1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70//   bool operator==(const const_iterator &) const;
71//   bool operator!=(const const_iterator &) const;
72//   bool valid() const;
73//
74//   const KeyT &start() const;
75//   const KeyT &stop() const;
76//   const ValT &value() const;
77//   const ValT &operator*() const;
78//   const ValT *operator->() const;
79//
80//   const_iterator &operator++();
81//   const_iterator &operator++(int);
82//   const_iterator &operator--();
83//   const_iterator &operator--(int);
84//   void goToBegin();
85//   void goToEnd();
86//   void find(KeyT x);
87//   void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93//   void insert(KeyT a, KeyT b, Value y);
94//   void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/SmallVector.h"
103#include "llvm/ADT/PointerIntPair.h"
104#include "llvm/Support/Allocator.h"
105#include "llvm/Support/RecyclingAllocator.h"
106#include <iterator>
107
108namespace llvm {
109
110
111//===----------------------------------------------------------------------===//
112//---                              Key traits                              ---//
113//===----------------------------------------------------------------------===//
114//
115// The IntervalMap works with closed or half-open intervals.
116// Adjacent intervals that map to the same value are coalesced.
117//
118// The IntervalMapInfo traits class is used to determine if a key is contained
119// in an interval, and if two intervals are adjacent so they can be coalesced.
120// The provided implementation works for closed integer intervals, other keys
121// probably need a specialized version.
122//
123// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
124//
125// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
126// allowed. This is so that stopLess(a, b) can be used to determine if two
127// intervals overlap.
128//
129//===----------------------------------------------------------------------===//
130
131template <typename T>
132struct IntervalMapInfo {
133
134  /// startLess - Return true if x is not in [a;b].
135  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
136  static inline bool startLess(const T &x, const T &a) {
137    return x < a;
138  }
139
140  /// stopLess - Return true if x is not in [a;b].
141  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
142  static inline bool stopLess(const T &b, const T &x) {
143    return b < x;
144  }
145
146  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
147  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
148  static inline bool adjacent(const T &a, const T &b) {
149    return a+1 == b;
150  }
151
152};
153
154/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
155/// It should be considered private to the implementation.
156namespace IntervalMapImpl {
157
158// Forward declarations.
159template <typename, typename, unsigned, typename> class LeafNode;
160template <typename, typename, unsigned, typename> class BranchNode;
161
162typedef std::pair<unsigned,unsigned> IdxPair;
163
164
165//===----------------------------------------------------------------------===//
166//---                    IntervalMapImpl::NodeBase                         ---//
167//===----------------------------------------------------------------------===//
168//
169// Both leaf and branch nodes store vectors of pairs.
170// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
171//
172// Keys and values are stored in separate arrays to avoid padding caused by
173// different object alignments. This also helps improve locality of reference
174// when searching the keys.
175//
176// The nodes don't know how many elements they contain - that information is
177// stored elsewhere. Omitting the size field prevents padding and allows a node
178// to fill the allocated cache lines completely.
179//
180// These are typical key and value sizes, the node branching factor (N), and
181// wasted space when nodes are sized to fit in three cache lines (192 bytes):
182//
183//   T1  T2   N Waste  Used by
184//    4   4  24   0    Branch<4> (32-bit pointers)
185//    8   4  16   0    Leaf<4,4>, Branch<4>
186//    8   8  12   0    Leaf<4,8>, Branch<8>
187//   16   4   9  12    Leaf<8,4>
188//   16   8   8   0    Leaf<8,8>
189//
190//===----------------------------------------------------------------------===//
191
192template <typename T1, typename T2, unsigned N>
193class NodeBase {
194public:
195  enum { Capacity = N };
196
197  T1 first[N];
198  T2 second[N];
199
200  /// copy - Copy elements from another node.
201  /// @param Other Node elements are copied from.
202  /// @param i     Beginning of the source range in other.
203  /// @param j     Beginning of the destination range in this.
204  /// @param Count Number of elements to copy.
205  template <unsigned M>
206  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
207            unsigned j, unsigned Count) {
208    assert(i + Count <= M && "Invalid source range");
209    assert(j + Count <= N && "Invalid dest range");
210    for (unsigned e = i + Count; i != e; ++i, ++j) {
211      first[j]  = Other.first[i];
212      second[j] = Other.second[i];
213    }
214  }
215
216  /// moveLeft - Move elements to the left.
217  /// @param i     Beginning of the source range.
218  /// @param j     Beginning of the destination range.
219  /// @param Count Number of elements to copy.
220  void moveLeft(unsigned i, unsigned j, unsigned Count) {
221    assert(j <= i && "Use moveRight shift elements right");
222    copy(*this, i, j, Count);
223  }
224
225  /// moveRight - Move elements to the right.
226  /// @param i     Beginning of the source range.
227  /// @param j     Beginning of the destination range.
228  /// @param Count Number of elements to copy.
229  void moveRight(unsigned i, unsigned j, unsigned Count) {
230    assert(i <= j && "Use moveLeft shift elements left");
231    assert(j + Count <= N && "Invalid range");
232    while (Count--) {
233      first[j + Count]  = first[i + Count];
234      second[j + Count] = second[i + Count];
235    }
236  }
237
238  /// erase - Erase elements [i;j).
239  /// @param i    Beginning of the range to erase.
240  /// @param j    End of the range. (Exclusive).
241  /// @param Size Number of elements in node.
242  void erase(unsigned i, unsigned j, unsigned Size) {
243    moveLeft(j, i, Size - j);
244  }
245
246  /// erase - Erase element at i.
247  /// @param i    Index of element to erase.
248  /// @param Size Number of elements in node.
249  void erase(unsigned i, unsigned Size) {
250    erase(i, i+1, Size);
251  }
252
253  /// shift - Shift elements [i;size) 1 position to the right.
254  /// @param i    Beginning of the range to move.
255  /// @param Size Number of elements in node.
256  void shift(unsigned i, unsigned Size) {
257    moveRight(i, i + 1, Size - i);
258  }
259
260  /// transferToLeftSib - Transfer elements to a left sibling node.
261  /// @param Size  Number of elements in this.
262  /// @param Sib   Left sibling node.
263  /// @param SSize Number of elements in sib.
264  /// @param Count Number of elements to transfer.
265  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
266                         unsigned Count) {
267    Sib.copy(*this, 0, SSize, Count);
268    erase(0, Count, Size);
269  }
270
271  /// transferToRightSib - Transfer elements to a right sibling node.
272  /// @param Size  Number of elements in this.
273  /// @param Sib   Right sibling node.
274  /// @param SSize Number of elements in sib.
275  /// @param Count Number of elements to transfer.
276  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
277                          unsigned Count) {
278    Sib.moveRight(0, Count, SSize);
279    Sib.copy(*this, Size-Count, 0, Count);
280  }
281
282  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283  /// elements to or from a left sibling node.
284  /// @param Size  Number of elements in this.
285  /// @param Sib   Right sibling node.
286  /// @param SSize Number of elements in sib.
287  /// @param Add   The number of elements to add to this node, possibly < 0.
288  /// @return      Number of elements added to this node, possibly negative.
289  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
290    if (Add > 0) {
291      // We want to grow, copy from sib.
292      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293      Sib.transferToRightSib(SSize, *this, Size, Count);
294      return Count;
295    } else {
296      // We want to shrink, copy to sib.
297      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298      transferToLeftSib(Size, Sib, SSize, Count);
299      return -Count;
300    }
301  }
302};
303
304/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
305/// @param Node  Array of pointers to sibling nodes.
306/// @param Nodes Number of nodes.
307/// @param CurSize Array of current node sizes, will be overwritten.
308/// @param NewSize Array of desired node sizes.
309template <typename NodeT>
310void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311                        unsigned CurSize[], const unsigned NewSize[]) {
312  // Move elements right.
313  for (int n = Nodes - 1; n; --n) {
314    if (CurSize[n] == NewSize[n])
315      continue;
316    for (int m = n - 1; m != -1; --m) {
317      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318                                         NewSize[n] - CurSize[n]);
319      CurSize[m] -= d;
320      CurSize[n] += d;
321      // Keep going if the current node was exhausted.
322      if (CurSize[n] >= NewSize[n])
323          break;
324    }
325  }
326
327  if (Nodes == 0)
328    return;
329
330  // Move elements left.
331  for (unsigned n = 0; n != Nodes - 1; ++n) {
332    if (CurSize[n] == NewSize[n])
333      continue;
334    for (unsigned m = n + 1; m != Nodes; ++m) {
335      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336                                        CurSize[n] -  NewSize[n]);
337      CurSize[m] += d;
338      CurSize[n] -= d;
339      // Keep going if the current node was exhausted.
