IntervalMap.h revision 79283768a36746bcb5885746637752312af9e4ac
1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70//   bool operator==(const const_iterator &) const;
71//   bool operator!=(const const_iterator &) const;
72//   bool valid() const;
73//
74//   const KeyT &start() const;
75//   const KeyT &stop() const;
76//   const ValT &value() const;
77//   const ValT &operator*() const;
78//   const ValT *operator->() const;
79//
80//   const_iterator &operator++();
81//   const_iterator &operator++(int);
82//   const_iterator &operator--();
83//   const_iterator &operator--(int);
84//   void goToBegin();
85//   void goToEnd();
86//   void find(KeyT x);
87//   void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93//   void insert(KeyT a, KeyT b, Value y);
94//   void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/SmallVector.h"
103#include "llvm/ADT/PointerIntPair.h"
104#include "llvm/Support/Allocator.h"
105#include "llvm/Support/RecyclingAllocator.h"
106#include <limits>
107#include <iterator>
108
109// FIXME: Remove debugging code.
110#include "llvm/Support/raw_ostream.h"
111
112namespace llvm {
113
114
115//===----------------------------------------------------------------------===//
116//---                              Key traits                              ---//
117//===----------------------------------------------------------------------===//
118//
119// The IntervalMap works with closed or half-open intervals.
120// Adjacent intervals that map to the same value are coalesced.
121//
122// The IntervalMapInfo traits class is used to determine if a key is contained
123// in an interval, and if two intervals are adjacent so they can be coalesced.
124// The provided implementation works for closed integer intervals, other keys
125// probably need a specialized version.
126//
127// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
128//
129// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
130// allowed. This is so that stopLess(a, b) can be used to determine if two
131// intervals overlap.
132//
133//===----------------------------------------------------------------------===//
134
135template <typename T>
136struct IntervalMapInfo {
137
138  /// startLess - Return true if x is not in [a;b].
139  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
140  static inline bool startLess(const T &x, const T &a) {
141    return x < a;
142  }
143
144  /// stopLess - Return true if x is not in [a;b].
145  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
146  static inline bool stopLess(const T &b, const T &x) {
147    return b < x;
148  }
149
150  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
151  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
152  static inline bool adjacent(const T &a, const T &b) {
153    return a+1 == b;
154  }
155
156};
157
158/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
159/// It should be considered private to the implementation.
160namespace IntervalMapImpl {
161
162// Forward declarations.
163template <typename, typename, unsigned, typename> class LeafNode;
164template <typename, typename, unsigned, typename> class BranchNode;
165
166typedef std::pair<unsigned,unsigned> IdxPair;
167
168
169//===----------------------------------------------------------------------===//
170//---                            Node Storage                              ---//
171//===----------------------------------------------------------------------===//
172//
173// Both leaf and branch nodes store vectors of pairs.
174// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
175//
176// Keys and values are stored in separate arrays to avoid padding caused by
177// different object alignments. This also helps improve locality of reference
178// when searching the keys.
179//
180// The nodes don't know how many elements they contain - that information is
181// stored elsewhere. Omitting the size field prevents padding and allows a node
182// to fill the allocated cache lines completely.
183//
184// These are typical key and value sizes, the node branching factor (N), and
185// wasted space when nodes are sized to fit in three cache lines (192 bytes):
186//
187//   T1  T2   N Waste  Used by
188//    4   4  24   0    Branch<4> (32-bit pointers)
189//    8   4  16   0    Leaf<4,4>, Branch<4>
190//    8   8  12   0    Leaf<4,8>, Branch<8>
191//   16   4   9  12    Leaf<8,4>
192//   16   8   8   0    Leaf<8,8>
193//
194//===----------------------------------------------------------------------===//
195
196template <typename T1, typename T2, unsigned N>
197class NodeBase {
198public:
199  enum { Capacity = N };
200
201  T1 first[N];
202  T2 second[N];
203
204  /// copy - Copy elements from another node.
205  /// @param Other Node elements are copied from.
206  /// @param i     Beginning of the source range in other.
207  /// @param j     Beginning of the destination range in this.
208  /// @param Count Number of elements to copy.
209  template <unsigned M>
210  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
211            unsigned j, unsigned Count) {
212    assert(i + Count <= M && "Invalid source range");
213    assert(j + Count <= N && "Invalid dest range");
214    std::copy(Other.first + i, Other.first + i + Count, first + j);
215    std::copy(Other.second + i, Other.second + i + Count, second + j);
216  }
217
218  /// moveLeft - Move elements to the left.
219  /// @param i     Beginning of the source range.
220  /// @param j     Beginning of the destination range.
221  /// @param Count Number of elements to copy.
222  void moveLeft(unsigned i, unsigned j, unsigned Count) {
223    assert(j <= i && "Use moveRight shift elements right");
224    copy(*this, i, j, Count);
225  }
226
227  /// moveRight - Move elements to the right.
228  /// @param i     Beginning of the source range.
229  /// @param j     Beginning of the destination range.
230  /// @param Count Number of elements to copy.
231  void moveRight(unsigned i, unsigned j, unsigned Count) {
232    assert(i <= j && "Use moveLeft shift elements left");
233    assert(j + Count <= N && "Invalid range");
234    std::copy_backward(first + i, first + i + Count, first + j + Count);
235    std::copy_backward(second + i, second + i + Count, second + j + Count);
236  }
237
238  /// erase - Erase elements [i;j).
239  /// @param i    Beginning of the range to erase.
240  /// @param j    End of the range. (Exclusive).
241  /// @param Size Number of elements in node.
242  void erase(unsigned i, unsigned j, unsigned Size) {
243    moveLeft(j, i, Size - j);
244  }
245
246  /// erase - Erase element at i.
247  /// @param i    Index of element to erase.
248  /// @param Size Number of elements in node.
249  void erase(unsigned i, unsigned Size) {
250    erase(i, i+1, Size);
251  }
252
253  /// shift - Shift elements [i;size) 1 position to the right.
254  /// @param i    Beginning of the range to move.
255  /// @param Size Number of elements in node.
256  void shift(unsigned i, unsigned Size) {
257    moveRight(i, i + 1, Size - i);
258  }
259
260  /// transferToLeftSib - Transfer elements to a left sibling node.
261  /// @param Size  Number of elements in this.
262  /// @param Sib   Left sibling node.
263  /// @param SSize Number of elements in sib.
264  /// @param Count Number of elements to transfer.
265  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
266                         unsigned Count) {
267    Sib.copy(*this, 0, SSize, Count);
268    erase(0, Count, Size);
269  }
270
271  /// transferToRightSib - Transfer elements to a right sibling node.
272  /// @param Size  Number of elements in this.
273  /// @param Sib   Right sibling node.
274  /// @param SSize Number of elements in sib.
275  /// @param Count Number of elements to transfer.
276  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
277                          unsigned Count) {
278    Sib.moveRight(0, Count, SSize);
279    Sib.copy(*this, Size-Count, 0, Count);
280  }
281
282  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283  /// elements to or from a left sibling node.
284  /// @param Size  Number of elements in this.
285  /// @param Sib   Right sibling node.
286  /// @param SSize Number of elements in sib.
287  /// @param Add   The number of elements to add to this node, possibly < 0.
288  /// @return      Number of elements added to this node, possibly negative.
289  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
290    if (Add > 0) {
291      // We want to grow, copy from sib.
292      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293      Sib.transferToRightSib(SSize, *this, Size, Count);
294      return Count;
295    } else {
296      // We want to shrink, copy to sib.
297      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298      transferToLeftSib(Size, Sib, SSize, Count);
299      return -Count;
300    }
301  }
302};
303
304/// adjustSiblingSizes - Move elements between sibling nodes.
305/// @param Node  Array of pointers to sibling nodes.
