IntervalMap.h revision 9a08ca318e63912e4c19977abc1173f30866b704
1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70//   bool operator==(const const_iterator &) const;
71//   bool operator!=(const const_iterator &) const;
72//   bool valid() const;
73//
74//   const KeyT &start() const;
75//   const KeyT &stop() const;
76//   const ValT &value() const;
77//   const ValT &operator*() const;
78//   const ValT *operator->() const;
79//
80//   const_iterator &operator++();
81//   const_iterator &operator++(int);
82//   const_iterator &operator--();
83//   const_iterator &operator--(int);
84//   void goToBegin();
85//   void goToEnd();
86//   void find(KeyT x);
87//   void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93//   void insert(KeyT a, KeyT b, Value y);
94//   void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/SmallVector.h"
103#include "llvm/ADT/PointerIntPair.h"
104#include "llvm/Support/Allocator.h"
105#include "llvm/Support/RecyclingAllocator.h"
106#include <limits>
107#include <iterator>
108
109// FIXME: Remove debugging code.
110#include "llvm/Support/raw_ostream.h"
111
112namespace llvm {
113
114
115//===----------------------------------------------------------------------===//
116//---                              Key traits                              ---//
117//===----------------------------------------------------------------------===//
118//
119// The IntervalMap works with closed or half-open intervals.
120// Adjacent intervals that map to the same value are coalesced.
121//
122// The IntervalMapInfo traits class is used to determine if a key is contained
123// in an interval, and if two intervals are adjacent so they can be coalesced.
124// The provided implementation works for closed integer intervals, other keys
125// probably need a specialized version.
126//
127// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
128//
129// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
130// allowed. This is so that stopLess(a, b) can be used to determine if two
131// intervals overlap.
132//
133//===----------------------------------------------------------------------===//
134
135template <typename T>
136struct IntervalMapInfo {
137
138  /// startLess - Return true if x is not in [a;b].
139  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
140  static inline bool startLess(const T &x, const T &a) {
141    return x < a;
142  }
143
144  /// stopLess - Return true if x is not in [a;b].
145  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
146  static inline bool stopLess(const T &b, const T &x) {
147    return b < x;
148  }
149
150  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
151  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
152  static inline bool adjacent(const T &a, const T &b) {
153    return a+1 == b;
154  }
155
156};
157
158/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
159/// It should be considered private to the implementation.
160namespace IntervalMapImpl {
161
162// Forward declarations.
163template <typename, typename, unsigned, typename> class LeafNode;
164template <typename, typename, unsigned, typename> class BranchNode;
165
166typedef std::pair<unsigned,unsigned> IdxPair;
167
168
169//===----------------------------------------------------------------------===//
170//---                            Node Storage                              ---//
171//===----------------------------------------------------------------------===//
172//
173// Both leaf and branch nodes store vectors of pairs.
174// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
175//
176// Keys and values are stored in separate arrays to avoid padding caused by
177// different object alignments. This also helps improve locality of reference
178// when searching the keys.
179//
180// The nodes don't know how many elements they contain - that information is
181// stored elsewhere. Omitting the size field prevents padding and allows a node
182// to fill the allocated cache lines completely.
183//
184// These are typical key and value sizes, the node branching factor (N), and
185// wasted space when nodes are sized to fit in three cache lines (192 bytes):
186//
187//   T1  T2   N Waste  Used by
188//    4   4  24   0    Branch<4> (32-bit pointers)
189//    8   4  16   0    Leaf<4,4>, Branch<4>
190//    8   8  12   0    Leaf<4,8>, Branch<8>
191//   16   4   9  12    Leaf<8,4>
192//   16   8   8   0    Leaf<8,8>
193//
194//===----------------------------------------------------------------------===//
195
196template <typename T1, typename T2, unsigned N>
197class NodeBase {
198public:
199  enum { Capacity = N };
200
201  T1 first[N];
202  T2 second[N];
203
204  /// copy - Copy elements from another node.
205  /// @param Other Node elements are copied from.
206  /// @param i     Beginning of the source range in other.
207  /// @param j     Beginning of the destination range in this.
208  /// @param Count Number of elements to copy.
209  template <unsigned M>
210  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
211            unsigned j, unsigned Count) {
212    assert(i + Count <= M && "Invalid source range");
213    assert(j + Count <= N && "Invalid dest range");
214    std::copy(Other.first + i, Other.first + i + Count, first + j);
215    std::copy(Other.second + i, Other.second + i + Count, second + j);
216  }
217
218  /// moveLeft - Move elements to the left.
219  /// @param i     Beginning of the source range.
220  /// @param j     Beginning of the destination range.
221  /// @param Count Number of elements to copy.
222  void moveLeft(unsigned i, unsigned j, unsigned Count) {
223    assert(j <= i && "Use moveRight shift elements right");
224    copy(*this, i, j, Count);
225  }
226
227  /// moveRight - Move elements to the right.
228  /// @param i     Beginning of the source range.
229  /// @param j     Beginning of the destination range.
230  /// @param Count Number of elements to copy.
231  void moveRight(unsigned i, unsigned j, unsigned Count) {
232    assert(i <= j && "Use moveLeft shift elements left");
233    assert(j + Count <= N && "Invalid range");
234    std::copy_backward(first + i, first + i + Count, first + j + Count);
235    std::copy_backward(second + i, second + i + Count, second + j + Count);
236  }
237
238  /// erase - Erase elements [i;j).
239  /// @param i    Beginning of the range to erase.
240  /// @param j    End of the range. (Exclusive).
241  /// @param Size Number of elements in node.
242  void erase(unsigned i, unsigned j, unsigned Size) {
243    moveLeft(j, i, Size - j);
244  }
245
246  /// erase - Erase element at i.
247  /// @param i    Index of element to erase.
248  /// @param Size Number of elements in node.
249  void erase(unsigned i, unsigned Size) {
250    erase(i, i+1, Size);
251  }
252
253  /// shift - Shift elements [i;size) 1 position to the right.
254  /// @param i    Beginning of the range to move.
255  /// @param Size Number of elements in node.
256  void shift(unsigned i, unsigned Size) {
257    moveRight(i, i + 1, Size - i);
258  }
259
260  /// transferToLeftSib - Transfer elements to a left sibling node.
261  /// @param Size  Number of elements in this.
262  /// @param Sib   Left sibling node.
263  /// @param SSize Number of elements in sib.
264  /// @param Count Number of elements to transfer.
265  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
266                         unsigned Count) {
267    Sib.copy(*this, 0, SSize, Count);
268    erase(0, Count, Size);
269  }
270
271  /// transferToRightSib - Transfer elements to a right sibling node.
272  /// @param Size  Number of elements in this.
273  /// @param Sib   Right sibling node.
274  /// @param SSize Number of elements in sib.
275  /// @param Count Number of elements to transfer.
276  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
277                          unsigned Count) {
278    Sib.moveRight(0, Count, SSize);
279    Sib.copy(*this, Size-Count, 0, Count);
280  }
281
282  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283  /// elements to or from a left sibling node.
284  /// @param Size  Number of elements in this.