340      if (CurSize[n] >= NewSize[n])
341          break;
342    }
343  }
344
345#ifndef NDEBUG
346  for (unsigned n = 0; n != Nodes; n++)
347    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
348#endif
349}
350
351/// IntervalMapImpl::distribute - Compute a new distribution of node elements
352/// after an overflow or underflow. Reserve space for a new element at Position,
353/// and compute the node that will hold Position after redistributing node
354/// elements.
355///
356/// It is required that
357///
358///   Elements == sum(CurSize), and
359///   Elements + Grow <= Nodes * Capacity.
360///
361/// NewSize[] will be filled in such that:
362///
363///   sum(NewSize) == Elements, and
364///   NewSize[i] <= Capacity.
365///
366/// The returned index is the node where Position will go, so:
367///
368///   sum(NewSize[0..idx-1]) <= Position
369///   sum(NewSize[0..idx])   >= Position
370///
371/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
372/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
373/// before the one holding the Position'th element where there is room for an
374/// insertion.
375///
376/// @param Nodes    The number of nodes.
377/// @param Elements Total elements in all nodes.
378/// @param Capacity The capacity of each node.
379/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
380/// @param NewSize  Array[Nodes] to receive the new node sizes.
381/// @param Position Insert position.
382/// @param Grow     Reserve space for a new element at Position.
383/// @return         (node, offset) for Position.
384IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
385                   const unsigned *CurSize, unsigned NewSize[],
386                   unsigned Position, bool Grow);
387
388
389//===----------------------------------------------------------------------===//
390//---                   IntervalMapImpl::NodeSizer                         ---//
391//===----------------------------------------------------------------------===//
392//
393// Compute node sizes from key and value types.
394//
395// The branching factors are chosen to make nodes fit in three cache lines.
396// This may not be possible if keys or values are very large. Such large objects
397// are handled correctly, but a std::map would probably give better performance.
398//
399//===----------------------------------------------------------------------===//
400
401enum {
402  // Cache line size. Most architectures have 32 or 64 byte cache lines.
403  // We use 64 bytes here because it provides good branching factors.
404  Log2CacheLine = 6,
405  CacheLineBytes = 1 << Log2CacheLine,
406  DesiredNodeBytes = 3 * CacheLineBytes
407};
408
409template <typename KeyT, typename ValT>
410struct NodeSizer {
411  enum {
412    // Compute the leaf node branching factor that makes a node fit in three
413    // cache lines. The branching factor must be at least 3, or some B+-tree
414    // balancing algorithms won't work.
415    // LeafSize can't be larger than CacheLineBytes. This is required by the
416    // PointerIntPair used by NodeRef.
417    DesiredLeafSize = DesiredNodeBytes /
418      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
419    MinLeafSize = 3,
420    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
421  };
422
423  typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
424
425  enum {
426    // Now that we have the leaf branching factor, compute the actual allocation
427    // unit size by rounding up to a whole number of cache lines.
428    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
429
430    // Determine the branching factor for branch nodes.
431    BranchSize = AllocBytes /
432      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
433  };
434
435  /// Allocator - The recycling allocator used for both branch and leaf nodes.
436  /// This typedef is very likely to be identical for all IntervalMaps with
437  /// reasonably sized entries, so the same allocator can be shared among
438  /// different kinds of maps.
439  typedef RecyclingAllocator<BumpPtrAllocator, char,
440                             AllocBytes, CacheLineBytes> Allocator;
441
442};
443
444
445//===----------------------------------------------------------------------===//
446//---                     IntervalMapImpl::NodeRef                         ---//
447//===----------------------------------------------------------------------===//
448//
449// B+-tree nodes can be leaves or branches, so we need a polymorphic node
450// pointer that can point to both kinds.
451//
452// All nodes are cache line aligned and the low 6 bits of a node pointer are
453// always 0. These bits are used to store the number of elements in the
454// referenced node. Besides saving space, placing node sizes in the parents
455// allow tree balancing algorithms to run without faulting cache lines for nodes
456// that may not need to be modified.
457//
458// A NodeRef doesn't know whether it references a leaf node or a branch node.
459// It is the responsibility of the caller to use the correct types.
460//
461// Nodes are never supposed to be empty, and it is invalid to store a node size
462// of 0 in a NodeRef. The valid range of sizes is 1-64.
463//
464//===----------------------------------------------------------------------===//
465
466class NodeRef {
467  struct CacheAlignedPointerTraits {
468    static inline void *getAsVoidPointer(void *P) { return P; }
469    static inline void *getFromVoidPointer(void *P) { return P; }
470    enum { NumLowBitsAvailable = Log2CacheLine };
471  };
472  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
473
474public:
475  /// NodeRef - Create a null ref.
476  NodeRef() {}
477
478  /// operator bool - Detect a null ref.
479  operator bool() const { return pip.getOpaqueValue(); }
480
481  /// NodeRef - Create a reference to the node p with n elements.
482  template <typename NodeT>
483  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484    assert(n <= NodeT::Capacity && "Size too big for node");
485  }
486
487  /// size - Return the number of elements in the referenced node.
488  unsigned size() const { return pip.getInt() + 1; }
489
490  /// setSize - Update the node size.
491  void setSize(unsigned n) { pip.setInt(n - 1); }
492
493  /// subtree - Access the i'th subtree reference in a branch node.
494  /// This depends on branch nodes storing the NodeRef array as their first
495  /// member.
496  NodeRef &subtree(unsigned i) const {
497    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
498  }
499
500  /// get - Dereference as a NodeT reference.
501  template <typename NodeT>
502  NodeT &get() const {
503    return *reinterpret_cast<NodeT*>(pip.getPointer());
504  }
505
506  bool operator==(const NodeRef &RHS) const {
507    if (pip == RHS.pip)
508      return true;
509    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
510    return false;
511  }
512
513  bool operator!=(const NodeRef &RHS) const {
514    return !operator==(RHS);
515  }
516};
517
518//===----------------------------------------------------------------------===//
519//---                      IntervalMapImpl::LeafNode                       ---//
520//===----------------------------------------------------------------------===//
521//
522// Leaf nodes store up to N disjoint intervals with corresponding values.
523//
524// The intervals are kept sorted and fully coalesced so there are no adjacent
525// intervals mapping to the same value.
526//
527// These constraints are always satisfied:
528//
529// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
530//
531// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
532//
533// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534//                                          - Fully coalesced.
535//
536//===----------------------------------------------------------------------===//
537
538template <typename KeyT, typename ValT, unsigned N, typename Traits>
539class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
540public:
541  const KeyT &start(unsigned i) const { return this->first[i].first; }
542  const KeyT &stop(unsigned i) const { return this->first[i].second; }
543  const ValT &value(unsigned i) const { return this->second[i]; }
544
545  KeyT &start(unsigned i) { return this->first[i].first; }
546  KeyT &stop(unsigned i) { return this->first[i].second; }
547  ValT &value(unsigned i) { return this->second[i]; }
548
549  /// findFrom - Find the first interval after i that may contain x.
550  /// @param i    Starting index for the search.
551  /// @param Size Number of elements in node.
552  /// @param x    Key to search for.
553  /// @return     First index with !stopLess(key[i].stop, x), or size.
554  ///             This is the first interval that can possibly contain x.
555  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556    assert(i <= Size && Size <= N && "Bad indices");
557    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558           "Index is past the needed point");
559    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
560    return i;
561  }
562
563  /// safeFind - Find an interval that is known to exist. This is the same as
564  /// findFrom except is it assumed that x is at least within range of the last
565  /// interval.
566  /// @param i Starting index for the search.
567  /// @param x Key to search for.
568  /// @return  First index with !stopLess(key[i].stop, x), never size.
569  ///          This is the first interval that can possibly contain x.
570  unsigned safeFind(unsigned i, KeyT x) const {
571    assert(i < N && "Bad index");
572    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573           "Index is past the needed point");
574    while (Traits::stopLess(stop(i), x)) ++i;
575    assert(i < N && "Unsafe intervals");
576    return i;
577  }
578
579  /// safeLookup - Lookup mapped value for a safe key.
580  /// It is assumed that x is within range of the last entry.
581  /// @param x        Key to search for.
582  /// @param NotFound Value to return if x is not in any interval.
583  /// @return         The mapped value at x or NotFound.
584  ValT safeLookup(KeyT x, ValT NotFound) const {
585    unsigned i = safeFind(0, x);
586    return Traits::startLess(x, start(i)) ? NotFound : value(i);
587  }
588
589  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
590};
591
592/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
593/// possible. This may cause the node to grow by 1, or it may cause the node
594/// to shrink because of coalescing.