306/// @param Nodes Number of nodes.
307/// @param CurSize Array of current node sizes, will be overwritten.
308/// @param NewSize Array of desired node sizes.
309template <typename NodeT>
310void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311                        unsigned CurSize[], const unsigned NewSize[]) {
312  // Move elements right.
313  for (int n = Nodes - 1; n; --n) {
314    if (CurSize[n] == NewSize[n])
315      continue;
316    for (int m = n - 1; m != -1; --m) {
317      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318                                         NewSize[n] - CurSize[n]);
319      CurSize[m] -= d;
320      CurSize[n] += d;
321      // Keep going if the current node was exhausted.
322      if (CurSize[n] >= NewSize[n])
323          break;
324    }
325  }
326
327  if (Nodes == 0)
328    return;
329
330  // Move elements left.
331  for (unsigned n = 0; n != Nodes - 1; ++n) {
332    if (CurSize[n] == NewSize[n])
333      continue;
334    for (unsigned m = n + 1; m != Nodes; ++m) {
335      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336                                        CurSize[n] -  NewSize[n]);
337      CurSize[m] += d;
338      CurSize[n] -= d;
339      // Keep going if the current node was exhausted.
340      if (CurSize[n] >= NewSize[n])
341          break;
342    }
343  }
344
345#ifndef NDEBUG
346  for (unsigned n = 0; n != Nodes; n++)
347    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
348#endif
349}
350
351/// distribute - Compute a new distribution of node elements after an overflow
352/// or underflow. Reserve space for a new element at Position, and compute the
353/// node that will hold Position after redistributing node elements.
354///
355/// It is required that
356///
357///   Elements == sum(CurSize), and
358///   Elements + Grow <= Nodes * Capacity.
359///
360/// NewSize[] will be filled in such that:
361///
362///   sum(NewSize) == Elements, and
363///   NewSize[i] <= Capacity.
364///
365/// The returned index is the node where Position will go, so:
366///
367///   sum(NewSize[0..idx-1]) <= Position
368///   sum(NewSize[0..idx])   >= Position
369///
370/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
371/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
372/// before the one holding the Position'th element where there is room for an
373/// insertion.
374///
375/// @param Nodes    The number of nodes.
376/// @param Elements Total elements in all nodes.
377/// @param Capacity The capacity of each node.
378/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
379/// @param NewSize  Array[Nodes] to receive the new node sizes.
380/// @param Position Insert position.
381/// @param Grow     Reserve space for a new element at Position.
382/// @return         (node, offset) for Position.
383IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
384                   const unsigned *CurSize, unsigned NewSize[],
385                   unsigned Position, bool Grow);
386
387
388//===----------------------------------------------------------------------===//
389//---                             NodeSizer                                ---//
390//===----------------------------------------------------------------------===//
391//
392// Compute node sizes from key and value types.
393//
394// The branching factors are chosen to make nodes fit in three cache lines.
395// This may not be possible if keys or values are very large. Such large objects
396// are handled correctly, but a std::map would probably give better performance.
397//
398//===----------------------------------------------------------------------===//
399
400enum {
401  // Cache line size. Most architectures have 32 or 64 byte cache lines.
402  // We use 64 bytes here because it provides good branching factors.
403  Log2CacheLine = 6,
404  CacheLineBytes = 1 << Log2CacheLine,
405  DesiredNodeBytes = 3 * CacheLineBytes
406};
407
408template <typename KeyT, typename ValT>
409struct NodeSizer {
410  enum {
411    // Compute the leaf node branching factor that makes a node fit in three
412    // cache lines. The branching factor must be at least 3, or some B+-tree
413    // balancing algorithms won't work.
414    // LeafSize can't be larger than CacheLineBytes. This is required by the
415    // PointerIntPair used by NodeRef.
416    DesiredLeafSize = DesiredNodeBytes /
417      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
418    MinLeafSize = 3,
419    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
420  };
421
422  typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
423
424  enum {
425    // Now that we have the leaf branching factor, compute the actual allocation
426    // unit size by rounding up to a whole number of cache lines.
427    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
428
429    // Determine the branching factor for branch nodes.
430    BranchSize = AllocBytes /
431      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
432  };
433
434  /// Allocator - The recycling allocator used for both branch and leaf nodes.
435  /// This typedef is very likely to be identical for all IntervalMaps with
436  /// reasonably sized entries, so the same allocator can be shared among
437  /// different kinds of maps.
438  typedef RecyclingAllocator<BumpPtrAllocator, char,
439                             AllocBytes, CacheLineBytes> Allocator;
440
441};
442
443
444//===----------------------------------------------------------------------===//
445//---                              NodeRef                                 ---//
446//===----------------------------------------------------------------------===//
447//
448// B+-tree nodes can be leaves or branches, so we need a polymorphic node
449// pointer that can point to both kinds.
450//
451// All nodes are cache line aligned and the low 6 bits of a node pointer are
452// always 0. These bits are used to store the number of elements in the
453// referenced node. Besides saving space, placing node sizes in the parents
454// allow tree balancing algorithms to run without faulting cache lines for nodes
455// that may not need to be modified.
456//
457// A NodeRef doesn't know whether it references a leaf node or a branch node.
458// It is the responsibility of the caller to use the correct types.
459//
460// Nodes are never supposed to be empty, and it is invalid to store a node size
461// of 0 in a NodeRef. The valid range of sizes is 1-64.
462//
463//===----------------------------------------------------------------------===//
464
465struct CacheAlignedPointerTraits {
466  static inline void *getAsVoidPointer(void *P) { return P; }
467  static inline void *getFromVoidPointer(void *P) { return P; }
468  enum { NumLowBitsAvailable = Log2CacheLine };
469};
470
471class NodeRef {
472  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
473
474public:
475  /// NodeRef - Create a null ref.
476  NodeRef() {}
477
478  /// operator bool - Detect a null ref.
479  operator bool() const { return pip.getOpaqueValue(); }
480
481  /// NodeRef - Create a reference to the node p with n elements.
482  template <typename NodeT>
483  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484    assert(n <= NodeT::Capacity && "Size too big for node");
485  }
486
487  /// size - Return the number of elements in the referenced node.
488  unsigned size() const { return pip.getInt() + 1; }
489
490  /// setSize - Update the node size.
491  void setSize(unsigned n) { pip.setInt(n - 1); }
492
493  /// subtree - Access the i'th subtree reference in a branch node.
494  /// This depends on branch nodes storing the NodeRef array as their first
495  /// member.
496  NodeRef &subtree(unsigned i) const {
497    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
498  }
499
500  /// get - Dereference as a NodeT reference.
501  template <typename NodeT>
502  NodeT &get() const {
503    return *reinterpret_cast<NodeT*>(pip.getPointer());
504  }
505
506  bool operator==(const NodeRef &RHS) const {
507    if (pip == RHS.pip)
508      return true;
509    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
510    return false;
511  }
512
513  bool operator!=(const NodeRef &RHS) const {
514    return !operator==(RHS);
515  }
516};
517
518//===----------------------------------------------------------------------===//
519//---                            Leaf nodes                                ---//
520//===----------------------------------------------------------------------===//
521//
522// Leaf nodes store up to N disjoint intervals with corresponding values.
523//
524// The intervals are kept sorted and fully coalesced so there are no adjacent
525// intervals mapping to the same value.
526//
527// These constraints are always satisfied:
528//
529// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
530//
531// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
532//
533// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534//                                          - Fully coalesced.
535//
536//===----------------------------------------------------------------------===//
537
538template <typename KeyT, typename ValT, unsigned N, typename Traits>
539class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
540public:
541  const KeyT &start(unsigned i) const { return this->first[i].first; }
542  const KeyT &stop(unsigned i) const { return this->first[i].second; }
543  const ValT &value(unsigned i) const { return this->second[i]; }
544
545  KeyT &start(unsigned i) { return this->first[i].first; }
546  KeyT &stop(unsigned i) { return this->first[i].second; }
547  ValT &value(unsigned i) { return this->second[i]; }
548
549  /// findFrom - Find the first interval after i that may contain x.
