IntervalMap.h revision 08d55342e337fd4e80a68b81b8b0cbb100ea0a23
1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70//   bool operator==(const const_iterator &) const;
71//   bool operator!=(const const_iterator &) const;
72//   bool valid() const;
73//
74//   const KeyT &start() const;
75//   const KeyT &stop() const;
76//   const ValT &value() const;
77//   const ValT &operator*() const;
78//   const ValT *operator->() const;
79//
80//   const_iterator &operator++();
81//   const_iterator &operator++(int);
82//   const_iterator &operator--();
83//   const_iterator &operator--(int);
84//   void goToBegin();
85//   void goToEnd();
86//   void find(KeyT x);
87//   void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93//   void insert(KeyT a, KeyT b, Value y);
94//   void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/SmallVector.h"
103#include "llvm/ADT/PointerIntPair.h"
104#include "llvm/Support/Allocator.h"
105#include "llvm/Support/RecyclingAllocator.h"
106#include <iterator>
107
108// FIXME: Remove debugging code.
109#include "llvm/Support/raw_ostream.h"
110
111namespace llvm {
112
113
114//===----------------------------------------------------------------------===//
115//---                              Key traits                              ---//
116//===----------------------------------------------------------------------===//
117//
118// The IntervalMap works with closed or half-open intervals.
119// Adjacent intervals that map to the same value are coalesced.
120//
121// The IntervalMapInfo traits class is used to determine if a key is contained
122// in an interval, and if two intervals are adjacent so they can be coalesced.
123// The provided implementation works for closed integer intervals, other keys
124// probably need a specialized version.
125//
126// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
127//
128// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
129// allowed. This is so that stopLess(a, b) can be used to determine if two
130// intervals overlap.
131//
132//===----------------------------------------------------------------------===//
133
134template <typename T>
135struct IntervalMapInfo {
136
137  /// startLess - Return true if x is not in [a;b].
138  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
139  static inline bool startLess(const T &x, const T &a) {
140    return x < a;
141  }
142
143  /// stopLess - Return true if x is not in [a;b].
144  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
145  static inline bool stopLess(const T &b, const T &x) {
146    return b < x;
147  }
148
149  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
150  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
151  static inline bool adjacent(const T &a, const T &b) {
152    return a+1 == b;
153  }
154
155};
156
157/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
158/// It should be considered private to the implementation.
159namespace IntervalMapImpl {
160
161// Forward declarations.
162template <typename, typename, unsigned, typename> class LeafNode;
163template <typename, typename, unsigned, typename> class BranchNode;
164
165typedef std::pair<unsigned,unsigned> IdxPair;
166
167
168//===----------------------------------------------------------------------===//
169//---                    IntervalMapImpl::NodeBase                         ---//
170//===----------------------------------------------------------------------===//
171//
172// Both leaf and branch nodes store vectors of pairs.
173// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
174//
175// Keys and values are stored in separate arrays to avoid padding caused by
176// different object alignments. This also helps improve locality of reference
177// when searching the keys.
178//
179// The nodes don't know how many elements they contain - that information is
180// stored elsewhere. Omitting the size field prevents padding and allows a node
181// to fill the allocated cache lines completely.
182//
183// These are typical key and value sizes, the node branching factor (N), and
184// wasted space when nodes are sized to fit in three cache lines (192 bytes):
185//
186//   T1  T2   N Waste  Used by
187//    4   4  24   0    Branch<4> (32-bit pointers)
188//    8   4  16   0    Leaf<4,4>, Branch<4>
189//    8   8  12   0    Leaf<4,8>, Branch<8>
190//   16   4   9  12    Leaf<8,4>
191//   16   8   8   0    Leaf<8,8>
192//
193//===----------------------------------------------------------------------===//
194
195template <typename T1, typename T2, unsigned N>
196class NodeBase {
197public:
198  enum { Capacity = N };
199
200  T1 first[N];
201  T2 second[N];
202
203  /// copy - Copy elements from another node.
204  /// @param Other Node elements are copied from.
205  /// @param i     Beginning of the source range in other.
206  /// @param j     Beginning of the destination range in this.
207  /// @param Count Number of elements to copy.
208  template <unsigned M>
209  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
210            unsigned j, unsigned Count) {
211    assert(i + Count <= M && "Invalid source range");
212    assert(j + Count <= N && "Invalid dest range");
213    for (unsigned e = i + Count; i != e; ++i, ++j) {
214      first[j]  = Other.first[i];
215      second[j] = Other.second[i];
216    }
217  }
218
219  /// moveLeft - Move elements to the left.
220  /// @param i     Beginning of the source range.
221  /// @param j     Beginning of the destination range.
222  /// @param Count Number of elements to copy.
223  void moveLeft(unsigned i, unsigned j, unsigned Count) {
224    assert(j <= i && "Use moveRight shift elements right");
225    copy(*this, i, j, Count);
226  }
227
228  /// moveRight - Move elements to the right.
229  /// @param i     Beginning of the source range.
230  /// @param j     Beginning of the destination range.
231  /// @param Count Number of elements to copy.
232  void moveRight(unsigned i, unsigned j, unsigned Count) {
233    assert(i <= j && "Use moveLeft shift elements left");
234    assert(j + Count <= N && "Invalid range");
235    while (Count--) {
236      first[j + Count]  = first[i + Count];
237      second[j + Count] = second[i + Count];
238    }
239  }
240
241  /// erase - Erase elements [i;j).
242  /// @param i    Beginning of the range to erase.
243  /// @param j    End of the range. (Exclusive).
244  /// @param Size Number of elements in node.
245  void erase(unsigned i, unsigned j, unsigned Size) {
246    moveLeft(j, i, Size - j);
247  }
248
249  /// erase - Erase element at i.
250  /// @param i    Index of element to erase.
251  /// @param Size Number of elements in node.
252  void erase(unsigned i, unsigned Size) {
253    erase(i, i+1, Size);
254  }
255
256  /// shift - Shift elements [i;size) 1 position to the right.
257  /// @param i    Beginning of the range to move.
258  /// @param Size Number of elements in node.
259  void shift(unsigned i, unsigned Size) {
260    moveRight(i, i + 1, Size - i);
261  }
262
263  /// transferToLeftSib - Transfer elements to a left sibling node.
264  /// @param Size  Number of elements in this.
265  /// @param Sib   Left sibling node.
266  /// @param SSize Number of elements in sib.
267  /// @param Count Number of elements to transfer.
268  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
269                         unsigned Count) {
270    Sib.copy(*this, 0, SSize, Count);
271    erase(0, Count, Size);
272  }
273
274  /// transferToRightSib - Transfer elements to a right sibling node.
275  /// @param Size  Number of elements in this.
276  /// @param Sib   Right sibling node.
277  /// @param SSize Number of elements in sib.
278  /// @param Count Number of elements to transfer.
279  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
280                          unsigned Count) {
281    Sib.moveRight(0, Count, SSize);
282    Sib.copy(*this, Size-Count, 0, Count);
283  }
284
285  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
286  /// elements to or from a left sibling node.
287  /// @param Size  Number of elements in this.
288  /// @param Sib   Right sibling node.
289  /// @param SSize Number of elements in sib.
290  /// @param Add   The number of elements to add to this node, possibly < 0.
291  /// @return      Number of elements added to this node, possibly negative.
292  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
293    if (Add > 0) {
294      // We want to grow, copy from sib.
295      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
296      Sib.transferToRightSib(SSize, *this, Size, Count);
297      return Count;
298    } else {
299      // We want to shrink, copy to sib.
300      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
301      transferToLeftSib(Size, Sib, SSize, Count);
302      return -Count;
303    }
304  }
305};
306
307/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
308/// @param Node  Array of pointers to sibling nodes.