595/// @param i    Starting index = insertFrom(0, size, a)
596/// @param Size Number of elements in node.
597/// @param a    Interval start.
598/// @param b    Interval stop.
599/// @param y    Value be mapped.
600/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
601template <typename KeyT, typename ValT, unsigned N, typename Traits>
602unsigned LeafNode<KeyT, ValT, N, Traits>::
603insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
604  unsigned i = Pos;
605  assert(i <= Size && Size <= N && "Invalid index");
606  assert(!Traits::stopLess(b, a) && "Invalid interval");
607
608  // Verify the findFrom invariant.
609  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
610  assert((i == Size || !Traits::stopLess(stop(i), a)));
611  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
612
613  // Coalesce with previous interval.
614  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
615    Pos = i - 1;
616    // Also coalesce with next interval?
617    if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
618      stop(i - 1) = stop(i);
619      this->erase(i, Size);
620      return Size - 1;
621    }
622    stop(i - 1) = b;
623    return Size;
624  }
625
626  // Detect overflow.
627  if (i == N)
628    return N + 1;
629
630  // Add new interval at end.
631  if (i == Size) {
632    start(i) = a;
633    stop(i) = b;
634    value(i) = y;
635    return Size + 1;
636  }
637
638  // Try to coalesce with following interval.
639  if (value(i) == y && Traits::adjacent(b, start(i))) {
640    start(i) = a;
641    return Size;
642  }
643
644  // We must insert before i. Detect overflow.
645  if (Size == N)
646    return N + 1;
647
648  // Insert before i.
649  this->shift(i, Size);
650  start(i) = a;
651  stop(i) = b;
652  value(i) = y;
653  return Size + 1;
654}
655
656
657//===----------------------------------------------------------------------===//
658//---                   IntervalMapImpl::BranchNode                        ---//
659//===----------------------------------------------------------------------===//
660//
661// A branch node stores references to 1--N subtrees all of the same height.
662//
663// The key array in a branch node holds the rightmost stop key of each subtree.
664// It is redundant to store the last stop key since it can be found in the
665// parent node, but doing so makes tree balancing a lot simpler.
666//
667// It is unusual for a branch node to only have one subtree, but it can happen
668// in the root node if it is smaller than the normal nodes.
669//
670// When all of the leaf nodes from all the subtrees are concatenated, they must
671// satisfy the same constraints as a single leaf node. They must be sorted,
672// sane, and fully coalesced.
673//
674//===----------------------------------------------------------------------===//
675
676template <typename KeyT, typename ValT, unsigned N, typename Traits>
677class BranchNode : public NodeBase<NodeRef, KeyT, N> {
678public:
679  const KeyT &stop(unsigned i) const { return this->second[i]; }
680  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
681
682  KeyT &stop(unsigned i) { return this->second[i]; }
683  NodeRef &subtree(unsigned i) { return this->first[i]; }
684
685  /// findFrom - Find the first subtree after i that may contain x.
686  /// @param i    Starting index for the search.
687  /// @param Size Number of elements in node.
688  /// @param x    Key to search for.
689  /// @return     First index with !stopLess(key[i], x), or size.
690  ///             This is the first subtree that can possibly contain x.
691  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
692    assert(i <= Size && Size <= N && "Bad indices");
693    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
694           "Index to findFrom is past the needed point");
695    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
696    return i;
697  }
698
699  /// safeFind - Find a subtree that is known to exist. This is the same as
700  /// findFrom except is it assumed that x is in range.
701  /// @param i Starting index for the search.
702  /// @param x Key to search for.
703  /// @return  First index with !stopLess(key[i], x), never size.
704  ///          This is the first subtree that can possibly contain x.
705  unsigned safeFind(unsigned i, KeyT x) const {
706    assert(i < N && "Bad index");
707    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
708           "Index is past the needed point");
709    while (Traits::stopLess(stop(i), x)) ++i;
710    assert(i < N && "Unsafe intervals");
711    return i;
712  }
713
714  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
715  /// @param x Key to search for.
716  /// @return  Subtree containing x
717  NodeRef safeLookup(KeyT x) const {
718    return subtree(safeFind(0, x));
719  }
720
721  /// insert - Insert a new (subtree, stop) pair.
722  /// @param i    Insert position, following entries will be shifted.
723  /// @param Size Number of elements in node.
724  /// @param Node Subtree to insert.
725  /// @param Stop Last key in subtree.
726  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
727    assert(Size < N && "branch node overflow");
728    assert(i <= Size && "Bad insert position");
729    this->shift(i, Size);
730    subtree(i) = Node;
731    stop(i) = Stop;
732  }
733};
734
735//===----------------------------------------------------------------------===//
736//---                         IntervalMapImpl::Path                        ---//
737//===----------------------------------------------------------------------===//
738//
739// A Path is used by iterators to represent a position in a B+-tree, and the
740// path to get there from the root.
741//
742// The Path class also contains the tree navigation code that doesn't have to
743// be templatized.
744//
745//===----------------------------------------------------------------------===//
746
747class Path {
748  /// Entry - Each step in the path is a node pointer and an offset into that
749  /// node.
750  struct Entry {
751    void *node;
752    unsigned size;
753    unsigned offset;
754
755    Entry(void *Node, unsigned Size, unsigned Offset)
756      : node(Node), size(Size), offset(Offset) {}
757
758    Entry(NodeRef Node, unsigned Offset)
759      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
760
761    NodeRef &subtree(unsigned i) const {
762      return reinterpret_cast<NodeRef*>(node)[i];
763    }
764  };
765
766  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
767  SmallVector<Entry, 4> path;
768
769public:
770  // Node accessors.
771  template <typename NodeT> NodeT &node(unsigned Level) const {
772    return *reinterpret_cast<NodeT*>(path[Level].node);
773  }
774  unsigned size(unsigned Level) const { return path[Level].size; }
775  unsigned offset(unsigned Level) const { return path[Level].offset; }
776  unsigned &offset(unsigned Level) { return path[Level].offset; }
777
778  // Leaf accessors.
779  template <typename NodeT> NodeT &leaf() const {
780    return *reinterpret_cast<NodeT*>(path.back().node);
781  }
782  unsigned leafSize() const { return path.back().size; }
783  unsigned leafOffset() const { return path.back().offset; }
784  unsigned &leafOffset() { return path.back().offset; }
785
786  /// valid - Return true if path is at a valid node, not at end().
787  bool valid() const {
788    return !path.empty() && path.front().offset < path.front().size;
789  }
790
791  /// height - Return the height of the tree corresponding to this path.
792  /// This matches map->height in a full path.
793  unsigned height() const { return path.size() - 1; }
794
795  /// subtree - Get the subtree referenced from Level. When the path is
796  /// consistent, node(Level + 1) == subtree(Level).
797  /// @param Level 0..height-1. The leaves have no subtrees.
798  NodeRef &subtree(unsigned Level) const {
799    return path[Level].subtree(path[Level].offset);
800  }
801
802  /// reset - Reset cached information about node(Level) from subtree(Level -1).
803  /// @param Level 1..height. THe node to update after parent node changed.
804  void reset(unsigned Level) {
805    path[Level] = Entry(subtree(Level - 1), offset(Level));
806  }
807
808  /// push - Add entry to path.
809  /// @param Node Node to add, should be subtree(path.size()-1).
810  /// @param Offset Offset into Node.
811  void push(NodeRef Node, unsigned Offset) {
812    path.push_back(Entry(Node, Offset));
813  }
814
815  /// pop - Remove the last path entry.
816  void pop() {
817    path.pop_back();
818  }
819
820  /// setSize - Set the size of a node both in the path and in the tree.
821  /// @param Level 0..height. Note that setting the root size won't change
822  ///              map->rootSize.
823  /// @param Size New node size.
824  void setSize(unsigned Level, unsigned Size) {
825    path[Level].size = Size;
826    if (Level)
827      subtree(Level - 1).setSize(Size);
828  }
829
830  /// setRoot - Clear the path and set a new root node.
831  /// @param Node New root node.
832  /// @param Size New root size.
833  /// @param Offset Offset into root node.
834  void setRoot(void *Node, unsigned Size, unsigned Offset) {
835    path.clear();
836    path.push_back(Entry(Node, Size, Offset));
837  }
838
839  /// replaceRoot - Replace the current root node with two new entries after the
840  /// tree height has increased.
841  /// @param Root The new root node.
842  /// @param Size Number of entries in the new root.
843  /// @param Offsets Offsets into the root and first branch nodes.
844  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
845
846  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
847  /// @param Level Get the sibling to node(Level).
848  /// @return Left sibling, or NodeRef().