285  /// @param Sib   Right sibling node.
286  /// @param SSize Number of elements in sib.
287  /// @param Add   The number of elements to add to this node, possibly < 0.
288  /// @return      Number of elements added to this node, possibly negative.
289  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
290    if (Add > 0) {
291      // We want to grow, copy from sib.
292      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293      Sib.transferToRightSib(SSize, *this, Size, Count);
294      return Count;
295    } else {
296      // We want to shrink, copy to sib.
297      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298      transferToLeftSib(Size, Sib, SSize, Count);
299      return -Count;
300    }
301  }
302};
303
304/// adjustSiblingSizes - Move elements between sibling nodes.
305/// @param Node  Array of pointers to sibling nodes.
306/// @param Nodes Number of nodes.
307/// @param CurSize Array of current node sizes, will be overwritten.
308/// @param NewSize Array of desired node sizes.
309template <typename NodeT>
310void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311                        unsigned CurSize[], const unsigned NewSize[]) {
312  // Move elements right.
313  for (int n = Nodes - 1; n; --n) {
314    if (CurSize[n] == NewSize[n])
315      continue;
316    for (int m = n - 1; m != -1; --m) {
317      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318                                         NewSize[n] - CurSize[n]);
319      CurSize[m] -= d;
320      CurSize[n] += d;
321      // Keep going if the current node was exhausted.
322      if (CurSize[n] >= NewSize[n])
323          break;
324    }
325  }
326
327  if (Nodes == 0)
328    return;
329
330  // Move elements left.
331  for (unsigned n = 0; n != Nodes - 1; ++n) {
332    if (CurSize[n] == NewSize[n])
333      continue;
334    for (unsigned m = n + 1; m != Nodes; ++m) {
335      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336                                        CurSize[n] -  NewSize[n]);
337      CurSize[m] += d;
338      CurSize[n] -= d;
339      // Keep going if the current node was exhausted.
340      if (CurSize[n] >= NewSize[n])
341          break;
342    }
343  }
344
345#ifndef NDEBUG
346  for (unsigned n = 0; n != Nodes; n++)
347    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
348#endif
349}
350
351/// distribute - Compute a new distribution of node elements after an overflow
352/// or underflow. Reserve space for a new element at Position, and compute the
353/// node that will hold Position after redistributing node elements.
354///
355/// It is required that
356///
357///   Elements == sum(CurSize), and
358///   Elements + Grow <= Nodes * Capacity.
359///
360/// NewSize[] will be filled in such that:
361///
362///   sum(NewSize) == Elements, and
363///   NewSize[i] <= Capacity.
364///
365/// The returned index is the node where Position will go, so:
366///
367///   sum(NewSize[0..idx-1]) <= Position
368///   sum(NewSize[0..idx])   >= Position
369///
370/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
371/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
372/// before the one holding the Position'th element where there is room for an
373/// insertion.
374///
375/// @param Nodes    The number of nodes.
376/// @param Elements Total elements in all nodes.
377/// @param Capacity The capacity of each node.
378/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
379/// @param NewSize  Array[Nodes] to receive the new node sizes.
380/// @param Position Insert position.
381/// @param Grow     Reserve space for a new element at Position.
382/// @return         (node, offset) for Position.
383IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
384                   const unsigned *CurSize, unsigned NewSize[],
385                   unsigned Position, bool Grow);
386
387
388//===----------------------------------------------------------------------===//
389//---                             NodeSizer                                ---//
390//===----------------------------------------------------------------------===//
391//
392// Compute node sizes from key and value types.
393//
394// The branching factors are chosen to make nodes fit in three cache lines.
395// This may not be possible if keys or values are very large. Such large objects
396// are handled correctly, but a std::map would probably give better performance.
397//
398//===----------------------------------------------------------------------===//
399
400enum {
401  // Cache line size. Most architectures have 32 or 64 byte cache lines.
402  // We use 64 bytes here because it provides good branching factors.
403  Log2CacheLine = 6,
404  CacheLineBytes = 1 << Log2CacheLine,
405  DesiredNodeBytes = 3 * CacheLineBytes
406};
407
408template <typename KeyT, typename ValT>
409struct NodeSizer {
410  enum {
411    // Compute the leaf node branching factor that makes a node fit in three
412    // cache lines. The branching factor must be at least 3, or some B+-tree
413    // balancing algorithms won't work.
414    // LeafSize can't be larger than CacheLineBytes. This is required by the
415    // PointerIntPair used by NodeRef.
416    DesiredLeafSize = DesiredNodeBytes /
417      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
418    MinLeafSize = 3,
419    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
420  };
421
422  typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
423
424  enum {
425    // Now that we have the leaf branching factor, compute the actual allocation
426    // unit size by rounding up to a whole number of cache lines.
427    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
428
429    // Determine the branching factor for branch nodes.
430    BranchSize = AllocBytes /
431      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
432  };
433
434  /// Allocator - The recycling allocator used for both branch and leaf nodes.
435  /// This typedef is very likely to be identical for all IntervalMaps with
436  /// reasonably sized entries, so the same allocator can be shared among
437  /// different kinds of maps.
438  typedef RecyclingAllocator<BumpPtrAllocator, char,
439                             AllocBytes, CacheLineBytes> Allocator;
440
441};
442
443
444//===----------------------------------------------------------------------===//
445//---                              NodeRef                                 ---//
446//===----------------------------------------------------------------------===//
447//
448// B+-tree nodes can be leaves or branches, so we need a polymorphic node
449// pointer that can point to both kinds.
450//
451// All nodes are cache line aligned and the low 6 bits of a node pointer are
452// always 0. These bits are used to store the number of elements in the
453// referenced node. Besides saving space, placing node sizes in the parents
454// allow tree balancing algorithms to run without faulting cache lines for nodes
455// that may not need to be modified.
456//
457// A NodeRef doesn't know whether it references a leaf node or a branch node.
458// It is the responsibility of the caller to use the correct types.
459//
460// Nodes are never supposed to be empty, and it is invalid to store a node size
461// of 0 in a NodeRef. The valid range of sizes is 1-64.
462//
463//===----------------------------------------------------------------------===//
464
465struct CacheAlignedPointerTraits {
466  static inline void *getAsVoidPointer(void *P) { return P; }
467  static inline void *getFromVoidPointer(void *P) { return P; }
468  enum { NumLowBitsAvailable = Log2CacheLine };
469};
470
471class NodeRef {
472  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
473
474public:
475  /// NodeRef - Create a null ref.
476  NodeRef() {}
477
478  /// operator bool - Detect a null ref.
479  operator bool() const { return pip.getOpaqueValue(); }
480
481  /// NodeRef - Create a reference to the node p with n elements.
482  template <typename NodeT>
483  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484    assert(n <= NodeT::Capacity && "Size too big for node");
485  }
486
487  /// size - Return the number of elements in the referenced node.
488  unsigned size() const { return pip.getInt() + 1; }
489
490  /// setSize - Update the node size.
491  void setSize(unsigned n) { pip.setInt(n - 1); }
492
493  /// subtree - Access the i'th subtree reference in a branch node.
