1/*
2 *	Definitions for the 'struct sk_buff' memory handlers.
3 *
4 *	Authors:
5 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *	modify it under the terms of the GNU General Public License
10 *	as published by the Free Software Foundation; either version
11 *	2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/mm.h>
26#include <linux/highmem.h>
27#include <linux/poll.h>
28#include <linux/net.h>
29#include <linux/textsearch.h>
30#include <net/checksum.h>
31#include <linux/dmaengine.h>
32
33#define HAVE_ALLOC_SKB		/* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB	/* Ditto 8)		   */
35
36#define CHECKSUM_NONE 0
37#define CHECKSUM_HW 1
38#define CHECKSUM_UNNECESSARY 2
39
40#define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
41				 ~(SMP_CACHE_BYTES - 1))
42#define SKB_MAX_ORDER(X, ORDER)	(((PAGE_SIZE << (ORDER)) - (X) - \
43				  sizeof(struct skb_shared_info)) & \
44				  ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 *	NONE: device failed to checksum this packet.
51 *		skb->csum is undefined.
52 *
53 *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 *		skb->csum is undefined.
55 *	      It is bad option, but, unfortunately, many of vendors do this.
56 *	      Apparently with secret goal to sell you new device, when you
57 *	      will add new protocol to your host. F.e. IPv6. 8)
58 *
59 *	HW: the most generic way. Device supplied checksum of _all_
60 *	    the packet as seen by netif_rx in skb->csum.
61 *	    NOTE: Even if device supports only some protocols, but
62 *	    is able to produce some skb->csum, it MUST use HW,
63 *	    not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 *	NONE: skb is checksummed by protocol or csum is not required.
68 *
69 *	HW: device is required to csum packet as seen by hard_start_xmit
70 *	from skb->h.raw to the end and to record the checksum
71 *	at skb->h.raw+skb->csum.
72 *
73 *	Device must show its capabilities in dev->features, set
74 *	at device setup time.
75 *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
76 *			  everything.
77 *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 *			  TCP/UDP over IPv4. Sigh. Vendors like this
80 *			  way by an unknown reason. Though, see comment above
81 *			  about CHECKSUM_UNNECESSARY. 8)
82 *
83 *	Any questions? No questions, good. 		--ANK
84 */
85
86struct net_device;
87
88#ifdef CONFIG_NETFILTER
89struct nf_conntrack {
90	atomic_t use;
91	void (*destroy)(struct nf_conntrack *);
92};
93
94#ifdef CONFIG_BRIDGE_NETFILTER
95struct nf_bridge_info {
96	atomic_t use;
97	struct net_device *physindev;
98	struct net_device *physoutdev;
99#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100	struct net_device *netoutdev;
101#endif
102	unsigned int mask;
103	unsigned long data[32 / sizeof(unsigned long)];
104};
105#endif
106
107#endif
108
109struct sk_buff_head {
110	/* These two members must be first. */
111	struct sk_buff	*next;
112	struct sk_buff	*prev;
113
114	__u32		qlen;
115	spinlock_t	lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126	struct page *page;
127	__u16 page_offset;
128	__u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135	atomic_t	dataref;
136	unsigned short	nr_frags;
137	unsigned short	gso_size;
138	/* Warning: this field is not always filled in (UFO)! */
139	unsigned short	gso_segs;
140	unsigned short  gso_type;
141	unsigned int    ip6_frag_id;
142	struct sk_buff	*frag_list;
143	skb_frag_t	frags[MAX_SKB_FRAGS];
144};
145
146/* We divide dataref into two halves.  The higher 16 bits hold references
147 * to the payload part of skb->data.  The lower 16 bits hold references to
148 * the entire skb->data.  It is up to the users of the skb to agree on
149 * where the payload starts.
150 *
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
153 *
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
156 */
157#define SKB_DATAREF_SHIFT 16
158#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159
160struct skb_timeval {
161	u32	off_sec;
162	u32	off_usec;
163};
164
165
166enum {
167	SKB_FCLONE_UNAVAILABLE,
168	SKB_FCLONE_ORIG,
169	SKB_FCLONE_CLONE,
170};
171
172enum {
173	SKB_GSO_TCPV4 = 1 << 0,
174	SKB_GSO_UDP = 1 << 1,
175
176	/* This indicates the skb is from an untrusted source. */
177	SKB_GSO_DODGY = 1 << 2,
178
179	/* This indicates the tcp segment has CWR set. */
180	SKB_GSO_TCP_ECN = 1 << 3,
181
182	SKB_GSO_TCPV6 = 1 << 4,
183};
184
185/**
186 *	struct sk_buff - socket buffer
187 *	@next: Next buffer in list
188 *	@prev: Previous buffer in list
189 *	@sk: Socket we are owned by
190 *	@tstamp: Time we arrived
191 *	@dev: Device we arrived on/are leaving by
192 *	@input_dev: Device we arrived on
193 *	@h: Transport layer header
194 *	@nh: Network layer header
195 *	@mac: Link layer header
196 *	@dst: destination entry
197 *	@sp: the security path, used for xfrm
198 *	@cb: Control buffer. Free for use by every layer. Put private vars here
199 *	@len: Length of actual data
200 *	@data_len: Data length
201 *	@mac_len: Length of link layer header
202 *	@csum: Checksum
203 *	@local_df: allow local fragmentation
204 *	@cloned: Head may be cloned (check refcnt to be sure)
205 *	@nohdr: Payload reference only, must not modify header
206 *	@pkt_type: Packet class
207 *	@fclone: skbuff clone status
208 *	@ip_summed: Driver fed us an IP checksum
209 *	@priority: Packet queueing priority
210 *	@users: User count - see {datagram,tcp}.c
211 *	@protocol: Packet protocol from driver
212 *	@truesize: Buffer size
213 *	@head: Head of buffer
214 *	@data: Data head pointer
215 *	@tail: Tail pointer
216 *	@end: End pointer
217 *	@destructor: Destruct function
218 *	@nfmark: Can be used for communication between hooks