849  NodeRef getLeftSibling(unsigned Level) const;
850
851  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
852  /// unaltered.
853  /// @param Level Move node(Level).
854  void moveLeft(unsigned Level);
855
856  /// fillLeft - Grow path to Height by taking leftmost branches.
857  /// @param Height The target height.
858  void fillLeft(unsigned Height) {
859    while (height() < Height)
860      push(subtree(height()), 0);
861  }
862
863  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
864  /// @param Level Get the sinbling to node(Level).
865  /// @return Left sibling, or NodeRef().
866  NodeRef getRightSibling(unsigned Level) const;
867
868  /// moveRight - Move path to the left sibling at Level. Leave nodes below
869  /// Level unaltered.
870  /// @param Level Move node(Level).
871  void moveRight(unsigned Level);
872
873  /// atBegin - Return true if path is at begin().
874  bool atBegin() const {
875    for (unsigned i = 0, e = path.size(); i != e; ++i)
876      if (path[i].offset != 0)
877        return false;
878    return true;
879  }
880
881  /// atLastEntry - Return true if the path is at the last entry of the node at
882  /// Level.
883  /// @param Level Node to examine.
884  bool atLastEntry(unsigned Level) const {
885    return path[Level].offset == path[Level].size - 1;
886  }
887
888  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
889  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
890  /// ensures that node(Level) is real by moving back to the last node at Level,
891  /// and setting offset(Level) to size(Level) if required.
892  /// @param Level The level where an insertion is about to take place.
893  void legalizeForInsert(unsigned Level) {
894    if (valid())
895      return;
896    moveLeft(Level);
897    ++path[Level].offset;
898  }
899};
900
901} // namespace IntervalMapImpl
902
903
904//===----------------------------------------------------------------------===//
905//---                          IntervalMap                                ----//
906//===----------------------------------------------------------------------===//
907
908template <typename KeyT, typename ValT,
909          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
910          typename Traits = IntervalMapInfo<KeyT> >
911class IntervalMap {
912  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
913  typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
914  typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
915    Branch;
916  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
917  typedef IntervalMapImpl::IdxPair IdxPair;
918
919  // The RootLeaf capacity is given as a template parameter. We must compute the
920  // corresponding RootBranch capacity.
921  enum {
922    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
923      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
924    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
925  };
926
927  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
928    RootBranch;
929
930  // When branched, we store a global start key as well as the branch node.
931  struct RootBranchData {
932    KeyT start;
933    RootBranch node;
934  };
935
936  enum {
937    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
938                   sizeof(RootBranchData) : sizeof(RootLeaf)
939  };
940
941public:
942  typedef typename Sizer::Allocator Allocator;
943  typedef KeyT KeyType;
944  typedef ValT ValueType;
945  typedef Traits KeyTraits;
946
947private:
948  // The root data is either a RootLeaf or a RootBranchData instance.
949  // We can't put them in a union since C++03 doesn't allow non-trivial
950  // constructors in unions.
951  // Instead, we use a char array with pointer alignment. The alignment is
952  // ensured by the allocator member in the class, but still verified in the
953  // constructor. We don't support keys or values that are more aligned than a
954  // pointer.
955  char data[RootDataSize];
956
957  // Tree height.
958  // 0: Leaves in root.
959  // 1: Root points to leaf.
960  // 2: root->branch->leaf ...
961  unsigned height;
962
963  // Number of entries in the root node.
964  unsigned rootSize;
965
966  // Allocator used for creating external nodes.
967  Allocator &allocator;
968
969  /// dataAs - Represent data as a node type without breaking aliasing rules.
970  template <typename T>
971  T &dataAs() const {
972    union {
973      const char *d;
974      T *t;
975    } u;
976    u.d = data;
977    return *u.t;
978  }
979
980  const RootLeaf &rootLeaf() const {
981    assert(!branched() && "Cannot acces leaf data in branched root");
982    return dataAs<RootLeaf>();
983  }
984  RootLeaf &rootLeaf() {
985    assert(!branched() && "Cannot acces leaf data in branched root");
986    return dataAs<RootLeaf>();
987  }
988  RootBranchData &rootBranchData() const {
989    assert(branched() && "Cannot access branch data in non-branched root");
990    return dataAs<RootBranchData>();
991  }
992  RootBranchData &rootBranchData() {
993    assert(branched() && "Cannot access branch data in non-branched root");
994    return dataAs<RootBranchData>();
995  }
996  const RootBranch &rootBranch() const { return rootBranchData().node; }
997  RootBranch &rootBranch()             { return rootBranchData().node; }
998  KeyT rootBranchStart() const { return rootBranchData().start; }
999  KeyT &rootBranchStart()      { return rootBranchData().start; }
1000
1001  template <typename NodeT> NodeT *newNode() {
1002    return new(allocator.template Allocate<NodeT>()) NodeT();
1003  }
1004
1005  template <typename NodeT> void deleteNode(NodeT *P) {
1006    P->~NodeT();
1007    allocator.Deallocate(P);
1008  }
1009
1010  IdxPair branchRoot(unsigned Position);
1011  IdxPair splitRoot(unsigned Position);
1012
1013  void switchRootToBranch() {
1014    rootLeaf().~RootLeaf();
1015    height = 1;
1016    new (&rootBranchData()) RootBranchData();
1017  }
1018
1019  void switchRootToLeaf() {
1020    rootBranchData().~RootBranchData();
1021    height = 0;
1022    new(&rootLeaf()) RootLeaf();
1023  }
1024
1025  bool branched() const { return height > 0; }
1026
1027  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1028  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1029                  unsigned Level));
1030  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1031
1032public:
1033  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1034    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1035           "Insufficient alignment");
1036    new(&rootLeaf()) RootLeaf();
1037  }
1038
1039  ~IntervalMap() {
1040    clear();
1041    rootLeaf().~RootLeaf();
1042  }
1043
1044  /// empty -  Return true when no intervals are mapped.
1045  bool empty() const {
1046    return rootSize == 0;
1047  }
1048
1049  /// start - Return the smallest mapped key in a non-empty map.
1050  KeyT start() const {
1051    assert(!empty() && "Empty IntervalMap has no start");
1052    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1053  }
1054
1055  /// stop - Return the largest mapped key in a non-empty map.
1056  KeyT stop() const {
1057    assert(!empty() && "Empty IntervalMap has no stop");
1058    return !branched() ? rootLeaf().stop(rootSize - 1) :
1059                         rootBranch().stop(rootSize - 1);
1060  }
1061
1062  /// lookup - Return the mapped value at x or NotFound.
1063  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1064    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1065      return NotFound;
1066    return branched() ? treeSafeLookup(x, NotFound) :
1067                        rootLeaf().safeLookup(x, NotFound);
1068  }
1069
1070  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1071  /// It is assumed that no key in the interval is mapped to another value, but
1072  /// overlapping intervals already mapped to y will be coalesced.
1073  void insert(KeyT a, KeyT b, ValT y) {
1074    if (branched() || rootSize == RootLeaf::Capacity)
1075      return find(a).insert(a, b, y);
1076
1077    // Easy insert into root leaf.
1078    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1079    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1080  }
1081
1082  /// clear - Remove all entries.
1083  void clear();
1084
1085  class const_iterator;
1086  class iterator;
1087  friend class const_iterator;
1088  friend class iterator;
1089
1090  const_iterator begin() const {
1091    const_iterator I(*this);
1092    I.goToBegin();
1093    return I;
1094  }
1095
1096  iterator begin() {
1097    iterator I(*this);
1098    I.goToBegin();
1099    return I;
1100  }
1101
1102  const_iterator end() const {
1103    const_iterator I(*this);
1104    I.goToEnd();
1105    return I;
1106  }
1107
1108  iterator end() {
1109    iterator I(*this);
1110    I.goToEnd();
1111    return I;
1112  }
1113
1114  /// find - Return an iterator pointing to the first interval ending at or
1115  /// after x, or end().
1116  const_iterator find(KeyT x) const {
1117    const_iterator I(*this);
1118    I.find(x);
1119    return I;
1120  }
1121
1122  iterator find(KeyT x) {
1123    iterator I(*this);
1124    I.find(x);
1125    return I;
1126  }
1127};
1128
1129/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1130/// branched root.
1131template <typename KeyT, typename ValT, unsigned N, typename Traits>
1132ValT IntervalMap<KeyT, ValT, N, Traits>::
1133treeSafeLookup(KeyT x, ValT NotFound) const {
1134  assert(branched() && "treeLookup assumes a branched root");
1135
1136  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1137  for (unsigned h = height-1; h; --h)
1138    NR = NR.get<Branch>().safeLookup(x);
1139  return NR.get<Leaf>().safeLookup(x, NotFound);
1140}
1141
1142
1143// branchRoot - Switch from a leaf root to a branched root.