494  /// This depends on branch nodes storing the NodeRef array as their first
495  /// member.
496  NodeRef &subtree(unsigned i) const {
497    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
498  }
499
500  /// get - Dereference as a NodeT reference.
501  template <typename NodeT>
502  NodeT &get() const {
503    return *reinterpret_cast<NodeT*>(pip.getPointer());
504  }
505
506  bool operator==(const NodeRef &RHS) const {
507    if (pip == RHS.pip)
508      return true;
509    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
510    return false;
511  }
512
513  bool operator!=(const NodeRef &RHS) const {
514    return !operator==(RHS);
515  }
516};
517
518//===----------------------------------------------------------------------===//
519//---                            Leaf nodes                                ---//
520//===----------------------------------------------------------------------===//
521//
522// Leaf nodes store up to N disjoint intervals with corresponding values.
523//
524// The intervals are kept sorted and fully coalesced so there are no adjacent
525// intervals mapping to the same value.
526//
527// These constraints are always satisfied:
528//
529// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
530//
531// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
532//
533// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534//                                          - Fully coalesced.
535//
536//===----------------------------------------------------------------------===//
537
538template <typename KeyT, typename ValT, unsigned N, typename Traits>
539class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
540public:
541  const KeyT &start(unsigned i) const { return this->first[i].first; }
542  const KeyT &stop(unsigned i) const { return this->first[i].second; }
543  const ValT &value(unsigned i) const { return this->second[i]; }
544
545  KeyT &start(unsigned i) { return this->first[i].first; }
546  KeyT &stop(unsigned i) { return this->first[i].second; }
547  ValT &value(unsigned i) { return this->second[i]; }
548
549  /// findFrom - Find the first interval after i that may contain x.
550  /// @param i    Starting index for the search.
551  /// @param Size Number of elements in node.
552  /// @param x    Key to search for.
553  /// @return     First index with !stopLess(key[i].stop, x), or size.
554  ///             This is the first interval that can possibly contain x.
555  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556    assert(i <= Size && Size <= N && "Bad indices");
557    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558           "Index is past the needed point");
559    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
560    return i;
561  }
562
563  /// safeFind - Find an interval that is known to exist. This is the same as
564  /// findFrom except is it assumed that x is at least within range of the last
565  /// interval.
566  /// @param i Starting index for the search.
567  /// @param x Key to search for.
568  /// @return  First index with !stopLess(key[i].stop, x), never size.
569  ///          This is the first interval that can possibly contain x.
570  unsigned safeFind(unsigned i, KeyT x) const {
571    assert(i < N && "Bad index");
572    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573           "Index is past the needed point");
574    while (Traits::stopLess(stop(i), x)) ++i;
575    assert(i < N && "Unsafe intervals");
576    return i;
577  }
578
579  /// safeLookup - Lookup mapped value for a safe key.
580  /// It is assumed that x is within range of the last entry.
581  /// @param x        Key to search for.
582  /// @param NotFound Value to return if x is not in any interval.
583  /// @return         The mapped value at x or NotFound.
584  ValT safeLookup(KeyT x, ValT NotFound) const {
585    unsigned i = safeFind(0, x);
586    return Traits::startLess(x, start(i)) ? NotFound : value(i);
587  }
588
589  IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
590  unsigned extendStop(unsigned i, unsigned Size, KeyT b);
591
592#ifndef NDEBUG
593  void dump(raw_ostream &OS, unsigned Size) {
594    OS << "  N" << this << " [shape=record label=\"{ " << Size << '/' << N;
595    for (unsigned i = 0; i != Size; ++i)
596      OS << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
597    OS << "}\"];\n";
598  }
599#endif
600
601};
602
603/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
604/// possible. This may cause the node to grow by 1, or it may cause the node
605/// to shrink because of coalescing.
606/// @param i    Starting index = insertFrom(0, size, a)
607/// @param Size Number of elements in node.
608/// @param a    Interval start.
609/// @param b    Interval stop.
610/// @param y    Value be mapped.
611/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
612template <typename KeyT, typename ValT, unsigned N, typename Traits>
613IdxPair LeafNode<KeyT, ValT, N, Traits>::
614insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
615  assert(i <= Size && Size <= N && "Invalid index");
616  assert(!Traits::stopLess(b, a) && "Invalid interval");
617
618  // Verify the findFrom invariant.
619  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
620  assert((i == Size || !Traits::stopLess(stop(i), a)));
621
622  // Coalesce with previous interval.
623  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
624    return IdxPair(i - 1, extendStop(i - 1, Size, b));
625
626  // Detect overflow.
627  if (i == N)
628    return IdxPair(i, N + 1);
629
630  // Add new interval at end.
631  if (i == Size) {
632    start(i) = a;
633    stop(i) = b;
634    value(i) = y;
635    return IdxPair(i, Size + 1);
636  }
637
638  // Overlapping intervals?
639  if (!Traits::stopLess(b, start(i))) {
640    assert(value(i) == y && "Inconsistent values in overlapping intervals");
641    if (Traits::startLess(a, start(i)))
642      start(i) = a;
643    return IdxPair(i, extendStop(i, Size, b));
644  }
645
646  // Try to coalesce with following interval.
647  if (value(i) == y && Traits::adjacent(b, start(i))) {
648    start(i) = a;
649    return IdxPair(i, Size);
650  }
651
652  // We must insert before i. Detect overflow.
653  if (Size == N)
654    return IdxPair(i, N + 1);
655
656  // Insert before i.
657  this->shift(i, Size);
658  start(i) = a;
659  stop(i) = b;
660  value(i) = y;
661  return IdxPair(i, Size + 1);
662}
663
664/// extendStop - Extend stop(i) to b, coalescing with following intervals.
665/// @param i    Interval to extend.
666/// @param Size Number of elements in node.
667/// @param b    New interval end point.
668/// @return     New node size after coalescing.
669template <typename KeyT, typename ValT, unsigned N, typename Traits>
670unsigned LeafNode<KeyT, ValT, N, Traits>::
671extendStop(unsigned i, unsigned Size, KeyT b) {
672  assert(i < Size && Size <= N && "Bad indices");
673
674  // Are we even extending the interval?
675  if (Traits::startLess(b, stop(i)))
676    return Size;
677
678  // Find the first interval that may be preserved.
679  unsigned j = findFrom(i + 1, Size, b);
680  if (j < Size) {
681    // Would key[i] overlap key[j] after the extension?
682    if (Traits::stopLess(b, start(j))) {
683      // Not overlapping. Perhaps adjacent and coalescable?
684      if (value(i) == value(j) && Traits::adjacent(b, start(j)))
685        b = stop(j++);
686    } else {
687      // Overlap. Include key[j] in the new interval.
688      assert(value(i) == value(j) && "Overlapping values");
689      b = stop(j++);
690    }
691  }
692  stop(i) =  b;
693
694  // Entries [i+1;j) were coalesced.