550  /// @param i    Starting index for the search.
551  /// @param Size Number of elements in node.
552  /// @param x    Key to search for.
553  /// @return     First index with !stopLess(key[i].stop, x), or size.
554  ///             This is the first interval that can possibly contain x.
555  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556    assert(i <= Size && Size <= N && "Bad indices");
557    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558           "Index is past the needed point");
559    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
560    return i;
561  }
562
563  /// safeFind - Find an interval that is known to exist. This is the same as
564  /// findFrom except is it assumed that x is at least within range of the last
565  /// interval.
566  /// @param i Starting index for the search.
567  /// @param x Key to search for.
568  /// @return  First index with !stopLess(key[i].stop, x), never size.
569  ///          This is the first interval that can possibly contain x.
570  unsigned safeFind(unsigned i, KeyT x) const {
571    assert(i < N && "Bad index");
572    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573           "Index is past the needed point");
574    while (Traits::stopLess(stop(i), x)) ++i;
575    assert(i < N && "Unsafe intervals");
576    return i;
577  }
578
579  /// safeLookup - Lookup mapped value for a safe key.
580  /// It is assumed that x is within range of the last entry.
581  /// @param x        Key to search for.
582  /// @param NotFound Value to return if x is not in any interval.
583  /// @return         The mapped value at x or NotFound.
584  ValT safeLookup(KeyT x, ValT NotFound) const {
585    unsigned i = safeFind(0, x);
586    return Traits::startLess(x, start(i)) ? NotFound : value(i);
587  }
588
589  IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
590  unsigned extendStop(unsigned i, unsigned Size, KeyT b);
591
592#ifndef NDEBUG
593  void dump(raw_ostream &OS, unsigned Size) {
594    OS << "  N" << this << " [shape=record label=\"{ " << Size << '/' << N;
595    for (unsigned i = 0; i != Size; ++i)
596      OS << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
597    OS << "}\"];\n";
598  }
599#endif
600
601};
602
603/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
604/// possible. This may cause the node to grow by 1, or it may cause the node
605/// to shrink because of coalescing.
606/// @param i    Starting index = insertFrom(0, size, a)
607/// @param Size Number of elements in node.
608/// @param a    Interval start.
609/// @param b    Interval stop.
610/// @param y    Value be mapped.
611/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
612template <typename KeyT, typename ValT, unsigned N, typename Traits>
613IdxPair LeafNode<KeyT, ValT, N, Traits>::
614insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
615  assert(i <= Size && Size <= N && "Invalid index");
616  assert(!Traits::stopLess(b, a) && "Invalid interval");
617
618  // Verify the findFrom invariant.
619  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
620  assert((i == Size || !Traits::stopLess(stop(i), a)));
621
622  // Coalesce with previous interval.
623  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
624    return IdxPair(i - 1, extendStop(i - 1, Size, b));
625
626  // Detect overflow.
627  if (i == N)
628    return IdxPair(i, N + 1);
629
630  // Add new interval at end.
631  if (i == Size) {
632    start(i) = a;
633    stop(i) = b;
634    value(i) = y;
635    return IdxPair(i, Size + 1);
636  }
637
638  // Overlapping intervals?
639  if (!Traits::stopLess(b, start(i))) {
640    assert(value(i) == y && "Inconsistent values in overlapping intervals");
641    if (Traits::startLess(a, start(i)))
642      start(i) = a;
643    return IdxPair(i, extendStop(i, Size, b));
644  }
645
646  // Try to coalesce with following interval.
647  if (value(i) == y && Traits::adjacent(b, start(i))) {
648    start(i) = a;
649    return IdxPair(i, Size);
650  }
651
652  // We must insert before i. Detect overflow.
653  if (Size == N)
654    return IdxPair(i, N + 1);
655
656  // Insert before i.
657  this->shift(i, Size);
658  start(i) = a;
659  stop(i) = b;
660  value(i) = y;
661  return IdxPair(i, Size + 1);
662}
663
664/// extendStop - Extend stop(i) to b, coalescing with following intervals.
665/// @param i    Interval to extend.
666/// @param Size Number of elements in node.
667/// @param b    New interval end point.
668/// @return     New node size after coalescing.
669template <typename KeyT, typename ValT, unsigned N, typename Traits>
670unsigned LeafNode<KeyT, ValT, N, Traits>::
671extendStop(unsigned i, unsigned Size, KeyT b) {
672  assert(i < Size && Size <= N && "Bad indices");
673
674  // Are we even extending the interval?
675  if (Traits::startLess(b, stop(i)))
676    return Size;
677
678  // Find the first interval that may be preserved.
679  unsigned j = findFrom(i + 1, Size, b);
680  if (j < Size) {
681    // Would key[i] overlap key[j] after the extension?
682    if (Traits::stopLess(b, start(j))) {
683      // Not overlapping. Perhaps adjacent and coalescable?
684      if (value(i) == value(j) && Traits::adjacent(b, start(j)))
685        b = stop(j++);
686    } else {
687      // Overlap. Include key[j] in the new interval.
688      assert(value(i) == value(j) && "Overlapping values");
689      b = stop(j++);
690    }
691  }
692  stop(i) =  b;
693
694  // Entries [i+1;j) were coalesced.
695  if (i + 1 < j && j < Size)
696    this->erase(i + 1, j, Size);
697  return Size - (j - (i + 1));
698}
699
700
701//===----------------------------------------------------------------------===//
702//---                             Branch nodes                             ---//
703//===----------------------------------------------------------------------===//
704//
705// A branch node stores references to 1--N subtrees all of the same height.
706//
707// The key array in a branch node holds the rightmost stop key of each subtree.
708// It is redundant to store the last stop key since it can be found in the
709// parent node, but doing so makes tree balancing a lot simpler.
710//
711// It is unusual for a branch node to only have one subtree, but it can happen
712// in the root node if it is smaller than the normal nodes.
713//
714// When all of the leaf nodes from all the subtrees are concatenated, they must
715// satisfy the same constraints as a single leaf node. They must be sorted,
716// sane, and fully coalesced.
717//
718//===----------------------------------------------------------------------===//
719
720template <typename KeyT, typename ValT, unsigned N, typename Traits>
721class BranchNode : public NodeBase<NodeRef, KeyT, N> {
722public:
723  const KeyT &stop(unsigned i) const { return this->second[i]; }
724  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
725
726  KeyT &stop(unsigned i) { return this->second[i]; }
727  NodeRef &subtree(unsigned i) { return this->first[i]; }
728
729  /// findFrom - Find the first subtree after i that may contain x.
730  /// @param i    Starting index for the search.
731  /// @param Size Number of elements in node.
732  /// @param x    Key to search for.
733  /// @return     First index with !stopLess(key[i], x), or size.
734  ///             This is the first subtree that can possibly contain x.
735  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
736    assert(i <= Size && Size <= N && "Bad indices");
737    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
738           "Index to findFrom is past the needed point");
739    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
740    return i;
741  }
742
743  /// safeFind - Find a subtree that is known to exist. This is the same as
744  /// findFrom except is it assumed that x is in range.
745  /// @param i Starting index for the search.
746  /// @param x Key to search for.
747  /// @return  First index with !stopLess(key[i], x), never size.
748  ///          This is the first subtree that can possibly contain x.
749  unsigned safeFind(unsigned i, KeyT x) const {
750    assert(i < N && "Bad index");
751    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
752           "Index is past the needed point");
753    while (Traits::stopLess(stop(i), x)) ++i;
754    assert(i < N && "Unsafe intervals");
755    return i;
756  }
757
758  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
759  /// @param x Key to search for.