1144// Return the new (root offset, node offset) corresponding to Position.
1145template <typename KeyT, typename ValT, unsigned N, typename Traits>
1146IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1147branchRoot(unsigned Position) {
1148  using namespace IntervalMapImpl;
1149  // How many external leaf nodes to hold RootLeaf+1?
1150  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1151
1152  // Compute element distribution among new nodes.
1153  unsigned size[Nodes];
1154  IdxPair NewOffset(0, Position);
1155
1156  // Is is very common for the root node to be smaller than external nodes.
1157  if (Nodes == 1)
1158    size[0] = rootSize;
1159  else
1160    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
1161                           Position, true);
1162
1163  // Allocate new nodes.
1164  unsigned pos = 0;
1165  NodeRef node[Nodes];
1166  for (unsigned n = 0; n != Nodes; ++n) {
1167    Leaf *L = newNode<Leaf>();
1168    L->copy(rootLeaf(), pos, 0, size[n]);
1169    node[n] = NodeRef(L, size[n]);
1170    pos += size[n];
1171  }
1172
1173  // Destroy the old leaf node, construct branch node instead.
1174  switchRootToBranch();
1175  for (unsigned n = 0; n != Nodes; ++n) {
1176    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1177    rootBranch().subtree(n) = node[n];
1178  }
1179  rootBranchStart() = node[0].template get<Leaf>().start(0);
1180  rootSize = Nodes;
1181  return NewOffset;
1182}
1183
1184// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1185// Return the new (root offset, node offset) corresponding to Position.
1186template <typename KeyT, typename ValT, unsigned N, typename Traits>
1187IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1188splitRoot(unsigned Position) {
1189  using namespace IntervalMapImpl;
1190  // How many external leaf nodes to hold RootBranch+1?
1191  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1192
1193  // Compute element distribution among new nodes.
1194  unsigned Size[Nodes];
1195  IdxPair NewOffset(0, Position);
1196
1197  // Is is very common for the root node to be smaller than external nodes.
1198  if (Nodes == 1)
1199    Size[0] = rootSize;
1200  else
1201    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
1202                           Position, true);
1203
1204  // Allocate new nodes.
1205  unsigned Pos = 0;
1206  NodeRef Node[Nodes];
1207  for (unsigned n = 0; n != Nodes; ++n) {
1208    Branch *B = newNode<Branch>();
1209    B->copy(rootBranch(), Pos, 0, Size[n]);
1210    Node[n] = NodeRef(B, Size[n]);
1211    Pos += Size[n];
1212  }
1213
1214  for (unsigned n = 0; n != Nodes; ++n) {
1215    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1216    rootBranch().subtree(n) = Node[n];
1217  }
1218  rootSize = Nodes;
1219  ++height;
1220  return NewOffset;
1221}
1222
1223/// visitNodes - Visit each external node.
1224template <typename KeyT, typename ValT, unsigned N, typename Traits>
1225void IntervalMap<KeyT, ValT, N, Traits>::
1226visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1227  if (!branched())
1228    return;
1229  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1230
1231  // Collect level 0 nodes from the root.
1232  for (unsigned i = 0; i != rootSize; ++i)
1233    Refs.push_back(rootBranch().subtree(i));
1234
1235  // Visit all branch nodes.
1236  for (unsigned h = height - 1; h; --h) {
1237    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1238      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1239        NextRefs.push_back(Refs[i].subtree(j));
1240      (this->*f)(Refs[i], h);
1241    }
1242    Refs.clear();
1243    Refs.swap(NextRefs);
1244  }
1245
1246  // Visit all leaf nodes.
1247  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1248    (this->*f)(Refs[i], 0);
1249}
1250
1251template <typename KeyT, typename ValT, unsigned N, typename Traits>
1252void IntervalMap<KeyT, ValT, N, Traits>::
1253deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1254  if (Level)
1255    deleteNode(&Node.get<Branch>());
1256  else
1257    deleteNode(&Node.get<Leaf>());
1258}
1259
1260template <typename KeyT, typename ValT, unsigned N, typename Traits>
1261void IntervalMap<KeyT, ValT, N, Traits>::
1262clear() {
1263  if (branched()) {
1264    visitNodes(&IntervalMap::deleteNode);
1265    switchRootToLeaf();
1266  }
1267  rootSize = 0;
1268}
1269
1270//===----------------------------------------------------------------------===//
1271//---                   IntervalMap::const_iterator                       ----//
1272//===----------------------------------------------------------------------===//
1273
1274template <typename KeyT, typename ValT, unsigned N, typename Traits>
1275class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1276  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1277protected:
1278  friend class IntervalMap;
1279
1280  // The map referred to.
1281  IntervalMap *map;
1282
1283  // We store a full path from the root to the current position.
1284  // The path may be partially filled, but never between iterator calls.
1285  IntervalMapImpl::Path path;
1286
1287  explicit const_iterator(const IntervalMap &map) :
1288    map(const_cast<IntervalMap*>(&map)) {}
1289
1290  bool branched() const {
1291    assert(map && "Invalid iterator");
1292    return map->branched();
1293  }
1294
1295  void setRoot(unsigned Offset) {
1296    if (branched())
1297      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1298    else
1299      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1300  }
1301
1302  void pathFillFind(KeyT x);
1303  void treeFind(KeyT x);
1304  void treeAdvanceTo(KeyT x);
1305
1306  /// unsafeStart - Writable access to start() for iterator.
1307  KeyT &unsafeStart() const {
1308    assert(valid() && "Cannot access invalid iterator");
1309    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1310                        path.leaf<RootLeaf>().start(path.leafOffset());
1311  }
1312
1313  /// unsafeStop - Writable access to stop() for iterator.
1314  KeyT &unsafeStop() const {
1315    assert(valid() && "Cannot access invalid iterator");
1316    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1317                        path.leaf<RootLeaf>().stop(path.leafOffset());
1318  }
1319
1320  /// unsafeValue - Writable access to value() for iterator.
1321  ValT &unsafeValue() const {
1322    assert(valid() && "Cannot access invalid iterator");
1323    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1324                        path.leaf<RootLeaf>().value(path.leafOffset());
1325  }
1326
1327public:
1328  /// const_iterator - Create an iterator that isn't pointing anywhere.
1329  const_iterator() : map(0) {}
1330
1331  /// setMap - Change the map iterated over. This call must be followed by a
1332  /// call to goToBegin(), goToEnd(), or find()
1333  void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1334
1335  /// valid - Return true if the current position is valid, false for end().
1336  bool valid() const { return path.valid(); }
1337
1338  /// atBegin - Return true if the current position is the first map entry.
1339  bool atBegin() const { return path.atBegin(); }
1340
1341  /// start - Return the beginning of the current interval.
1342  const KeyT &start() const { return unsafeStart(); }
1343
1344  /// stop - Return the end of the current interval.
1345  const KeyT &stop() const { return unsafeStop(); }
1346
1347  /// value - Return the mapped value at the current interval.
1348  const ValT &value() const { return unsafeValue(); }
1349
1350  const ValT &operator*() const { return value(); }
1351
1352  bool operator==(const const_iterator &RHS) const {
1353    assert(map == RHS.map && "Cannot compare iterators from different maps");
1354    if (!valid())
1355      return !RHS.valid();
1356    if (path.leafOffset() != RHS.path.leafOffset())
1357      return false;
1358    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1359  }
1360
1361  bool operator!=(const const_iterator &RHS) const {
1362    return !operator==(RHS);
1363  }
1364
1365  /// goToBegin - Move to the first interval in map.
1366  void goToBegin() {
1367    setRoot(0);
1368    if (branched())
1369      path.fillLeft(map->height);
1370  }
1371
1372  /// goToEnd - Move beyond the last interval in map.
1373  void goToEnd() {
1374    setRoot(map->rootSize);
1375  }
1376
1377  /// preincrement - move to the next interval.
1378  const_iterator &operator++() {
1379    assert(valid() && "Cannot increment end()");
1380    if (++path.leafOffset() == path.leafSize() && branched())
1381      path.moveRight(map->height);
1382    return *this;
1383  }
1384
1385  /// postincrement - Dont do that!
1386  const_iterator operator++(int) {
1387    const_iterator tmp = *this;
1388    operator++();
1389    return tmp;
1390  }
1391
1392  /// predecrement - move to the previous interval.
1393  const_iterator &operator--() {
1394    if (path.leafOffset() && (valid() || !branched()))
1395      --path.leafOffset();
1396    else
1397      path.moveLeft(map->height);
1398    return *this;
1399  }
1400
1401  /// postdecrement - Dont do that!