695  if (i + 1 < j && j < Size)
696    this->erase(i + 1, j, Size);
697  return Size - (j - (i + 1));
698}
699
700
701//===----------------------------------------------------------------------===//
702//---                             Branch nodes                             ---//
703//===----------------------------------------------------------------------===//
704//
705// A branch node stores references to 1--N subtrees all of the same height.
706//
707// The key array in a branch node holds the rightmost stop key of each subtree.
708// It is redundant to store the last stop key since it can be found in the
709// parent node, but doing so makes tree balancing a lot simpler.
710//
711// It is unusual for a branch node to only have one subtree, but it can happen
712// in the root node if it is smaller than the normal nodes.
713//
714// When all of the leaf nodes from all the subtrees are concatenated, they must
715// satisfy the same constraints as a single leaf node. They must be sorted,
716// sane, and fully coalesced.
717//
718//===----------------------------------------------------------------------===//
719
720template <typename KeyT, typename ValT, unsigned N, typename Traits>
721class BranchNode : public NodeBase<NodeRef, KeyT, N> {
722public:
723  const KeyT &stop(unsigned i) const { return this->second[i]; }
724  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
725
726  KeyT &stop(unsigned i) { return this->second[i]; }
727  NodeRef &subtree(unsigned i) { return this->first[i]; }
728
729  /// findFrom - Find the first subtree after i that may contain x.
730  /// @param i    Starting index for the search.
731  /// @param Size Number of elements in node.
732  /// @param x    Key to search for.
733  /// @return     First index with !stopLess(key[i], x), or size.
734  ///             This is the first subtree that can possibly contain x.
735  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
736    assert(i <= Size && Size <= N && "Bad indices");
737    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
738           "Index to findFrom is past the needed point");
739    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
740    return i;
741  }
742
743  /// safeFind - Find a subtree that is known to exist. This is the same as
744  /// findFrom except is it assumed that x is in range.
745  /// @param i Starting index for the search.
746  /// @param x Key to search for.
747  /// @return  First index with !stopLess(key[i], x), never size.
748  ///          This is the first subtree that can possibly contain x.
749  unsigned safeFind(unsigned i, KeyT x) const {
750    assert(i < N && "Bad index");
751    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
752           "Index is past the needed point");
753    while (Traits::stopLess(stop(i), x)) ++i;
754    assert(i < N && "Unsafe intervals");
755    return i;
756  }
757
758  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
759  /// @param x Key to search for.
760  /// @return  Subtree containing x
761  NodeRef safeLookup(KeyT x) const {
762    return subtree(safeFind(0, x));
763  }
764
765  /// insert - Insert a new (subtree, stop) pair.
766  /// @param i    Insert position, following entries will be shifted.
767  /// @param Size Number of elements in node.
768  /// @param Node Subtree to insert.
769  /// @param Stop Last key in subtree.
770  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
771    assert(Size < N && "branch node overflow");
772    assert(i <= Size && "Bad insert position");
773    this->shift(i, Size);
774    subtree(i) = Node;
775    stop(i) = Stop;
776  }
777
778#ifndef NDEBUG
779  void dump(raw_ostream &OS, unsigned Size) {
780    OS << "  N" << this << " [shape=record label=\"" << Size << '/' << N;
781    for (unsigned i = 0; i != Size; ++i)
782      OS << " | <s" << i << "> " << stop(i);
783    OS << "\"];\n";
784    for (unsigned i = 0; i != Size; ++i)
785      OS << "  N" << this << ":s" << i << " -> N"
786         << &subtree(i).template get<BranchNode>() << ";\n";
787  }
788#endif
789
790};
791
792//===----------------------------------------------------------------------===//
793//---                                  Path                                ---//
794//===----------------------------------------------------------------------===//
795//
796// A Path is used by iterators to represent a position in a B+-tree, and the
797// path to get there from the root.
798//
799// The Path class also constains the tree navigation code that doesn't have to
800// be templatized.
801//
802//===----------------------------------------------------------------------===//
803
804class Path {
805  /// Entry - Each step in the path is a node pointer and an offset into that
806  /// node.
807  struct Entry {
808    void *node;
809    unsigned size;
810    unsigned offset;
811
812    Entry(void *Node, unsigned Size, unsigned Offset)
813      : node(Node), size(Size), offset(Offset) {}
814
815    Entry(NodeRef Node, unsigned Offset)
816      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
817
818    NodeRef &subtree(unsigned i) const {
819      return reinterpret_cast<NodeRef*>(node)[i];
820    }
821  };
822
823  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
824  SmallVector<Entry, 4> path;
825
826public:
827  // Node accessors.
828  template <typename NodeT> NodeT &node(unsigned Level) const {
829    return *reinterpret_cast<NodeT*>(path[Level].node);
830  }
831  unsigned size(unsigned Level) const { return path[Level].size; }
832  unsigned offset(unsigned Level) const { return path[Level].offset; }
833  unsigned &offset(unsigned Level) { return path[Level].offset; }
834
835  // Leaf accessors.
836  template <typename NodeT> NodeT &leaf() const {
837    return *reinterpret_cast<NodeT*>(path.back().node);
838  }
839  unsigned leafSize() const { return path.back().size; }
840  unsigned leafOffset() const { return path.back().offset; }
841  unsigned &leafOffset() { return path.back().offset; }
842
843  /// valid - Return true if path is at a valid node, not at end().
844  bool valid() const {
845    return !path.empty() && path.front().offset < path.front().size;
846  }
847
848  /// height - Return the height of the tree corresponding to this path.
849  /// This matches map->height in a full path.
850  unsigned height() const { return path.size() - 1; }
851
852  /// subtree - Get the subtree referenced from Level. When the path is
853  /// consistent, node(Level + 1) == subtree(Level).
854  /// @param Level 0..height-1. The leaves have no subtrees.
855  NodeRef &subtree(unsigned Level) const {
856    return path[Level].subtree(path[Level].offset);
857  }
858
859  /// reset - Reset cached information about node(Level) from subtree(Level -1).
860  /// @param Level 1..height. THe node to update after parent node changed.
861  void reset(unsigned Level) {
862    path[Level] = Entry(subtree(Level - 1), offset(Level));
863  }
864
865  /// push - Add entry to path.
866  /// @param Node Node to add, should be subtree(path.size()-1).
867  /// @param Offset Offset into Node.
868  void push(NodeRef Node, unsigned Offset) {
869    path.push_back(Entry(Node, Offset));
870  }
871
872  /// pop - Remove the last path entry.
873  void pop() {
874    path.pop_back();
875  }
876
877  /// setSize - Set the size of a node both in the path and in the tree.
878  /// @param Level 0..height. Note that setting the root size won't change
879  ///              map->rootSize.
880  /// @param Size New node size.
881  void setSize(unsigned Level, unsigned Size) {
882    path[Level].size = Size;
883    if (Level)
884      subtree(Level - 1).setSize(Size);
885  }
886
887  /// setRoot - Clear the path and set a new root node.
888  /// @param Node New root node.
889  /// @param Size New root size.
890  /// @param Offset Offset into root node.