760  /// @return  Subtree containing x
761  NodeRef safeLookup(KeyT x) const {
762    return subtree(safeFind(0, x));
763  }
764
765  /// insert - Insert a new (subtree, stop) pair.
766  /// @param i    Insert position, following entries will be shifted.
767  /// @param Size Number of elements in node.
768  /// @param Node Subtree to insert.
769  /// @param Stop Last key in subtree.
770  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
771    assert(Size < N && "branch node overflow");
772    assert(i <= Size && "Bad insert position");
773    this->shift(i, Size);
774    subtree(i) = Node;
775    stop(i) = Stop;
776  }
777
778#ifndef NDEBUG
779  void dump(raw_ostream &OS, unsigned Size) {
780    OS << "  N" << this << " [shape=record label=\"" << Size << '/' << N;
781    for (unsigned i = 0; i != Size; ++i)
782      OS << " | <s" << i << "> " << stop(i);
783    OS << "\"];\n";
784    for (unsigned i = 0; i != Size; ++i)
785      OS << "  N" << this << ":s" << i << " -> N"
786         << &subtree(i).template get<BranchNode>() << ";\n";
787  }
788#endif
789
790};
791
792//===----------------------------------------------------------------------===//
793//---                                  Path                                ---//
794//===----------------------------------------------------------------------===//
795//
796// A Path is used by iterators to represent a position in a B+-tree, and the
797// path to get there from the root.
798//
799// The Path class also constains the tree navigation code that doesn't have to
800// be templatized.
801//
802//===----------------------------------------------------------------------===//
803
804class Path {
805  /// Entry - Each step in the path is a node pointer and an offset into that
806  /// node.
807  struct Entry {
808    void *node;
809    unsigned size;
810    unsigned offset;
811
812    Entry(void *Node, unsigned Size, unsigned Offset)
813      : node(Node), size(Size), offset(Offset) {}
814
815    Entry(NodeRef Node, unsigned Offset)
816      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
817
818    NodeRef &subtree(unsigned i) const {
819      return reinterpret_cast<NodeRef*>(node)[i];
820    }
821  };
822
823  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
824  SmallVector<Entry, 4> path;
825
826public:
827  // Node accessors.
828  template <typename NodeT> NodeT &node(unsigned Level) const {
829    return *reinterpret_cast<NodeT*>(path[Level].node);
830  }
831  unsigned size(unsigned Level) const { return path[Level].size; }
832  unsigned offset(unsigned Level) const { return path[Level].offset; }
833  unsigned &offset(unsigned Level) { return path[Level].offset; }
834
835  // Leaf accessors.
836  template <typename NodeT> NodeT &leaf() const {
837    return *reinterpret_cast<NodeT*>(path.back().node);
838  }
839  unsigned leafSize() const { return path.back().size; }
840  unsigned leafOffset() const { return path.back().offset; }
841  unsigned &leafOffset() { return path.back().offset; }
842
843  /// valid - Return true if path is at a valid node, not at end().
844  bool valid() const {
845    return !path.empty() && path.front().offset < path.front().size;
846  }
847
848  /// height - Return the height of the tree corresponding to this path.
849  /// This matches map->height in a full path.
850  unsigned height() const { return path.size() - 1; }
851
852  /// subtree - Get the subtree referenced from Level. When the path is
853  /// consistent, node(Level + 1) == subtree(Level).
854  /// @param Level 0..height-1. The leaves have no subtrees.
855  NodeRef &subtree(unsigned Level) const {
856    return path[Level].subtree(path[Level].offset);
857  }
858
859  /// reset - Reset cached information about node(Level) from subtree(Level -1).
860  /// @param Level 1..height. THe node to update after parent node changed.
861  void reset(unsigned Level) {
862    path[Level] = Entry(subtree(Level - 1), offset(Level));
863  }
864
865  /// push - Add entry to path.
866  /// @param Node Node to add, should be subtree(path.size()-1).
867  /// @param Offset Offset into Node.
868  void push(NodeRef Node, unsigned Offset) {
869    path.push_back(Entry(Node, Offset));
870  }
871
872  /// setSize - Set the size of a node both in the path and in the tree.
873  /// @param Level 0..height. Note that setting the root size won't change
874  ///              map->rootSize.
875  /// @param Size New node size.
876  void setSize(unsigned Level, unsigned Size) {
877    path[Level].size = Size;
878    if (Level)
879      subtree(Level - 1).setSize(Size);
880  }
881
882  /// setRoot - Clear the path and set a new root node.
883  /// @param Node New root node.
884  /// @param Size New root size.
885  /// @param Offset Offset into root node.
886  void setRoot(void *Node, unsigned Size, unsigned Offset) {
887    path.clear();
888    path.push_back(Entry(Node, Size, Offset));
889  }
890
891  /// replaceRoot - Replace the current root node with two new entries after the
892  /// tree height has increased.
893  /// @param Root The new root node.
894  /// @param Size Number of entries in the new root.
895  /// @param Offsets Offsets into the root and first branch nodes.
896  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
897
898  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
899  /// @param Level Get the sibling to node(Level).
900  /// @return Left sibling, or NodeRef().
901  NodeRef getLeftSibling(unsigned Level) const;
902
903  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
904  /// unaltered.
905  /// @param Level Move node(Level).
906  void moveLeft(unsigned Level);
907
908  /// fillLeft - Grow path to Height by taking leftmost branches.
909  /// @param Height The target height.
910  void fillLeft(unsigned Height) {
911    while (height() < Height)
912      push(subtree(height()), 0);
913  }
914
915  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
916  /// @param Level Get the sinbling to node(Level).
917  /// @return Left sibling, or NodeRef().
918  NodeRef getRightSibling(unsigned Level) const;
919
920  /// moveRight - Move path to the left sibling at Level. Leave nodes below
921  /// Level unaltered.
922  /// @param Level Move node(Level).
923  void moveRight(unsigned Level);
924
925  /// atBegin - Return true if path is at begin().
926  bool atBegin() const {
927    for (unsigned i = 0, e = path.size(); i != e; ++i)
928      if (path[i].offset != 0)
929        return false;
930    return true;
931  }
932
933  /// atLastBranch - Return true if the path is at the last branch of the node
934  /// at Level.
935  /// @param Level Node to examine.
936  bool atLastBranch(unsigned Level) const {
937    return path[Level].offset == path[Level].size - 1;
938  }
939
940  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
941  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
942  /// ensures that node(Level) is real by moving back to the last node at Level,
943  /// and setting offset(Level) to size(Level) if required.
944  /// @param Level The level where an insertion is about to take place.
945  void legalizeForInsert(unsigned Level) {
946    if (valid())
947      return;
948    moveLeft(Level);
949    ++path[Level].offset;
950  }
951
952#ifndef NDEBUG
953  void dump() const {
954    for (unsigned l = 0, e = path.size(); l != e; ++l)
955      errs() << l << ": " << path[l].node << ' ' << path[l].size << ' '
956             << path[l].offset << '\n';
957  }
958#endif
959};
960
961} // namespace IntervalMapImpl
962
963
964//===----------------------------------------------------------------------===//
965//---                          IntervalMap                                ----//
966//===----------------------------------------------------------------------===//
967
968template <typename KeyT, typename ValT,
969          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
970          typename Traits = IntervalMapInfo<KeyT> >
971class IntervalMap {
972  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
973  typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
974  typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
975    Branch;
976  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
977  typedef IntervalMapImpl::IdxPair IdxPair;
978
979  // The RootLeaf capacity is given as a template parameter. We must compute the
980  // corresponding RootBranch capacity.
981  enum {
982    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
983      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
984    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
985  };
986
987  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
988    RootBranch;
989
990  // When branched, we store a global start key as well as the branch node.
