illegal) */
3008            /*
3009             * Ticket 5691: consistent illegal sequences:
3010             * - We include at least the first byte in the illegal sequence.
3011             * - If any of the non-initial bytes could be the start of a character,
3012             *   we stop the illegal sequence before the first one of those.
3013             */
3014            UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3015            uint8_t *bytes=cnv->toUBytes;
3016            *bytes++=*lastSource++;     /* first byte */
3017            if(lastSource==source) {
3018                cnv->toULength=1;
3019            } else /* lastSource<source: multi-byte character */ {
3020                int8_t i;
3021                for(i=1;
3022                    lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3023                    ++i
3024                ) {
3025                    *bytes++=*lastSource++;
3026                }
3027                cnv->toULength=i;
3028                source=lastSource;
3029            }
3030        } else {
3031            /* no output because of empty input or only state changes */
3032            *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3033        }
3034        c=0xffff;
3035    }
3036
3037    /* set the converter state back into UConverter, ready for a new character */
3038    cnv->toUnicodeStatus=0;
3039    cnv->mode=state;
3040
3041    /* write back the updated pointer */
3042    pArgs->source=(const char *)source;
3043    return c;
3044}
3045
3046#if 0
3047/*
3048 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3049 * Removal improves code coverage.
3050 */
3051/**
3052 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3053 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3054 * It does not handle conversion extensions (_extToU()).
3055 */
3056U_CFUNC UChar32
3057ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3058                              uint8_t b, UBool useFallback) {
3059    int32_t entry;
3060    uint8_t action;
3061
3062    entry=sharedData->mbcs.stateTable[0][b];
3063    /* MBCS_ENTRY_IS_FINAL(entry) */
3064
3065    if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3066        /* output BMP code point */
3067        return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3068    }
3069
3070    /*
3071     * An if-else-if chain provides more reliable performance for
3072     * the most common cases compared to a switch.
3073     */
3074    action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3075    if(action==MBCS_STATE_VALID_DIRECT_20) {
3076        /* output supplementary code point */
3077        return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3078    } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3079        if(!TO_U_USE_FALLBACK(useFallback)) {
3080            return 0xfffe;
3081        }
3082        /* output BMP code point */
3083        return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3084    } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3085        if(!TO_U_USE_FALLBACK(useFallback)) {
3086            return 0xfffe;
3087        }
3088        /* output supplementary code point */
3089        return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3090    } else if(action==MBCS_STATE_UNASSIGNED) {
3091        return 0xfffe;
3092    } else if(action==MBCS_STATE_ILLEGAL) {
3093        return 0xffff;
3094    } else {
3095        /* reserved, must never occur */
3096        return 0xffff;
3097    }
3098}
3099#endif
3100
3101/*
3102 * This is a simple version of _MBCSGetNextUChar() that is used
3103 * by other converter implementations.
3104 * It only returns an "assigned" result if it consumes the entire input.
3105 * It does not use state from the converter, nor error codes.
3106 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3107 * It handles conversion extensions but not GB 18030.
3108 *
3109 * Return value:
3110 * U+fffe   unassigned
3111 * U+ffff   illegal
3112 * otherwise the Unicode code point
3113 */
3114U_CFUNC UChar32
3115ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3116                        const char *source, int32_t length,
3117                        UBool useFallback) {
3118    const int32_t (*stateTable)[256];
3119    const uint16_t *unicodeCodeUnits;
3120
3121    uint32_t offset;
3122    uint8_t state, action;
3123
3124    UChar32 c;
3125    int32_t i, entry;
3126
3127    if(length<=0) {
3128        /* no input at all: "illegal" */
3129        return 0xffff;
3130    }
3131
3132#if 0
3133/*
3134 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3135 * TODO In future releases, verify that this function is never called for SBCS
3136 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3137 * Removal improves code coverage.
3138 */
3139    /* use optimized function if possible */
3140    if(sharedData->mbcs.countStates==1) {
3141        if(length==1) {
3142            return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3143        } else {
3144            return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3145        }
3146    }
3147#endif
3148
3149    /* set up the local pointers */
3150    stateTable=sharedData->mbcs.stateTable;
3151    unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3152
3153    /* converter state */
3154    offset=0;
3155    state=sharedData->mbcs.dbcsOnlyState;
3156
3157    /* conversion loop */
3158    for(i=0;;) {
3159        entry=stateTable[state][(uint8_t)source[i++]];
3160        if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3161            state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3162            offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3163
3164            if(i==length) {
3165                return 0xffff; /* truncated character */
3166            }
3167        } else {
3168            /*
3169             * An if-else-if chain provides more reliable performance for
3170             * the most common cases compared to a switch.
3171             */
3172            action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3173            if(action==MBCS_STATE_VALID_16) {
3174                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3175                c=unicodeCodeUnits[offset];
3176                if(c!=0xfffe) {
3177                    /* done */
3178                } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3179                    c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3180                /* else done with 0xfffe */
3181                }
3182                break;
3183            } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3184                /* output BMP code point */
3185                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3186                break;
3187            } else if(action==MBCS_STATE_VALID_16_PAIR) {
3188                offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3189                c=unicodeCodeUnits[offset++];
3190                if(c<0xd800) {
3191                    /* output BMP code point below 0xd800 */
3192                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3193                    /* output roundtrip or fallback supplementary code point */
3194                    c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3195                } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3196                    /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3197                    c=unicodeCodeUnits[offset];
3198                } else if(c==0xffff) {
3199                    return 0xffff;
3200                } else {
3201                    c=0xfffe;
3202                }
3203                break;
3204            } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3205                /* output supplementary code point */
3206                c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3207                break;
3208            } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3209                if(!TO_U_USE_FALLBACK(useFallback)) {
3210                    c=0xfffe;
3211                    break;
3212                }
3213                /* output BMP code point */
3214                c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3215                break;
3216            } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3217                if(!TO_U_USE_FALLBACK(useFallback)) {
3218                    c=0xfffe;
3219                    break;
3220                }
3221                /* output supplementary code point */
3222                c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3223                break;
3224            } else if(action==MBCS_STATE_UNASSIGNED) {
3225                c=0xfffe;
3226                break;
3227            }
3228
3229            /*
3230             * forbid MBCS_STATE_CHANGE_ONLY for this function,
3231             * and MBCS_STATE_ILLEGAL and reserved action codes
3232             */
3233            return 0xffff;
3234        }
3235    }
3236
3237    if(i!=length) {
3238        /* illegal for this function: not all input consumed */
3239        return 0xffff;
3240    }
3241
3242    if(c==0xfffe) {
3243        /* try an extension mapping */
3244        const int32_t *cx=sharedData->mbcs.extIndexes;
3245        if(cx!=NULL) {
3246            return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3247        }
3248    }
3249
3250    return c;
3251}
3252
3253/* MBCS-from-Unicode conversion functions ----------------------------------- */
3254
3255/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3256static void
3257ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3258                                  UErrorCode *pErrorCode) {
3259    UConverter *cnv;
3260    const UChar *source, *sourceLimit;
3261    uint8_t *target;
3262    int32_t targetCapacity;
3263    int32_t *offsets;
3264
3265    const uint16_t *table;
3266    const uint16_t *mbcsIndex;
3267    const uint8_t *bytes;
3268
3269    UChar32 c;
3270
3271    int32_t sourceIndex, nextSourceIndex;
3272
3273    uint32_t stage2Entry;
3274    uint32_t asciiRoundtrips;
3275    uint32_t value;
3276    uint8_t unicodeMask;
3277
3278    /* use optimized function if possible */
3279    cnv=pArgs->converter;
3280    unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3281
3282    /* set up the local pointers */
3283    source=pArgs->source;
3284    sourceLimit=pArgs->sourceLimit;
3285    target=(uint8_t *)pArgs->target;
3286    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3287    offsets=pArgs->offsets;
3288
3289    table=cnv->sharedData->mbcs.fromUnicodeTable;
3290    mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3291    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3292        bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3293    } else {
3294        bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3295    }
3296    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3297
3298    /* get the converter state from UConverter */
3299    c=cnv->fromUChar32;
3300
3301    /* sourceIndex=-1 if the current character began in the previous buffer */
3302    sourceIndex= c==0 ? 0 : -1;
3303    nextSourceIndex=0;
3304
3305    /* conversion loop */
3306    if(c!=0 && targetCapacity>0) {
3307        goto getTrail;
3308    }
3309
3310    while(source<sourceLimit) {
3311        /*
3312         * This following test is to see if available input would overflow the output.
3313         * It does not catch output of more than one byte that
3314         * overflows as a result of a multi-byte character or callback output
3315         * from the last source character.
3316         * Therefore, those situations also test for overflows and will
3317         * then break the loop, too.
3318         */
3319        if(targetCapacity>0) {
3320            /*
3321             * Get a correct Unicode code point:
3322             * a single UChar for a BMP code point or
3323             * a matched surrogate pair for a "supplementary code point".
3324             */
3325            c=*source++;
3326            ++nextSourceIndex;
3327            if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3328                *target++=(uint8_t)c;
3329                if(offsets!=NULL) {
3330                    *offsets++=sourceIndex;
3331                    sourceIndex=nextSourceIndex;
3332                }
3333                --targetCapacity;
3334                c=0;
3335                continue;
3336            }
3337            /*
3338             * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3339             * to avoid dealing with surrogates.
3340             * MBCS_FAST_MAX must be >=0xd7ff.
3341             */
3342            if(c<=0xd7ff) {
3343                value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3344                /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3345                if(value==0) {
3346                    goto unassigned;
3347                }
3348                /* output the value */
3349            } else {
3350                /*
3351                 * This also tests if the codepage maps single surrogates.
3352                 * If it does, then surrogates are not paired but mapped separately.
3353                 * Note that in this case unmatched surrogates are not detected.