891  void setRoot(void *Node, unsigned Size, unsigned Offset) {
892    path.clear();
893    path.push_back(Entry(Node, Size, Offset));
894  }
895
896  /// replaceRoot - Replace the current root node with two new entries after the
897  /// tree height has increased.
898  /// @param Root The new root node.
899  /// @param Size Number of entries in the new root.
900  /// @param Offsets Offsets into the root and first branch nodes.
901  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
902
903  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
904  /// @param Level Get the sibling to node(Level).
905  /// @return Left sibling, or NodeRef().
906  NodeRef getLeftSibling(unsigned Level) const;
907
908  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
909  /// unaltered.
910  /// @param Level Move node(Level).
911  void moveLeft(unsigned Level);
912
913  /// fillLeft - Grow path to Height by taking leftmost branches.
914  /// @param Height The target height.
915  void fillLeft(unsigned Height) {
916    while (height() < Height)
917      push(subtree(height()), 0);
918  }
919
920  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
921  /// @param Level Get the sinbling to node(Level).
922  /// @return Left sibling, or NodeRef().
923  NodeRef getRightSibling(unsigned Level) const;
924
925  /// moveRight - Move path to the left sibling at Level. Leave nodes below
926  /// Level unaltered.
927  /// @param Level Move node(Level).
928  void moveRight(unsigned Level);
929
930  /// atBegin - Return true if path is at begin().
931  bool atBegin() const {
932    for (unsigned i = 0, e = path.size(); i != e; ++i)
933      if (path[i].offset != 0)
934        return false;
935    return true;
936  }
937
938  /// atLastBranch - Return true if the path is at the last branch of the node
939  /// at Level.
940  /// @param Level Node to examine.
941  bool atLastBranch(unsigned Level) const {
942    return path[Level].offset == path[Level].size - 1;
943  }
944
945  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
946  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
947  /// ensures that node(Level) is real by moving back to the last node at Level,
948  /// and setting offset(Level) to size(Level) if required.
949  /// @param Level The level where an insertion is about to take place.
950  void legalizeForInsert(unsigned Level) {
951    if (valid())
952      return;
953    moveLeft(Level);
954    ++path[Level].offset;
955  }
956
957#ifndef NDEBUG
958  void dump() const {
959    for (unsigned l = 0, e = path.size(); l != e; ++l)
960      errs() << l << ": " << path[l].node << ' ' << path[l].size << ' '
961             << path[l].offset << '\n';
962  }
963#endif
964};
965
966} // namespace IntervalMapImpl
967
968
969//===----------------------------------------------------------------------===//
970//---                          IntervalMap                                ----//
971//===----------------------------------------------------------------------===//
972
973template <typename KeyT, typename ValT,
974          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
975          typename Traits = IntervalMapInfo<KeyT> >
976class IntervalMap {
977  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
978  typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
979  typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
980    Branch;
981  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
982  typedef IntervalMapImpl::IdxPair IdxPair;
983
984  // The RootLeaf capacity is given as a template parameter. We must compute the
985  // corresponding RootBranch capacity.
986  enum {
987    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
988      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
989    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
990  };
991
992  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
993    RootBranch;
994
995  // When branched, we store a global start key as well as the branch node.
996  struct RootBranchData {
997    KeyT start;
998    RootBranch node;
999  };
1000
1001  enum {
1002    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
1003                   sizeof(RootBranchData) : sizeof(RootLeaf)
1004  };
1005
1006public:
1007  typedef typename Sizer::Allocator Allocator;
1008
1009private:
1010  // The root data is either a RootLeaf or a RootBranchData instance.
1011  // We can't put them in a union since C++03 doesn't allow non-trivial
1012  // constructors in unions.
1013  // Instead, we use a char array with pointer alignment. The alignment is
1014  // ensured by the allocator member in the class, but still verified in the
1015  // constructor. We don't support keys or values that are more aligned than a
1016  // pointer.
1017  char data[RootDataSize];
1018
1019  // Tree height.
1020  // 0: Leaves in root.
1021  // 1: Root points to leaf.
1022  // 2: root->branch->leaf ...
1023  unsigned height;
1024
1025  // Number of entries in the root node.
1026  unsigned rootSize;
1027
1028  // Allocator used for creating external nodes.
1029  Allocator &allocator;
1030
1031  /// dataAs - Represent data as a node type without breaking aliasing rules.
1032  template <typename T>
1033  T &dataAs() const {
1034    union {
1035      const char *d;
1036      T *t;
1037    } u;
1038    u.d = data;
1039    return *u.t;
1040  }
1041
1042  const RootLeaf &rootLeaf() const {
1043    assert(!branched() && "Cannot acces leaf data in branched root");
1044    return dataAs<RootLeaf>();
1045  }
1046  RootLeaf &rootLeaf() {
1047    assert(!branched() && "Cannot acces leaf data in branched root");
1048    return dataAs<RootLeaf>();
1049  }
1050  RootBranchData &rootBranchData() const {
1051    assert(branched() && "Cannot access branch data in non-branched root");
1052    return dataAs<RootBranchData>();
1053  }
1054  RootBranchData &rootBranchData() {
1055    assert(branched() && "Cannot access branch data in non-branched root");
1056    return dataAs<RootBranchData>();
1057  }
1058  const RootBranch &rootBranch() const { return rootBranchData().node; }
1059  RootBranch &rootBranch()             { return rootBranchData().node; }
1060  KeyT rootBranchStart() const { return rootBranchData().start; }
1061  KeyT &rootBranchStart()      { return rootBranchData().start; }
1062
1063  template <typename NodeT> NodeT *newNode() {
1064    return new(allocator.template Allocate<NodeT>()) NodeT();
1065  }
1066
1067  template <typename NodeT> void deleteNode(NodeT *P) {
1068    P->~NodeT();
1069    allocator.Deallocate(P);
1070  }
1071
1072  IdxPair branchRoot(unsigned Position);
1073  IdxPair splitRoot(unsigned Position);
1074
1075  void switchRootToBranch() {
1076    rootLeaf().~RootLeaf();
1077    height = 1;
1078    new (&rootBranchData()) RootBranchData();
1079  }
1080
1081  void switchRootToLeaf() {
1082    rootBranchData().~RootBranchData();
1083    height = 0;
1084    new(&rootLeaf()) RootLeaf();
1085  }
1086
1087  bool branched() const { return height > 0; }
1088
1089  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1090  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1091                  unsigned Level));
1092  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1093
1094public:
1095  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1096    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1097           "Insufficient alignment");
1098    new(&rootLeaf()) RootLeaf();
1099  }
1100
1101  ~IntervalMap() {
1102    clear();
1103    rootLeaf().~RootLeaf();
1104  }
1105
1106  /// empty -  Return true when no intervals are mapped.
1107  bool empty() const {
1108    return rootSize == 0;
1109  }
1110
1111  /// start - Return the smallest mapped key in a non-empty map.
1112  KeyT start() const {
1113    assert(!empty() && "Empty IntervalMap has no start");
1114    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1115  }
1116
1117  /// stop - Return the largest mapped key in a non-empty map.