991  struct RootBranchData {
992    KeyT start;
993    RootBranch node;
994  };
995
996  enum {
997    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
998                   sizeof(RootBranchData) : sizeof(RootLeaf)
999  };
1000
1001public:
1002  typedef typename Sizer::Allocator Allocator;
1003
1004private:
1005  // The root data is either a RootLeaf or a RootBranchData instance.
1006  // We can't put them in a union since C++03 doesn't allow non-trivial
1007  // constructors in unions.
1008  // Instead, we use a char array with pointer alignment. The alignment is
1009  // ensured by the allocator member in the class, but still verified in the
1010  // constructor. We don't support keys or values that are more aligned than a
1011  // pointer.
1012  char data[RootDataSize];
1013
1014  // Tree height.
1015  // 0: Leaves in root.
1016  // 1: Root points to leaf.
1017  // 2: root->branch->leaf ...
1018  unsigned height;
1019
1020  // Number of entries in the root node.
1021  unsigned rootSize;
1022
1023  // Allocator used for creating external nodes.
1024  Allocator &allocator;
1025
1026  /// dataAs - Represent data as a node type without breaking aliasing rules.
1027  template <typename T>
1028  T &dataAs() const {
1029    union {
1030      const char *d;
1031      T *t;
1032    } u;
1033    u.d = data;
1034    return *u.t;
1035  }
1036
1037  const RootLeaf &rootLeaf() const {
1038    assert(!branched() && "Cannot acces leaf data in branched root");
1039    return dataAs<RootLeaf>();
1040  }
1041  RootLeaf &rootLeaf() {
1042    assert(!branched() && "Cannot acces leaf data in branched root");
1043    return dataAs<RootLeaf>();
1044  }
1045  RootBranchData &rootBranchData() const {
1046    assert(branched() && "Cannot access branch data in non-branched root");
1047    return dataAs<RootBranchData>();
1048  }
1049  RootBranchData &rootBranchData() {
1050    assert(branched() && "Cannot access branch data in non-branched root");
1051    return dataAs<RootBranchData>();
1052  }
1053  const RootBranch &rootBranch() const { return rootBranchData().node; }
1054  RootBranch &rootBranch()             { return rootBranchData().node; }
1055  KeyT rootBranchStart() const { return rootBranchData().start; }
1056  KeyT &rootBranchStart()      { return rootBranchData().start; }
1057
1058  template <typename NodeT> NodeT *newNode() {
1059    return new(allocator.template Allocate<NodeT>()) NodeT();
1060  }
1061
1062  template <typename NodeT> void deleteNode(NodeT *P) {
1063    P->~NodeT();
1064    allocator.Deallocate(P);
1065  }
1066
1067  IdxPair branchRoot(unsigned Position);
1068  IdxPair splitRoot(unsigned Position);
1069
1070  void switchRootToBranch() {
1071    rootLeaf().~RootLeaf();
1072    height = 1;
1073    new (&rootBranchData()) RootBranchData();
1074  }
1075
1076  void switchRootToLeaf() {
1077    rootBranchData().~RootBranchData();
1078    height = 0;
1079    new(&rootLeaf()) RootLeaf();
1080  }
1081
1082  bool branched() const { return height > 0; }
1083
1084  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1085  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1086                  unsigned Level));
1087  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1088
1089public:
1090  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1091    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1092           "Insufficient alignment");
1093    new(&rootLeaf()) RootLeaf();
1094  }
1095
1096  ~IntervalMap() {
1097    clear();
1098    rootLeaf().~RootLeaf();
1099  }
1100
1101  /// empty -  Return true when no intervals are mapped.
1102  bool empty() const {
1103    return rootSize == 0;
1104  }
1105
1106  /// start - Return the smallest mapped key in a non-empty map.
1107  KeyT start() const {
1108    assert(!empty() && "Empty IntervalMap has no start");
1109    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1110  }
1111
1112  /// stop - Return the largest mapped key in a non-empty map.
1113  KeyT stop() const {
1114    assert(!empty() && "Empty IntervalMap has no stop");
1115    return !branched() ? rootLeaf().stop(rootSize - 1) :
1116                         rootBranch().stop(rootSize - 1);
1117  }
1118
1119  /// lookup - Return the mapped value at x or NotFound.
1120  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1121    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1122      return NotFound;
1123    return branched() ? treeSafeLookup(x, NotFound) :
1124                        rootLeaf().safeLookup(x, NotFound);
1125  }
1126
1127  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1128  /// It is assumed that no key in the interval is mapped to another value, but
1129  /// overlapping intervals already mapped to y will be coalesced.
1130  void insert(KeyT a, KeyT b, ValT y) {
1131    if (branched() || rootSize == RootLeaf::Capacity)
1132      return find(a).insert(a, b, y);
1133
1134    // Easy insert into root leaf.
1135    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1136    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y).second;
1137  }
1138
1139  /// clear - Remove all entries.
1140  void clear();
1141
1142  class const_iterator;
1143  class iterator;
1144  friend class const_iterator;
1145  friend class iterator;
1146
1147  const_iterator begin() const {
1148    iterator I(*this);
1149    I.goToBegin();
1150    return I;
1151  }
1152
1153  iterator begin() {
1154    iterator I(*this);
1155    I.goToBegin();
1156    return I;
1157  }
1158
1159  const_iterator end() const {
1160    iterator I(*this);
1161    I.goToEnd();
1162    return I;
1163  }
1164
1165  iterator end() {
1166    iterator I(*this);
1167    I.goToEnd();
1168    return I;
1169  }
1170
1171  /// find - Return an iterator pointing to the first interval ending at or
1172  /// after x, or end().
1173  const_iterator find(KeyT x) const {
1174    iterator I(*this);
1175    I.find(x);
1176    return I;
1177  }
1178
1179  iterator find(KeyT x) {
1180    iterator I(*this);
1181    I.find(x);
1182    return I;
1183  }
1184
1185#ifndef NDEBUG
1186  raw_ostream *OS;
1187  void dump();
1188  void dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height);
1189#endif
1190};
1191
1192/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1193/// branched root.
1194template <typename KeyT, typename ValT, unsigned N, typename Traits>
1195ValT IntervalMap<KeyT, ValT, N, Traits>::
1196treeSafeLookup(KeyT x, ValT NotFound) const {
1197  assert(branched() && "treeLookup assumes a branched root");
1198
1199  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1200  for (unsigned h = height-1; h; --h)
1201    NR = NR.get<Branch>().safeLookup(x);
1202  return NR.get<Leaf>().safeLookup(x, NotFound);
1203}
1204
1205
1206// branchRoot - Switch from a leaf root to a branched root.
1207// Return the new (root offset, node offset) corresponding to Position.
1208template <typename KeyT, typename ValT, unsigned N, typename Traits>
1209IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1210branchRoot(unsigned Position) {
1211  using namespace IntervalMapImpl;
1212  // How many external leaf nodes to hold RootLeaf+1?
1213  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1214
1215  // Compute element distribution among new nodes.
1216  unsigned size[Nodes];
1217  IdxPair NewOffset(0, Position);
1218
1219  // Is is very common for the root node to be smaller than external nodes.
1220  if (Nodes == 1)
1221    size[0] = rootSize;
1222  else
1223    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
1224                           Position, true);
1225
1226  // Allocate new nodes.
1227  unsigned pos = 0;
1228  NodeRef node[Nodes];
1229  for (unsigned n = 0; n != Nodes; ++n) {
1230    Leaf *L = newNode<Leaf>();
1231    L->copy(rootLeaf(), pos, 0, size[n]);
1232    node[n] = NodeRef(L, size[n]);
1233    pos += size[n];
1234  }
1235
1236  // Destroy the old leaf node, construct branch node instead.