219 *	@nfct: Associated connection, if any
220 *	@ipvs_property: skbuff is owned by ipvs
221 *	@nfctinfo: Relationship of this skb to the connection
222 *	@nfct_reasm: netfilter conntrack re-assembly pointer
223 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
224 *	@tc_index: Traffic control index
225 *	@tc_verd: traffic control verdict
226 *	@dma_cookie: a cookie to one of several possible DMA operations
227 *		done by skb DMA functions
228 *	@secmark: security marking
229 */
230
231struct sk_buff {
232	/* These two members must be first. */
233	struct sk_buff		*next;
234	struct sk_buff		*prev;
235
236	struct sock		*sk;
237	struct skb_timeval	tstamp;
238	struct net_device	*dev;
239	struct net_device	*input_dev;
240
241	union {
242		struct tcphdr	*th;
243		struct udphdr	*uh;
244		struct icmphdr	*icmph;
245		struct igmphdr	*igmph;
246		struct iphdr	*ipiph;
247		struct ipv6hdr	*ipv6h;
248		unsigned char	*raw;
249	} h;
250
251	union {
252		struct iphdr	*iph;
253		struct ipv6hdr	*ipv6h;
254		struct arphdr	*arph;
255		unsigned char	*raw;
256	} nh;
257
258	union {
259	  	unsigned char 	*raw;
260	} mac;
261
262	struct  dst_entry	*dst;
263	struct	sec_path	*sp;
264
265	/*
266	 * This is the control buffer. It is free to use for every
267	 * layer. Please put your private variables there. If you
268	 * want to keep them across layers you have to do a skb_clone()
269	 * first. This is owned by whoever has the skb queued ATM.
270	 */
271	char			cb[48];
272
273	unsigned int		len,
274				data_len,
275				mac_len,
276				csum;
277	__u32			priority;
278	__u8			local_df:1,
279				cloned:1,
280				ip_summed:2,
281				nohdr:1,
282				nfctinfo:3;
283	__u8			pkt_type:3,
284				fclone:2,
285				ipvs_property:1;
286	__be16			protocol;
287
288	void			(*destructor)(struct sk_buff *skb);
289#ifdef CONFIG_NETFILTER
290	struct nf_conntrack	*nfct;
291#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
292	struct sk_buff		*nfct_reasm;
293#endif
294#ifdef CONFIG_BRIDGE_NETFILTER
295	struct nf_bridge_info	*nf_bridge;
296#endif
297	__u32			nfmark;
298#endif /* CONFIG_NETFILTER */
299#ifdef CONFIG_NET_SCHED
300	__u16			tc_index;	/* traffic control index */
301#ifdef CONFIG_NET_CLS_ACT
302	__u16			tc_verd;	/* traffic control verdict */
303#endif
304#endif
305#ifdef CONFIG_NET_DMA
306	dma_cookie_t		dma_cookie;
307#endif
308#ifdef CONFIG_NETWORK_SECMARK
309	__u32			secmark;
310#endif
311
312
313	/* These elements must be at the end, see alloc_skb() for details.  */
314	unsigned int		truesize;
315	atomic_t		users;
316	unsigned char		*head,
317				*data,
318				*tail,
319				*end;
320};
321
322#ifdef __KERNEL__
323/*
324 *	Handling routines are only of interest to the kernel
325 */
326#include <linux/slab.h>
327
328#include <asm/system.h>
329
330extern void kfree_skb(struct sk_buff *skb);
331extern void	       __kfree_skb(struct sk_buff *skb);
332extern struct sk_buff *__alloc_skb(unsigned int size,
333				   gfp_t priority, int fclone);
334static inline struct sk_buff *alloc_skb(unsigned int size,
335					gfp_t priority)
336{
337	return __alloc_skb(size, priority, 0);
338}
339
340static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
341					       gfp_t priority)
342{
343	return __alloc_skb(size, priority, 1);
344}
345
346extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
347					    unsigned int size,
348					    gfp_t priority);
349extern void	       kfree_skbmem(struct sk_buff *skb);
350extern struct sk_buff *skb_clone(struct sk_buff *skb,
351				 gfp_t priority);
352extern struct sk_buff *skb_copy(const struct sk_buff *skb,
353				gfp_t priority);
354extern struct sk_buff *pskb_copy(struct sk_buff *skb,
355				 gfp_t gfp_mask);
356extern int	       pskb_expand_head(struct sk_buff *skb,
357					int nhead, int ntail,
358					gfp_t gfp_mask);
359extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
360					    unsigned int headroom);
361extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
362				       int newheadroom, int newtailroom,
363				       gfp_t priority);
364extern int	       skb_pad(struct sk_buff *skb, int pad);
365#define dev_kfree_skb(a)	kfree_skb(a)
366extern void	      skb_over_panic(struct sk_buff *skb, int len,
367				     void *here);
368extern void	      skb_under_panic(struct sk_buff *skb, int len,
369				      void *here);
370extern void	      skb_truesize_bug(struct sk_buff *skb);
371
372static inline void skb_truesize_check(struct sk_buff *skb)
373{
374	if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
375		skb_truesize_bug(skb);
376}
377
378extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
379			int getfrag(void *from, char *to, int offset,
380			int len,int odd, struct sk_buff *skb),
381			void *from, int length);
382
383struct skb_seq_state
384{
385	__u32		lower_offset;
386	__u32		upper_offset;
387	__u32		frag_idx;
388	__u32		stepped_offset;
389	struct sk_buff	*root_skb;
390	struct sk_buff	*cur_skb;
391	__u8		*frag_data;
392};
393
394extern void	      skb_prepare_seq_read(struct sk_buff *skb,
395					   unsigned int from, unsigned int to,
396					   struct skb_seq_state *st);
397extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
398				   struct skb_seq_state *st);
399extern void	      skb_abort_seq_read(struct skb_seq_state *st);
400
401extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
402				    unsigned int to, struct ts_config *config,
403				    struct ts_state *state);
404
405/* Internal */
406#define skb_shinfo(SKB)		((struct skb_shared_info *)((SKB)->end))
407
408/**
409 *	skb_queue_empty - check if a queue is empty
410 *	@list: queue head
411 *
412 *	Returns true if the queue is empty, false otherwise.