3354                 */
3355                if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3356                    if(UTF_IS_SURROGATE_FIRST(c)) {
3357getTrail:
3358                        if(source<sourceLimit) {
3359                            /* test the following code unit */
3360                            UChar trail=*source;
3361                            if(UTF_IS_SECOND_SURROGATE(trail)) {
3362                                ++source;
3363                                ++nextSourceIndex;
3364                                c=UTF16_GET_PAIR_VALUE(c, trail);
3365                                if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3366                                    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3367                                    /* callback(unassigned) */
3368                                    goto unassigned;
3369                                }
3370                                /* convert this supplementary code point */
3371                                /* exit this condition tree */
3372                            } else {
3373                                /* this is an unmatched lead code unit (1st surrogate) */
3374                                /* callback(illegal) */
3375                                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3376                                break;
3377                            }
3378                        } else {
3379                            /* no more input */
3380                            break;
3381                        }
3382                    } else {
3383                        /* this is an unmatched trail code unit (2nd surrogate) */
3384                        /* callback(illegal) */
3385                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3386                        break;
3387                    }
3388                }
3389
3390                /* convert the Unicode code point in c into codepage bytes */
3391                stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3392
3393                /* get the bytes and the length for the output */
3394                /* MBCS_OUTPUT_2 */
3395                value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3396
3397                /* is this code point assigned, or do we use fallbacks? */
3398                if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3399                     (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3400                ) {
3401                    /*
3402                     * We allow a 0 byte output if the "assigned" bit is set for this entry.
3403                     * There is no way with this data structure for fallback output
3404                     * to be a zero byte.
3405                     */
3406
3407unassigned:
3408                    /* try an extension mapping */
3409                    pArgs->source=source;
3410                    c=_extFromU(cnv, cnv->sharedData,
3411                                c, &source, sourceLimit,
3412                                &target, target+targetCapacity,
3413                                &offsets, sourceIndex,
3414                                pArgs->flush,
3415                                pErrorCode);
3416                    nextSourceIndex+=(int32_t)(source-pArgs->source);
3417
3418                    if(U_FAILURE(*pErrorCode)) {
3419                        /* not mappable or buffer overflow */
3420                        break;
3421                    } else {
3422                        /* a mapping was written to the target, continue */
3423
3424                        /* recalculate the targetCapacity after an extension mapping */
3425                        targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3426
3427                        /* normal end of conversion: prepare for a new character */
3428                        sourceIndex=nextSourceIndex;
3429                        continue;
3430                    }
3431                }
3432            }
3433
3434            /* write the output character bytes from value and length */
3435            /* from the first if in the loop we know that targetCapacity>0 */
3436            if(value<=0xff) {
3437                /* this is easy because we know that there is enough space */
3438                *target++=(uint8_t)value;
3439                if(offsets!=NULL) {
3440                    *offsets++=sourceIndex;
3441                }
3442                --targetCapacity;
3443            } else /* length==2 */ {
3444                *target++=(uint8_t)(value>>8);
3445                if(2<=targetCapacity) {
3446                    *target++=(uint8_t)value;
3447                    if(offsets!=NULL) {
3448                        *offsets++=sourceIndex;
3449                        *offsets++=sourceIndex;
3450                    }
3451                    targetCapacity-=2;
3452                } else {
3453                    if(offsets!=NULL) {
3454                        *offsets++=sourceIndex;
3455                    }
3456                    cnv->charErrorBuffer[0]=(char)value;
3457                    cnv->charErrorBufferLength=1;
3458
3459                    /* target overflow */
3460                    targetCapacity=0;
3461                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3462                    c=0;
3463                    break;
3464                }
3465            }
3466
3467            /* normal end of conversion: prepare for a new character */
3468            c=0;
3469            sourceIndex=nextSourceIndex;
3470            continue;
3471        } else {
3472            /* target is full */
3473            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3474            break;
3475        }
3476    }
3477
3478    /* set the converter state back into UConverter */
3479    cnv->fromUChar32=c;
3480
3481    /* write back the updated pointers */
3482    pArgs->source=source;
3483    pArgs->target=(char *)target;
3484    pArgs->offsets=offsets;
3485}
3486
3487/* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3488static void
3489ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3490                                  UErrorCode *pErrorCode) {
3491    UConverter *cnv;
3492    const UChar *source, *sourceLimit;
3493    uint8_t *target;
3494    int32_t targetCapacity;
3495    int32_t *offsets;
3496
3497    const uint16_t *table;
3498    const uint16_t *results;
3499
3500    UChar32 c;
3501
3502    int32_t sourceIndex, nextSourceIndex;
3503
3504    uint16_t value, minValue;
3505    UBool hasSupplementary;
3506
3507    /* set up the local pointers */
3508    cnv=pArgs->converter;
3509    source=pArgs->source;
3510    sourceLimit=pArgs->sourceLimit;
3511    target=(uint8_t *)pArgs->target;
3512    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3513    offsets=pArgs->offsets;
3514
3515    table=cnv->sharedData->mbcs.fromUnicodeTable;
3516    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3517        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3518    } else {
3519        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3520    }
3521
3522    if(cnv->useFallback) {
3523        /* use all roundtrip and fallback results */
3524        minValue=0x800;
3525    } else {
3526        /* use only roundtrips and fallbacks from private-use characters */
3527        minValue=0xc00;
3528    }
3529    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3530
3531    /* get the converter state from UConverter */
3532    c=cnv->fromUChar32;
3533
3534    /* sourceIndex=-1 if the current character began in the previous buffer */
3535    sourceIndex= c==0 ? 0 : -1;
3536    nextSourceIndex=0;
3537
3538    /* conversion loop */
3539    if(c!=0 && targetCapacity>0) {
3540        goto getTrail;
3541    }
3542
3543    while(source<sourceLimit) {
3544        /*
3545         * This following test is to see if available input would overflow the output.
3546         * It does not catch output of more than one byte that
3547         * overflows as a result of a multi-byte character or callback output
3548         * from the last source character.
3549         * Therefore, those situations also test for overflows and will
3550         * then break the loop, too.
3551         */
3552        if(targetCapacity>0) {
3553            /*
3554             * Get a correct Unicode code point:
3555             * a single UChar for a BMP code point or
3556             * a matched surrogate pair for a "supplementary code point".
3557             */
3558            c=*source++;
3559            ++nextSourceIndex;
3560            if(UTF_IS_SURROGATE(c)) {
3561                if(UTF_IS_SURROGATE_FIRST(c)) {
3562getTrail:
3563                    if(source<sourceLimit) {
3564                        /* test the following code unit */
3565                        UChar trail=*source;
3566                        if(UTF_IS_SECOND_SURROGATE(trail)) {
3567                            ++source;
3568                            ++nextSourceIndex;
3569                            c=UTF16_GET_PAIR_VALUE(c, trail);
3570                            if(!hasSupplementary) {
3571                                /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3572                                /* callback(unassigned) */
3573                                goto unassigned;
3574                            }
3575                            /* convert this supplementary code point */
3576                            /* exit this condition tree */
3577                        } else {
3578                            /* this is an unmatched lead code unit (1st surrogate) */
3579                            /* callback(illegal) */
3580                            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3581                            break;
3582                        }
3583                    } else {
3584                        /* no more input */
3585                        break;
3586                    }
3587                } else {
3588                    /* this is an unmatched trail code unit (2nd surrogate) */
3589                    /* callback(illegal) */
3590                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3591                    break;
3592                }
3593            }
3594
3595            /* convert the Unicode code point in c into codepage bytes */
3596            value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3597
3598            /* is this code point assigned, or do we use fallbacks? */
3599            if(value>=minValue) {
3600                /* assigned, write the output character bytes from value and length */
3601                /* length==1 */
3602                /* this is easy because we know that there is enough space */
3603                *target++=(uint8_t)value;
3604                if(offsets!=NULL) {
3605                    *offsets++=sourceIndex;
3606                }
3607                --targetCapacity;
3608
3609                /* normal end of conversion: prepare for a new character */
3610                c=0;
3611                sourceIndex=nextSourceIndex;
3612            } else { /* unassigned */
3613unassigned:
3614                /* try an extension mapping */
3615                pArgs->source=source;
3616                c=_extFromU(cnv, cnv->sharedData,
3617                            c, &source, sourceLimit,
3618                            &target, target+targetCapacity,
3619                            &offsets, sourceIndex,
3620                            pArgs->flush,
3621                            pErrorCode);
3622                nextSourceIndex+=(int32_t)(source-pArgs->source);
3623
3624                if(U_FAILURE(*pErrorCode)) {
3625                    /* not mappable or buffer overflow */
3626                    break;
3627                } else {
3628                    /* a mapping was written to the target, continue */
3629
3630                    /* recalculate the targetCapacity after an extension mapping */
3631                    targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3632
3633                    /* normal end of conversion: prepare for a new character */
3634                    sourceIndex=nextSourceIndex;
3635                }
3636            }
3637        } else {
3638            /* target is full */
3639            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3640            break;
3641        }
3642    }
3643
3644    /* set the converter state back into UConverter */
3645    cnv->fromUChar32=c;
3646
3647    /* write back the updated pointers */
3648    pArgs->source=source;
3649    pArgs->target=(char *)target;
3650    pArgs->offsets=offsets;
3651}
3652
3653/*
3654 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3655 * that map only to and from the BMP.
3656 * In addition to single-byte/state optimizations, the offset calculations
3657 * become much easier.
3658 * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3659 * but measurements have shown that this diminishes performance
3660 * in more cases than it improves it.
3661 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3662 * for various MBCS and SBCS optimizations.