309/// @param Nodes Number of nodes.
310/// @param CurSize Array of current node sizes, will be overwritten.
311/// @param NewSize Array of desired node sizes.
312template <typename NodeT>
313void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
314                        unsigned CurSize[], const unsigned NewSize[]) {
315  // Move elements right.
316  for (int n = Nodes - 1; n; --n) {
317    if (CurSize[n] == NewSize[n])
318      continue;
319    for (int m = n - 1; m != -1; --m) {
320      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
321                                         NewSize[n] - CurSize[n]);
322      CurSize[m] -= d;
323      CurSize[n] += d;
324      // Keep going if the current node was exhausted.
325      if (CurSize[n] >= NewSize[n])
326          break;
327    }
328  }
329
330  if (Nodes == 0)
331    return;
332
333  // Move elements left.
334  for (unsigned n = 0; n != Nodes - 1; ++n) {
335    if (CurSize[n] == NewSize[n])
336      continue;
337    for (unsigned m = n + 1; m != Nodes; ++m) {
338      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
339                                        CurSize[n] -  NewSize[n]);
340      CurSize[m] += d;
341      CurSize[n] -= d;
342      // Keep going if the current node was exhausted.
343      if (CurSize[n] >= NewSize[n])
344          break;
345    }
346  }
347
348#ifndef NDEBUG
349  for (unsigned n = 0; n != Nodes; n++)
350    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
351#endif
352}
353
354/// IntervalMapImpl::distribute - Compute a new distribution of node elements
355/// after an overflow or underflow. Reserve space for a new element at Position,
356/// and compute the node that will hold Position after redistributing node
357/// elements.
358///
359/// It is required that
360///
361///   Elements == sum(CurSize), and
362///   Elements + Grow <= Nodes * Capacity.
363///
364/// NewSize[] will be filled in such that:
365///
366///   sum(NewSize) == Elements, and
367///   NewSize[i] <= Capacity.
368///
369/// The returned index is the node where Position will go, so:
370///
371///   sum(NewSize[0..idx-1]) <= Position
372///   sum(NewSize[0..idx])   >= Position
373///
374/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
375/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
376/// before the one holding the Position'th element where there is room for an
377/// insertion.
378///
379/// @param Nodes    The number of nodes.
380/// @param Elements Total elements in all nodes.
381/// @param Capacity The capacity of each node.
382/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
383/// @param NewSize  Array[Nodes] to receive the new node sizes.
384/// @param Position Insert position.
385/// @param Grow     Reserve space for a new element at Position.
386/// @return         (node, offset) for Position.
387IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
388                   const unsigned *CurSize, unsigned NewSize[],
389                   unsigned Position, bool Grow);
390
391
392//===----------------------------------------------------------------------===//
393//---                   IntervalMapImpl::NodeSizer                         ---//
394//===----------------------------------------------------------------------===//
395//
396// Compute node sizes from key and value types.
397//
398// The branching factors are chosen to make nodes fit in three cache lines.
399// This may not be possible if keys or values are very large. Such large objects
400// are handled correctly, but a std::map would probably give better performance.
401//
402//===----------------------------------------------------------------------===//
403
404enum {
405  // Cache line size. Most architectures have 32 or 64 byte cache lines.
406  // We use 64 bytes here because it provides good branching factors.
407  Log2CacheLine = 6,
408  CacheLineBytes = 1 << Log2CacheLine,
409  DesiredNodeBytes = 3 * CacheLineBytes
410};
411
412template <typename KeyT, typename ValT>
413struct NodeSizer {
414  enum {
415    // Compute the leaf node branching factor that makes a node fit in three
416    // cache lines. The branching factor must be at least 3, or some B+-tree
417    // balancing algorithms won't work.
418    // LeafSize can't be larger than CacheLineBytes. This is required by the
419    // PointerIntPair used by NodeRef.
420    DesiredLeafSize = DesiredNodeBytes /
421      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
422    MinLeafSize = 3,
423    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
424  };
425
426  typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
427
428  enum {
429    // Now that we have the leaf branching factor, compute the actual allocation
430    // unit size by rounding up to a whole number of cache lines.
431    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
432
433    // Determine the branching factor for branch nodes.
434    BranchSize = AllocBytes /
435      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
436  };
437
438  /// Allocator - The recycling allocator used for both branch and leaf nodes.
439  /// This typedef is very likely to be identical for all IntervalMaps with
440  /// reasonably sized entries, so the same allocator can be shared among
441  /// different kinds of maps.
442  typedef RecyclingAllocator<BumpPtrAllocator, char,
443                             AllocBytes, CacheLineBytes> Allocator;
444
445};
446
447
448//===----------------------------------------------------------------------===//
449//---                     IntervalMapImpl::NodeRef                         ---//
450//===----------------------------------------------------------------------===//
451//
452// B+-tree nodes can be leaves or branches, so we need a polymorphic node
453// pointer that can point to both kinds.
454//
455// All nodes are cache line aligned and the low 6 bits of a node pointer are
456// always 0. These bits are used to store the number of elements in the
457// referenced node. Besides saving space, placing node sizes in the parents
458// allow tree balancing algorithms to run without faulting cache lines for nodes
459// that may not need to be modified.
460//
461// A NodeRef doesn't know whether it references a leaf node or a branch node.
462// It is the responsibility of the caller to use the correct types.
463//
464// Nodes are never supposed to be empty, and it is invalid to store a node size
465// of 0 in a NodeRef. The valid range of sizes is 1-64.
466//
467//===----------------------------------------------------------------------===//
468
469class NodeRef {
470  struct CacheAlignedPointerTraits {
471    static inline void *getAsVoidPointer(void *P) { return P; }
472    static inline void *getFromVoidPointer(void *P) { return P; }
473    enum { NumLowBitsAvailable = Log2CacheLine };
474  };
475  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
476
477public:
478  /// NodeRef - Create a null ref.
479  NodeRef() {}
480
481  /// operator bool - Detect a null ref.
482  operator bool() const { return pip.getOpaqueValue(); }
483
484  /// NodeRef - Create a reference to the node p with n elements.
485  template <typename NodeT>
486  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
487    assert(n <= NodeT::Capacity && "Size too big for node");
488  }
489
490  /// size - Return the number of elements in the referenced node.
491  unsigned size() const { return pip.getInt() + 1; }
492
493  /// setSize - Update the node size.
494  void setSize(unsigned n) { pip.setInt(n - 1); }
495
496  /// subtree - Access the i'th subtree reference in a branch node.
497  /// This depends on branch nodes storing the NodeRef array as their first
498  /// member.
499  NodeRef &subtree(unsigned i) const {
500    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
501  }
502
503  /// get - Dereference as a NodeT reference.
504  template <typename NodeT>
505  NodeT &get() const {
506    return *reinterpret_cast<NodeT*>(pip.getPointer());
507  }
508
509  bool operator==(const NodeRef &RHS) const {
510    if (pip == RHS.pip)
511      return true;
512    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
513    return false;
514  }
515
516  bool operator!=(const NodeRef &RHS) const {
517    return !operator==(RHS);
518  }
519};
520
521//===----------------------------------------------------------------------===//
522//---                      IntervalMapImpl::LeafNode                       ---//
523//===----------------------------------------------------------------------===//
524//
525// Leaf nodes store up to N disjoint intervals with corresponding values.
526//
527// The intervals are kept sorted and fully coalesced so there are no adjacent
528// intervals mapping to the same value.
529//
530// These constraints are always satisfied:
531//
532// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
533//
534// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
535//
536// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
537//                                          - Fully coalesced.