413 */
414static inline int skb_queue_empty(const struct sk_buff_head *list)
415{
416	return list->next == (struct sk_buff *)list;
417}
418
419/**
420 *	skb_get - reference buffer
421 *	@skb: buffer to reference
422 *
423 *	Makes another reference to a socket buffer and returns a pointer
424 *	to the buffer.
425 */
426static inline struct sk_buff *skb_get(struct sk_buff *skb)
427{
428	atomic_inc(&skb->users);
429	return skb;
430}
431
432/*
433 * If users == 1, we are the only owner and are can avoid redundant
434 * atomic change.
435 */
436
437/**
438 *	skb_cloned - is the buffer a clone
439 *	@skb: buffer to check
440 *
441 *	Returns true if the buffer was generated with skb_clone() and is
442 *	one of multiple shared copies of the buffer. Cloned buffers are
443 *	shared data so must not be written to under normal circumstances.
444 */
445static inline int skb_cloned(const struct sk_buff *skb)
446{
447	return skb->cloned &&
448	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
449}
450
451/**
452 *	skb_header_cloned - is the header a clone
453 *	@skb: buffer to check
454 *
455 *	Returns true if modifying the header part of the buffer requires
456 *	the data to be copied.
457 */
458static inline int skb_header_cloned(const struct sk_buff *skb)
459{
460	int dataref;
461
462	if (!skb->cloned)
463		return 0;
464
465	dataref = atomic_read(&skb_shinfo(skb)->dataref);
466	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
467	return dataref != 1;
468}
469
470/**
471 *	skb_header_release - release reference to header
472 *	@skb: buffer to operate on
473 *
474 *	Drop a reference to the header part of the buffer.  This is done
475 *	by acquiring a payload reference.  You must not read from the header
476 *	part of skb->data after this.
477 */
478static inline void skb_header_release(struct sk_buff *skb)
479{
480	BUG_ON(skb->nohdr);
481	skb->nohdr = 1;
482	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
483}
484
485/**
486 *	skb_shared - is the buffer shared
487 *	@skb: buffer to check
488 *
489 *	Returns true if more than one person has a reference to this
490 *	buffer.
491 */
492static inline int skb_shared(const struct sk_buff *skb)
493{
494	return atomic_read(&skb->users) != 1;
495}
496
497/**
498 *	skb_share_check - check if buffer is shared and if so clone it
499 *	@skb: buffer to check
500 *	@pri: priority for memory allocation
501 *
502 *	If the buffer is shared the buffer is cloned and the old copy
503 *	drops a reference. A new clone with a single reference is returned.
504 *	If the buffer is not shared the original buffer is returned. When
505 *	being called from interrupt status or with spinlocks held pri must
506 *	be GFP_ATOMIC.
507 *
508 *	NULL is returned on a memory allocation failure.
509 */
510static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
511					      gfp_t pri)
512{
513	might_sleep_if(pri & __GFP_WAIT);
514	if (skb_shared(skb)) {
515		struct sk_buff *nskb = skb_clone(skb, pri);
516		kfree_skb(skb);
517		skb = nskb;
518	}
519	return skb;
520}
521
522/*
523 *	Copy shared buffers into a new sk_buff. We effectively do COW on
524 *	packets to handle cases where we have a local reader and forward
525 *	and a couple of other messy ones. The normal one is tcpdumping
526 *	a packet thats being forwarded.
527 */
528
529/**
530 *	skb_unshare - make a copy of a shared buffer
531 *	@skb: buffer to check
532 *	@pri: priority for memory allocation
533 *
534 *	If the socket buffer is a clone then this function creates a new
535 *	copy of the data, drops a reference count on the old copy and returns
536 *	the new copy with the reference count at 1. If the buffer is not a clone
537 *	the original buffer is returned. When called with a spinlock held or
538 *	from interrupt state @pri must be %GFP_ATOMIC
539 *
540 *	%NULL is returned on a memory allocation failure.