3663 */
3664static void
3665ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3666                              UErrorCode *pErrorCode) {
3667    UConverter *cnv;
3668    const UChar *source, *sourceLimit, *lastSource;
3669    uint8_t *target;
3670    int32_t targetCapacity, length;
3671    int32_t *offsets;
3672
3673    const uint16_t *table;
3674    const uint16_t *results;
3675
3676    UChar32 c;
3677
3678    int32_t sourceIndex;
3679
3680    uint32_t asciiRoundtrips;
3681    uint16_t value, minValue;
3682
3683    /* set up the local pointers */
3684    cnv=pArgs->converter;
3685    source=pArgs->source;
3686    sourceLimit=pArgs->sourceLimit;
3687    target=(uint8_t *)pArgs->target;
3688    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3689    offsets=pArgs->offsets;
3690
3691    table=cnv->sharedData->mbcs.fromUnicodeTable;
3692    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3693        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3694    } else {
3695        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3696    }
3697    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3698
3699    if(cnv->useFallback) {
3700        /* use all roundtrip and fallback results */
3701        minValue=0x800;
3702    } else {
3703        /* use only roundtrips and fallbacks from private-use characters */
3704        minValue=0xc00;
3705    }
3706
3707    /* get the converter state from UConverter */
3708    c=cnv->fromUChar32;
3709
3710    /* sourceIndex=-1 if the current character began in the previous buffer */
3711    sourceIndex= c==0 ? 0 : -1;
3712    lastSource=source;
3713
3714    /*
3715     * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3716     * for the minimum of the sourceLength and targetCapacity
3717     */
3718    length=(int32_t)(sourceLimit-source);
3719    if(length<targetCapacity) {
3720        targetCapacity=length;
3721    }
3722
3723    /* conversion loop */
3724    if(c!=0 && targetCapacity>0) {
3725        goto getTrail;
3726    }
3727
3728#if MBCS_UNROLL_SINGLE_FROM_BMP
3729    /* unrolling makes it slower on Pentium III/Windows 2000?! */
3730    /* unroll the loop with the most common case */
3731unrolled:
3732    if(targetCapacity>=4) {
3733        int32_t count, loops;
3734        uint16_t andedValues;
3735
3736        loops=count=targetCapacity>>2;
3737        do {
3738            c=*source++;
3739            andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3740            *target++=(uint8_t)value;
3741            c=*source++;
3742            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3743            *target++=(uint8_t)value;
3744            c=*source++;
3745            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3746            *target++=(uint8_t)value;
3747            c=*source++;
3748            andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3749            *target++=(uint8_t)value;
3750
3751            /* were all 4 entries really valid? */
3752            if(andedValues<minValue) {
3753                /* no, return to the first of these 4 */
3754                source-=4;
3755                target-=4;
3756                break;
3757            }
3758        } while(--count>0);
3759        count=loops-count;
3760        targetCapacity-=4*count;
3761
3762        if(offsets!=NULL) {
3763            lastSource+=4*count;
3764            while(count>0) {
3765                *offsets++=sourceIndex++;
3766                *offsets++=sourceIndex++;
3767                *offsets++=sourceIndex++;
3768                *offsets++=sourceIndex++;
3769                --count;
3770            }
3771        }
3772
3773        c=0;
3774    }
3775#endif
3776
3777    while(targetCapacity>0) {
3778        /*
3779         * Get a correct Unicode code point:
3780         * a single UChar for a BMP code point or
3781         * a matched surrogate pair for a "supplementary code point".
3782         */
3783        c=*source++;
3784        /*
3785         * Do not immediately check for single surrogates:
3786         * Assume that they are unassigned and check for them in that case.
3787         * This speeds up the conversion of assigned characters.
3788         */
3789        /* convert the Unicode code point in c into codepage bytes */
3790        if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3791            *target++=(uint8_t)c;
3792            --targetCapacity;
3793            c=0;
3794            continue;
3795        }
3796        value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3797        /* is this code point assigned, or do we use fallbacks? */
3798        if(value>=minValue) {
3799            /* assigned, write the output character bytes from value and length */
3800            /* length==1 */
3801            /* this is easy because we know that there is enough space */
3802            *target++=(uint8_t)value;
3803            --targetCapacity;
3804
3805            /* normal end of conversion: prepare for a new character */
3806            c=0;
3807            continue;
3808        } else if(!UTF_IS_SURROGATE(c)) {
3809            /* normal, unassigned BMP character */
3810        } else if(UTF_IS_SURROGATE_FIRST(c)) {
3811getTrail:
3812            if(source<sourceLimit) {
3813                /* test the following code unit */
3814                UChar trail=*source;
3815                if(UTF_IS_SECOND_SURROGATE(trail)) {
3816                    ++source;
3817                    c=UTF16_GET_PAIR_VALUE(c, trail);
3818                    /* this codepage does not map supplementary code points */
3819                    /* callback(unassigned) */
3820                } else {
3821                    /* this is an unmatched lead code unit (1st surrogate) */
3822                    /* callback(illegal) */
3823                    *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3824                    break;
3825                }
3826            } else {
3827                /* no more input */
3828                if (pArgs->flush) {
3829                    *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3830                }
3831                break;
3832            }
3833        } else {
3834            /* this is an unmatched trail code unit (2nd surrogate) */
3835            /* callback(illegal) */
3836            *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3837            break;
3838        }
3839
3840        /* c does not have a mapping */
3841
3842        /* get the number of code units for c to correctly advance sourceIndex */
3843        length=U16_LENGTH(c);
3844
3845        /* set offsets since the start or the last extension */
3846        if(offsets!=NULL) {
3847            int32_t count=(int32_t)(source-lastSource);
3848
3849            /* do not set the offset for this character */
3850            count-=length;
3851
3852            while(count>0) {
3853                *offsets++=sourceIndex++;
3854                --count;
3855            }
3856            /* offsets and sourceIndex are now set for the current character */
3857        }
3858
3859        /* try an extension mapping */
3860        lastSource=source;
3861        c=_extFromU(cnv, cnv->sharedData,
3862                    c, &source, sourceLimit,
3863                    &target, (const uint8_t *)(pArgs->targetLimit),
3864                    &offsets, sourceIndex,
3865                    pArgs->flush,
3866                    pErrorCode);
3867        sourceIndex+=length+(int32_t)(source-lastSource);
3868        lastSource=source;
3869
3870        if(U_FAILURE(*pErrorCode)) {
3871            /* not mappable or buffer overflow */
3872            break;
3873        } else {
3874            /* a mapping was written to the target, continue */
3875
3876            /* recalculate the targetCapacity after an extension mapping */
3877            targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3878            length=(int32_t)(sourceLimit-source);
3879            if(length<targetCapacity) {
3880                targetCapacity=length;
3881            }
3882        }
3883
3884#if MBCS_UNROLL_SINGLE_FROM_BMP
3885        /* unrolling makes it slower on Pentium III/Windows 2000?! */
3886        goto unrolled;
3887#endif
3888    }
3889
3890    if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
3891        /* target is full */
3892        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3893    }
3894
3895    /* set offsets since the start or the last callback */
3896    if(offsets!=NULL) {
3897        size_t count=source-lastSource;
3898        if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
3899            /*
3900            Caller gave us a partial supplementary character,
3901            which this function couldn't convert in any case.
3902            The callback will handle the offset.
3903            */
3904            count--;
3905        }
3906        while(count>0) {
3907            *offsets++=sourceIndex++;
3908            --count;
3909        }
3910    }
3911
3912    /* set the converter state back into UConverter */
3913    cnv->fromUChar32=c;
3914
3915    /* write back the updated pointers */
3916    pArgs->source=source;
3917    pArgs->target=(char *)target;
3918    pArgs->offsets=offsets;
3919}
3920
3921U_CFUNC void
3922ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3923                            UErrorCode *pErrorCode) {
3924    UConverter *cnv;
3925    const UChar *source, *sourceLimit;
3926    uint8_t *target;
3927    int32_t targetCapacity;
3928    int32_t *offsets;
3929
3930    const uint16_t *table;
3931    const uint16_t *mbcsIndex;
3932    const uint8_t *p, *bytes;
3933    uint8_t outputType;
3934
3935    UChar32 c;
3936
3937    int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
3938
3939    uint32_t stage2Entry;
3940    uint32_t asciiRoundtrips;
3941    uint32_t value;
3942    uint8_t si_value[2] = {0, 0};
3943    uint8_t so_value[2] = {0, 0};
3944    uint8_t si_value_length, so_value_length;
3945    int32_t length = 0, prevLength;
3946    uint8_t unicodeMask;
3947
3948    cnv=pArgs->converter;
3949
3950    if(cnv->preFromUFirstCP>=0) {
3951        /*
3952         * pass sourceIndex=-1 because we continue from an earlier buffer
3953         * in the future, this may change with continuous offsets
3954         */
3955        ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
3956
3957        if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
3958            return;
3959        }
3960    }
3961
3962    /* use optimized function if possible */
3963    outputType=cnv->sharedData->mbcs.outputType;
3964    unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3965    if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3966        if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3967            ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
3968        } else {
3969            ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
3970        }
3971        return;
3972    } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
3973        ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
3974        return;
3975    }
3976
3977    /* set up the local pointers */
3978    source=pArgs->source;
3979    sourceLimit=pArgs->sourceLimit;
3980    target=(uint8_t *)pArgs->target;
3981    targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3982    offsets=pArgs->offsets;
3983
3984    table=cnv->sharedData->mbcs.fromUnicodeTable;
3985    if(cnv->sharedData->mbcs.utf8Friendly) {
3986        mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3987    } else {
3988        mbcsIndex=NULL;
3989    }
3990    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3991        bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3992    } else {
3993        bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3994    }
3995    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3996
3997    /* get the converter state from UConverter */
3998    c=cnv->fromUChar32;
3999
4000    if(outputType==MBCS_OUTPUT_2_SISO) {
4001        prevLength=cnv->fromUnicodeStatus;
4002        if(prevLength==0) {
4003            /* set the real value */
4004            prevLength=1;
4005        }
4006    } else {
4007        /* prevent fromUnicodeStatus from being set to something non-0 */
4008        prevLength=0;
4009    }
4010
4011    /* sourceIndex=-1 if the current character began in the previous buffer */
4012    prevSourceIndex=-1;
4013    sourceIndex= c==0 ? 0 : -1;
4014    nextSourceIndex=0;
4015
4016    /* Get the SI/SO character for the converter */
4017    si_value_length = getSISOBytes(SI, cnv->options, si_value);
4018    so_value_length = getSISOBytes(SO, cnv->options, so_value);
4019
4020    /* conversion loop */
4021    /*
4022     * This is another piece of ugly code:
4023     * A goto into the loop if the converter state contains a first surrogate
4024     * from the previous function call.
4025     * It saves me to check in each loop iteration a check of if(c==0)
4026     * and duplicating the trail-surrogate-handling code in the else
4027     * branch of that check.
4028     * I could not find any other way to get around this other than
4029     * using a function call for the conversion and callback, which would
4030     * be even more inefficient.
4031     *
4032     * Markus Scherer 2000-jul-19
4033     */
4034    if(c!=0 && targetCapacity>0) {
4035        goto getTrail;
4036    }
4037
4038    while(source<sourceLimit) {
4039        /*
4040         * This following test is to see if available input would overflow the output.
4041         * It does not catch output of more than one byte that
4042         * overflows as a result of a multi-byte character or callback output
4043         * from the last source character.