1402  const_iterator operator--(int) {
1403    const_iterator tmp = *this;
1404    operator--();
1405    return tmp;
1406  }
1407
1408  /// find - Move to the first interval with stop >= x, or end().
1409  /// This is a full search from the root, the current position is ignored.
1410  void find(KeyT x) {
1411    if (branched())
1412      treeFind(x);
1413    else
1414      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1415  }
1416
1417  /// advanceTo - Move to the first interval with stop >= x, or end().
1418  /// The search is started from the current position, and no earlier positions
1419  /// can be found. This is much faster than find() for small moves.
1420  void advanceTo(KeyT x) {
1421    if (!valid())
1422      return;
1423    if (branched())
1424      treeAdvanceTo(x);
1425    else
1426      path.leafOffset() =
1427        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1428  }
1429
1430};
1431
1432/// pathFillFind - Complete path by searching for x.
1433/// @param x Key to search for.
1434template <typename KeyT, typename ValT, unsigned N, typename Traits>
1435void IntervalMap<KeyT, ValT, N, Traits>::
1436const_iterator::pathFillFind(KeyT x) {
1437  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1438  for (unsigned i = map->height - path.height() - 1; i; --i) {
1439    unsigned p = NR.get<Branch>().safeFind(0, x);
1440    path.push(NR, p);
1441    NR = NR.subtree(p);
1442  }
1443  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1444}
1445
1446/// treeFind - Find in a branched tree.
1447/// @param x Key to search for.
1448template <typename KeyT, typename ValT, unsigned N, typename Traits>
1449void IntervalMap<KeyT, ValT, N, Traits>::
1450const_iterator::treeFind(KeyT x) {
1451  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1452  if (valid())
1453    pathFillFind(x);
1454}
1455
1456/// treeAdvanceTo - Find position after the current one.
1457/// @param x Key to search for.
1458template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459void IntervalMap<KeyT, ValT, N, Traits>::
1460const_iterator::treeAdvanceTo(KeyT x) {
1461  // Can we stay on the same leaf node?
1462  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1463    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1464    return;
1465  }
1466
1467  // Drop the current leaf.
1468  path.pop();
1469
1470  // Search towards the root for a usable subtree.
1471  if (path.height()) {
1472    for (unsigned l = path.height() - 1; l; --l) {
1473      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1474        // The branch node at l+1 is usable
1475        path.offset(l + 1) =
1476          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1477        return pathFillFind(x);
1478      }
1479      path.pop();
1480    }
1481    // Is the level-1 Branch usable?
1482    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1483      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1484      return pathFillFind(x);
1485    }
1486  }
1487
1488  // We reached the root.
1489  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1490  if (valid())
1491    pathFillFind(x);
1492}
1493
1494//===----------------------------------------------------------------------===//
1495//---                       IntervalMap::iterator                         ----//
1496//===----------------------------------------------------------------------===//
1497
1498template <typename KeyT, typename ValT, unsigned N, typename Traits>
1499class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1500  friend class IntervalMap;
1501  typedef IntervalMapImpl::IdxPair IdxPair;
1502
1503  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1504
1505  void setNodeStop(unsigned Level, KeyT Stop);
1506  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1507  template <typename NodeT> bool overflow(unsigned Level);
1508  void treeInsert(KeyT a, KeyT b, ValT y);
1509  void eraseNode(unsigned Level);
1510  void treeErase(bool UpdateRoot = true);
1511  bool canCoalesceLeft(KeyT Start, ValT x);
1512  bool canCoalesceRight(KeyT Stop, ValT x);
1513
1514public:
1515  /// iterator - Create null iterator.
1516  iterator() {}
1517
1518  /// setStart - Move the start of the current interval.
1519  /// This may cause coalescing with the previous interval.
1520  /// @param a New start key, must not overlap the previous interval.
1521  void setStart(KeyT a);
1522
1523  /// setStop - Move the end of the current interval.
1524  /// This may cause coalescing with the following interval.
1525  /// @param b New stop key, must not overlap the following interval.
1526  void setStop(KeyT b);
1527
1528  /// setValue - Change the mapped value of the current interval.
1529  /// This may cause coalescing with the previous and following intervals.
1530  /// @param x New value.
1531  void setValue(ValT x);
1532
1533  /// setStartUnchecked - Move the start of the current interval without
1534  /// checking for coalescing or overlaps.
1535  /// This should only be used when it is known that coalescing is not required.
1536  /// @param a New start key.
1537  void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1538
1539  /// setStopUnchecked - Move the end of the current interval without checking
1540  /// for coalescing or overlaps.
1541  /// This should only be used when it is known that coalescing is not required.
1542  /// @param b New stop key.
1543  void setStopUnchecked(KeyT b) {
1544    this->unsafeStop() = b;
1545    // Update keys in branch nodes as well.
1546    if (this->path.atLastEntry(this->path.height()))
1547      setNodeStop(this->path.height(), b);
1548  }
1549
1550  /// setValueUnchecked - Change the mapped value of the current interval
1551  /// without checking for coalescing.
1552  /// @param x New value.
1553  void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1554
1555  /// insert - Insert mapping [a;b] -> y before the current position.
1556  void insert(KeyT a, KeyT b, ValT y);
1557
1558  /// erase - Erase the current interval.
1559  void erase();
1560
1561  iterator &operator++() {
1562    const_iterator::operator++();
1563    return *this;
1564  }
1565
1566  iterator operator++(int) {
1567    iterator tmp = *this;
1568    operator++();
1569    return tmp;
1570  }
1571
1572  iterator &operator--() {
1573    const_iterator::operator--();
1574    return *this;
1575  }
1576
1577  iterator operator--(int) {
1578    iterator tmp = *this;
1579    operator--();
1580    return tmp;
1581  }
1582
1583};
1584
1585/// canCoalesceLeft - Can the current interval coalesce to the left after
1586/// changing start or value?
1587/// @param Start New start of current interval.
1588/// @param Value New value for current interval.
1589/// @return True when updating the current interval would enable coalescing.
1590template <typename KeyT, typename ValT, unsigned N, typename Traits>
1591bool IntervalMap<KeyT, ValT, N, Traits>::
1592iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1593  using namespace IntervalMapImpl;
1594  Path &P = this->path;
1595  if (!this->branched()) {
1596    unsigned i = P.leafOffset();
1597    RootLeaf &Node = P.leaf<RootLeaf>();
1598    return i && Node.value(i-1) == Value &&
1599                Traits::adjacent(Node.stop(i-1), Start);
1600  }
1601  // Branched.
1602  if (unsigned i = P.leafOffset()) {
1603    Leaf &Node = P.leaf<Leaf>();
1604    return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1605  } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1606    unsigned i = NR.size() - 1;
1607    Leaf &Node = NR.get<Leaf>();
1608    return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1609  }
1610  return false;
1611}
1612
1613/// canCoalesceRight - Can the current interval coalesce to the right after
1614/// changing stop or value?
1615/// @param Stop New stop of current interval.
1616/// @param Value New value for current interval.
1617/// @return True when updating the current interval would enable coalescing.
1618template <typename KeyT, typename ValT, unsigned N, typename Traits>
1619bool IntervalMap<KeyT, ValT, N, Traits>::
1620iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1621  using namespace IntervalMapImpl;
1622  Path &P = this->path;
1623  unsigned i = P.leafOffset() + 1;
1624  if (!this->branched()) {
1625    if (i >= P.leafSize())
1626      return false;
1627    RootLeaf &Node = P.leaf<RootLeaf>();
1628    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1629  }
1630  // Branched.
1631  if (i < P.leafSize()) {
1632    Leaf &Node = P.leaf<Leaf>();
1633    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1634  } else if (NodeRef NR = P.getRightSibling(P.height())) {
1635    Leaf &Node = NR.get<Leaf>();
1636    return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1637  }
1638  return false;
1639}
1640
1641/// setNodeStop - Update the stop key of the current node at level and above.
1642template <typename KeyT, typename ValT, unsigned N, typename Traits>
1643void IntervalMap<KeyT, ValT, N, Traits>::
1644iterator::setNodeStop(unsigned Level, KeyT Stop) {
1645  // There are no references to the root node, so nothing to update.
1646  if (!Level)
1647    return;
1648  IntervalMapImpl::Path &P = this->path;
1649  // Update nodes pointing to the current node.
1650  while (--Level) {
1651    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1652    if (!P.atLastEntry(Level))
1653      return;
1654  }
1655  // Update root separately since it has a different layout.