541 */
542static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
543					  gfp_t pri)
544{
545	might_sleep_if(pri & __GFP_WAIT);
546	if (skb_cloned(skb)) {
547		struct sk_buff *nskb = skb_copy(skb, pri);
548		kfree_skb(skb);	/* Free our shared copy */
549		skb = nskb;
550	}
551	return skb;
552}
553
554/**
555 *	skb_peek
556 *	@list_: list to peek at
557 *
558 *	Peek an &sk_buff. Unlike most other operations you _MUST_
559 *	be careful with this one. A peek leaves the buffer on the
560 *	list and someone else may run off with it. You must hold
561 *	the appropriate locks or have a private queue to do this.
562 *
563 *	Returns %NULL for an empty list or a pointer to the head element.
564 *	The reference count is not incremented and the reference is therefore
565 *	volatile. Use with caution.
566 */
567static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
568{
569	struct sk_buff *list = ((struct sk_buff *)list_)->next;
570	if (list == (struct sk_buff *)list_)
571		list = NULL;
572	return list;
573}
574
575/**
576 *	skb_peek_tail
577 *	@list_: list to peek at
578 *
579 *	Peek an &sk_buff. Unlike most other operations you _MUST_
580 *	be careful with this one. A peek leaves the buffer on the
581 *	list and someone else may run off with it. You must hold
582 *	the appropriate locks or have a private queue to do this.
583 *
584 *	Returns %NULL for an empty list or a pointer to the tail element.
585 *	The reference count is not incremented and the reference is therefore
586 *	volatile. Use with caution.
587 */
588static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
589{
590	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
591	if (list == (struct sk_buff *)list_)
592		list = NULL;
593	return list;
594}
595
596/**
597 *	skb_queue_len	- get queue length
598 *	@list_: list to measure
599 *
600 *	Return the length of an &sk_buff queue.
601 */
602static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
603{
604	return list_->qlen;
605}
606
607/*
608 * This function creates a split out lock class for each invocation;
609 * this is needed for now since a whole lot of users of the skb-queue
610 * infrastructure in drivers have different locking usage (in hardirq)
611 * than the networking core (in softirq only). In the long run either the
612 * network layer or drivers should need annotation to consolidate the
613 * main types of usage into 3 classes.
614 */
615static inline void skb_queue_head_init(struct sk_buff_head *list)
616{
617	spin_lock_init(&list->lock);
618	list->prev = list->next = (struct sk_buff *)list;
619	list->qlen = 0;
620}
621
622/*
623 *	Insert an sk_buff at the start of a list.
624 *
625 *	The "__skb_xxxx()" functions are the non-atomic ones that
626 *	can only be called with interrupts disabled.
627 */
628
629/**
630 *	__skb_queue_after - queue a buffer at the list head
631 *	@list: list to use
632 *	@prev: place after this buffer
633 *	@newsk: buffer to queue
634 *
635 *	Queue a buffer int the middle of a list. This function takes no locks
636 *	and you must therefore hold required locks before calling it.
637 *
638 *	A buffer cannot be placed on two lists at the same time.
639 */
640static inline void __skb_queue_after(struct sk_buff_head *list,
641				     struct sk_buff *prev,
642				     struct sk_buff *newsk)
643{
644	struct sk_buff *next;
645	list->qlen++;
646
647	next = prev->next;
648	newsk->next = next;
649	newsk->prev = prev;
650	next->prev  = prev->next = newsk;
651}
652
653/**
654 *	__skb_queue_head - queue a buffer at the list head
655 *	@list: list to use
656 *	@newsk: buffer to queue
657 *
658 *	Queue a buffer at the start of a list. This function takes no locks
659 *	and you must therefore hold required locks before calling it.
660 *
661 *	A buffer cannot be placed on two lists at the same time.
662 */
663extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
664static inline void __skb_queue_head(struct sk_buff_head *list,
665				    struct sk_buff *newsk)
666{
667	__skb_queue_after(list, (struct sk_buff *)list, newsk);
668}
669
670/**
671 *	__skb_queue_tail - queue a buffer at the list tail
672 *	@list: list to use
673 *	@newsk: buffer to queue
674 *
675 *	Queue a buffer at the end of a list. This function takes no locks
676 *	and you must therefore hold required locks before calling it.
677 *
678 *	A buffer cannot be placed on two lists at the same time.
679 */
680extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
681static inline void __skb_queue_tail(struct sk_buff_head *list,
682				   struct sk_buff *newsk)
683{
684	struct sk_buff *prev, *next;
685
686	list->qlen++;
687	next = (struct sk_buff *)list;
688	prev = next->prev;
689	newsk->next = next;
690	newsk->prev = prev;
691	next->prev  = prev->next = newsk;
692}
693
694
695/**
696 *	__skb_dequeue - remove from the head of the queue
697 *	@list: list to dequeue from
698 *
699 *	Remove the head of the list. This function does not take any locks
700 *	so must be used with appropriate locks held only. The head item is
701 *	returned or %NULL if the list is empty.
702 */
703extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
704static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
705{
706	struct sk_buff *next, *prev, *result;
707
708	prev = (struct sk_buff *) list;
709	next = prev->next;
710	result = NULL;
711	if (next != prev) {
712		result	     = next;
713		next	     = next->next;
714		list->qlen--;
715		next->prev   = prev;
716		prev->next   = next;
717		result->next = result->prev = NULL;
718	}
719	return result;
720}
721
722
723/*
724 *	Insert a packet on a list.