538//
539//===----------------------------------------------------------------------===//
540
541template <typename KeyT, typename ValT, unsigned N, typename Traits>
542class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
543public:
544  const KeyT &start(unsigned i) const { return this->first[i].first; }
545  const KeyT &stop(unsigned i) const { return this->first[i].second; }
546  const ValT &value(unsigned i) const { return this->second[i]; }
547
548  KeyT &start(unsigned i) { return this->first[i].first; }
549  KeyT &stop(unsigned i) { return this->first[i].second; }
550  ValT &value(unsigned i) { return this->second[i]; }
551
552  /// findFrom - Find the first interval after i that may contain x.
553  /// @param i    Starting index for the search.
554  /// @param Size Number of elements in node.
555  /// @param x    Key to search for.
556  /// @return     First index with !stopLess(key[i].stop, x), or size.
557  ///             This is the first interval that can possibly contain x.
558  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
559    assert(i <= Size && Size <= N && "Bad indices");
560    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
561           "Index is past the needed point");
562    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
563    return i;
564  }
565
566  /// safeFind - Find an interval that is known to exist. This is the same as
567  /// findFrom except is it assumed that x is at least within range of the last
568  /// interval.
569  /// @param i Starting index for the search.
570  /// @param x Key to search for.
571  /// @return  First index with !stopLess(key[i].stop, x), never size.
572  ///          This is the first interval that can possibly contain x.
573  unsigned safeFind(unsigned i, KeyT x) const {
574    assert(i < N && "Bad index");
575    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
576           "Index is past the needed point");
577    while (Traits::stopLess(stop(i), x)) ++i;
578    assert(i < N && "Unsafe intervals");
579    return i;
580  }
581
582  /// safeLookup - Lookup mapped value for a safe key.
583  /// It is assumed that x is within range of the last entry.
584  /// @param x        Key to search for.
585  /// @param NotFound Value to return if x is not in any interval.
586  /// @return         The mapped value at x or NotFound.
587  ValT safeLookup(KeyT x, ValT NotFound) const {
588    unsigned i = safeFind(0, x);
589    return Traits::startLess(x, start(i)) ? NotFound : value(i);
590  }
591
592  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
593
594#ifndef NDEBUG
595  void dump(raw_ostream &OS, unsigned Size) {
596    OS << "  N" << this << " [shape=record label=\"{ " << Size << '/' << N;
597    for (unsigned i = 0; i != Size; ++i)
598      OS << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
599    OS << "}\"];\n";
600  }
601#endif
602
603};
604
605/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
606/// possible. This may cause the node to grow by 1, or it may cause the node
607/// to shrink because of coalescing.
608/// @param i    Starting index = insertFrom(0, size, a)
609/// @param Size Number of elements in node.
610/// @param a    Interval start.
611/// @param b    Interval stop.
612/// @param y    Value be mapped.
613/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
614template <typename KeyT, typename ValT, unsigned N, typename Traits>
615unsigned LeafNode<KeyT, ValT, N, Traits>::
616insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
617  unsigned i = Pos;
618  assert(i <= Size && Size <= N && "Invalid index");
619  assert(!Traits::stopLess(b, a) && "Invalid interval");
620
621  // Verify the findFrom invariant.
622  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
623  assert((i == Size || !Traits::stopLess(stop(i), a)));
624  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
625
626  // Coalesce with previous interval.
627  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
628    Pos = i - 1;
629    // Also coalesce with next interval?
630    if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
631      stop(i - 1) = stop(i);
632      this->erase(i, Size);
633      return Size - 1;
634    }
635    stop(i - 1) = b;
636    return Size;
637  }
638
639  // Detect overflow.
640  if (i == N)
641    return N + 1;
642
643  // Add new interval at end.
644  if (i == Size) {
645    start(i) = a;
646    stop(i) = b;
647    value(i) = y;
648    return Size + 1;
649  }
650
651  // Try to coalesce with following interval.
652  if (value(i) == y && Traits::adjacent(b, start(i))) {
653    start(i) = a;
654    return Size;
655  }
656
657  // We must insert before i. Detect overflow.
658  if (Size == N)
659    return N + 1;
660
661  // Insert before i.
662  this->shift(i, Size);
663  start(i) = a;
664  stop(i) = b;
665  value(i) = y;
666  return Size + 1;
667}
668
669
670//===----------------------------------------------------------------------===//
671//---                   IntervalMapImpl::BranchNode                        ---//
672//===----------------------------------------------------------------------===//
673//
674// A branch node stores references to 1--N subtrees all of the same height.
675//
676// The key array in a branch node holds the rightmost stop key of each subtree.
677// It is redundant to store the last stop key since it can be found in the
678// parent node, but doing so makes tree balancing a lot simpler.
679//
680// It is unusual for a branch node to only have one subtree, but it can happen
681// in the root node if it is smaller than the normal nodes.
682//
683// When all of the leaf nodes from all the subtrees are concatenated, they must
684// satisfy the same constraints as a single leaf node. They must be sorted,
685// sane, and fully coalesced.
686//
687//===----------------------------------------------------------------------===//
688
689template <typename KeyT, typename ValT, unsigned N, typename Traits>
690class BranchNode : public NodeBase<NodeRef, KeyT, N> {
691public:
692  const KeyT &stop(unsigned i) const { return this->second[i]; }
693  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
694
695  KeyT &stop(unsigned i) { return this->second[i]; }
696  NodeRef &subtree(unsigned i) { return this->first[i]; }
697
698  /// findFrom - Find the first subtree after i that may contain x.
699  /// @param i    Starting index for the search.
700  /// @param Size Number of elements in node.
701  /// @param x    Key to search for.
702  /// @return     First index with !stopLess(key[i], x), or size.
703  ///             This is the first subtree that can possibly contain x.
704  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
705    assert(i <= Size && Size <= N && "Bad indices");
706    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
707           "Index to findFrom is past the needed point");
708    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
709    return i;
710  }
711
712  /// safeFind - Find a subtree that is known to exist. This is the same as
713  /// findFrom except is it assumed that x is in range.
714  /// @param i Starting index for the search.
715  /// @param x Key to search for.
716  /// @return  First index with !stopLess(key[i], x), never size.
717  ///          This is the first subtree that can possibly contain x.
718  unsigned safeFind(unsigned i, KeyT x) const {
719    assert(i < N && "Bad index");
720    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
721           "Index is past the needed point");
722    while (Traits::stopLess(stop(i), x)) ++i;
723    assert(i < N && "Unsafe intervals");
724    return i;
725  }
726
727  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
728  /// @param x Key to search for.
729  /// @return  Subtree containing x
730  NodeRef safeLookup(KeyT x) const {
731    return subtree(safeFind(0, x));
732  }
733
734  /// insert - Insert a new (subtree, stop) pair.
735  /// @param i    Insert position, following entries will be shifted.
736  /// @param Size Number of elements in node.
737  /// @param Node Subtree to insert.
738  /// @param Stop Last key in subtree.
739  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
740    assert(Size < N && "branch node overflow");
741    assert(i <= Size && "Bad insert position");
742    this->shift(i, Size);
743    subtree(i) = Node;
744    stop(i) = Stop;
745  }
746
747#ifndef NDEBUG
748  void dump(raw_ostream &OS, unsigned Size) {
749    OS << "  N" << this << " [shape=record label=\"" << Size << '/' << N;
750    for (unsigned i = 0; i != Size; ++i)
751      OS << " | <s" << i << "> " << stop(i);
752    OS << "\"];\n";
753    for (unsigned i = 0; i != Size; ++i)
754      OS << "  N" << this << ":s" << i << " -> N"
755         << &subtree(i).template get<BranchNode>() << ";\n";
756  }
757#endif
758
759};
760
761//===----------------------------------------------------------------------===//
762//---                         IntervalMapImpl::Path                        ---//
763//===----------------------------------------------------------------------===//
764//
765// A Path is used by iterators to represent a position in a B+-tree, and the
766// path to get there from the root.