4044         * Therefore, those situations also test for overflows and will
4045         * then break the loop, too.
4046         */
4047        if(targetCapacity>0) {
4048            /*
4049             * Get a correct Unicode code point:
4050             * a single UChar for a BMP code point or
4051             * a matched surrogate pair for a "supplementary code point".
4052             */
4053            c=*source++;
4054            ++nextSourceIndex;
4055            if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4056                *target++=(uint8_t)c;
4057                if(offsets!=NULL) {
4058                    *offsets++=sourceIndex;
4059                    prevSourceIndex=sourceIndex;
4060                    sourceIndex=nextSourceIndex;
4061                }
4062                --targetCapacity;
4063                c=0;
4064                continue;
4065            }
4066            /*
4067             * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4068             * to avoid dealing with surrogates.
4069             * MBCS_FAST_MAX must be >=0xd7ff.
4070             */
4071            if(c<=0xd7ff && mbcsIndex!=NULL) {
4072                value=mbcsIndex[c>>6];
4073
4074                /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4075                /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4076                switch(outputType) {
4077                case MBCS_OUTPUT_2:
4078                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4079                    if(value<=0xff) {
4080                        if(value==0) {
4081                            goto unassigned;
4082                        } else {
4083                            length=1;
4084                        }
4085                    } else {
4086                        length=2;
4087                    }
4088                    break;
4089                case MBCS_OUTPUT_2_SISO:
4090                    /* 1/2-byte stateful with Shift-In/Shift-Out */
4091                    /*
4092                     * Save the old state in the converter object
4093                     * right here, then change the local prevLength state variable if necessary.
4094                     * Then, if this character turns out to be unassigned or a fallback that
4095                     * is not taken, the callback code must not save the new state in the converter
4096                     * because the new state is for a character that is not output.
4097                     * However, the callback must still restore the state from the converter
4098                     * in case the callback function changed it for its output.
4099                     */
4100                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4101                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4102                    if(value<=0xff) {
4103                        if(value==0) {
4104                            goto unassigned;
4105                        } else if(prevLength<=1) {
4106                            length=1;
4107                        } else {
4108                            /* change from double-byte mode to single-byte */
4109                            if (si_value_length == 1) {
4110                                value|=(uint32_t)si_value[0]<<8;
4111                                length = 2;
4112                            } else if (si_value_length == 2) {
4113                                value|=(uint32_t)si_value[1]<<8;
4114                                value|=(uint32_t)si_value[0]<<16;
4115                                length = 3;
4116                            }
4117                            prevLength=1;
4118                        }
4119                    } else {
4120                        if(prevLength==2) {
4121                            length=2;
4122                        } else {
4123                            /* change from single-byte mode to double-byte */
4124                            if (so_value_length == 1) {
4125                                value|=(uint32_t)so_value[0]<<16;
4126                                length = 3;
4127                            } else if (so_value_length == 2) {
4128                                value|=(uint32_t)so_value[1]<<16;
4129                                value|=(uint32_t)so_value[0]<<24;
4130                                length = 4;
4131                            }
4132                            prevLength=2;
4133                        }
4134                    }
4135                    break;
4136                case MBCS_OUTPUT_DBCS_ONLY:
4137                    /* table with single-byte results, but only DBCS mappings used */
4138                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4139                    if(value<=0xff) {
4140                        /* no mapping or SBCS result, not taken for DBCS-only */
4141                        goto unassigned;
4142                    } else {
4143                        length=2;
4144                    }
4145                    break;
4146                case MBCS_OUTPUT_3:
4147                    p=bytes+(value+(c&0x3f))*3;
4148                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4149                    if(value<=0xff) {
4150                        if(value==0) {
4151                            goto unassigned;
4152                        } else {
4153                            length=1;
4154                        }
4155                    } else if(value<=0xffff) {
4156                        length=2;
4157                    } else {
4158                        length=3;
4159                    }
4160                    break;
4161                case MBCS_OUTPUT_4:
4162                    value=((const uint32_t *)bytes)[value +(c&0x3f)];
4163                    if(value<=0xff) {
4164                        if(value==0) {
4165                            goto unassigned;
4166                        } else {
4167                            length=1;
4168                        }
4169                    } else if(value<=0xffff) {
4170                        length=2;
4171                    } else if(value<=0xffffff) {
4172                        length=3;
4173                    } else {
4174                        length=4;
4175                    }
4176                    break;
4177                case MBCS_OUTPUT_3_EUC:
4178                    value=((const uint16_t *)bytes)[value +(c&0x3f)];
4179                    /* EUC 16-bit fixed-length representation */
4180                    if(value<=0xff) {
4181                        if(value==0) {
4182                            goto unassigned;
4183                        } else {
4184                            length=1;
4185                        }
4186                    } else if((value&0x8000)==0) {
4187                        value|=0x8e8000;
4188                        length=3;
4189                    } else if((value&0x80)==0) {
4190                        value|=0x8f0080;
4191                        length=3;
4192                    } else {
4193                        length=2;
4194                    }
4195                    break;
4196                case MBCS_OUTPUT_4_EUC:
4197                    p=bytes+(value+(c&0x3f))*3;
4198                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4199                    /* EUC 16-bit fixed-length representation applied to the first two bytes */
4200                    if(value<=0xff) {
4201                        if(value==0) {
4202                            goto unassigned;
4203                        } else {
4204                            length=1;
4205                        }
4206                    } else if(value<=0xffff) {
4207                        length=2;
4208                    } else if((value&0x800000)==0) {
4209                        value|=0x8e800000;
4210                        length=4;
4211                    } else if((value&0x8000)==0) {
4212                        value|=0x8f008000;
4213                        length=4;
4214                    } else {
4215                        length=3;
4216                    }
4217                    break;
4218                default:
4219                    /* must not occur */
4220                    /*
4221                     * To avoid compiler warnings that value & length may be
4222                     * used without having been initialized, we set them here.
4223                     * In reality, this is unreachable code.
4224                     * Not having a default branch also causes warnings with
4225                     * some compilers.
4226                     */
4227                    value=0;
4228                    length=0;
4229                    break;
4230                }
4231                /* output the value */
4232            } else {
4233                /*
4234                 * This also tests if the codepage maps single surrogates.
4235                 * If it does, then surrogates are not paired but mapped separately.
4236                 * Note that in this case unmatched surrogates are not detected.
4237                 */
4238                if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4239                    if(UTF_IS_SURROGATE_FIRST(c)) {
4240getTrail:
4241                        if(source<sourceLimit) {
4242                            /* test the following code unit */
4243                            UChar trail=*source;
4244                            if(UTF_IS_SECOND_SURROGATE(trail)) {
4245                                ++source;
4246                                ++nextSourceIndex;
4247                                c=UTF16_GET_PAIR_VALUE(c, trail);
4248                                if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4249                                    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4250                                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4251                                    /* callback(unassigned) */
4252                                    goto unassigned;
4253                                }
4254                                /* convert this supplementary code point */
4255                                /* exit this condition tree */
4256                            } else {
4257                                /* this is an unmatched lead code unit (1st surrogate) */
4258                                /* callback(illegal) */
4259                                *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4260                                break;
4261                            }
4262                        } else {
4263                            /* no more input */
4264                            break;
4265                        }
4266                    } else {
4267                        /* this is an unmatched trail code unit (2nd surrogate) */
4268                        /* callback(illegal) */
4269                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4270                        break;
4271                    }
4272                }
4273
4274                /* convert the Unicode code point in c into codepage bytes */
4275
4276                /*
4277                 * The basic lookup is a triple-stage compact array (trie) lookup.
4278                 * For details see the beginning of this file.
4279                 *
4280                 * Single-byte codepages are handled with a different data structure
4281                 * by _MBCSSingle... functions.
4282                 *
4283                 * The result consists of a 32-bit value from stage 2 and
4284                 * a pointer to as many bytes as are stored per character.
4285                 * The pointer points to the character's bytes in stage 3.
4286                 * Bits 15..0 of the stage 2 entry contain the stage 3 index
4287                 * for that pointer, while bits 31..16 are flags for which of
4288                 * the 16 characters in the block are roundtrip-assigned.
4289                 *
4290                 * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4291                 * respectively as uint32_t, in the platform encoding.
4292                 * For 3-byte codepages, the bytes are always stored in big-endian order.
4293                 *
4294                 * For EUC encodings that use only either 0x8e or 0x8f as the first
4295                 * byte of their longest byte sequences, the first two bytes in
4296                 * this third stage indicate with their 7th bits whether these bytes
4297                 * are to be written directly or actually need to be preceeded by
4298                 * one of the two Single-Shift codes. With this, the third stage
4299                 * stores one byte fewer per character than the actual maximum length of
4300                 * EUC byte sequences.
4301                 *
4302                 * Other than that, leading zero bytes are removed and the other
4303                 * bytes output. A single zero byte may be output if the "assigned"
4304                 * bit in stage 2 was on.
4305                 * The data structure does not support zero byte output as a fallback,
4306                 * and also does not allow output of leading zeros.
4307                 */
4308                stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4309
4310                /* get the bytes and the length for the output */
4311                switch(outputType) {
4312                case MBCS_OUTPUT_2:
4313                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4314                    if(value<=0xff) {
4315                        length=1;
4316                    } else {
4317                        length=2;
4318                    }
4319                    break;
4320                case MBCS_OUTPUT_2_SISO:
4321                    /* 1/2-byte stateful with Shift-In/Shift-Out */
4322                    /*
4323                     * Save the old state in the converter object
4324                     * right here, then change the local prevLength state variable if necessary.
4325                     * Then, if this character turns out to be unassigned or a fallback that
4326                     * is not taken, the callback code must not save the new state in the converter
4327                     * because the new state is for a character that is not output.
4328                     * However, the callback must still restore the state from the converter
4329                     * in case the callback function changed it for its output.