1656  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1657}
1658
1659template <typename KeyT, typename ValT, unsigned N, typename Traits>
1660void IntervalMap<KeyT, ValT, N, Traits>::
1661iterator::setStart(KeyT a) {
1662  assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1663  KeyT &CurStart = this->unsafeStart();
1664  if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1665    CurStart = a;
1666    return;
1667  }
1668  // Coalesce with the interval to the left.
1669  --*this;
1670  a = this->start();
1671  erase();
1672  setStartUnchecked(a);
1673}
1674
1675template <typename KeyT, typename ValT, unsigned N, typename Traits>
1676void IntervalMap<KeyT, ValT, N, Traits>::
1677iterator::setStop(KeyT b) {
1678  assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1679  if (Traits::startLess(b, this->stop()) ||
1680      !canCoalesceRight(b, this->value())) {
1681    setStopUnchecked(b);
1682    return;
1683  }
1684  // Coalesce with interval to the right.
1685  KeyT a = this->start();
1686  erase();
1687  setStartUnchecked(a);
1688}
1689
1690template <typename KeyT, typename ValT, unsigned N, typename Traits>
1691void IntervalMap<KeyT, ValT, N, Traits>::
1692iterator::setValue(ValT x) {
1693  setValueUnchecked(x);
1694  if (canCoalesceRight(this->stop(), x)) {
1695    KeyT a = this->start();
1696    erase();
1697    setStartUnchecked(a);
1698  }
1699  if (canCoalesceLeft(this->start(), x)) {
1700    --*this;
1701    KeyT a = this->start();
1702    erase();
1703    setStartUnchecked(a);
1704  }
1705}
1706
1707/// insertNode - insert a node before the current path at level.
1708/// Leave the current path pointing at the new node.
1709/// @param Level path index of the node to be inserted.
1710/// @param Node The node to be inserted.
1711/// @param Stop The last index in the new node.
1712/// @return True if the tree height was increased.
1713template <typename KeyT, typename ValT, unsigned N, typename Traits>
1714bool IntervalMap<KeyT, ValT, N, Traits>::
1715iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1716  assert(Level && "Cannot insert next to the root");
1717  bool SplitRoot = false;
1718  IntervalMap &IM = *this->map;
1719  IntervalMapImpl::Path &P = this->path;
1720
1721  if (Level == 1) {
1722    // Insert into the root branch node.
1723    if (IM.rootSize < RootBranch::Capacity) {
1724      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1725      P.setSize(0, ++IM.rootSize);
1726      P.reset(Level);
1727      return SplitRoot;
1728    }
1729
1730    // We need to split the root while keeping our position.
1731    SplitRoot = true;
1732    IdxPair Offset = IM.splitRoot(P.offset(0));
1733    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1734
1735    // Fall through to insert at the new higher level.
1736    ++Level;
1737  }
1738
1739  // When inserting before end(), make sure we have a valid path.
1740  P.legalizeForInsert(--Level);
1741
1742  // Insert into the branch node at Level-1.
1743  if (P.size(Level) == Branch::Capacity) {
1744    // Branch node is full, handle handle the overflow.
1745    assert(!SplitRoot && "Cannot overflow after splitting the root");
1746    SplitRoot = overflow<Branch>(Level);
1747    Level += SplitRoot;
1748  }
1749  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1750  P.setSize(Level, P.size(Level) + 1);
1751  if (P.atLastEntry(Level))
1752    setNodeStop(Level, Stop);
1753  P.reset(Level + 1);
1754  return SplitRoot;
1755}
1756
1757// insert
1758template <typename KeyT, typename ValT, unsigned N, typename Traits>
1759void IntervalMap<KeyT, ValT, N, Traits>::
1760iterator::insert(KeyT a, KeyT b, ValT y) {
1761  if (this->branched())
1762    return treeInsert(a, b, y);
1763  IntervalMap &IM = *this->map;
1764  IntervalMapImpl::Path &P = this->path;
1765
1766  // Try simple root leaf insert.
1767  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1768
1769  // Was the root node insert successful?
1770  if (Size <= RootLeaf::Capacity) {
1771    P.setSize(0, IM.rootSize = Size);
1772    return;
1773  }
1774
1775  // Root leaf node is full, we must branch.
1776  IdxPair Offset = IM.branchRoot(P.leafOffset());
1777  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1778
1779  // Now it fits in the new leaf.
1780  treeInsert(a, b, y);
1781}
1782
1783
1784template <typename KeyT, typename ValT, unsigned N, typename Traits>
1785void IntervalMap<KeyT, ValT, N, Traits>::
1786iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1787  using namespace IntervalMapImpl;
1788  Path &P = this->path;
1789
1790  if (!P.valid())
1791    P.legalizeForInsert(this->map->height);
1792
1793  // Check if this insertion will extend the node to the left.
1794  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1795    // Node is growing to the left, will it affect a left sibling node?
1796    if (NodeRef Sib = P.getLeftSibling(P.height())) {
1797      Leaf &SibLeaf = Sib.get<Leaf>();
1798      unsigned SibOfs = Sib.size() - 1;
1799      if (SibLeaf.value(SibOfs) == y &&
1800          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1801        // This insertion will coalesce with the last entry in SibLeaf. We can
1802        // handle it in two ways:
1803        //  1. Extend SibLeaf.stop to b and be done, or
1804        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1805        // We prefer 1., but need 2 when coalescing to the right as well.
1806        Leaf &CurLeaf = P.leaf<Leaf>();
1807        P.moveLeft(P.height());
1808        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1809            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1810          // Easy, just extend SibLeaf and we're done.
1811          setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1812          return;
1813        } else {
1814          // We have both left and right coalescing. Erase the old SibLeaf entry
1815          // and continue inserting the larger interval.
1816          a = SibLeaf.start(SibOfs);
1817          treeErase(/* UpdateRoot= */false);
1818        }
1819      }
1820    } else {
1821      // No left sibling means we are at begin(). Update cached bound.
1822      this->map->rootBranchStart() = a;
1823    }
1824  }
1825
1826  // When we are inserting at the end of a leaf node, we must update stops.
1827  unsigned Size = P.leafSize();
1828  bool Grow = P.leafOffset() == Size;
1829  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1830
1831  // Leaf insertion unsuccessful? Overflow and try again.
1832  if (Size > Leaf::Capacity) {
1833    overflow<Leaf>(P.height());
1834    Grow = P.leafOffset() == P.leafSize();
1835    Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1836    assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1837  }
1838
1839  // Inserted, update offset and leaf size.
1840  P.setSize(P.height(), Size);
1841
1842  // Insert was the last node entry, update stops.
1843  if (Grow)
1844    setNodeStop(P.height(), b);
1845}
1846
1847/// erase - erase the current interval and move to the next position.
1848template <typename KeyT, typename ValT, unsigned N, typename Traits>
1849void IntervalMap<KeyT, ValT, N, Traits>::
1850iterator::erase() {
1851  IntervalMap &IM = *this->map;
1852  IntervalMapImpl::Path &P = this->path;
1853  assert(P.valid() && "Cannot erase end()");
1854  if (this->branched())
1855    return treeErase();
1856  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1857  P.setSize(0, --IM.rootSize);
1858}
1859
1860/// treeErase - erase() for a branched tree.
1861template <typename KeyT, typename ValT, unsigned N, typename Traits>
1862void IntervalMap<KeyT, ValT, N, Traits>::
1863iterator::treeErase(bool UpdateRoot) {
1864  IntervalMap &IM = *this->map;
1865  IntervalMapImpl::Path &P = this->path;
1866  Leaf &Node = P.leaf<Leaf>();
1867
1868  // Nodes are not allowed to become empty.
1869  if (P.leafSize() == 1) {
1870    IM.deleteNode(&Node);
1871    eraseNode(IM.height);
1872    // Update rootBranchStart if we erased begin().
1873    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1874      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1875    return;
1876  }
1877
1878  // Erase current entry.
1879  Node.erase(P.leafOffset(), P.leafSize());
1880  unsigned NewSize = P.leafSize() - 1;
1881  P.setSize(IM.height, NewSize);
1882  // When we erase the last entry, update stop and move to a legal position.
1883  if (P.leafOffset() == NewSize) {
1884    setNodeStop(IM.height, Node.stop(NewSize - 1));
1885    P.moveRight(IM.height);
1886  } else if (UpdateRoot && P.atBegin())
1887    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1888}
1889
1890/// eraseNode - Erase the current node at Level from its parent and move path to
1891/// the first entry of the next sibling node.
1892/// The node must be deallocated by the caller.
1893/// @param Level 1..height, the root node cannot be erased.