1118  KeyT stop() const {
1119    assert(!empty() && "Empty IntervalMap has no stop");
1120    return !branched() ? rootLeaf().stop(rootSize - 1) :
1121                         rootBranch().stop(rootSize - 1);
1122  }
1123
1124  /// lookup - Return the mapped value at x or NotFound.
1125  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1126    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1127      return NotFound;
1128    return branched() ? treeSafeLookup(x, NotFound) :
1129                        rootLeaf().safeLookup(x, NotFound);
1130  }
1131
1132  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1133  /// It is assumed that no key in the interval is mapped to another value, but
1134  /// overlapping intervals already mapped to y will be coalesced.
1135  void insert(KeyT a, KeyT b, ValT y) {
1136    if (branched() || rootSize == RootLeaf::Capacity)
1137      return find(a).insert(a, b, y);
1138
1139    // Easy insert into root leaf.
1140    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1141    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y).second;
1142  }
1143
1144  /// clear - Remove all entries.
1145  void clear();
1146
1147  class const_iterator;
1148  class iterator;
1149  friend class const_iterator;
1150  friend class iterator;
1151
1152  const_iterator begin() const {
1153    iterator I(*this);
1154    I.goToBegin();
1155    return I;
1156  }
1157
1158  iterator begin() {
1159    iterator I(*this);
1160    I.goToBegin();
1161    return I;
1162  }
1163
1164  const_iterator end() const {
1165    iterator I(*this);
1166    I.goToEnd();
1167    return I;
1168  }
1169
1170  iterator end() {
1171    iterator I(*this);
1172    I.goToEnd();
1173    return I;
1174  }
1175
1176  /// find - Return an iterator pointing to the first interval ending at or
1177  /// after x, or end().
1178  const_iterator find(KeyT x) const {
1179    iterator I(*this);
1180    I.find(x);
1181    return I;
1182  }
1183
1184  iterator find(KeyT x) {
1185    iterator I(*this);
1186    I.find(x);
1187    return I;
1188  }
1189
1190#ifndef NDEBUG
1191  raw_ostream *OS;
1192  void dump();
1193  void dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height);
1194#endif
1195};
1196
1197/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1198/// branched root.
1199template <typename KeyT, typename ValT, unsigned N, typename Traits>
1200ValT IntervalMap<KeyT, ValT, N, Traits>::
1201treeSafeLookup(KeyT x, ValT NotFound) const {
1202  assert(branched() && "treeLookup assumes a branched root");
1203
1204  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1205  for (unsigned h = height-1; h; --h)
1206    NR = NR.get<Branch>().safeLookup(x);
1207  return NR.get<Leaf>().safeLookup(x, NotFound);
1208}
1209
1210
1211// branchRoot - Switch from a leaf root to a branched root.
1212// Return the new (root offset, node offset) corresponding to Position.
1213template <typename KeyT, typename ValT, unsigned N, typename Traits>
1214IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1215branchRoot(unsigned Position) {
1216  using namespace IntervalMapImpl;
1217  // How many external leaf nodes to hold RootLeaf+1?
1218  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1219
1220  // Compute element distribution among new nodes.
1221  unsigned size[Nodes];
1222  IdxPair NewOffset(0, Position);
1223
1224  // Is is very common for the root node to be smaller than external nodes.
1225  if (Nodes == 1)
1226    size[0] = rootSize;
1227  else
1228    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
1229                           Position, true);
1230
1231  // Allocate new nodes.
1232  unsigned pos = 0;
1233  NodeRef node[Nodes];
1234  for (unsigned n = 0; n != Nodes; ++n) {
1235    Leaf *L = newNode<Leaf>();
1236    L->copy(rootLeaf(), pos, 0, size[n]);
1237    node[n] = NodeRef(L, size[n]);
1238    pos += size[n];
1239  }
1240
1241  // Destroy the old leaf node, construct branch node instead.
1242  switchRootToBranch();
1243  for (unsigned n = 0; n != Nodes; ++n) {
1244    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1245    rootBranch().subtree(n) = node[n];
1246  }
1247  rootBranchStart() = node[0].template get<Leaf>().start(0);
1248  rootSize = Nodes;
1249  return NewOffset;
1250}
1251
1252// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1253// Return the new (root offset, node offset) corresponding to Position.
1254template <typename KeyT, typename ValT, unsigned N, typename Traits>
1255IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1256splitRoot(unsigned Position) {
1257  using namespace IntervalMapImpl;
1258  // How many external leaf nodes to hold RootBranch+1?
1259  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1260
1261  // Compute element distribution among new nodes.
1262  unsigned Size[Nodes];
1263  IdxPair NewOffset(0, Position);
1264
1265  // Is is very common for the root node to be smaller than external nodes.
1266  if (Nodes == 1)
1267    Size[0] = rootSize;
1268  else
1269    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
1270                           Position, true);
1271
1272  // Allocate new nodes.
1273  unsigned Pos = 0;
1274  NodeRef Node[Nodes];
1275  for (unsigned n = 0; n != Nodes; ++n) {
1276    Branch *B = newNode<Branch>();
1277    B->copy(rootBranch(), Pos, 0, Size[n]);
1278    Node[n] = NodeRef(B, Size[n]);
1279    Pos += Size[n];
1280  }
1281
1282  for (unsigned n = 0; n != Nodes; ++n) {
1283    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1284    rootBranch().subtree(n) = Node[n];
1285  }
1286  rootSize = Nodes;
1287  ++height;
1288  return NewOffset;
1289}
1290
1291/// visitNodes - Visit each external node.
1292template <typename KeyT, typename ValT, unsigned N, typename Traits>
1293void IntervalMap<KeyT, ValT, N, Traits>::
1294visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1295  if (!branched())
1296    return;
1297  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1298
1299  // Collect level 0 nodes from the root.
1300  for (unsigned i = 0; i != rootSize; ++i)
1301    Refs.push_back(rootBranch().subtree(i));
1302
1303  // Visit all branch nodes.
1304  for (unsigned h = height - 1; h; --h) {
1305    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1306      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1307        NextRefs.push_back(Refs[i].subtree(j));
1308      (this->*f)(Refs[i], h);
1309    }
1310    Refs.clear();
1311    Refs.swap(NextRefs);
1312  }
1313
1314  // Visit all leaf nodes.