4330                     */
4331                    cnv->fromUnicodeStatus=prevLength; /* save the old state */
4332                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4333                    if(value<=0xff) {
4334                        if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4335                            /* no mapping, leave value==0 */
4336                            length=0;
4337                        } else if(prevLength<=1) {
4338                            length=1;
4339                        } else {
4340                            /* change from double-byte mode to single-byte */
4341                            if (si_value_length == 1) {
4342                                value|=(uint32_t)si_value[0]<<8;
4343                                length = 2;
4344                            } else if (si_value_length == 2) {
4345                                value|=(uint32_t)si_value[1]<<8;
4346                                value|=(uint32_t)si_value[0]<<16;
4347                                length = 3;
4348                            }
4349                            prevLength=1;
4350                        }
4351                    } else {
4352                        if(prevLength==2) {
4353                            length=2;
4354                        } else {
4355                            /* change from single-byte mode to double-byte */
4356                            if (so_value_length == 1) {
4357                                value|=(uint32_t)so_value[0]<<16;
4358                                length = 3;
4359                            } else if (so_value_length == 2) {
4360                                value|=(uint32_t)so_value[1]<<16;
4361                                value|=(uint32_t)so_value[0]<<24;
4362                                length = 4;
4363                            }
4364                            prevLength=2;
4365                        }
4366                    }
4367                    break;
4368                case MBCS_OUTPUT_DBCS_ONLY:
4369                    /* table with single-byte results, but only DBCS mappings used */
4370                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4371                    if(value<=0xff) {
4372                        /* no mapping or SBCS result, not taken for DBCS-only */
4373                        value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4374                        length=0;
4375                    } else {
4376                        length=2;
4377                    }
4378                    break;
4379                case MBCS_OUTPUT_3:
4380                    p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4381                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4382                    if(value<=0xff) {
4383                        length=1;
4384                    } else if(value<=0xffff) {
4385                        length=2;
4386                    } else {
4387                        length=3;
4388                    }
4389                    break;
4390                case MBCS_OUTPUT_4:
4391                    value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4392                    if(value<=0xff) {
4393                        length=1;
4394                    } else if(value<=0xffff) {
4395                        length=2;
4396                    } else if(value<=0xffffff) {
4397                        length=3;
4398                    } else {
4399                        length=4;
4400                    }
4401                    break;
4402                case MBCS_OUTPUT_3_EUC:
4403                    value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4404                    /* EUC 16-bit fixed-length representation */
4405                    if(value<=0xff) {
4406                        length=1;
4407                    } else if((value&0x8000)==0) {
4408                        value|=0x8e8000;
4409                        length=3;
4410                    } else if((value&0x80)==0) {
4411                        value|=0x8f0080;
4412                        length=3;
4413                    } else {
4414                        length=2;
4415                    }
4416                    break;
4417                case MBCS_OUTPUT_4_EUC:
4418                    p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4419                    value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4420                    /* EUC 16-bit fixed-length representation applied to the first two bytes */
4421                    if(value<=0xff) {
4422                        length=1;
4423                    } else if(value<=0xffff) {
4424                        length=2;
4425                    } else if((value&0x800000)==0) {
4426                        value|=0x8e800000;
4427                        length=4;
4428                    } else if((value&0x8000)==0) {
4429                        value|=0x8f008000;
4430                        length=4;
4431                    } else {
4432                        length=3;
4433                    }
4434                    break;
4435                default:
4436                    /* must not occur */
4437                    /*
4438                     * To avoid compiler warnings that value & length may be
4439                     * used without having been initialized, we set them here.
4440                     * In reality, this is unreachable code.
4441                     * Not having a default branch also causes warnings with
4442                     * some compilers.
4443                     */
4444                    value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4445                    length=0;
4446                    break;
4447                }
4448
4449                /* is this code point assigned, or do we use fallbacks? */
4450                if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4451                     (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4452                ) {
4453                    /*
4454                     * We allow a 0 byte output if the "assigned" bit is set for this entry.
4455                     * There is no way with this data structure for fallback output
4456                     * to be a zero byte.
4457                     */
4458
4459unassigned:
4460                    /* try an extension mapping */
4461                    pArgs->source=source;
4462                    c=_extFromU(cnv, cnv->sharedData,
4463                                c, &source, sourceLimit,
4464                                &target, target+targetCapacity,
4465                                &offsets, sourceIndex,
4466                                pArgs->flush,
4467                                pErrorCode);
4468                    nextSourceIndex+=(int32_t)(source-pArgs->source);
4469                    prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4470
4471                    if(U_FAILURE(*pErrorCode)) {
4472                        /* not mappable or buffer overflow */
4473                        break;
4474                    } else {
4475                        /* a mapping was written to the target, continue */
4476
4477                        /* recalculate the targetCapacity after an extension mapping */
4478                        targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4479
4480                        /* normal end of conversion: prepare for a new character */
4481                        if(offsets!=NULL) {
4482                            prevSourceIndex=sourceIndex;
4483                            sourceIndex=nextSourceIndex;
4484                        }
4485                        continue;
4486                    }
4487                }
4488            }
4489
4490            /* write the output character bytes from value and length */
4491            /* from the first if in the loop we know that targetCapacity>0 */
4492            if(length<=targetCapacity) {
4493                if(offsets==NULL) {
4494                    switch(length) {
4495                        /* each branch falls through to the next one */
4496                    case 4:
4497                        *target++=(uint8_t)(value>>24);
4498                    case 3:
4499                        *target++=(uint8_t)(value>>16);
4500                    case 2:
4501                        *target++=(uint8_t)(value>>8);
4502                    case 1:
4503                        *target++=(uint8_t)value;
4504                    default:
4505                        /* will never occur */
4506                        break;
4507                    }
4508                } else {
4509                    switch(length) {
4510                        /* each branch falls through to the next one */
4511                    case 4:
4512                        *target++=(uint8_t)(value>>24);
4513                        *offsets++=sourceIndex;
4514                    case 3:
4515                        *target++=(uint8_t)(value>>16);
4516                        *offsets++=sourceIndex;
4517                    case 2:
4518                        *target++=(uint8_t)(value>>8);
4519                        *offsets++=sourceIndex;
4520                    case 1:
4521                        *target++=(uint8_t)value;
4522                        *offsets++=sourceIndex;
4523                    default:
4524                        /* will never occur */
4525                        break;
4526                    }
4527                }
4528                targetCapacity-=length;
4529            } else {
4530                uint8_t *charErrorBuffer;
4531
4532                /*
4533                 * We actually do this backwards here:
4534                 * In order to save an intermediate variable, we output
4535                 * first to the overflow buffer what does not fit into the
4536                 * regular target.
4537                 */
4538                /* we know that 1<=targetCapacity<length<=4 */
4539                length-=targetCapacity;
4540                charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4541                switch(length) {
4542                    /* each branch falls through to the next one */
4543                case 3:
4544                    *charErrorBuffer++=(uint8_t)(value>>16);
4545                case 2:
4546                    *charErrorBuffer++=(uint8_t)(value>>8);
4547                case 1:
4548                    *charErrorBuffer=(uint8_t)value;
4549                default:
4550                    /* will never occur */
4551                    break;
4552                }
4553                cnv->charErrorBufferLength=(int8_t)length;
4554
4555                /* now output what fits into the regular target */
4556                value>>=8*length; /* length was reduced by targetCapacity */
4557                switch(targetCapacity) {
4558                    /* each branch falls through to the next one */
4559                case 3:
4560                    *target++=(uint8_t)(value>>16);
4561                    if(offsets!=NULL) {
4562                        *offsets++=sourceIndex;
4563                    }
4564                case 2:
4565                    *target++=(uint8_t)(value>>8);
4566                    if(offsets!=NULL) {
4567                        *offsets++=sourceIndex;
4568                    }
4569                case 1:
4570                    *target++=(uint8_t)value;
4571                    if(offsets!=NULL) {
4572                        *offsets++=sourceIndex;
4573                    }
4574                default:
4575                    /* will never occur */
4576                    break;
4577                }
4578
4579                /* target overflow */
4580                targetCapacity=0;
4581                *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4582                c=0;
4583                break;
4584            }
4585
4586            /* normal end of conversion: prepare for a new character */
4587            c=0;
4588            if(offsets!=NULL) {
4589                prevSourceIndex=sourceIndex;
4590                sourceIndex=nextSourceIndex;
4591            }
4592            continue;
4593        } else {
4594            /* target is full */
4595            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4596            break;
4597        }
4598    }
4599
4600    /*
4601     * the end of the input stream and detection of truncated input
4602     * are handled by the framework, but for EBCDIC_STATEFUL conversion
4603     * we need to emit an SI at the very end
4604     *
4605     * conditions:
4606     *   successful
4607     *   EBCDIC_STATEFUL in DBCS mode
4608     *   end of input and no truncated input
4609     */
4610    if( U_SUCCESS(*pErrorCode) &&
4611        outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4612        pArgs->flush && source>=sourceLimit && c==0
4613    ) {
4614        /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4615        if(targetCapacity>0) {
4616            *target++=(uint8_t)si_value[0];
4617            if (si_value_length == 2) {
4618                if (targetCapacity<2) {
4619                    cnv->charErrorBuffer[0]=(uint8_t)si_value[1];
4620                    cnv->charErrorBufferLength=1;
4621                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4622                } else {
4623                    *target++=(uint8_t)si_value[1];
4624                }
4625            }
4626            if(offsets!=NULL) {
4627                /* set the last source character's index (sourceIndex points at sourceLimit now) */
4628                *offsets++=prevSourceIndex;
4629            }
4630        } else {
4631            /* target is full */
4632            cnv->charErrorBuffer[0]=(uint8_t)si_value[0];
4633            if (si_value_length == 2) {
4634                cnv->charErrorBuffer[1]=(uint8_t)si_value[1];
4635            }
4636            cnv->charErrorBufferLength=si_value_length;
4637            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4638        }
4639        prevLength=1; /* we switched into SBCS */
4640    }
4641
4642    /* set the converter state back into UConverter */
4643    cnv->fromUChar32=c;
4644    cnv->fromUnicodeStatus=prevLength;
4645
4646    /* write back the updated pointers */
4647    pArgs->source=source;
4648    pArgs->target=(char *)target;
4649    pArgs->offsets=offsets;
4650}
4651
4652/*
4653 * This is another simple conversion function for internal use by other
4654 * conversion implementations.
4655 * It does not use the converter state nor call callbacks.
4656 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4657 * It handles conversion extensions but not GB 18030.