1894template <typename KeyT, typename ValT, unsigned N, typename Traits>
1895void IntervalMap<KeyT, ValT, N, Traits>::
1896iterator::eraseNode(unsigned Level) {
1897  assert(Level && "Cannot erase root node");
1898  IntervalMap &IM = *this->map;
1899  IntervalMapImpl::Path &P = this->path;
1900
1901  if (--Level == 0) {
1902    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1903    P.setSize(0, --IM.rootSize);
1904    // If this cleared the root, switch to height=0.
1905    if (IM.empty()) {
1906      IM.switchRootToLeaf();
1907      this->setRoot(0);
1908      return;
1909    }
1910  } else {
1911    // Remove node ref from branch node at Level.
1912    Branch &Parent = P.node<Branch>(Level);
1913    if (P.size(Level) == 1) {
1914      // Branch node became empty, remove it recursively.
1915      IM.deleteNode(&Parent);
1916      eraseNode(Level);
1917    } else {
1918      // Branch node won't become empty.
1919      Parent.erase(P.offset(Level), P.size(Level));
1920      unsigned NewSize = P.size(Level) - 1;
1921      P.setSize(Level, NewSize);
1922      // If we removed the last branch, update stop and move to a legal pos.
1923      if (P.offset(Level) == NewSize) {
1924        setNodeStop(Level, Parent.stop(NewSize - 1));
1925        P.moveRight(Level);
1926      }
1927    }
1928  }
1929  // Update path cache for the new right sibling position.
1930  if (P.valid()) {
1931    P.reset(Level + 1);
1932    P.offset(Level + 1) = 0;
1933  }
1934}
1935
1936/// overflow - Distribute entries of the current node evenly among
1937/// its siblings and ensure that the current node is not full.
1938/// This may require allocating a new node.
1939/// @param NodeT The type of node at Level (Leaf or Branch).
1940/// @param Level path index of the overflowing node.
1941/// @return True when the tree height was changed.
1942template <typename KeyT, typename ValT, unsigned N, typename Traits>
1943template <typename NodeT>
1944bool IntervalMap<KeyT, ValT, N, Traits>::
1945iterator::overflow(unsigned Level) {
1946  using namespace IntervalMapImpl;
1947  Path &P = this->path;
1948  unsigned CurSize[4];
1949  NodeT *Node[4];
1950  unsigned Nodes = 0;
1951  unsigned Elements = 0;
1952  unsigned Offset = P.offset(Level);
1953
1954  // Do we have a left sibling?
1955  NodeRef LeftSib = P.getLeftSibling(Level);
1956  if (LeftSib) {
1957    Offset += Elements = CurSize[Nodes] = LeftSib.size();
1958    Node[Nodes++] = &LeftSib.get<NodeT>();
1959  }
1960
1961  // Current node.
1962  Elements += CurSize[Nodes] = P.size(Level);
1963  Node[Nodes++] = &P.node<NodeT>(Level);
1964
1965  // Do we have a right sibling?
1966  NodeRef RightSib = P.getRightSibling(Level);
1967  if (RightSib) {
1968    Elements += CurSize[Nodes] = RightSib.size();
1969    Node[Nodes++] = &RightSib.get<NodeT>();
1970  }
1971
1972  // Do we need to allocate a new node?
1973  unsigned NewNode = 0;
1974  if (Elements + 1 > Nodes * NodeT::Capacity) {
1975    // Insert NewNode at the penultimate position, or after a single node.
1976    NewNode = Nodes == 1 ? 1 : Nodes - 1;
1977    CurSize[Nodes] = CurSize[NewNode];
1978    Node[Nodes] = Node[NewNode];
1979    CurSize[NewNode] = 0;
1980    Node[NewNode] = this->map->template newNode<NodeT>();
1981    ++Nodes;
1982  }
1983
1984  // Compute the new element distribution.
1985  unsigned NewSize[4];
1986  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1987                                 CurSize, NewSize, Offset, true);
1988  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1989
1990  // Move current location to the leftmost node.
1991  if (LeftSib)
1992    P.moveLeft(Level);
1993
1994  // Elements have been rearranged, now update node sizes and stops.
1995  bool SplitRoot = false;
1996  unsigned Pos = 0;
1997  for (;;) {
1998    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1999    if (NewNode && Pos == NewNode) {
2000      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2001      Level += SplitRoot;
2002    } else {
2003      P.setSize(Level, NewSize[Pos]);
2004      setNodeStop(Level, Stop);
2005    }
2006    if (Pos + 1 == Nodes)
2007      break;
2008    P.moveRight(Level);
2009    ++Pos;
2010  }
2011
2012  // Where was I? Find NewOffset.
2013  while(Pos != NewOffset.first) {
2014    P.moveLeft(Level);
2015    --Pos;
2016  }
2017  P.offset(Level) = NewOffset.second;
2018  return SplitRoot;
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//---                       IntervalMapOverlaps                           ----//
2023//===----------------------------------------------------------------------===//
2024
2025/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2026/// IntervalMaps. The maps may be different, but the KeyT and Traits types
2027/// should be the same.
2028///
2029/// Typical uses:
2030///
2031/// 1. Test for overlap:
2032///    bool overlap = IntervalMapOverlaps(a, b).valid();
2033///
2034/// 2. Enumerate overlaps:
2035///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2036///
2037template <typename MapA, typename MapB>
2038class IntervalMapOverlaps {
2039  typedef typename MapA::KeyType KeyType;
2040  typedef typename MapA::KeyTraits Traits;
2041  typename MapA::const_iterator posA;
2042  typename MapB::const_iterator posB;
2043
2044  /// advance - Move posA and posB forward until reaching an overlap, or until
2045  /// either meets end.
2046  /// Don't move the iterators if they are already overlapping.
2047  void advance() {
2048    if (!valid())
2049      return;
2050
2051    if (Traits::stopLess(posA.stop(), posB.start())) {
2052      // A ends before B begins. Catch up.
2053      posA.advanceTo(posB.start());
2054      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2055        return;
2056    } else if (Traits::stopLess(posB.stop(), posA.start())) {
2057      // B ends before A begins. Catch up.
2058      posB.advanceTo(posA.start());
2059      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2060        return;
2061    } else
2062      // Already overlapping.
2063      return;
2064
2065    for (;;) {
2066      // Make a.end > b.start.
2067      posA.advanceTo(posB.start());
2068      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2069        return;
2070      // Make b.end > a.start.
2071      posB.advanceTo(posA.start());
2072      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2073        return;
2074    }
2075  }
2076
2077public:
2078  /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2079  IntervalMapOverlaps(const MapA &a, const MapB &b)
2080    : posA(b.empty() ? a.end() : a.find(b.start())),
2081      posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2082
2083  /// valid - Return true if iterator is at an overlap.
2084  bool valid() const {
2085    return posA.valid() && posB.valid();
2086  }
2087
2088  /// a - access the left hand side in the overlap.
2089  const typename MapA::const_iterator &a() const { return posA; }
2090
2091  /// b - access the right hand side in the overlap.
2092  const typename MapB::const_iterator &b() const { return posB; }
2093
2094  /// start - Beginning of the overlapping interval.
2095  KeyType start() const {
2096    KeyType ak = a().start();
2097    KeyType bk = b().start();
2098    return Traits::startLess(ak, bk) ? bk : ak;
2099  }
2100
2101  /// stop - End of the overlapping interval.
2102  KeyType stop() const {
2103    KeyType ak = a().stop();
2104    KeyType bk = b().stop();
2105    return Traits::startLess(ak, bk) ? ak : bk;
2106  }
2107
2108  /// skipA - Move to the next overlap that doesn't involve a().
2109  void skipA() {
2110    ++posA;
2111    advance();
2112  }
2113
2114  /// skipB - Move to the next overlap that doesn't involve b().
2115  void skipB() {
2116    ++posB;
2117    advance();
2118  }
2119
2120  /// Preincrement - Move to the next overlap.
2121  IntervalMapOverlaps &operator++() {
2122    // Bump the iterator that ends first. The other one may have more overlaps.
2123    if (Traits::startLess(posB.stop(), posA.stop()))
2124      skipB();
2125    else
2126      skipA();
2127    return *this;
2128  }
2129
2130  /// advanceTo - Move to the first overlapping interval with
2131  /// stopLess(x, stop()).
2132  void advanceTo(KeyType x) {
2133    if (!valid())
2134      return;
2135    // Make sure advanceTo sees monotonic keys.
2136    if (Traits::stopLess(posA.stop(), x))
2137      posA.advanceTo(x);
2138    if (Traits::stopLess(posB.stop(), x))
2139      posB.advanceTo(x);
2140    advance();
2141  }
2142};
2143
2144} // namespace llvm
2145
2146#endif
2147