1237  switchRootToBranch();
1238  for (unsigned n = 0; n != Nodes; ++n) {
1239    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1240    rootBranch().subtree(n) = node[n];
1241  }
1242  rootBranchStart() = node[0].template get<Leaf>().start(0);
1243  rootSize = Nodes;
1244  return NewOffset;
1245}
1246
1247// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1248// Return the new (root offset, node offset) corresponding to Position.
1249template <typename KeyT, typename ValT, unsigned N, typename Traits>
1250IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1251splitRoot(unsigned Position) {
1252  using namespace IntervalMapImpl;
1253  // How many external leaf nodes to hold RootBranch+1?
1254  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1255
1256  // Compute element distribution among new nodes.
1257  unsigned Size[Nodes];
1258  IdxPair NewOffset(0, Position);
1259
1260  // Is is very common for the root node to be smaller than external nodes.
1261  if (Nodes == 1)
1262    Size[0] = rootSize;
1263  else
1264    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
1265                           Position, true);
1266
1267  // Allocate new nodes.
1268  unsigned Pos = 0;
1269  NodeRef Node[Nodes];
1270  for (unsigned n = 0; n != Nodes; ++n) {
1271    Branch *B = newNode<Branch>();
1272    B->copy(rootBranch(), Pos, 0, Size[n]);
1273    Node[n] = NodeRef(B, Size[n]);
1274    Pos += Size[n];
1275  }
1276
1277  for (unsigned n = 0; n != Nodes; ++n) {
1278    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1279    rootBranch().subtree(n) = Node[n];
1280  }
1281  rootSize = Nodes;
1282  ++height;
1283  return NewOffset;
1284}
1285
1286/// visitNodes - Visit each external node.
1287template <typename KeyT, typename ValT, unsigned N, typename Traits>
1288void IntervalMap<KeyT, ValT, N, Traits>::
1289visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1290  if (!branched())
1291    return;
1292  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1293
1294  // Collect level 0 nodes from the root.
1295  for (unsigned i = 0; i != rootSize; ++i)
1296    Refs.push_back(rootBranch().subtree(i));
1297
1298  // Visit all branch nodes.
1299  for (unsigned h = height - 1; h; --h) {
1300    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1301      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1302        NextRefs.push_back(Refs[i].subtree(j));
1303      (this->*f)(Refs[i], h);
1304    }
1305    Refs.clear();
1306    Refs.swap(NextRefs);
1307  }
1308
1309  // Visit all leaf nodes.
1310  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1311    (this->*f)(Refs[i], 0);
1312}
1313
1314template <typename KeyT, typename ValT, unsigned N, typename Traits>
1315void IntervalMap<KeyT, ValT, N, Traits>::
1316deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1317  if (Level)
1318    deleteNode(&Node.get<Branch>());
1319  else
1320    deleteNode(&Node.get<Leaf>());
1321}
1322
1323template <typename KeyT, typename ValT, unsigned N, typename Traits>
1324void IntervalMap<KeyT, ValT, N, Traits>::
1325clear() {
1326  if (branched()) {
1327    visitNodes(&IntervalMap::deleteNode);
1328    switchRootToLeaf();
1329  }
1330  rootSize = 0;
1331}
1332
1333#ifndef NDEBUG
1334template <typename KeyT, typename ValT, unsigned N, typename Traits>
1335void IntervalMap<KeyT, ValT, N, Traits>::
1336dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height) {
1337  if (Height)
1338    Node.get<Branch>().dump(*OS, Node.size());
1339  else
1340    Node.get<Leaf>().dump(*OS, Node.size());
1341}
1342
1343template <typename KeyT, typename ValT, unsigned N, typename Traits>
1344void IntervalMap<KeyT, ValT, N, Traits>::
1345dump() {
1346  std::string errors;
1347  raw_fd_ostream ofs("tree.dot", errors);
1348  OS = &ofs;
1349  ofs << "digraph {\n";
1350  if (branched())
1351    rootBranch().dump(ofs, rootSize);
1352  else
1353    rootLeaf().dump(ofs, rootSize);
1354  visitNodes(&IntervalMap::dumpNode);
1355  ofs << "}\n";
1356}
1357#endif
1358
1359//===----------------------------------------------------------------------===//
1360//---                             const_iterator                          ----//
1361//===----------------------------------------------------------------------===//
1362
1363template <typename KeyT, typename ValT, unsigned N, typename Traits>
1364class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1365  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1366protected:
1367  friend class IntervalMap;
1368
1369  // The map referred to.
1370  IntervalMap *map;
1371
1372  // We store a full path from the root to the current position.
1373  // The path may be partially filled, but never between iterator calls.
1374  IntervalMapImpl::Path path;
1375
1376  explicit const_iterator(IntervalMap &map) : map(&map) {}
1377
1378  bool branched() const {
1379    assert(map && "Invalid iterator");
1380    return map->branched();
1381  }
1382
1383  void setRoot(unsigned Offset) {
1384    if (branched())
1385      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1386    else
1387      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1388  }
1389
1390  void pathFillFind(KeyT x);
1391  void treeFind(KeyT x);
1392
1393public:
1394  /// valid - Return true if the current position is valid, false for end().
1395  bool valid() const { return path.valid(); }
1396
1397  /// start - Return the beginning of the current interval.
1398  const KeyT &start() const {
1399    assert(valid() && "Cannot access invalid iterator");
1400    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1401                        path.leaf<RootLeaf>().start(path.leafOffset());
1402  }
1403
1404  /// stop - Return the end of the current interval.
1405  const KeyT &stop() const {
1406    assert(valid() && "Cannot access invalid iterator");
1407    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1408                        path.leaf<RootLeaf>().stop(path.leafOffset());
1409  }
1410
1411  /// value - Return the mapped value at the current interval.
1412  const ValT &value() const {
1413    assert(valid() && "Cannot access invalid iterator");
1414    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1415                        path.leaf<RootLeaf>().value(path.leafOffset());
1416  }
1417
1418  const ValT &operator*() const {
1419    return value();
1420  }
1421
1422  bool operator==(const const_iterator &RHS) const {
1423    assert(map == RHS.map && "Cannot compare iterators from different maps");
1424    if (!valid())
1425      return !RHS.valid();
1426    if (path.leafOffset() != RHS.path.leafOffset())
1427      return false;
1428    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1429  }
1430
1431  bool operator!=(const const_iterator &RHS) const {
1432    return !operator==(RHS);
1433  }
1434
1435  /// goToBegin - Move to the first interval in map.
1436  void goToBegin() {
1437    setRoot(0);
1438    if (branched())
1439      path.fillLeft(map->height);
1440  }
1441
1442  /// goToEnd - Move beyond the last interval in map.
1443  void goToEnd() {
1444    setRoot(map->rootSize);
1445  }
1446
1447  /// preincrement - move to the next interval.
1448  const_iterator &operator++() {
1449    assert(valid() && "Cannot increment end()");
1450    if (++path.leafOffset() == path.leafSize() && branched())
1451      path.moveRight(map->height);
1452    return *this;
1453  }
1454
1455  /// postincrement - Dont do that!
1456  const_iterator operator++(int) {
1457    const_iterator tmp = *this;
1458    operator++();
1459    return tmp;
1460  }
1461
1462  /// predecrement - move to the previous interval.
1463  const_iterator &operator--() {
1464    if (path.leafOffset() && (valid() || !branched()))
1465      --path.leafOffset();
1466    else
1467      path.moveLeft(map->height);
1468    return *this;
1469  }
1470
1471  /// postdecrement - Dont do that!
1472  const_iterator operator--(int) {
1473    const_iterator tmp = *this;
1474    operator--();
1475    return tmp;
1476  }
1477
1478  /// find - Move to the first interval with stop >= x, or end().