767//
768// The Path class also constains the tree navigation code that doesn't have to
769// be templatized.
770//
771//===----------------------------------------------------------------------===//
772
773class Path {
774  /// Entry - Each step in the path is a node pointer and an offset into that
775  /// node.
776  struct Entry {
777    void *node;
778    unsigned size;
779    unsigned offset;
780
781    Entry(void *Node, unsigned Size, unsigned Offset)
782      : node(Node), size(Size), offset(Offset) {}
783
784    Entry(NodeRef Node, unsigned Offset)
785      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
786
787    NodeRef &subtree(unsigned i) const {
788      return reinterpret_cast<NodeRef*>(node)[i];
789    }
790  };
791
792  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
793  SmallVector<Entry, 4> path;
794
795public:
796  // Node accessors.
797  template <typename NodeT> NodeT &node(unsigned Level) const {
798    return *reinterpret_cast<NodeT*>(path[Level].node);
799  }
800  unsigned size(unsigned Level) const { return path[Level].size; }
801  unsigned offset(unsigned Level) const { return path[Level].offset; }
802  unsigned &offset(unsigned Level) { return path[Level].offset; }
803
804  // Leaf accessors.
805  template <typename NodeT> NodeT &leaf() const {
806    return *reinterpret_cast<NodeT*>(path.back().node);
807  }
808  unsigned leafSize() const { return path.back().size; }
809  unsigned leafOffset() const { return path.back().offset; }
810  unsigned &leafOffset() { return path.back().offset; }
811
812  /// valid - Return true if path is at a valid node, not at end().
813  bool valid() const {
814    return !path.empty() && path.front().offset < path.front().size;
815  }
816
817  /// height - Return the height of the tree corresponding to this path.
818  /// This matches map->height in a full path.
819  unsigned height() const { return path.size() - 1; }
820
821  /// subtree - Get the subtree referenced from Level. When the path is
822  /// consistent, node(Level + 1) == subtree(Level).
823  /// @param Level 0..height-1. The leaves have no subtrees.
824  NodeRef &subtree(unsigned Level) const {
825    return path[Level].subtree(path[Level].offset);
826  }
827
828  /// reset - Reset cached information about node(Level) from subtree(Level -1).
829  /// @param Level 1..height. THe node to update after parent node changed.
830  void reset(unsigned Level) {
831    path[Level] = Entry(subtree(Level - 1), offset(Level));
832  }
833
834  /// push - Add entry to path.
835  /// @param Node Node to add, should be subtree(path.size()-1).
836  /// @param Offset Offset into Node.
837  void push(NodeRef Node, unsigned Offset) {
838    path.push_back(Entry(Node, Offset));
839  }
840
841  /// pop - Remove the last path entry.
842  void pop() {
843    path.pop_back();
844  }
845
846  /// setSize - Set the size of a node both in the path and in the tree.
847  /// @param Level 0..height. Note that setting the root size won't change
848  ///              map->rootSize.
849  /// @param Size New node size.
850  void setSize(unsigned Level, unsigned Size) {
851    path[Level].size = Size;
852    if (Level)
853      subtree(Level - 1).setSize(Size);
854  }
855
856  /// setRoot - Clear the path and set a new root node.
857  /// @param Node New root node.
858  /// @param Size New root size.
859  /// @param Offset Offset into root node.
860  void setRoot(void *Node, unsigned Size, unsigned Offset) {
861    path.clear();
862    path.push_back(Entry(Node, Size, Offset));
863  }
864
865  /// replaceRoot - Replace the current root node with two new entries after the
866  /// tree height has increased.
867  /// @param Root The new root node.
868  /// @param Size Number of entries in the new root.
869  /// @param Offsets Offsets into the root and first branch nodes.
870  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
871
872  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
873  /// @param Level Get the sibling to node(Level).
874  /// @return Left sibling, or NodeRef().
875  NodeRef getLeftSibling(unsigned Level) const;
876
877  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
878  /// unaltered.
879  /// @param Level Move node(Level).
880  void moveLeft(unsigned Level);
881
882  /// fillLeft - Grow path to Height by taking leftmost branches.
883  /// @param Height The target height.
884  void fillLeft(unsigned Height) {
885    while (height() < Height)
886      push(subtree(height()), 0);
887  }
888
889  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
890  /// @param Level Get the sinbling to node(Level).
891  /// @return Left sibling, or NodeRef().
892  NodeRef getRightSibling(unsigned Level) const;
893
894  /// moveRight - Move path to the left sibling at Level. Leave nodes below
895  /// Level unaltered.
896  /// @param Level Move node(Level).
897  void moveRight(unsigned Level);
898
899  /// atBegin - Return true if path is at begin().
900  bool atBegin() const {
901    for (unsigned i = 0, e = path.size(); i != e; ++i)
902      if (path[i].offset != 0)
903        return false;
904    return true;
905  }
906
907  /// atLastBranch - Return true if the path is at the last branch of the node
908  /// at Level.
909  /// @param Level Node to examine.
910  bool atLastBranch(unsigned Level) const {
911    return path[Level].offset == path[Level].size - 1;
912  }
913
914  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
915  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
916  /// ensures that node(Level) is real by moving back to the last node at Level,
917  /// and setting offset(Level) to size(Level) if required.
918  /// @param Level The level where an insertion is about to take place.
919  void legalizeForInsert(unsigned Level) {
920    if (valid())
921      return;
922    moveLeft(Level);
923    ++path[Level].offset;
924  }
925
926#ifndef NDEBUG
927  void dump() const {
928    for (unsigned l = 0, e = path.size(); l != e; ++l)
929      errs() << l << ": " << path[l].node << ' ' << path[l].size << ' '
930             << path[l].offset << '\n';
931  }
932#endif
933};
934
935} // namespace IntervalMapImpl
936
937
938//===----------------------------------------------------------------------===//
939//---                          IntervalMap                                ----//
940//===----------------------------------------------------------------------===//
941
942template <typename KeyT, typename ValT,
943          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
944          typename Traits = IntervalMapInfo<KeyT> >
945class IntervalMap {
946  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
947  typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
948  typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
949    Branch;
950  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
951  typedef IntervalMapImpl::IdxPair IdxPair;
952
953  // The RootLeaf capacity is given as a template parameter. We must compute the
954  // corresponding RootBranch capacity.
955  enum {
956    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
957      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
958    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
959  };
960
961  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
962    RootBranch;
963
964  // When branched, we store a global start key as well as the branch node.
965  struct RootBranchData {
966    KeyT start;
967    RootBranch node;
968  };
969
970  enum {
971    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
972                   sizeof(RootBranchData) : sizeof(RootLeaf)
973  };
974
975public:
976  typedef typename Sizer::Allocator Allocator;
977
978private:
979  // The root data is either a RootLeaf or a RootBranchData instance.
980  // We can't put them in a union since C++03 doesn't allow non-trivial
981  // constructors in unions.
982  // Instead, we use a char array with pointer alignment. The alignment is
983  // ensured by the allocator member in the class, but still verified in the
984  // constructor. We don't support keys or values that are more aligned than a
985  // pointer.
986  char data[RootDataSize];
987
988  // Tree height.
989  // 0: Leaves in root.
990  // 1: Root points to leaf.
991  // 2: root->branch->leaf ...
992  unsigned height;
993
994  // Number of entries in the root node.
995  unsigned rootSize;
996
997  // Allocator used for creating external nodes.
998  Allocator &allocator;
999
1000  /// dataAs - Represent data as a node type without breaking aliasing rules.