725 */
726extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
727static inline void __skb_insert(struct sk_buff *newsk,
728				struct sk_buff *prev, struct sk_buff *next,
729				struct sk_buff_head *list)
730{
731	newsk->next = next;
732	newsk->prev = prev;
733	next->prev  = prev->next = newsk;
734	list->qlen++;
735}
736
737/*
738 *	Place a packet after a given packet in a list.
739 */
740extern void	   skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
741static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
742{
743	__skb_insert(newsk, old, old->next, list);
744}
745
746/*
747 * remove sk_buff from list. _Must_ be called atomically, and with
748 * the list known..
749 */
750extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
751static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
752{
753	struct sk_buff *next, *prev;
754
755	list->qlen--;
756	next	   = skb->next;
757	prev	   = skb->prev;
758	skb->next  = skb->prev = NULL;
759	next->prev = prev;
760	prev->next = next;
761}
762
763
764/* XXX: more streamlined implementation */
765
766/**
767 *	__skb_dequeue_tail - remove from the tail of the queue
768 *	@list: list to dequeue from
769 *
770 *	Remove the tail of the list. This function does not take any locks
771 *	so must be used with appropriate locks held only. The tail item is
772 *	returned or %NULL if the list is empty.
773 */
774extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
775static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
776{
777	struct sk_buff *skb = skb_peek_tail(list);
778	if (skb)
779		__skb_unlink(skb, list);
780	return skb;
781}
782
783
784static inline int skb_is_nonlinear(const struct sk_buff *skb)
785{
786	return skb->data_len;
787}
788
789static inline unsigned int skb_headlen(const struct sk_buff *skb)
790{
791	return skb->len - skb->data_len;
792}
793
794static inline int skb_pagelen(const struct sk_buff *skb)
795{
796	int i, len = 0;
797
798	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
799		len += skb_shinfo(skb)->frags[i].size;
800	return len + skb_headlen(skb);
801}
802
803static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
804				      struct page *page, int off, int size)
805{
806	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
807
808	frag->page		  = page;
809	frag->page_offset	  = off;
810	frag->size		  = size;
811	skb_shinfo(skb)->nr_frags = i + 1;
812}
813
814#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
815#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->frag_list)
816#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
817
818/*
819 *	Add data to an sk_buff
820 */
821static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
822{
823	unsigned char *tmp = skb->tail;
824	SKB_LINEAR_ASSERT(skb);
825	skb->tail += len;
826	skb->len  += len;
827	return tmp;
828}
829
830/**
831 *	skb_put - add data to a buffer
832 *	@skb: buffer to use
833 *	@len: amount of data to add
834 *
835 *	This function extends the used data area of the buffer. If this would
836 *	exceed the total buffer size the kernel will panic. A pointer to the
837 *	first byte of the extra data is returned.
838 */
839static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
840{
841	unsigned char *tmp = skb->tail;
842	SKB_LINEAR_ASSERT(skb);
843	skb->tail += len;
844	skb->len  += len;
845	if (unlikely(skb->tail>skb->end))
846		skb_over_panic(skb, len, current_text_addr());
847	return tmp;
848}
849
850static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
851{
852	skb->data -= len;
853	skb->len  += len;
854	return skb->data;
855}
856
857/**
858 *	skb_push - add data to the start of a buffer
859 *	@skb: buffer to use
860 *	@len: amount of data to add
861 *
862 *	This function extends the used data area of the buffer at the buffer
863 *	start. If this would exceed the total buffer headroom the kernel will
864 *	panic. A pointer to the first byte of the extra data is returned.
865 */
866static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
867{
868	skb->data -= len;
869	skb->len  += len;
870	if (unlikely(skb->data<skb->head))
871		skb_under_panic(skb, len, current_text_addr());
872	return skb->data;
873}
874
875static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
876{
877	skb->len -= len;
878	BUG_ON(skb->len < skb->data_len);
879	return skb->data += len;
880}
881
882/**
883 *	skb_pull - remove data from the start of a buffer
884 *	@skb: buffer to use
885 *	@len: amount of data to remove
886 *
887 *	This function removes data from the start of a buffer, returning
888 *	the memory to the headroom. A pointer to the next data in the buffer
889 *	is returned. Once the data has been pulled future pushes will overwrite
890 *	the old data.
891 */
892static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
893{
894	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
895}
896
897extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
898
899static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
900{
901	if (len > skb_headlen(skb) &&
902	    !__pskb_pull_tail(skb, len-skb_headlen(skb)))
903		return NULL;
904	skb->len -= len;
905	return skb->data += len;
906}
907
908static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
909{
910	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
911}
912
913static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
914{
915	if (likely(len <= skb_headlen(skb)))
916		return 1;
917	if (unlikely(len > skb->len))
918		return 0;
919	return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
920}
921
922/**
923 *	skb_headroom - bytes at buffer head
924 *	@skb: buffer to check
925 *
926 *	Return the number of bytes of free space at the head of an &sk_buff.
927 */
928static inline int skb_headroom(const struct sk_buff *skb)
929{
930	return skb->data - skb->head;
931}
932
933/**
934 *	skb_tailroom - bytes at buffer end
935 *	@skb: buffer to check
936 *
937 *	Return the number of bytes of free space at the tail of an sk_buff
938 */
939static inline int skb_tailroom(const struct sk_buff *skb)
940{
941	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
942}
943
944/**
945 *	skb_reserve - adjust headroom
946 *	@skb: buffer to alter
947 *	@len: bytes to move
948 *
949 *	Increase the headroom of an empty &sk_buff by reducing the tail
950 *	room. This is only allowed for an empty buffer.