1315  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1316    (this->*f)(Refs[i], 0);
1317}
1318
1319template <typename KeyT, typename ValT, unsigned N, typename Traits>
1320void IntervalMap<KeyT, ValT, N, Traits>::
1321deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1322  if (Level)
1323    deleteNode(&Node.get<Branch>());
1324  else
1325    deleteNode(&Node.get<Leaf>());
1326}
1327
1328template <typename KeyT, typename ValT, unsigned N, typename Traits>
1329void IntervalMap<KeyT, ValT, N, Traits>::
1330clear() {
1331  if (branched()) {
1332    visitNodes(&IntervalMap::deleteNode);
1333    switchRootToLeaf();
1334  }
1335  rootSize = 0;
1336}
1337
1338#ifndef NDEBUG
1339template <typename KeyT, typename ValT, unsigned N, typename Traits>
1340void IntervalMap<KeyT, ValT, N, Traits>::
1341dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height) {
1342  if (Height)
1343    Node.get<Branch>().dump(*OS, Node.size());
1344  else
1345    Node.get<Leaf>().dump(*OS, Node.size());
1346}
1347
1348template <typename KeyT, typename ValT, unsigned N, typename Traits>
1349void IntervalMap<KeyT, ValT, N, Traits>::
1350dump() {
1351  std::string errors;
1352  raw_fd_ostream ofs("tree.dot", errors);
1353  OS = &ofs;
1354  ofs << "digraph {\n";
1355  if (branched())
1356    rootBranch().dump(ofs, rootSize);
1357  else
1358    rootLeaf().dump(ofs, rootSize);
1359  visitNodes(&IntervalMap::dumpNode);
1360  ofs << "}\n";
1361}
1362#endif
1363
1364//===----------------------------------------------------------------------===//
1365//---                             const_iterator                          ----//
1366//===----------------------------------------------------------------------===//
1367
1368template <typename KeyT, typename ValT, unsigned N, typename Traits>
1369class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1370  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1371protected:
1372  friend class IntervalMap;
1373
1374  // The map referred to.
1375  IntervalMap *map;
1376
1377  // We store a full path from the root to the current position.
1378  // The path may be partially filled, but never between iterator calls.
1379  IntervalMapImpl::Path path;
1380
1381  explicit const_iterator(IntervalMap &map) : map(&map) {}
1382
1383  bool branched() const {
1384    assert(map && "Invalid iterator");
1385    return map->branched();
1386  }
1387
1388  void setRoot(unsigned Offset) {
1389    if (branched())
1390      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1391    else
1392      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1393  }
1394
1395  void pathFillFind(KeyT x);
1396  void treeFind(KeyT x);
1397  void treeAdvanceTo(KeyT x);
1398
1399public:
1400  /// const_iterator - Create an iterator that isn't pointing anywhere.
1401  const_iterator() : map(0) {}
1402
1403  /// valid - Return true if the current position is valid, false for end().
1404  bool valid() const { return path.valid(); }
1405
1406  /// start - Return the beginning of the current interval.
1407  const KeyT &start() const {
1408    assert(valid() && "Cannot access invalid iterator");
1409    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1410                        path.leaf<RootLeaf>().start(path.leafOffset());
1411  }
1412
1413  /// stop - Return the end of the current interval.
1414  const KeyT &stop() const {
1415    assert(valid() && "Cannot access invalid iterator");
1416    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1417                        path.leaf<RootLeaf>().stop(path.leafOffset());
1418  }
1419
1420  /// value - Return the mapped value at the current interval.
1421  const ValT &value() const {
1422    assert(valid() && "Cannot access invalid iterator");
1423    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1424                        path.leaf<RootLeaf>().value(path.leafOffset());
1425  }
1426
1427  const ValT &operator*() const {
1428    return value();
1429  }
1430
1431  bool operator==(const const_iterator &RHS) const {
1432    assert(map == RHS.map && "Cannot compare iterators from different maps");
1433    if (!valid())
1434      return !RHS.valid();
1435    if (path.leafOffset() != RHS.path.leafOffset())
1436      return false;
1437    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1438  }
1439
1440  bool operator!=(const const_iterator &RHS) const {
1441    return !operator==(RHS);
1442  }
1443
1444  /// goToBegin - Move to the first interval in map.
1445  void goToBegin() {
1446    setRoot(0);
1447    if (branched())
1448      path.fillLeft(map->height);
1449  }
1450
1451  /// goToEnd - Move beyond the last interval in map.
1452  void goToEnd() {
1453    setRoot(map->rootSize);
1454  }
1455
1456  /// preincrement - move to the next interval.
1457  const_iterator &operator++() {
1458    assert(valid() && "Cannot increment end()");
1459    if (++path.leafOffset() == path.leafSize() && branched())
1460      path.moveRight(map->height);
1461    return *this;
1462  }
1463
1464  /// postincrement - Dont do that!
1465  const_iterator operator++(int) {
1466    const_iterator tmp = *this;
1467    operator++();
1468    return tmp;
1469  }
1470
1471  /// predecrement - move to the previous interval.
1472  const_iterator &operator--() {
1473    if (path.leafOffset() && (valid() || !branched()))
1474      --path.leafOffset();
1475    else
1476      path.moveLeft(map->height);
1477    return *this;
1478  }
1479
1480  /// postdecrement - Dont do that!
1481  const_iterator operator--(int) {
1482    const_iterator tmp = *this;
1483    operator--();
1484    return tmp;
1485  }
1486
1487  /// find - Move to the first interval with stop >= x, or end().
1488  /// This is a full search from the root, the current position is ignored.
1489  void find(KeyT x) {
1490    if (branched())
1491      treeFind(x);
1492    else
1493      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1494  }
1495
1496  /// advanceTo - Move to the first interval with stop >= x, or end().
1497  /// The search is started from the current position, and no earlier positions
1498  /// can be found. This is much faster than find() for small moves.
1499  void advanceTo(KeyT x) {
1500    if (branched())
1501      treeAdvanceTo(x);
1502    else
1503      path.leafOffset() =
1504        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1505  }
1506
1507};
1508
1509/// pathFillFind - Complete path by searching for x.
1510/// @param x Key to search for.
1511template <typename KeyT, typename ValT, unsigned N, typename Traits>
1512void IntervalMap<KeyT, ValT, N, Traits>::
1513const_iterator::pathFillFind(KeyT x) {
1514  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1515  for (unsigned i = map->height - path.height() - 1; i; --i) {
1516    unsigned p = NR.get<Branch>().safeFind(0, x);
1517    path.push(NR, p);
1518    NR = NR.subtree(p);
1519  }
1520  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1521}
1522
1523/// treeFind - Find in a branched tree.
1524/// @param x Key to search for.
1525template <typename KeyT, typename ValT, unsigned N, typename Traits>
1526void IntervalMap<KeyT, ValT, N, Traits>::
1527const_iterator::treeFind(KeyT x) {
1528  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1529  if (valid())
1530    pathFillFind(x);
1531}
1532
1533/// treeAdvanceTo - Find position after the current one.
1534/// @param x Key to search for.
1535template <typename KeyT, typename ValT, unsigned N, typename Traits>
1536void IntervalMap<KeyT, ValT, N, Traits>::
1537const_iterator::treeAdvanceTo(KeyT x) {
1538  // Can we stay on the same leaf node?
1539  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1540    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1541    return;
1542  }
1543
1544  // Drop the current leaf.
1545  path.pop();
1546
1547  // Search towards the root for a usable subtree.
1548  if (path.height()) {
1549    for (unsigned l = path.height() - 1; l; --l) {
1550      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1551        // The branch node at l+1 is usable
1552        path.offset(l + 1) =
1553          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1554        return pathFillFind(x);
1555      }
1556      path.pop();
1557    }
1558    // Is the level-1 Branch usable?