1001  template <typename T>
1002  T &dataAs() const {
1003    union {
1004      const char *d;
1005      T *t;
1006    } u;
1007    u.d = data;
1008    return *u.t;
1009  }
1010
1011  const RootLeaf &rootLeaf() const {
1012    assert(!branched() && "Cannot acces leaf data in branched root");
1013    return dataAs<RootLeaf>();
1014  }
1015  RootLeaf &rootLeaf() {
1016    assert(!branched() && "Cannot acces leaf data in branched root");
1017    return dataAs<RootLeaf>();
1018  }
1019  RootBranchData &rootBranchData() const {
1020    assert(branched() && "Cannot access branch data in non-branched root");
1021    return dataAs<RootBranchData>();
1022  }
1023  RootBranchData &rootBranchData() {
1024    assert(branched() && "Cannot access branch data in non-branched root");
1025    return dataAs<RootBranchData>();
1026  }
1027  const RootBranch &rootBranch() const { return rootBranchData().node; }
1028  RootBranch &rootBranch()             { return rootBranchData().node; }
1029  KeyT rootBranchStart() const { return rootBranchData().start; }
1030  KeyT &rootBranchStart()      { return rootBranchData().start; }
1031
1032  template <typename NodeT> NodeT *newNode() {
1033    return new(allocator.template Allocate<NodeT>()) NodeT();
1034  }
1035
1036  template <typename NodeT> void deleteNode(NodeT *P) {
1037    P->~NodeT();
1038    allocator.Deallocate(P);
1039  }
1040
1041  IdxPair branchRoot(unsigned Position);
1042  IdxPair splitRoot(unsigned Position);
1043
1044  void switchRootToBranch() {
1045    rootLeaf().~RootLeaf();
1046    height = 1;
1047    new (&rootBranchData()) RootBranchData();
1048  }
1049
1050  void switchRootToLeaf() {
1051    rootBranchData().~RootBranchData();
1052    height = 0;
1053    new(&rootLeaf()) RootLeaf();
1054  }
1055
1056  bool branched() const { return height > 0; }
1057
1058  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1059  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1060                  unsigned Level));
1061  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1062
1063public:
1064  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1065    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1066           "Insufficient alignment");
1067    new(&rootLeaf()) RootLeaf();
1068  }
1069
1070  ~IntervalMap() {
1071    clear();
1072    rootLeaf().~RootLeaf();
1073  }
1074
1075  /// empty -  Return true when no intervals are mapped.
1076  bool empty() const {
1077    return rootSize == 0;
1078  }
1079
1080  /// start - Return the smallest mapped key in a non-empty map.
1081  KeyT start() const {
1082    assert(!empty() && "Empty IntervalMap has no start");
1083    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1084  }
1085
1086  /// stop - Return the largest mapped key in a non-empty map.
1087  KeyT stop() const {
1088    assert(!empty() && "Empty IntervalMap has no stop");
1089    return !branched() ? rootLeaf().stop(rootSize - 1) :
1090                         rootBranch().stop(rootSize - 1);
1091  }
1092
1093  /// lookup - Return the mapped value at x or NotFound.
1094  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1095    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1096      return NotFound;
1097    return branched() ? treeSafeLookup(x, NotFound) :
1098                        rootLeaf().safeLookup(x, NotFound);
1099  }
1100
1101  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1102  /// It is assumed that no key in the interval is mapped to another value, but
1103  /// overlapping intervals already mapped to y will be coalesced.
1104  void insert(KeyT a, KeyT b, ValT y) {
1105    if (branched() || rootSize == RootLeaf::Capacity)
1106      return find(a).insert(a, b, y);
1107
1108    // Easy insert into root leaf.
1109    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1110    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1111  }
1112
1113  /// clear - Remove all entries.
1114  void clear();
1115
1116  class const_iterator;
1117  class iterator;
1118  friend class const_iterator;
1119  friend class iterator;
1120
1121  const_iterator begin() const {
1122    iterator I(*this);
1123    I.goToBegin();
1124    return I;
1125  }
1126
1127  iterator begin() {
1128    iterator I(*this);
1129    I.goToBegin();
1130    return I;
1131  }
1132
1133  const_iterator end() const {
1134    iterator I(*this);
1135    I.goToEnd();
1136    return I;
1137  }
1138
1139  iterator end() {
1140    iterator I(*this);
1141    I.goToEnd();
1142    return I;
1143  }
1144
1145  /// find - Return an iterator pointing to the first interval ending at or
1146  /// after x, or end().
1147  const_iterator find(KeyT x) const {
1148    iterator I(*this);
1149    I.find(x);
1150    return I;
1151  }
1152
1153  iterator find(KeyT x) {
1154    iterator I(*this);
1155    I.find(x);
1156    return I;
1157  }
1158
1159#ifndef NDEBUG
1160  raw_ostream *OS;
1161  void dump();
1162  void dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height);
1163#endif
1164};
1165
1166/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1167/// branched root.
1168template <typename KeyT, typename ValT, unsigned N, typename Traits>
1169ValT IntervalMap<KeyT, ValT, N, Traits>::
1170treeSafeLookup(KeyT x, ValT NotFound) const {
1171  assert(branched() && "treeLookup assumes a branched root");
1172
1173  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1174  for (unsigned h = height-1; h; --h)
1175    NR = NR.get<Branch>().safeLookup(x);
1176  return NR.get<Leaf>().safeLookup(x, NotFound);
1177}
1178
1179
1180// branchRoot - Switch from a leaf root to a branched root.
1181// Return the new (root offset, node offset) corresponding to Position.
1182template <typename KeyT, typename ValT, unsigned N, typename Traits>
1183IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1184branchRoot(unsigned Position) {
1185  using namespace IntervalMapImpl;
1186  // How many external leaf nodes to hold RootLeaf+1?
1187  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1188
1189  // Compute element distribution among new nodes.
1190  unsigned size[Nodes];
1191  IdxPair NewOffset(0, Position);
1192
1193  // Is is very common for the root node to be smaller than external nodes.
1194  if (Nodes == 1)
1195    size[0] = rootSize;
1196  else
1197    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
1198                           Position, true);
1199
1200  // Allocate new nodes.
1201  unsigned pos = 0;
1202  NodeRef node[Nodes];
1203  for (unsigned n = 0; n != Nodes; ++n) {
1204    Leaf *L = newNode<Leaf>();
1205    L->copy(rootLeaf(), pos, 0, size[n]);
1206    node[n] = NodeRef(L, size[n]);
1207    pos += size[n];
1208  }
1209
1210  // Destroy the old leaf node, construct branch node instead.
1211  switchRootToBranch();
1212  for (unsigned n = 0; n != Nodes; ++n) {
1213    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1214    rootBranch().subtree(n) = node[n];
1215  }
1216  rootBranchStart() = node[0].template get<Leaf>().start(0);
1217  rootSize = Nodes;
1218  return NewOffset;
1219}
1220
1221// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1222// Return the new (root offset, node offset) corresponding to Position.
1223template <typename KeyT, typename ValT, unsigned N, typename Traits>
1224IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1225splitRoot(unsigned Position) {
1226  using namespace IntervalMapImpl;
1227  // How many external leaf nodes to hold RootBranch+1?
1228  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1229
1230  // Compute element distribution among new nodes.
1231  unsigned Size[Nodes];
1232  IdxPair NewOffset(0, Position);
1233
1234  // Is is very common for the root node to be smaller than external nodes.
1235  if (Nodes == 1)
1236    Size[0] = rootSize;
1237  else
1238    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
1239                           Position, true);
1240
1241  // Allocate new nodes.