951 */
952static inline void skb_reserve(struct sk_buff *skb, int len)
953{
954	skb->data += len;
955	skb->tail += len;
956}
957
958/*
959 * CPUs often take a performance hit when accessing unaligned memory
960 * locations. The actual performance hit varies, it can be small if the
961 * hardware handles it or large if we have to take an exception and fix it
962 * in software.
963 *
964 * Since an ethernet header is 14 bytes network drivers often end up with
965 * the IP header at an unaligned offset. The IP header can be aligned by
966 * shifting the start of the packet by 2 bytes. Drivers should do this
967 * with:
968 *
969 * skb_reserve(NET_IP_ALIGN);
970 *
971 * The downside to this alignment of the IP header is that the DMA is now
972 * unaligned. On some architectures the cost of an unaligned DMA is high
973 * and this cost outweighs the gains made by aligning the IP header.
974 *
975 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
976 * to be overridden.
977 */
978#ifndef NET_IP_ALIGN
979#define NET_IP_ALIGN	2
980#endif
981
982/*
983 * The networking layer reserves some headroom in skb data (via
984 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
985 * the header has to grow. In the default case, if the header has to grow
986 * 16 bytes or less we avoid the reallocation.
987 *
988 * Unfortunately this headroom changes the DMA alignment of the resulting
989 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
990 * on some architectures. An architecture can override this value,
991 * perhaps setting it to a cacheline in size (since that will maintain
992 * cacheline alignment of the DMA). It must be a power of 2.
993 *
994 * Various parts of the networking layer expect at least 16 bytes of
995 * headroom, you should not reduce this.
996 */
997#ifndef NET_SKB_PAD
998#define NET_SKB_PAD	16
999#endif
1000
1001extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1002
1003static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1004{
1005	if (unlikely(skb->data_len)) {
1006		WARN_ON(1);
1007		return;
1008	}
1009	skb->len  = len;
1010	skb->tail = skb->data + len;
1011}
1012
1013/**
1014 *	skb_trim - remove end from a buffer
1015 *	@skb: buffer to alter
1016 *	@len: new length
1017 *
1018 *	Cut the length of a buffer down by removing data from the tail. If
1019 *	the buffer is already under the length specified it is not modified.
1020 *	The skb must be linear.
1021 */
1022static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1023{
1024	if (skb->len > len)
1025		__skb_trim(skb, len);
1026}
1027
1028
1029static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1030{
1031	if (skb->data_len)
1032		return ___pskb_trim(skb, len);
1033	__skb_trim(skb, len);
1034	return 0;
1035}
1036
1037static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1038{
1039	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1040}
1041
1042/**
1043 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1044 *	@skb: buffer to alter
1045 *	@len: new length
1046 *
1047 *	This is identical to pskb_trim except that the caller knows that
1048 *	the skb is not cloned so we should never get an error due to out-
1049 *	of-memory.
1050 */
1051static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1052{
1053	int err = pskb_trim(skb, len);
1054	BUG_ON(err);
1055}
1056
1057/**
1058 *	skb_orphan - orphan a buffer
1059 *	@skb: buffer to orphan
1060 *
1061 *	If a buffer currently has an owner then we call the owner's
1062 *	destructor function and make the @skb unowned. The buffer continues
1063 *	to exist but is no longer charged to its former owner.
1064 */
1065static inline void skb_orphan(struct sk_buff *skb)
1066{
1067	if (skb->destructor)
1068		skb->destructor(skb);
1069	skb->destructor = NULL;
1070	skb->sk		= NULL;
1071}
1072
1073/**
1074 *	__skb_queue_purge - empty a list
1075 *	@list: list to empty
1076 *
1077 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1078 *	the list and one reference dropped. This function does not take the
1079 *	list lock and the caller must hold the relevant locks to use it.
1080 */
1081extern void skb_queue_purge(struct sk_buff_head *list);
1082static inline void __skb_queue_purge(struct sk_buff_head *list)
1083{
1084	struct sk_buff *skb;
1085	while ((skb = __skb_dequeue(list)) != NULL)
1086		kfree_skb(skb);
1087}
1088
1089/**
1090 *	__dev_alloc_skb - allocate an skbuff for receiving
1091 *	@length: length to allocate
1092 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1093 *
1094 *	Allocate a new &sk_buff and assign it a usage count of one. The
1095 *	buffer has unspecified headroom built in. Users should allocate
1096 *	the headroom they think they need without accounting for the
1097 *	built in space. The built in space is used for optimisations.
1098 *
1099 *	%NULL is returned if there is no free memory.
1100 */
1101static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1102					      gfp_t gfp_mask)
1103{
1104	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1105	if (likely(skb))
1106		skb_reserve(skb, NET_SKB_PAD);
1107	return skb;
1108}
1109
1110/**
1111 *	dev_alloc_skb - allocate an skbuff for receiving
1112 *	@length: length to allocate
1113 *
1114 *	Allocate a new &sk_buff and assign it a usage count of one. The
1115 *	buffer has unspecified headroom built in. Users should allocate
1116 *	the headroom they think they need without accounting for the
1117 *	built in space. The built in space is used for optimisations.
1118 *
1119 *	%NULL is returned if there is no free memory. Although this function
1120 *	allocates memory it can be called from an interrupt.