4658 *
4659 * It converts one single Unicode code point into codepage bytes, encoded
4660 * as one 32-bit value. The function returns the number of bytes in *pValue:
4661 * 1..4 the number of bytes in *pValue
4662 * 0    unassigned (*pValue undefined)
4663 * -1   illegal (currently not used, *pValue undefined)
4664 *
4665 * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4666 * the second to last byte in bits 15..8, etc.
4667 * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4668 */
4669U_CFUNC int32_t
4670ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4671                 UChar32 c, uint32_t *pValue,
4672                 UBool useFallback) {
4673    const int32_t *cx;
4674    const uint16_t *table;
4675#if 0
4676/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4677    const uint8_t *p;
4678#endif
4679    uint32_t stage2Entry;
4680    uint32_t value;
4681    int32_t length;
4682
4683    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4684    if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4685        table=sharedData->mbcs.fromUnicodeTable;
4686
4687        /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4688        if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4689            value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4690            /* is this code point assigned, or do we use fallbacks? */
4691            if(useFallback ? value>=0x800 : value>=0xc00) {
4692                *pValue=value&0xff;
4693                return 1;
4694            }
4695        } else /* outputType!=MBCS_OUTPUT_1 */ {
4696            stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4697
4698            /* get the bytes and the length for the output */
4699            switch(sharedData->mbcs.outputType) {
4700            case MBCS_OUTPUT_2:
4701                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4702                if(value<=0xff) {
4703                    length=1;
4704                } else {
4705                    length=2;
4706                }
4707                break;
4708#if 0
4709/* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4710            case MBCS_OUTPUT_DBCS_ONLY:
4711                /* table with single-byte results, but only DBCS mappings used */
4712                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4713                if(value<=0xff) {
4714                    /* no mapping or SBCS result, not taken for DBCS-only */
4715                    value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4716                    length=0;
4717                } else {
4718                    length=2;
4719                }
4720                break;
4721            case MBCS_OUTPUT_3:
4722                p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4723                value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4724                if(value<=0xff) {
4725                    length=1;
4726                } else if(value<=0xffff) {
4727                    length=2;
4728                } else {
4729                    length=3;
4730                }
4731                break;
4732            case MBCS_OUTPUT_4:
4733                value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4734                if(value<=0xff) {
4735                    length=1;
4736                } else if(value<=0xffff) {
4737                    length=2;
4738                } else if(value<=0xffffff) {
4739                    length=3;
4740                } else {
4741                    length=4;
4742                }
4743                break;
4744            case MBCS_OUTPUT_3_EUC:
4745                value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4746                /* EUC 16-bit fixed-length representation */
4747                if(value<=0xff) {
4748                    length=1;
4749                } else if((value&0x8000)==0) {
4750                    value|=0x8e8000;
4751                    length=3;
4752                } else if((value&0x80)==0) {
4753                    value|=0x8f0080;
4754                    length=3;
4755                } else {
4756                    length=2;
4757                }
4758                break;
4759            case MBCS_OUTPUT_4_EUC:
4760                p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4761                value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4762                /* EUC 16-bit fixed-length representation applied to the first two bytes */
4763                if(value<=0xff) {
4764                    length=1;
4765                } else if(value<=0xffff) {
4766                    length=2;
4767                } else if((value&0x800000)==0) {
4768                    value|=0x8e800000;
4769                    length=4;
4770                } else if((value&0x8000)==0) {
4771                    value|=0x8f008000;
4772                    length=4;
4773                } else {
4774                    length=3;
4775                }
4776                break;
4777#endif
4778            default:
4779                /* must not occur */
4780                return -1;
4781            }
4782
4783            /* is this code point assigned, or do we use fallbacks? */
4784            if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4785                (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4786            ) {
4787                /*
4788                 * We allow a 0 byte output if the "assigned" bit is set for this entry.
4789                 * There is no way with this data structure for fallback output
4790                 * to be a zero byte.
4791                 */
4792                /* assigned */
4793                *pValue=value;
4794                return length;
4795            }
4796        }
4797    }
4798
4799    cx=sharedData->mbcs.extIndexes;
4800    if(cx!=NULL) {
4801        length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4802        return length>=0 ? length : -length;  /* return abs(length); */
4803    }
4804
4805    /* unassigned */
4806    return 0;
4807}
4808
4809
4810#if 0
4811/*
4812 * This function has been moved to ucnv2022.c for inlining.
4813 * This implementation is here only for documentation purposes
4814 */
4815
4816/**
4817 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4818 * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4819 * It does not handle conversion extensions (_extFromU()).
4820 *
4821 * It returns the codepage byte for the code point, or -1 if it is unassigned.
4822 */
4823U_CFUNC int32_t
4824ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4825                       UChar32 c,
4826                       UBool useFallback) {
4827    const uint16_t *table;
4828    int32_t value;
4829
4830    /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4831    if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4832        return -1;
4833    }
4834
4835    /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4836    table=sharedData->mbcs.fromUnicodeTable;
4837
4838    /* get the byte for the output */
4839    value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4840    /* is this code point assigned, or do we use fallbacks? */
4841    if(useFallback ? value>=0x800 : value>=0xc00) {
4842        return value&0xff;
4843    } else {
4844        return -1;
4845    }
4846}
4847#endif
4848
4849/* MBCS-from-UTF-8 conversion functions ------------------------------------- */
4850
4851/* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
4852static const UChar32
4853utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
4854
4855/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
4856static const UChar32
4857utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
4858
4859static void
4860ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
4861                  UConverterToUnicodeArgs *pToUArgs,
4862                  UErrorCode *pErrorCode) {
4863    UConverter *utf8, *cnv;
4864    const uint8_t *source, *sourceLimit;
4865    uint8_t *target;
4866    int32_t targetCapacity;
4867
4868    const uint16_t *table, *sbcsIndex;
4869    const uint16_t *results;
4870
4871    int8_t oldToULength, toULength, toULimit;
4872
4873    UChar32 c;
4874    uint8_t b, t1, t2;
4875
4876    uint32_t asciiRoundtrips;
4877    uint16_t value, minValue;
4878    UBool hasSupplementary;
4879
4880    /* set up the local pointers */
4881    utf8=pToUArgs->converter;
4882    cnv=pFromUArgs->converter;
4883    source=(uint8_t *)pToUArgs->source;
4884    sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
4885    target=(uint8_t *)pFromUArgs->target;
4886    targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
4887
4888    table=cnv->sharedData->mbcs.fromUnicodeTable;
4889    sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
4890    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4891        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4892    } else {
4893        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
4894    }
4895    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4896
4897    if(cnv->useFallback) {
4898        /* use all roundtrip and fallback results */
4899        minValue=0x800;
4900    } else {
4901        /* use only roundtrips and fallbacks from private-use characters */
4902        minValue=0xc00;
4903    }
4904    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
4905
4906    /* get the converter state from the UTF-8 UConverter */
4907    c=(UChar32)utf8->toUnicodeStatus;
4908    if(c!=0) {
4909        toULength=oldToULength=utf8->toULength;
4910        toULimit=(int8_t)utf8->mode;
4911    } else {
4912        toULength=oldToULength=toULimit=0;
4913    }
4914
4915    /*
4916     * Make sure that the last byte sequence before sourceLimit is complete
4917     * or runs into a lead byte.
4918     * Do not go back into the bytes that will be read for finishing a partial
4919     * sequence from the previous buffer.
4920     * In the conversion loop compare source with sourceLimit only once
4921     * per multi-byte character.
4922     */
4923    {
4924        int32_t i, length;
4925
4926        length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
4927        for(i=0; i<3 && i<length;) {
4928            b=*(sourceLimit-i-1);
4929            if(U8_IS_TRAIL(b)) {
4930                ++i;
4931            } else {
4932                if(i<utf8_countTrailBytes[b]) {
4933                    /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
4934                    sourceLimit-=i+1;
4935                }
4936                break;
4937            }
4938        }
4939    }
4940
4941    if(c!=0 && targetCapacity>0) {
4942        utf8->toUnicodeStatus=0;
4943        utf8->toULength=0;
4944        goto moreBytes;
4945        /*
4946         * Note: We could avoid the goto by duplicating some of the moreBytes
4947         * code, but only up to the point of collecting a complete UTF-8
4948         * sequence; then recurse for the toUBytes[toULength]
4949         * and then continue with normal conversion.
4950         *
4951         * If so, move this code to just after initializing the minimum
4952         * set of local variables for reading the UTF-8 input
4953         * (utf8, source, target, limits but not cnv, table, minValue, etc.).
4954         *
4955         * Potential advantages:
4956         * - avoid the goto
4957         * - oldToULength could become a local variable in just those code blocks
4958         *   that deal with buffer boundaries
4959         * - possibly faster if the goto prevents some compiler optimizations
4960         *   (this would need measuring to confirm)
4961         * Disadvantage:
4962         * - code duplication
4963         */
4964    }
4965
4966    /* conversion loop */
4967    while(source<sourceLimit) {
4968        if(targetCapacity>0) {
4969            b=*source++;
4970            if((int8_t)b>=0) {
4971                /* convert ASCII */
4972                if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
4973                    *target++=(uint8_t)b;
4974                    --targetCapacity;
4975                    continue;
4976                } else {
4977                    c=b;
4978                    value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
4979                }
4980            } else {
4981                if(b<0xe0) {
4982                    if( /* handle U+0080..U+07FF inline */
4983                        b>=0xc2 &&
4984                        (t1=(uint8_t)(*source-0x80)) <= 0x3f
4985                    ) {
4986                        c=b&0x1f;
4987                        ++source;
4988                        value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
4989                        if(value>=minValue) {
4990                            *target++=(uint8_t)value;
4991                            --targetCapacity;
4992                            continue;
4993                        } else {
4994                            c=(c<<6)|t1;
4995                        }
4996                    } else {
4997                        c=-1;
4998                    }
4999                } else if(b==0xe0) {
5000                    if( /* handle U+0800..U+0FFF inline */
5001                        (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5002                        (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5003                    ) {
5004                        c=t1;
5005                        source+=2;
5006                        value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5007                        if(value>=minValue) {
5008                            *target++=(uint8_t)value;
5009                            --targetCapacity;
5010                            continue;
5011                        } else {
5012                            c=(c<<6)|t2;
5013                        }
5014                    } else {
5015                        c=-1;
5016                    }
5017                } else {
5018                    c=-1;
5019                }
5020
5021                if(c<0) {
5022                    /* handle "complicated" and error cases, and continuing partial characters */
5023                    oldToULength=0;
5024                    toULength=1;
5025                    toULimit=utf8_countTrailBytes[b]+1;
5026                    c=b;
5027moreBytes:
5028                    while(toULength<toULimit) {
5029                        /*
5030                         * The sourceLimit may have been adjusted before the conversion loop
5031                         * to stop before a truncated sequence.