1242  unsigned Pos = 0;
1243  NodeRef Node[Nodes];
1244  for (unsigned n = 0; n != Nodes; ++n) {
1245    Branch *B = newNode<Branch>();
1246    B->copy(rootBranch(), Pos, 0, Size[n]);
1247    Node[n] = NodeRef(B, Size[n]);
1248    Pos += Size[n];
1249  }
1250
1251  for (unsigned n = 0; n != Nodes; ++n) {
1252    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1253    rootBranch().subtree(n) = Node[n];
1254  }
1255  rootSize = Nodes;
1256  ++height;
1257  return NewOffset;
1258}
1259
1260/// visitNodes - Visit each external node.
1261template <typename KeyT, typename ValT, unsigned N, typename Traits>
1262void IntervalMap<KeyT, ValT, N, Traits>::
1263visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1264  if (!branched())
1265    return;
1266  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1267
1268  // Collect level 0 nodes from the root.
1269  for (unsigned i = 0; i != rootSize; ++i)
1270    Refs.push_back(rootBranch().subtree(i));
1271
1272  // Visit all branch nodes.
1273  for (unsigned h = height - 1; h; --h) {
1274    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1275      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1276        NextRefs.push_back(Refs[i].subtree(j));
1277      (this->*f)(Refs[i], h);
1278    }
1279    Refs.clear();
1280    Refs.swap(NextRefs);
1281  }
1282
1283  // Visit all leaf nodes.
1284  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1285    (this->*f)(Refs[i], 0);
1286}
1287
1288template <typename KeyT, typename ValT, unsigned N, typename Traits>
1289void IntervalMap<KeyT, ValT, N, Traits>::
1290deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1291  if (Level)
1292    deleteNode(&Node.get<Branch>());
1293  else
1294    deleteNode(&Node.get<Leaf>());
1295}
1296
1297template <typename KeyT, typename ValT, unsigned N, typename Traits>
1298void IntervalMap<KeyT, ValT, N, Traits>::
1299clear() {
1300  if (branched()) {
1301    visitNodes(&IntervalMap::deleteNode);
1302    switchRootToLeaf();
1303  }
1304  rootSize = 0;
1305}
1306
1307#ifndef NDEBUG
1308template <typename KeyT, typename ValT, unsigned N, typename Traits>
1309void IntervalMap<KeyT, ValT, N, Traits>::
1310dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height) {
1311  if (Height)
1312    Node.get<Branch>().dump(*OS, Node.size());
1313  else
1314    Node.get<Leaf>().dump(*OS, Node.size());
1315}
1316
1317template <typename KeyT, typename ValT, unsigned N, typename Traits>
1318void IntervalMap<KeyT, ValT, N, Traits>::
1319dump() {
1320  std::string errors;
1321  raw_fd_ostream ofs("tree.dot", errors);
1322  OS = &ofs;
1323  ofs << "digraph {\n";
1324  if (branched())
1325    rootBranch().dump(ofs, rootSize);
1326  else
1327    rootLeaf().dump(ofs, rootSize);
1328  visitNodes(&IntervalMap::dumpNode);
1329  ofs << "}\n";
1330}
1331#endif
1332
1333//===----------------------------------------------------------------------===//
1334//---                   IntervalMap::const_iterator                       ----//
1335//===----------------------------------------------------------------------===//
1336
1337template <typename KeyT, typename ValT, unsigned N, typename Traits>
1338class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1339  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1340protected:
1341  friend class IntervalMap;
1342
1343  // The map referred to.
1344  IntervalMap *map;
1345
1346  // We store a full path from the root to the current position.
1347  // The path may be partially filled, but never between iterator calls.
1348  IntervalMapImpl::Path path;
1349
1350  explicit const_iterator(IntervalMap &map) : map(&map) {}
1351
1352  bool branched() const {
1353    assert(map && "Invalid iterator");
1354    return map->branched();
1355  }
1356
1357  void setRoot(unsigned Offset) {
1358    if (branched())
1359      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1360    else
1361      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1362  }
1363
1364  void pathFillFind(KeyT x);
1365  void treeFind(KeyT x);
1366  void treeAdvanceTo(KeyT x);
1367
1368public:
1369  /// const_iterator - Create an iterator that isn't pointing anywhere.
1370  const_iterator() : map(0) {}
1371
1372  /// valid - Return true if the current position is valid, false for end().
1373  bool valid() const { return path.valid(); }
1374
1375  /// start - Return the beginning of the current interval.
1376  const KeyT &start() const {
1377    assert(valid() && "Cannot access invalid iterator");
1378    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1379                        path.leaf<RootLeaf>().start(path.leafOffset());
1380  }
1381
1382  /// stop - Return the end of the current interval.
1383  const KeyT &stop() const {
1384    assert(valid() && "Cannot access invalid iterator");
1385    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1386                        path.leaf<RootLeaf>().stop(path.leafOffset());
1387  }
1388
1389  /// value - Return the mapped value at the current interval.
1390  const ValT &value() const {
1391    assert(valid() && "Cannot access invalid iterator");
1392    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1393                        path.leaf<RootLeaf>().value(path.leafOffset());
1394  }
1395
1396  const ValT &operator*() const {
1397    return value();
1398  }
1399
1400  bool operator==(const const_iterator &RHS) const {
1401    assert(map == RHS.map && "Cannot compare iterators from different maps");
1402    if (!valid())
1403      return !RHS.valid();
1404    if (path.leafOffset() != RHS.path.leafOffset())
1405      return false;
1406    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1407  }
1408
1409  bool operator!=(const const_iterator &RHS) const {
1410    return !operator==(RHS);
1411  }
1412
1413  /// goToBegin - Move to the first interval in map.
1414  void goToBegin() {
1415    setRoot(0);
1416    if (branched())
1417      path.fillLeft(map->height);
1418  }
1419
1420  /// goToEnd - Move beyond the last interval in map.
1421  void goToEnd() {
1422    setRoot(map->rootSize);
1423  }
1424
1425  /// preincrement - move to the next interval.
1426  const_iterator &operator++() {
1427    assert(valid() && "Cannot increment end()");
1428    if (++path.leafOffset() == path.leafSize() && branched())
1429      path.moveRight(map->height);
1430    return *this;
1431  }
1432
1433  /// postincrement - Dont do that!
1434  const_iterator operator++(int) {
1435    const_iterator tmp = *this;
1436    operator++();
1437    return tmp;
1438  }
1439
1440  /// predecrement - move to the previous interval.
1441  const_iterator &operator--() {
1442    if (path.leafOffset() && (valid() || !branched()))
1443      --path.leafOffset();
1444    else
1445      path.moveLeft(map->height);
1446    return *this;
1447  }
1448
1449  /// postdecrement - Dont do that!
1450  const_iterator operator--(int) {
1451    const_iterator tmp = *this;
1452    operator--();
1453    return tmp;
1454  }
1455
1456  /// find - Move to the first interval with stop >= x, or end().
1457  /// This is a full search from the root, the current position is ignored.
1458  void find(KeyT x) {
1459    if (branched())
1460      treeFind(x);
1461    else
1462      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1463  }
1464
1465  /// advanceTo - Move to the first interval with stop >= x, or end().
1466  /// The search is started from the current position, and no earlier positions
1467  /// can be found. This is much faster than find() for small moves.
1468  void advanceTo(KeyT x) {
1469    if (branched())
1470      treeAdvanceTo(x);
1471    else
1472      path.leafOffset() =
1473        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1474  }
1475
1476};
1477
1478/// pathFillFind - Complete path by searching for x.
1479/// @param x Key to search for.
1480template <typename KeyT, typename ValT, unsigned N, typename Traits>
1481void IntervalMap<KeyT, ValT, N, Traits>::
1482const_iterator::pathFillFind(KeyT x) {
1483  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1484  for (unsigned i = map->height - path.height() - 1; i; --i) {
1485    unsigned p = NR.get<Branch>().safeFind(0, x);
1486    path.push(NR, p);
1487    NR = NR.subtree(p);
1488  }
1489  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1490}
1491
1492/// treeFind - Find in a branched tree.