1121 */
1122static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1123{
1124	return __dev_alloc_skb(length, GFP_ATOMIC);
1125}
1126
1127extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1128		unsigned int length, gfp_t gfp_mask);
1129
1130/**
1131 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1132 *	@dev: network device to receive on
1133 *	@length: length to allocate
1134 *
1135 *	Allocate a new &sk_buff and assign it a usage count of one. The
1136 *	buffer has unspecified headroom built in. Users should allocate
1137 *	the headroom they think they need without accounting for the
1138 *	built in space. The built in space is used for optimisations.
1139 *
1140 *	%NULL is returned if there is no free memory. Although this function
1141 *	allocates memory it can be called from an interrupt.
1142 */
1143static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1144		unsigned int length)
1145{
1146	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1147}
1148
1149/**
1150 *	skb_cow - copy header of skb when it is required
1151 *	@skb: buffer to cow
1152 *	@headroom: needed headroom
1153 *
1154 *	If the skb passed lacks sufficient headroom or its data part
1155 *	is shared, data is reallocated. If reallocation fails, an error
1156 *	is returned and original skb is not changed.
1157 *
1158 *	The result is skb with writable area skb->head...skb->tail
1159 *	and at least @headroom of space at head.
1160 */
1161static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1162{
1163	int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1164			skb_headroom(skb);
1165
1166	if (delta < 0)
1167		delta = 0;
1168
1169	if (delta || skb_cloned(skb))
1170		return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1171				~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1172	return 0;
1173}
1174
1175/**
1176 *	skb_padto	- pad an skbuff up to a minimal size
1177 *	@skb: buffer to pad
1178 *	@len: minimal length
1179 *
1180 *	Pads up a buffer to ensure the trailing bytes exist and are
1181 *	blanked. If the buffer already contains sufficient data it
1182 *	is untouched. Otherwise it is extended. Returns zero on
1183 *	success. The skb is freed on error.
1184 */
1185
1186static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1187{
1188	unsigned int size = skb->len;
1189	if (likely(size >= len))
1190		return 0;
1191	return skb_pad(skb, len-size);
1192}
1193
1194static inline int skb_add_data(struct sk_buff *skb,
1195			       char __user *from, int copy)
1196{
1197	const int off = skb->len;
1198
1199	if (skb->ip_summed == CHECKSUM_NONE) {
1200		int err = 0;
1201		unsigned int csum = csum_and_copy_from_user(from,
1202							    skb_put(skb, copy),
1203							    copy, 0, &err);
1204		if (!err) {
1205			skb->csum = csum_block_add(skb->csum, csum, off);
1206			return 0;
1207		}
1208	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1209		return 0;
1210
1211	__skb_trim(skb, off);
1212	return -EFAULT;
1213}
1214
1215static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1216				   struct page *page, int off)
1217{
1218	if (i) {
1219		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1220
1221		return page == frag->page &&
1222		       off == frag->page_offset + frag->size;
1223	}
1224	return 0;
1225}
1226
1227static inline int __skb_linearize(struct sk_buff *skb)
1228{
1229	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1230}
1231
1232/**
1233 *	skb_linearize - convert paged skb to linear one
1234 *	@skb: buffer to linarize
1235 *
1236 *	If there is no free memory -ENOMEM is returned, otherwise zero
1237 *	is returned and the old skb data released.
1238 */
1239static inline int skb_linearize(struct sk_buff *skb)
1240{
1241	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1242}
1243
1244/**
1245 *	skb_linearize_cow - make sure skb is linear and writable
1246 *	@skb: buffer to process
1247 *
1248 *	If there is no free memory -ENOMEM is returned, otherwise zero
1249 *	is returned and the old skb data released.
1250 */
1251static inline int skb_linearize_cow(struct sk_buff *skb)
1252{
1253	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1254	       __skb_linearize(skb) : 0;
1255}
1256
1257/**
1258 *	skb_postpull_rcsum - update checksum for received skb after pull
1259 *	@skb: buffer to update
1260 *	@start: start of data before pull
1261 *	@len: length of data pulled
1262 *
1263 *	After doing a pull on a received packet, you need to call this to
1264 *	update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1265 *	so that it can be recomputed from scratch.
1266 */
1267
1268static inline void skb_postpull_rcsum(struct sk_buff *skb,
1269				      const void *start, unsigned int len)
1270{
1271	if (skb->ip_summed == CHECKSUM_HW)
1272		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1273}
1274
1275unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1276
1277/**
1278 *	pskb_trim_rcsum - trim received skb and update checksum
1279 *	@skb: buffer to trim
1280 *	@len: new length
1281 *
1282 *	This is exactly the same as pskb_trim except that it ensures the
1283 *	checksum of received packets are still valid after the operation.