1479  /// This is a full search from the root, the current position is ignored.
1480  void find(KeyT x) {
1481    if (branched())
1482      treeFind(x);
1483    else
1484      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1485  }
1486
1487  /// advanceTo - Move to the first interval with stop >= x, or end().
1488  /// The search is started from the current position, and no earlier positions
1489  /// can be found. This is much faster than find() for small moves.
1490  void advanceTo(KeyT x) {
1491    if (branched())
1492      treeAdvanceTo(x);
1493    else
1494      path.leafOffset() =
1495        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1496  }
1497
1498};
1499
1500// pathFillFind - Complete path by searching for x.
1501template <typename KeyT, typename ValT, unsigned N, typename Traits>
1502void IntervalMap<KeyT, ValT, N, Traits>::
1503const_iterator::pathFillFind(KeyT x) {
1504  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1505  for (unsigned i = map->height - path.height() - 1; i; --i) {
1506    unsigned p = NR.get<Branch>().safeFind(0, x);
1507    path.push(NR, p);
1508    NR = NR.subtree(p);
1509  }
1510  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1511}
1512
1513// treeFind - Find in a branched tree.
1514template <typename KeyT, typename ValT, unsigned N, typename Traits>
1515void IntervalMap<KeyT, ValT, N, Traits>::
1516const_iterator::treeFind(KeyT x) {
1517  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1518  if (valid())
1519    pathFillFind(x);
1520}
1521
1522
1523//===----------------------------------------------------------------------===//
1524//---                                iterator                             ----//
1525//===----------------------------------------------------------------------===//
1526
1527template <typename KeyT, typename ValT, unsigned N, typename Traits>
1528class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1529  friend class IntervalMap;
1530  typedef IntervalMapImpl::IdxPair IdxPair;
1531
1532  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1533
1534  void setNodeStop(unsigned Level, KeyT Stop);
1535  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1536  template <typename NodeT> bool overflow(unsigned Level);
1537  void treeInsert(KeyT a, KeyT b, ValT y);
1538  void eraseNode(unsigned Level);
1539  void treeErase(bool UpdateRoot = true);
1540public:
1541  /// insert - Insert mapping [a;b] -> y before the current position.
1542  void insert(KeyT a, KeyT b, ValT y);
1543
1544  /// erase - Erase the current interval.
1545  void erase();
1546
1547  iterator &operator++() {
1548    const_iterator::operator++();
1549    return *this;
1550  }
1551
1552  iterator operator++(int) {
1553    iterator tmp = *this;
1554    operator++();
1555    return tmp;
1556  }
1557
1558  iterator &operator--() {
1559    const_iterator::operator--();
1560    return *this;
1561  }
1562
1563  iterator operator--(int) {
1564    iterator tmp = *this;
1565    operator--();
1566    return tmp;
1567  }
1568
1569};
1570
1571/// setNodeStop - Update the stop key of the current node at level and above.
1572template <typename KeyT, typename ValT, unsigned N, typename Traits>
1573void IntervalMap<KeyT, ValT, N, Traits>::
1574iterator::setNodeStop(unsigned Level, KeyT Stop) {
1575  // There are no references to the root node, so nothing to update.
1576  if (!Level)
1577    return;
1578  IntervalMapImpl::Path &P = this->path;
1579  // Update nodes pointing to the current node.
1580  while (--Level) {
1581    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1582    if (!P.atLastBranch(Level))
1583      return;
1584  }
1585  // Update root separately since it has a different layout.
1586  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1587}
1588
1589/// insertNode - insert a node before the current path at level.
1590/// Leave the current path pointing at the new node.
1591/// @param Level path index of the node to be inserted.
1592/// @param Node The node to be inserted.
1593/// @param Stop The last index in the new node.
1594/// @return True if the tree height was increased.
1595template <typename KeyT, typename ValT, unsigned N, typename Traits>
1596bool IntervalMap<KeyT, ValT, N, Traits>::
1597iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1598  assert(Level && "Cannot insert next to the root");
1599  bool SplitRoot = false;
1600  IntervalMap &IM = *this->map;
1601  IntervalMapImpl::Path &P = this->path;
1602
1603  if (Level == 1) {
1604    // Insert into the root branch node.
1605    if (IM.rootSize < RootBranch::Capacity) {
1606      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1607      P.setSize(0, ++IM.rootSize);
1608      P.reset(Level);
1609      return SplitRoot;
1610    }
1611
1612    // We need to split the root while keeping our position.
1613    SplitRoot = true;
1614    IdxPair Offset = IM.splitRoot(P.offset(0));
1615    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1616
1617    // Fall through to insert at the new higher level.
1618    ++Level;
1619  }
1620
1621  // When inserting before end(), make sure we have a valid path.
1622  P.legalizeForInsert(--Level);
1623
1624  // Insert into the branch node at Level-1.
1625  if (P.size(Level) == Branch::Capacity) {
1626    // Branch node is full, handle handle the overflow.
1627    assert(!SplitRoot && "Cannot overflow after splitting the root");
1628    SplitRoot = overflow<Branch>(Level);
1629    Level += SplitRoot;
1630  }
1631  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1632  P.setSize(Level, P.size(Level) + 1);
1633  if (P.atLastBranch(Level))
1634    setNodeStop(Level, Stop);
1635  P.reset(Level + 1);
1636  return SplitRoot;
1637}
1638
1639// insert
1640template <typename KeyT, typename ValT, unsigned N, typename Traits>
1641void IntervalMap<KeyT, ValT, N, Traits>::
1642iterator::insert(KeyT a, KeyT b, ValT y) {
1643  if (this->branched())
1644    return treeInsert(a, b, y);
1645  IntervalMap &IM = *this->map;
1646  IntervalMapImpl::Path &P = this->path;
1647
1648  // Try simple root leaf insert.
1649  IdxPair IP = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1650
1651  // Was the root node insert successful?
1652  if (IP.second <= RootLeaf::Capacity) {
1653    P.leafOffset() = IP.first;
1654    P.setSize(0, IM.rootSize = IP.second);
1655    return;
1656  }
1657
1658  // Root leaf node is full, we must branch.
1659  IdxPair Offset = IM.branchRoot(P.leafOffset());
1660  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1661
1662  // Now it fits in the new leaf.
1663  treeInsert(a, b, y);
1664}
1665
1666
1667template <typename KeyT, typename ValT, unsigned N, typename Traits>
1668void IntervalMap<KeyT, ValT, N, Traits>::
1669iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1670  using namespace IntervalMapImpl;
1671  IntervalMap &IM = *this->map;
1672  Path &P = this->path;
1673
1674  // Check if this insertion will extend the node to the left.
1675  if (P.valid() && P.leafOffset() == 0 &&
1676      Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1677    // Node is growing to the left, will it affect a left sibling node?
1678    if (NodeRef Sib = P.getLeftSibling(IM.height)) {
1679      Leaf &SibLeaf = Sib.get<Leaf>();
1680      unsigned SibOfs = Sib.size() - 1;
1681      if (SibLeaf.value(SibOfs) == y &&
1682          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1683        // This insertion will coalesce with the last entry in SibLeaf. We can
1684        // handle it in two ways:
1685        //  1. Extend SibLeaf.stop to b and be done, or
1686        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1687        // We prefer 1., but need 2 when coalescing to the right as well.
1688        Leaf &CurLeaf = P.leaf<Leaf>();
1689        P.moveLeft(IM.height);
1690        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1691            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1692          // Easy, just extend SibLeaf and we're done.
1693          setNodeStop(IM.height, SibLeaf.stop(SibOfs) = b);
1694          return;
1695        } else {
1696          // We have both left and right coalescing. Erase the old SibLeaf entry
1697          // and continue inserting the larger interval.