5032                         * Here we need to use the real limit in case we have two truncated
5033                         * sequences at the end.
5034                         * See ticket #7492.
5035                         */
5036                        if(source<(uint8_t *)pToUArgs->sourceLimit) {
5037                            b=*source;
5038                            if(U8_IS_TRAIL(b)) {
5039                                ++source;
5040                                ++toULength;
5041                                c=(c<<6)+b;
5042                            } else {
5043                                break; /* sequence too short, stop with toULength<toULimit */
5044                            }
5045                        } else {
5046                            /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5047                            source-=(toULength-oldToULength);
5048                            while(oldToULength<toULength) {
5049                                utf8->toUBytes[oldToULength++]=*source++;
5050                            }
5051                            utf8->toUnicodeStatus=c;
5052                            utf8->toULength=toULength;
5053                            utf8->mode=toULimit;
5054                            pToUArgs->source=(char *)source;
5055                            pFromUArgs->target=(char *)target;
5056                            return;
5057                        }
5058                    }
5059
5060                    if( toULength==toULimit &&      /* consumed all trail bytes */
5061                        (toULength==3 || toULength==2) &&             /* BMP */
5062                        (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5063                        (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5064                    ) {
5065                        value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5066                    } else if(
5067                        toULength==toULimit && toULength==4 &&
5068                        (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5069                    ) {
5070                        /* supplementary code point */
5071                        if(!hasSupplementary) {
5072                            /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5073                            value=0;
5074                        } else {
5075                            value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5076                        }
5077                    } else {
5078                        /* error handling: illegal UTF-8 byte sequence */
5079                        source-=(toULength-oldToULength);
5080                        while(oldToULength<toULength) {
5081                            utf8->toUBytes[oldToULength++]=*source++;
5082                        }
5083                        utf8->toULength=toULength;
5084                        pToUArgs->source=(char *)source;
5085                        pFromUArgs->target=(char *)target;
5086                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5087                        return;
5088                    }
5089                }
5090            }
5091
5092            if(value>=minValue) {
5093                /* output the mapping for c */
5094                *target++=(uint8_t)value;
5095                --targetCapacity;
5096            } else {
5097                /* value<minValue means c is unassigned (unmappable) */
5098                /*
5099                 * Try an extension mapping.
5100                 * Pass in no source because we don't have UTF-16 input.
5101                 * If we have a partial match on c, we will return and revert
5102                 * to UTF-8->UTF-16->charset conversion.
5103                 */
5104                static const UChar nul=0;
5105                const UChar *noSource=&nul;
5106                c=_extFromU(cnv, cnv->sharedData,
5107                            c, &noSource, noSource,
5108                            &target, target+targetCapacity,
5109                            NULL, -1,
5110                            pFromUArgs->flush,
5111                            pErrorCode);
5112
5113                if(U_FAILURE(*pErrorCode)) {
5114                    /* not mappable or buffer overflow */
5115                    cnv->fromUChar32=c;
5116                    break;
5117                } else if(cnv->preFromUFirstCP>=0) {
5118                    /*
5119                     * Partial match, return and revert to pivoting.
5120                     * In normal from-UTF-16 conversion, we would just continue
5121                     * but then exit the loop because the extension match would
5122                     * have consumed the source.
5123                     */
5124                    break;
5125                } else {
5126                    /* a mapping was written to the target, continue */
5127
5128                    /* recalculate the targetCapacity after an extension mapping */
5129                    targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5130                }
5131            }
5132        } else {
5133            /* target is full */
5134            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5135            break;
5136        }
5137    }
5138
5139    /*
5140     * The sourceLimit may have been adjusted before the conversion loop
5141     * to stop before a truncated sequence.
5142     * If so, then collect the truncated sequence now.
5143     */
5144    if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5145        c=utf8->toUBytes[0]=b=*source++;
5146        toULength=1;
5147        toULimit=utf8_countTrailBytes[b]+1;
5148        while(source<sourceLimit) {
5149            utf8->toUBytes[toULength++]=b=*source++;
5150            c=(c<<6)+b;
5151        }
5152        utf8->toUnicodeStatus=c;
5153        utf8->toULength=toULength;
5154        utf8->mode=toULimit;
5155    }
5156
5157    /* write back the updated pointers */
5158    pToUArgs->source=(char *)source;
5159    pFromUArgs->target=(char *)target;
5160}
5161
5162static void
5163ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5164                  UConverterToUnicodeArgs *pToUArgs,
5165                  UErrorCode *pErrorCode) {
5166    UConverter *utf8, *cnv;
5167    const uint8_t *source, *sourceLimit;
5168    uint8_t *target;
5169    int32_t targetCapacity;
5170
5171    const uint16_t *table, *mbcsIndex;
5172    const uint16_t *results;
5173
5174    int8_t oldToULength, toULength, toULimit;
5175
5176    UChar32 c;
5177    uint8_t b, t1, t2;
5178
5179    uint32_t stage2Entry;
5180    uint32_t asciiRoundtrips;
5181    uint16_t value, minValue;
5182    UBool hasSupplementary;
5183
5184    /* set up the local pointers */
5185    utf8=pToUArgs->converter;
5186    cnv=pFromUArgs->converter;
5187    source=(uint8_t *)pToUArgs->source;
5188    sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5189    target=(uint8_t *)pFromUArgs->target;
5190    targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5191
5192    table=cnv->sharedData->mbcs.fromUnicodeTable;
5193    mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5194    if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5195        results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5196    } else {
5197        results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5198    }
5199    asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5200
5201    if(cnv->useFallback) {
5202        /* use all roundtrip and fallback results */
5203        minValue=0x800;
5204    } else {
5205        /* use only roundtrips and fallbacks from private-use characters */
5206        minValue=0xc00;
5207    }
5208    hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5209
5210    /* get the converter state from the UTF-8 UConverter */
5211    c=(UChar32)utf8->toUnicodeStatus;
5212    if(c!=0) {
5213        toULength=oldToULength=utf8->toULength;
5214        toULimit=(int8_t)utf8->mode;
5215    } else {
5216        toULength=oldToULength=toULimit=0;
5217    }
5218
5219    /*
5220     * Make sure that the last byte sequence before sourceLimit is complete
5221     * or runs into a lead byte.
5222     * Do not go back into the bytes that will be read for finishing a partial
5223     * sequence from the previous buffer.
5224     * In the conversion loop compare source with sourceLimit only once
5225     * per multi-byte character.
5226     */
5227    {
5228        int32_t i, length;
5229
5230        length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5231        for(i=0; i<3 && i<length;) {
5232            b=*(sourceLimit-i-1);
5233            if(U8_IS_TRAIL(b)) {
5234                ++i;
5235            } else {
5236                if(i<utf8_countTrailBytes[b]) {
5237                    /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5238                    sourceLimit-=i+1;
5239                }
5240                break;
5241            }
5242        }
5243    }
5244
5245    if(c!=0 && targetCapacity>0) {
5246        utf8->toUnicodeStatus=0;
5247        utf8->toULength=0;
5248        goto moreBytes;
5249        /* See note in ucnv_SBCSFromUTF8() about this goto. */
5250    }
5251
5252    /* conversion loop */
5253    while(source<sourceLimit) {
5254        if(targetCapacity>0) {
5255            b=*source++;
5256            if((int8_t)b>=0) {
5257                /* convert ASCII */
5258                if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5259                    *target++=b;
5260                    --targetCapacity;
5261                    continue;
5262                } else {
5263                    value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5264                    if(value==0) {
5265                        c=b;
5266                        goto unassigned;
5267                    }
5268                }
5269            } else {
5270                if(b>0xe0) {
5271                    if( /* handle U+1000..U+D7FF inline */
5272                        (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5273                                                        (b==0xed && (t1 <= 0x1f))) &&
5274                        (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5275                    ) {
5276                        c=((b&0xf)<<6)|t1;
5277                        source+=2;
5278                        value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5279                        if(value==0) {
5280                            c=(c<<6)|t2;
5281                            goto unassigned;
5282                        }
5283                    } else {
5284                        c=-1;
5285                    }
5286                } else if(b<0xe0) {
5287                    if( /* handle U+0080..U+07FF inline */
5288                        b>=0xc2 &&
5289                        (t1=(uint8_t)(*source-0x80)) <= 0x3f
5290                    ) {
5291                        c=b&0x1f;
5292                        ++source;
5293                        value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5294                        if(value==0) {
5295                            c=(c<<6)|t1;
5296                            goto unassigned;
5297                        }
5298                    } else {
5299                        c=-1;
5300                    }
5301                } else {
5302                    c=-1;
5303                }
5304
5305                if(c<0) {
5306                    /* handle "complicated" and error cases, and continuing partial characters */
5307                    oldToULength=0;
5308                    toULength=1;
5309                    toULimit=utf8_countTrailBytes[b]+1;
5310                    c=b;
5311moreBytes:
5312                    while(toULength<toULimit) {
5313                        /*
5314                         * The sourceLimit may have been adjusted before the conversion loop
5315                         * to stop before a truncated sequence.
5316                         * Here we need to use the real limit in case we have two truncated
5317                         * sequences at the end.
5318                         * See ticket #7492.