1493/// @param x Key to search for.
1494template <typename KeyT, typename ValT, unsigned N, typename Traits>
1495void IntervalMap<KeyT, ValT, N, Traits>::
1496const_iterator::treeFind(KeyT x) {
1497  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1498  if (valid())
1499    pathFillFind(x);
1500}
1501
1502/// treeAdvanceTo - Find position after the current one.
1503/// @param x Key to search for.
1504template <typename KeyT, typename ValT, unsigned N, typename Traits>
1505void IntervalMap<KeyT, ValT, N, Traits>::
1506const_iterator::treeAdvanceTo(KeyT x) {
1507  // Can we stay on the same leaf node?
1508  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1509    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1510    return;
1511  }
1512
1513  // Drop the current leaf.
1514  path.pop();
1515
1516  // Search towards the root for a usable subtree.
1517  if (path.height()) {
1518    for (unsigned l = path.height() - 1; l; --l) {
1519      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1520        // The branch node at l+1 is usable
1521        path.offset(l + 1) =
1522          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1523        return pathFillFind(x);
1524      }
1525      path.pop();
1526    }
1527    // Is the level-1 Branch usable?
1528    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1529      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1530      return pathFillFind(x);
1531    }
1532  }
1533
1534  // We reached the root.
1535  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1536  if (valid())
1537    pathFillFind(x);
1538}
1539
1540//===----------------------------------------------------------------------===//
1541//---                       IntervalMap::iterator                         ----//
1542//===----------------------------------------------------------------------===//
1543
1544template <typename KeyT, typename ValT, unsigned N, typename Traits>
1545class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1546  friend class IntervalMap;
1547  typedef IntervalMapImpl::IdxPair IdxPair;
1548
1549  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1550
1551  void setNodeStop(unsigned Level, KeyT Stop);
1552  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1553  template <typename NodeT> bool overflow(unsigned Level);
1554  void treeInsert(KeyT a, KeyT b, ValT y);
1555  void eraseNode(unsigned Level);
1556  void treeErase(bool UpdateRoot = true);
1557public:
1558  /// iterator - Create null iterator.
1559  iterator() {}
1560
1561  /// insert - Insert mapping [a;b] -> y before the current position.
1562  void insert(KeyT a, KeyT b, ValT y);
1563
1564  /// erase - Erase the current interval.
1565  void erase();
1566
1567  iterator &operator++() {
1568    const_iterator::operator++();
1569    return *this;
1570  }
1571
1572  iterator operator++(int) {
1573    iterator tmp = *this;
1574    operator++();
1575    return tmp;
1576  }
1577
1578  iterator &operator--() {
1579    const_iterator::operator--();
1580    return *this;
1581  }
1582
1583  iterator operator--(int) {
1584    iterator tmp = *this;
1585    operator--();
1586    return tmp;
1587  }
1588
1589};
1590
1591/// setNodeStop - Update the stop key of the current node at level and above.
1592template <typename KeyT, typename ValT, unsigned N, typename Traits>
1593void IntervalMap<KeyT, ValT, N, Traits>::
1594iterator::setNodeStop(unsigned Level, KeyT Stop) {
1595  // There are no references to the root node, so nothing to update.
1596  if (!Level)
1597    return;
1598  IntervalMapImpl::Path &P = this->path;
1599  // Update nodes pointing to the current node.
1600  while (--Level) {
1601    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1602    if (!P.atLastBranch(Level))
1603      return;
1604  }
1605  // Update root separately since it has a different layout.
1606  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1607}
1608
1609/// insertNode - insert a node before the current path at level.
1610/// Leave the current path pointing at the new node.
1611/// @param Level path index of the node to be inserted.
1612/// @param Node The node to be inserted.
1613/// @param Stop The last index in the new node.
1614/// @return True if the tree height was increased.
1615template <typename KeyT, typename ValT, unsigned N, typename Traits>
1616bool IntervalMap<KeyT, ValT, N, Traits>::
1617iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1618  assert(Level && "Cannot insert next to the root");
1619  bool SplitRoot = false;
1620  IntervalMap &IM = *this->map;
1621  IntervalMapImpl::Path &P = this->path;
1622
1623  if (Level == 1) {
1624    // Insert into the root branch node.
1625    if (IM.rootSize < RootBranch::Capacity) {
1626      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1627      P.setSize(0, ++IM.rootSize);
1628      P.reset(Level);
1629      return SplitRoot;
1630    }
1631
1632    // We need to split the root while keeping our position.
1633    SplitRoot = true;
1634    IdxPair Offset = IM.splitRoot(P.offset(0));
1635    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1636
1637    // Fall through to insert at the new higher level.
1638    ++Level;
1639  }
1640
1641  // When inserting before end(), make sure we have a valid path.
1642  P.legalizeForInsert(--Level);
1643
1644  // Insert into the branch node at Level-1.
1645  if (P.size(Level) == Branch::Capacity) {
1646    // Branch node is full, handle handle the overflow.
1647    assert(!SplitRoot && "Cannot overflow after splitting the root");
1648    SplitRoot = overflow<Branch>(Level);
1649    Level += SplitRoot;
1650  }
1651  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1652  P.setSize(Level, P.size(Level) + 1);
1653  if (P.atLastBranch(Level))
1654    setNodeStop(Level, Stop);
1655  P.reset(Level + 1);
1656  return SplitRoot;
1657}
1658
1659// insert
1660template <typename KeyT, typename ValT, unsigned N, typename Traits>
1661void IntervalMap<KeyT, ValT, N, Traits>::
1662iterator::insert(KeyT a, KeyT b, ValT y) {
1663  if (this->branched())
1664    return treeInsert(a, b, y);
1665  IntervalMap &IM = *this->map;
1666  IntervalMapImpl::Path &P = this->path;
1667
1668  // Try simple root leaf insert.
1669  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1670
1671  // Was the root node insert successful?
1672  if (Size <= RootLeaf::Capacity) {
1673    P.setSize(0, IM.rootSize = Size);
1674    return;
1675  }
1676
1677  // Root leaf node is full, we must branch.
1678  IdxPair Offset = IM.branchRoot(P.leafOffset());
1679  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1680
1681  // Now it fits in the new leaf.
1682  treeInsert(a, b, y);
1683}
1684
1685
1686template <typename KeyT, typename ValT, unsigned N, typename Traits>
1687void IntervalMap<KeyT, ValT, N, Traits>::
1688iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1689  using namespace IntervalMapImpl;
1690  Path &P = this->path;
1691
1692  if (!P.valid())
1693    P.legalizeForInsert(this->map->height);
1694
1695  // Check if this insertion will extend the node to the left.
1696  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1697    // Node is growing to the left, will it affect a left sibling node?
1698    if (NodeRef Sib = P.getLeftSibling(P.height())) {
1699      Leaf &SibLeaf = Sib.get<Leaf>();
1700      unsigned SibOfs = Sib.size() - 1;
1701      if (SibLeaf.value(SibOfs) == y &&
1702          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1703        // This insertion will coalesce with the last entry in SibLeaf. We can
1704        // handle it in two ways:
1705        //  1. Extend SibLeaf.stop to b and be done, or
1706        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1707        // We prefer 1., but need 2 when coalescing to the right as well.
1708        Leaf &CurLeaf = P.leaf<Leaf>();
1709        P.moveLeft(P.height());
1710        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1711            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1712          // Easy, just extend SibLeaf and we're done.
1713          setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1714          return;
1715        } else {
1716          // We have both left and right coalescing. Erase the old SibLeaf entry
1717          // and continue inserting the larger interval.