1698          a = SibLeaf.start(SibOfs);
1699          treeErase(/* UpdateRoot= */false);
1700        }
1701      }
1702    } else {
1703      // No left sibling means we are at begin(). Update cached bound.
1704      IM.rootBranchStart() = a;
1705    }
1706  }
1707
1708  P.legalizeForInsert(IM.height);
1709  IdxPair IP = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1710
1711  // Leaf insertion unsuccessful? Overflow and try again.
1712  if (IP.second > Leaf::Capacity) {
1713    overflow<Leaf>(IM.height);
1714    IP = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1715    assert(IP.second <= Leaf::Capacity && "overflow() didn't make room");
1716  }
1717
1718  // Inserted, update offset and leaf size.
1719  P.leafOffset() = IP.first;
1720  P.setSize(IM.height, IP.second);
1721
1722  // Insert was the last node entry, update stops.
1723  if (IP.first == IP.second - 1)
1724    setNodeStop(IM.height, P.leaf<Leaf>().stop(IP.first));
1725}
1726
1727/// erase - erase the current interval and move to the next position.
1728template <typename KeyT, typename ValT, unsigned N, typename Traits>
1729void IntervalMap<KeyT, ValT, N, Traits>::
1730iterator::erase() {
1731  IntervalMap &IM = *this->map;
1732  IntervalMapImpl::Path &P = this->path;
1733  assert(P.valid() && "Cannot erase end()");
1734  if (this->branched())
1735    return treeErase();
1736  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1737  P.setSize(0, --IM.rootSize);
1738}
1739
1740/// treeErase - erase() for a branched tree.
1741template <typename KeyT, typename ValT, unsigned N, typename Traits>
1742void IntervalMap<KeyT, ValT, N, Traits>::
1743iterator::treeErase(bool UpdateRoot) {
1744  IntervalMap &IM = *this->map;
1745  IntervalMapImpl::Path &P = this->path;
1746  Leaf &Node = P.leaf<Leaf>();
1747
1748  // Nodes are not allowed to become empty.
1749  if (P.leafSize() == 1) {
1750    IM.deleteNode(&Node);
1751    eraseNode(IM.height);
1752    // Update rootBranchStart if we erased begin().
1753    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1754      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1755    return;
1756  }
1757
1758  // Erase current entry.
1759  Node.erase(P.leafOffset(), P.leafSize());
1760  unsigned NewSize = P.leafSize() - 1;
1761  P.setSize(IM.height, NewSize);
1762  // When we erase the last entry, update stop and move to a legal position.
1763  if (P.leafOffset() == NewSize) {
1764    setNodeStop(IM.height, Node.stop(NewSize - 1));
1765    P.moveRight(IM.height);
1766  } else if (UpdateRoot && P.atBegin())
1767    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1768}
1769
1770/// eraseNode - Erase the current node at Level from its parent and move path to
1771/// the first entry of the next sibling node.
1772/// The node must be deallocated by the caller.
1773/// @param Level 1..height, the root node cannot be erased.
1774template <typename KeyT, typename ValT, unsigned N, typename Traits>
1775void IntervalMap<KeyT, ValT, N, Traits>::
1776iterator::eraseNode(unsigned Level) {
1777  assert(Level && "Cannot erase root node");
1778  IntervalMap &IM = *this->map;
1779  IntervalMapImpl::Path &P = this->path;
1780
1781  if (--Level == 0) {
1782    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1783    P.setSize(0, --IM.rootSize);
1784    // If this cleared the root, switch to height=0.
1785    if (IM.empty()) {
1786      IM.switchRootToLeaf();
1787      this->setRoot(0);
1788      return;
1789    }
1790  } else {
1791    // Remove node ref from branch node at Level.
1792    Branch &Parent = P.node<Branch>(Level);
1793    if (P.size(Level) == 1) {
1794      // Branch node became empty, remove it recursively.
1795      IM.deleteNode(&Parent);
1796      eraseNode(Level);
1797    } else {
1798      // Branch node won't become empty.
1799      Parent.erase(P.offset(Level), P.size(Level));
1800      unsigned NewSize = P.size(Level) - 1;
1801      P.setSize(Level, NewSize);
1802      // If we removed the last branch, update stop and move to a legal pos.
1803      if (P.offset(Level) == NewSize) {
1804        setNodeStop(Level, Parent.stop(NewSize - 1));
1805        P.moveRight(Level);
1806      }
1807    }
1808  }
1809  // Update path cache for the new right sibling position.
1810  if (P.valid()) {
1811    P.reset(Level + 1);
1812    P.offset(Level + 1) = 0;
1813  }
1814}
1815
1816/// overflow - Distribute entries of the current node evenly among
1817/// its siblings and ensure that the current node is not full.
1818/// This may require allocating a new node.
1819/// @param NodeT The type of node at Level (Leaf or Branch).
1820/// @param Level path index of the overflowing node.
1821/// @return True when the tree height was changed.
1822template <typename KeyT, typename ValT, unsigned N, typename Traits>
1823template <typename NodeT>
1824bool IntervalMap<KeyT, ValT, N, Traits>::
1825iterator::overflow(unsigned Level) {
1826  using namespace IntervalMapImpl;
1827  Path &P = this->path;
1828  unsigned CurSize[4];
1829  NodeT *Node[4];
1830  unsigned Nodes = 0;
1831  unsigned Elements = 0;
1832  unsigned Offset = P.offset(Level);
1833
1834  // Do we have a left sibling?
1835  NodeRef LeftSib = P.getLeftSibling(Level);
1836  if (LeftSib) {
1837    Offset += Elements = CurSize[Nodes] = LeftSib.size();
1838    Node[Nodes++] = &LeftSib.get<NodeT>();
1839  }
1840
1841  // Current node.
1842  Elements += CurSize[Nodes] = P.size(Level);
1843  Node[Nodes++] = &P.node<NodeT>(Level);
1844
1845  // Do we have a right sibling?
1846  NodeRef RightSib = P.getRightSibling(Level);
1847  if (RightSib) {
1848    Elements += CurSize[Nodes] = RightSib.size();
1849    Node[Nodes++] = &RightSib.get<NodeT>();
1850  }
1851
1852  // Do we need to allocate a new node?
1853  unsigned NewNode = 0;
1854  if (Elements + 1 > Nodes * NodeT::Capacity) {
1855    // Insert NewNode at the penultimate position, or after a single node.
1856    NewNode = Nodes == 1 ? 1 : Nodes - 1;
1857    CurSize[Nodes] = CurSize[NewNode];
1858    Node[Nodes] = Node[NewNode];
1859    CurSize[NewNode] = 0;
1860    Node[NewNode] = this->map->newNode<NodeT>();
1861    ++Nodes;
1862  }
1863
1864  // Compute the new element distribution.
1865  unsigned NewSize[4];
1866  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1867                                 CurSize, NewSize, Offset, true);
1868  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1869
1870  // Move current location to the leftmost node.
1871  if (LeftSib)
1872    P.moveLeft(Level);
1873
1874  // Elements have been rearranged, now update node sizes and stops.
1875  bool SplitRoot = false;
1876  unsigned Pos = 0;
1877  for (;;) {
1878    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1879    if (NewNode && Pos == NewNode) {
1880      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
1881      Level += SplitRoot;
1882    } else {
1883      P.setSize(Level, NewSize[Pos]);
1884      setNodeStop(Level, Stop);
1885    }
1886    if (Pos + 1 == Nodes)
1887      break;
1888    P.moveRight(Level);
1889    ++Pos;
1890  }
1891
1892  // Where was I? Find NewOffset.
1893  while(Pos != NewOffset.first) {
1894    P.moveLeft(Level);
1895    --Pos;
1896  }
1897  P.offset(Level) = NewOffset.second;
1898  return SplitRoot;
1899}
1900
1901} // namespace llvm
1902
1903#endif
1904