1284 */
1285
1286static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1287{
1288	if (likely(len >= skb->len))
1289		return 0;
1290	if (skb->ip_summed == CHECKSUM_HW)
1291		skb->ip_summed = CHECKSUM_NONE;
1292	return __pskb_trim(skb, len);
1293}
1294
1295static inline void *kmap_skb_frag(const skb_frag_t *frag)
1296{
1297#ifdef CONFIG_HIGHMEM
1298	BUG_ON(in_irq());
1299
1300	local_bh_disable();
1301#endif
1302	return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1303}
1304
1305static inline void kunmap_skb_frag(void *vaddr)
1306{
1307	kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1308#ifdef CONFIG_HIGHMEM
1309	local_bh_enable();
1310#endif
1311}
1312
1313#define skb_queue_walk(queue, skb) \
1314		for (skb = (queue)->next;					\
1315		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1316		     skb = skb->next)
1317
1318#define skb_queue_reverse_walk(queue, skb) \
1319		for (skb = (queue)->prev;					\
1320		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1321		     skb = skb->prev)
1322
1323
1324extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1325					 int noblock, int *err);
1326extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1327				     struct poll_table_struct *wait);
1328extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1329					       int offset, struct iovec *to,
1330					       int size);
1331extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1332							int hlen,
1333							struct iovec *iov);
1334extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1335extern void	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1336					 unsigned int flags);
1337extern unsigned int    skb_checksum(const struct sk_buff *skb, int offset,
1338				    int len, unsigned int csum);
1339extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1340				     void *to, int len);
1341extern int	       skb_store_bits(const struct sk_buff *skb, int offset,
1342				      void *from, int len);
1343extern unsigned int    skb_copy_and_csum_bits(const struct sk_buff *skb,
1344					      int offset, u8 *to, int len,
1345					      unsigned int csum);
1346extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1347extern void	       skb_split(struct sk_buff *skb,
1348				 struct sk_buff *skb1, const u32 len);
1349
1350extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1351
1352static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1353				       int len, void *buffer)
1354{
1355	int hlen = skb_headlen(skb);
1356
1357	if (hlen - offset >= len)
1358		return skb->data + offset;
1359
1360	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1361		return NULL;
1362
1363	return buffer;
1364}
1365
1366extern void skb_init(void);
1367extern void skb_add_mtu(int mtu);
1368
1369/**
1370 *	skb_get_timestamp - get timestamp from a skb
1371 *	@skb: skb to get stamp from
1372 *	@stamp: pointer to struct timeval to store stamp in
1373 *
1374 *	Timestamps are stored in the skb as offsets to a base timestamp.
1375 *	This function converts the offset back to a struct timeval and stores
1376 *	it in stamp.
1377 */
1378static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1379{
1380	stamp->tv_sec  = skb->tstamp.off_sec;
1381	stamp->tv_usec = skb->tstamp.off_usec;
1382}
1383
1384/**
1385 * 	skb_set_timestamp - set timestamp of a skb
1386 *	@skb: skb to set stamp of
1387 *	@stamp: pointer to struct timeval to get stamp from
1388 *
1389 *	Timestamps are stored in the skb as offsets to a base timestamp.
1390 *	This function converts a struct timeval to an offset and stores
1391 *	it in the skb.
1392 */
1393static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1394{
1395	skb->tstamp.off_sec  = stamp->tv_sec;
1396	skb->tstamp.off_usec = stamp->tv_usec;
1397}
1398
1399extern void __net_timestamp(struct sk_buff *skb);
1400
1401extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1402
1403/**
1404 *	skb_checksum_complete - Calculate checksum of an entire packet
1405 *	@skb: packet to process
1406 *
1407 *	This function calculates the checksum over the entire packet plus
1408 *	the value of skb->csum.  The latter can be used to supply the
1409 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
1410 *	checksum.
1411 *
1412 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
1413 *	this function can be used to verify that checksum on received
1414 *	packets.  In that case the function should return zero if the
1415 *	checksum is correct.  In particular, this function will return zero
1416 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1417 *	hardware has already verified the correctness of the checksum.
1418 */
1419static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1420{
1421	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1422		__skb_checksum_complete(skb);
1423}
1424
1425#ifdef CONFIG_NETFILTER
1426static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1427{
1428	if (nfct && atomic_dec_and_test(&nfct->use))
1429		nfct->destroy(nfct);
1430}
1431static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1432{
1433	if (nfct)
1434		atomic_inc(&nfct->use);
1435}
1436#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1437static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1438{
1439	if (skb)
1440		atomic_inc(&skb->users);
1441}
1442static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1443{
1444	if (skb)
1445		kfree_skb(skb);
1446}
1447#endif
1448#ifdef CONFIG_BRIDGE_NETFILTER
1449static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1450{
1451	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1452		kfree(nf_bridge);
1453}
1454static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1455{
1456	if (nf_bridge)
1457		atomic_inc(&nf_bridge->use);
1458}
1459#endif /* CONFIG_BRIDGE_NETFILTER */
1460static inline void nf_reset(struct sk_buff *skb)
1461{
1462	nf_conntrack_put(skb->nfct);
1463	skb->nfct = NULL;
1464#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1465	nf_conntrack_put_reasm(skb->nfct_reasm);
1466	skb->nfct_reasm = NULL;
1467#endif
1468#ifdef CONFIG_BRIDGE_NETFILTER
1469	nf_bridge_put(skb->nf_bridge);
1470	skb->nf_bridge = NULL;
1471#endif
1472}
1473
1474#else /* CONFIG_NETFILTER */
1475static inline void nf_reset(struct sk_buff *skb) {}
1476#endif /* CONFIG_NETFILTER */
1477
1478#ifdef CONFIG_NETWORK_SECMARK
1479static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1480{
1481	to->secmark = from->secmark;
1482}
1483
1484static inline void skb_init_secmark(struct sk_buff *skb)
1485{
1486	skb->secmark = 0;
1487}
1488#else
1489static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1490{ }
1491
1492static inline void skb_init_secmark(struct sk_buff *skb)
1493{ }
1494#endif
1495
1496static inline int skb_is_gso(const struct sk_buff *skb)
1497{
1498	return skb_shinfo(skb)->gso_size;
1499}
1500
1501#endif	/* __KERNEL__ */
1502#endif	/* _LINUX_SKBUFF_H */
1503