1718          a = SibLeaf.start(SibOfs);
1719          treeErase(/* UpdateRoot= */false);
1720        }
1721      }
1722    } else {
1723      // No left sibling means we are at begin(). Update cached bound.
1724      this->map->rootBranchStart() = a;
1725    }
1726  }
1727
1728  // When we are inserting at the end of a leaf node, we must update stops.
1729  unsigned Size = P.leafSize();
1730  bool Grow = P.leafOffset() == Size;
1731  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1732
1733  // Leaf insertion unsuccessful? Overflow and try again.
1734  if (Size > Leaf::Capacity) {
1735    overflow<Leaf>(P.height());
1736    Grow = P.leafOffset() == P.leafSize();
1737    Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1738    assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1739  }
1740
1741  // Inserted, update offset and leaf size.
1742  P.setSize(P.height(), Size);
1743
1744  // Insert was the last node entry, update stops.
1745  if (Grow)
1746    setNodeStop(P.height(), b);
1747}
1748
1749/// erase - erase the current interval and move to the next position.
1750template <typename KeyT, typename ValT, unsigned N, typename Traits>
1751void IntervalMap<KeyT, ValT, N, Traits>::
1752iterator::erase() {
1753  IntervalMap &IM = *this->map;
1754  IntervalMapImpl::Path &P = this->path;
1755  assert(P.valid() && "Cannot erase end()");
1756  if (this->branched())
1757    return treeErase();
1758  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1759  P.setSize(0, --IM.rootSize);
1760}
1761
1762/// treeErase - erase() for a branched tree.
1763template <typename KeyT, typename ValT, unsigned N, typename Traits>
1764void IntervalMap<KeyT, ValT, N, Traits>::
1765iterator::treeErase(bool UpdateRoot) {
1766  IntervalMap &IM = *this->map;
1767  IntervalMapImpl::Path &P = this->path;
1768  Leaf &Node = P.leaf<Leaf>();
1769
1770  // Nodes are not allowed to become empty.
1771  if (P.leafSize() == 1) {
1772    IM.deleteNode(&Node);
1773    eraseNode(IM.height);
1774    // Update rootBranchStart if we erased begin().
1775    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1776      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1777    return;
1778  }
1779
1780  // Erase current entry.
1781  Node.erase(P.leafOffset(), P.leafSize());
1782  unsigned NewSize = P.leafSize() - 1;
1783  P.setSize(IM.height, NewSize);
1784  // When we erase the last entry, update stop and move to a legal position.
1785  if (P.leafOffset() == NewSize) {
1786    setNodeStop(IM.height, Node.stop(NewSize - 1));
1787    P.moveRight(IM.height);
1788  } else if (UpdateRoot && P.atBegin())
1789    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1790}
1791
1792/// eraseNode - Erase the current node at Level from its parent and move path to
1793/// the first entry of the next sibling node.
1794/// The node must be deallocated by the caller.
1795/// @param Level 1..height, the root node cannot be erased.
1796template <typename KeyT, typename ValT, unsigned N, typename Traits>
1797void IntervalMap<KeyT, ValT, N, Traits>::
1798iterator::eraseNode(unsigned Level) {
1799  assert(Level && "Cannot erase root node");
1800  IntervalMap &IM = *this->map;
1801  IntervalMapImpl::Path &P = this->path;
1802
1803  if (--Level == 0) {
1804    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1805    P.setSize(0, --IM.rootSize);
1806    // If this cleared the root, switch to height=0.
1807    if (IM.empty()) {
1808      IM.switchRootToLeaf();
1809      this->setRoot(0);
1810      return;
1811    }
1812  } else {
1813    // Remove node ref from branch node at Level.
1814    Branch &Parent = P.node<Branch>(Level);
1815    if (P.size(Level) == 1) {
1816      // Branch node became empty, remove it recursively.
1817      IM.deleteNode(&Parent);
1818      eraseNode(Level);
1819    } else {
1820      // Branch node won't become empty.
1821      Parent.erase(P.offset(Level), P.size(Level));
1822      unsigned NewSize = P.size(Level) - 1;
1823      P.setSize(Level, NewSize);
1824      // If we removed the last branch, update stop and move to a legal pos.
1825      if (P.offset(Level) == NewSize) {
1826        setNodeStop(Level, Parent.stop(NewSize - 1));
1827        P.moveRight(Level);
1828      }
1829    }
1830  }
1831  // Update path cache for the new right sibling position.
1832  if (P.valid()) {
1833    P.reset(Level + 1);
1834    P.offset(Level + 1) = 0;
1835  }
1836}
1837
1838/// overflow - Distribute entries of the current node evenly among
1839/// its siblings and ensure that the current node is not full.
1840/// This may require allocating a new node.
1841/// @param NodeT The type of node at Level (Leaf or Branch).
1842/// @param Level path index of the overflowing node.
1843/// @return True when the tree height was changed.
1844template <typename KeyT, typename ValT, unsigned N, typename Traits>
1845template <typename NodeT>
1846bool IntervalMap<KeyT, ValT, N, Traits>::
1847iterator::overflow(unsigned Level) {
1848  using namespace IntervalMapImpl;
1849  Path &P = this->path;
1850  unsigned CurSize[4];
1851  NodeT *Node[4];
1852  unsigned Nodes = 0;
1853  unsigned Elements = 0;
1854  unsigned Offset = P.offset(Level);
1855
1856  // Do we have a left sibling?
1857  NodeRef LeftSib = P.getLeftSibling(Level);
1858  if (LeftSib) {
1859    Offset += Elements = CurSize[Nodes] = LeftSib.size();
1860    Node[Nodes++] = &LeftSib.get<NodeT>();
1861  }
1862
1863  // Current node.
1864  Elements += CurSize[Nodes] = P.size(Level);
1865  Node[Nodes++] = &P.node<NodeT>(Level);
1866
1867  // Do we have a right sibling?
1868  NodeRef RightSib = P.getRightSibling(Level);
1869  if (RightSib) {
1870    Elements += CurSize[Nodes] = RightSib.size();
1871    Node[Nodes++] = &RightSib.get<NodeT>();
1872  }
1873
1874  // Do we need to allocate a new node?
1875  unsigned NewNode = 0;
1876  if (Elements + 1 > Nodes * NodeT::Capacity) {
1877    // Insert NewNode at the penultimate position, or after a single node.
1878    NewNode = Nodes == 1 ? 1 : Nodes - 1;
1879    CurSize[Nodes] = CurSize[NewNode];
1880    Node[Nodes] = Node[NewNode];
1881    CurSize[NewNode] = 0;
1882    Node[NewNode] = this->map->newNode<NodeT>();
1883    ++Nodes;
1884  }
1885
1886  // Compute the new element distribution.
1887  unsigned NewSize[4];
1888  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1889                                 CurSize, NewSize, Offset, true);
1890  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1891
1892  // Move current location to the leftmost node.
1893  if (LeftSib)
1894    P.moveLeft(Level);
1895
1896  // Elements have been rearranged, now update node sizes and stops.
1897  bool SplitRoot = false;
1898  unsigned Pos = 0;
1899  for (;;) {
1900    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1901    if (NewNode && Pos == NewNode) {
1902      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
1903      Level += SplitRoot;
1904    } else {
1905      P.setSize(Level, NewSize[Pos]);
1906      setNodeStop(Level, Stop);
1907    }
1908    if (Pos + 1 == Nodes)
1909      break;
1910    P.moveRight(Level);
1911    ++Pos;
1912  }
1913
1914  // Where was I? Find NewOffset.
1915  while(Pos != NewOffset.first) {
1916    P.moveLeft(Level);
1917    --Pos;
1918  }
1919  P.offset(Level) = NewOffset.second;
1920  return SplitRoot;
1921}
1922
1923} // namespace llvm
1924
1925#endif
1926