5319                         */
5320                        if(source<(uint8_t *)pToUArgs->sourceLimit) {
5321                            b=*source;
5322                            if(U8_IS_TRAIL(b)) {
5323                                ++source;
5324                                ++toULength;
5325                                c=(c<<6)+b;
5326                            } else {
5327                                break; /* sequence too short, stop with toULength<toULimit */
5328                            }
5329                        } else {
5330                            /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5331                            source-=(toULength-oldToULength);
5332                            while(oldToULength<toULength) {
5333                                utf8->toUBytes[oldToULength++]=*source++;
5334                            }
5335                            utf8->toUnicodeStatus=c;
5336                            utf8->toULength=toULength;
5337                            utf8->mode=toULimit;
5338                            pToUArgs->source=(char *)source;
5339                            pFromUArgs->target=(char *)target;
5340                            return;
5341                        }
5342                    }
5343
5344                    if( toULength==toULimit &&      /* consumed all trail bytes */
5345                        (toULength==3 || toULength==2) &&             /* BMP */
5346                        (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5347                        (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5348                    ) {
5349                        stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5350                    } else if(
5351                        toULength==toULimit && toULength==4 &&
5352                        (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5353                    ) {
5354                        /* supplementary code point */
5355                        if(!hasSupplementary) {
5356                            /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5357                            stage2Entry=0;
5358                        } else {
5359                            stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5360                        }
5361                    } else {
5362                        /* error handling: illegal UTF-8 byte sequence */
5363                        source-=(toULength-oldToULength);
5364                        while(oldToULength<toULength) {
5365                            utf8->toUBytes[oldToULength++]=*source++;
5366                        }
5367                        utf8->toULength=toULength;
5368                        pToUArgs->source=(char *)source;
5369                        pFromUArgs->target=(char *)target;
5370                        *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5371                        return;
5372                    }
5373
5374                    /* get the bytes and the length for the output */
5375                    /* MBCS_OUTPUT_2 */
5376                    value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5377
5378                    /* is this code point assigned, or do we use fallbacks? */
5379                    if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5380                         (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5381                    ) {
5382                        goto unassigned;
5383                    }
5384                }
5385            }
5386
5387            /* write the output character bytes from value and length */
5388            /* from the first if in the loop we know that targetCapacity>0 */
5389            if(value<=0xff) {
5390                /* this is easy because we know that there is enough space */
5391                *target++=(uint8_t)value;
5392                --targetCapacity;
5393            } else /* length==2 */ {
5394                *target++=(uint8_t)(value>>8);
5395                if(2<=targetCapacity) {
5396                    *target++=(uint8_t)value;
5397                    targetCapacity-=2;
5398                } else {
5399                    cnv->charErrorBuffer[0]=(char)value;
5400                    cnv->charErrorBufferLength=1;
5401
5402                    /* target overflow */
5403                    *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5404                    break;
5405                }
5406            }
5407            continue;
5408
5409unassigned:
5410            {
5411                /*
5412                 * Try an extension mapping.
5413                 * Pass in no source because we don't have UTF-16 input.
5414                 * If we have a partial match on c, we will return and revert
5415                 * to UTF-8->UTF-16->charset conversion.
5416                 */
5417                static const UChar nul=0;
5418                const UChar *noSource=&nul;
5419                c=_extFromU(cnv, cnv->sharedData,
5420                            c, &noSource, noSource,
5421                            &target, target+targetCapacity,
5422                            NULL, -1,
5423                            pFromUArgs->flush,
5424                            pErrorCode);
5425
5426                if(U_FAILURE(*pErrorCode)) {
5427                    /* not mappable or buffer overflow */
5428                    cnv->fromUChar32=c;
5429                    break;
5430                } else if(cnv->preFromUFirstCP>=0) {
5431                    /*
5432                     * Partial match, return and revert to pivoting.
5433                     * In normal from-UTF-16 conversion, we would just continue
5434                     * but then exit the loop because the extension match would
5435                     * have consumed the source.
5436                     */
5437                    break;
5438                } else {
5439                    /* a mapping was written to the target, continue */
5440
5441                    /* recalculate the targetCapacity after an extension mapping */
5442                    targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5443                    continue;
5444                }
5445            }
5446        } else {
5447            /* target is full */
5448            *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5449            break;
5450        }
5451    }
5452
5453    /*
5454     * The sourceLimit may have been adjusted before the conversion loop
5455     * to stop before a truncated sequence.
5456     * If so, then collect the truncated sequence now.
5457     */
5458    if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5459        c=utf8->toUBytes[0]=b=*source++;
5460        toULength=1;
5461        toULimit=utf8_countTrailBytes[b]+1;
5462        while(source<sourceLimit) {
5463            utf8->toUBytes[toULength++]=b=*source++;
5464            c=(c<<6)+b;
5465        }
5466        utf8->toUnicodeStatus=c;
5467        utf8->toULength=toULength;
5468        utf8->mode=toULimit;
5469    }
5470
5471    /* write back the updated pointers */
5472    pToUArgs->source=(char *)source;
5473    pFromUArgs->target=(char *)target;
5474}
5475
5476/* miscellaneous ------------------------------------------------------------ */
5477
5478static void
5479ucnv_MBCSGetStarters(const UConverter* cnv,
5480                 UBool starters[256],
5481                 UErrorCode *pErrorCode) {
5482    const int32_t *state0;
5483    int i;
5484
5485    state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5486    for(i=0; i<256; ++i) {
5487        /* all bytes that cause a state transition from state 0 are lead bytes */
5488        starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5489    }
5490}
5491
5492/*
5493 * This is an internal function that allows other converter implementations
5494 * to check whether a byte is a lead byte.
5495 */
5496U_CFUNC UBool
5497ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5498    return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5499}
5500
5501static void
5502ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5503              int32_t offsetIndex,
5504              UErrorCode *pErrorCode) {
5505    UConverter *cnv=pArgs->converter;
5506    char *p, *subchar;
5507    char buffer[4];
5508    int32_t length;
5509
5510    /* first, select between subChar and subChar1 */
5511    if( cnv->subChar1!=0 &&
5512        (cnv->sharedData->mbcs.extIndexes!=NULL ?
5513            cnv->useSubChar1 :
5514            (cnv->invalidUCharBuffer[0]<=0xff))
5515    ) {
5516        /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5517        subchar=(char *)&cnv->subChar1;
5518        length=1;
5519    } else {
5520        /* select subChar in all other cases */
5521        subchar=(char *)cnv->subChars;
5522        length=cnv->subCharLen;
5523    }
5524
5525    /* reset the selector for the next code point */
5526    cnv->useSubChar1=FALSE;
5527
5528    if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5529        p=buffer;
5530
5531        /* fromUnicodeStatus contains prevLength */
5532        switch(length) {
5533        case 1:
5534            if(cnv->fromUnicodeStatus==2) {
5535                /* DBCS mode and SBCS sub char: change to SBCS */
5536                cnv->fromUnicodeStatus=1;
5537                *p++=UCNV_SI;
5538            }
5539            *p++=subchar[0];
5540            break;
5541        case 2:
5542            if(cnv->fromUnicodeStatus<=1) {
5543                /* SBCS mode and DBCS sub char: change to DBCS */
5544                cnv->fromUnicodeStatus=2;
5545                *p++=UCNV_SO;
5546            }
5547            *p++=subchar[0];
5548            *p++=subchar[1];
5549            break;
5550        default:
5551            *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5552            return;
5553        }
5554        subchar=buffer;
5555        length=(int32_t)(p-buffer);
5556    }
5557
5558    ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5559}
5560
5561U_CFUNC UConverterType
5562ucnv_MBCSGetType(const UConverter* converter) {
5563    /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5564    if(converter->sharedData->mbcs.countStates==1) {
5565        return (UConverterType)UCNV_SBCS;
5566    } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5567        return (UConverterType)UCNV_EBCDIC_STATEFUL;
5568    } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5569        return (UConverterType)UCNV_DBCS;
5570    }
5571    return (UConverterType)UCNV_MBCS;
5572}
5573
5574static const UConverterImpl _SBCSUTF8Impl={
5575    UCNV_MBCS,
5576
5577    ucnv_MBCSLoad,
5578    ucnv_MBCSUnload,
5579
5580    ucnv_MBCSOpen,
5581    NULL,
5582    NULL,
5583
5584    ucnv_MBCSToUnicodeWithOffsets,
5585    ucnv_MBCSToUnicodeWithOffsets,
5586    ucnv_MBCSFromUnicodeWithOffsets,
5587    ucnv_MBCSFromUnicodeWithOffsets,
5588    ucnv_MBCSGetNextUChar,
5589
5590    ucnv_MBCSGetStarters,
5591    ucnv_MBCSGetName,
5592    ucnv_MBCSWriteSub,
5593    NULL,
5594    ucnv_MBCSGetUnicodeSet,
5595
5596    NULL,
5597    ucnv_SBCSFromUTF8
5598};
5599
5600static const UConverterImpl _DBCSUTF8Impl={
5601    UCNV_MBCS,
5602
5603    ucnv_MBCSLoad,
5604    ucnv_MBCSUnload,
5605
5606    ucnv_MBCSOpen,
5607    NULL,
5608    NULL,
5609
5610    ucnv_MBCSToUnicodeWithOffsets,
5611    ucnv_MBCSToUnicodeWithOffsets,
5612    ucnv_MBCSFromUnicodeWithOffsets,
5613    ucnv_MBCSFromUnicodeWithOffsets,
5614    ucnv_MBCSGetNextUChar,
5615
5616    ucnv_MBCSGetStarters,
5617    ucnv_MBCSGetName,
5618    ucnv_MBCSWriteSub,
5619    NULL,
5620    ucnv_MBCSGetUnicodeSet,
5621
5622    NULL,
5623    ucnv_DBCSFromUTF8
5624};
5625
5626static const UConverterImpl _MBCSImpl={
5627    UCNV_MBCS,
5628
5629    ucnv_MBCSLoad,
5630    ucnv_MBCSUnload,
5631
5632    ucnv_MBCSOpen,
5633    NULL,
5634    NULL,
5635
5636    ucnv_MBCSToUnicodeWithOffsets,
5637    ucnv_MBCSToUnicodeWithOffsets,
5638    ucnv_MBCSFromUnicodeWithOffsets,
5639    ucnv_MBCSFromUnicodeWithOffsets,
5640    ucnv_MBCSGetNextUChar,
5641
5642    ucnv_MBCSGetStarters,
5643    ucnv_MBCSGetName,
5644    ucnv_MBCSWriteSub,
5645    NULL,
5646    ucnv_MBCSGetUnicodeSet
5647};
5648
5649
5650/* Static data is in tools/makeconv/ucnvstat.c for data-based
5651 * converters. Be sure to update it as well.
5652 */
5653
5654const UConverterSharedData _MBCSData={
5655    sizeof(UConverterSharedData), 1,
5656    NULL, NULL, NULL, FALSE, &_MBCSImpl,
5657    0
5658};
5659
5660#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5661