1559    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1560      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1561      return pathFillFind(x);
1562    }
1563  }
1564
1565  // We reached the root.
1566  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1567  if (valid())
1568    pathFillFind(x);
1569}
1570
1571//===----------------------------------------------------------------------===//
1572//---                                iterator                             ----//
1573//===----------------------------------------------------------------------===//
1574
1575template <typename KeyT, typename ValT, unsigned N, typename Traits>
1576class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1577  friend class IntervalMap;
1578  typedef IntervalMapImpl::IdxPair IdxPair;
1579
1580  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1581
1582  void setNodeStop(unsigned Level, KeyT Stop);
1583  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1584  template <typename NodeT> bool overflow(unsigned Level);
1585  void treeInsert(KeyT a, KeyT b, ValT y);
1586  void eraseNode(unsigned Level);
1587  void treeErase(bool UpdateRoot = true);
1588public:
1589  /// iterator - Create null iterator.
1590  iterator() {}
1591
1592  /// insert - Insert mapping [a;b] -> y before the current position.
1593  void insert(KeyT a, KeyT b, ValT y);
1594
1595  /// erase - Erase the current interval.
1596  void erase();
1597
1598  iterator &operator++() {
1599    const_iterator::operator++();
1600    return *this;
1601  }
1602
1603  iterator operator++(int) {
1604    iterator tmp = *this;
1605    operator++();
1606    return tmp;
1607  }
1608
1609  iterator &operator--() {
1610    const_iterator::operator--();
1611    return *this;
1612  }
1613
1614  iterator operator--(int) {
1615    iterator tmp = *this;
1616    operator--();
1617    return tmp;
1618  }
1619
1620};
1621
1622/// setNodeStop - Update the stop key of the current node at level and above.
1623template <typename KeyT, typename ValT, unsigned N, typename Traits>
1624void IntervalMap<KeyT, ValT, N, Traits>::
1625iterator::setNodeStop(unsigned Level, KeyT Stop) {
1626  // There are no references to the root node, so nothing to update.
1627  if (!Level)
1628    return;
1629  IntervalMapImpl::Path &P = this->path;
1630  // Update nodes pointing to the current node.
1631  while (--Level) {
1632    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1633    if (!P.atLastBranch(Level))
1634      return;
1635  }
1636  // Update root separately since it has a different layout.
1637  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1638}
1639
1640/// insertNode - insert a node before the current path at level.
1641/// Leave the current path pointing at the new node.
1642/// @param Level path index of the node to be inserted.
1643/// @param Node The node to be inserted.
1644/// @param Stop The last index in the new node.
1645/// @return True if the tree height was increased.
1646template <typename KeyT, typename ValT, unsigned N, typename Traits>
1647bool IntervalMap<KeyT, ValT, N, Traits>::
1648iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1649  assert(Level && "Cannot insert next to the root");
1650  bool SplitRoot = false;
1651  IntervalMap &IM = *this->map;
1652  IntervalMapImpl::Path &P = this->path;
1653
1654  if (Level == 1) {
1655    // Insert into the root branch node.
1656    if (IM.rootSize < RootBranch::Capacity) {
1657      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1658      P.setSize(0, ++IM.rootSize);
1659      P.reset(Level);
1660      return SplitRoot;
1661    }
1662
1663    // We need to split the root while keeping our position.
1664    SplitRoot = true;
1665    IdxPair Offset = IM.splitRoot(P.offset(0));
1666    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1667
1668    // Fall through to insert at the new higher level.
1669    ++Level;
1670  }
1671
1672  // When inserting before end(), make sure we have a valid path.
1673  P.legalizeForInsert(--Level);
1674
1675  // Insert into the branch node at Level-1.
1676  if (P.size(Level) == Branch::Capacity) {
1677    // Branch node is full, handle handle the overflow.
1678    assert(!SplitRoot && "Cannot overflow after splitting the root");
1679    SplitRoot = overflow<Branch>(Level);
1680    Level += SplitRoot;
1681  }
1682  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1683  P.setSize(Level, P.size(Level) + 1);
1684  if (P.atLastBranch(Level))
1685    setNodeStop(Level, Stop);
1686  P.reset(Level + 1);
1687  return SplitRoot;
1688}
1689
1690// insert
1691template <typename KeyT, typename ValT, unsigned N, typename Traits>
1692void IntervalMap<KeyT, ValT, N, Traits>::
1693iterator::insert(KeyT a, KeyT b, ValT y) {
1694  if (this->branched())
1695    return treeInsert(a, b, y);
1696  IntervalMap &IM = *this->map;
1697  IntervalMapImpl::Path &P = this->path;
1698
1699  // Try simple root leaf insert.
1700  IdxPair IP = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1701
1702  // Was the root node insert successful?
1703  if (IP.second <= RootLeaf::Capacity) {
1704    P.leafOffset() = IP.first;
1705    P.setSize(0, IM.rootSize = IP.second);
1706    return;
1707  }
1708
1709  // Root leaf node is full, we must branch.
1710  IdxPair Offset = IM.branchRoot(P.leafOffset());
1711  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1712
1713  // Now it fits in the new leaf.
1714  treeInsert(a, b, y);
1715}
1716
1717
1718template <typename KeyT, typename ValT, unsigned N, typename Traits>
1719void IntervalMap<KeyT, ValT, N, Traits>::
1720iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1721  using namespace IntervalMapImpl;
1722  IntervalMap &IM = *this->map;
1723  Path &P = this->path;
1724
1725  // Check if this insertion will extend the node to the left.
1726  if (P.valid() && P.leafOffset() == 0 &&
1727      Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1728    // Node is growing to the left, will it affect a left sibling node?
1729    if (NodeRef Sib = P.getLeftSibling(IM.height)) {
1730      Leaf &SibLeaf = Sib.get<Leaf>();
1731      unsigned SibOfs = Sib.size() - 1;
1732      if (SibLeaf.value(SibOfs) == y &&
1733          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1734        // This insertion will coalesce with the last entry in SibLeaf. We can
1735        // handle it in two ways:
1736        //  1. Extend SibLeaf.stop to b and be done, or
1737        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1738        // We prefer 1., but need 2 when coalescing to the right as well.
1739        Leaf &CurLeaf = P.leaf<Leaf>();
1740        P.moveLeft(IM.height);
1741        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1742            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1743          // Easy, just extend SibLeaf and we're done.
1744          setNodeStop(IM.height, SibLeaf.stop(SibOfs) = b);
1745          return;
1746        } else {
1747          // We have both left and right coalescing. Erase the old SibLeaf entry
1748          // and continue inserting the larger interval.
1749          a = SibLeaf.start(SibOfs);
1750          treeErase(/* UpdateRoot= */false);
1751        }
1752      }
1753    } else {
1754      // No left sibling means we are at begin(). Update cached bound.
1755      IM.rootBranchStart() = a;
1756    }
1757  }
1758
1759  P.legalizeForInsert(IM.height);
1760  IdxPair IP = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1761
1762  // Leaf insertion unsuccessful? Overflow and try again.
1763  if (IP.second > Leaf::Capacity) {
1764    overflow<Leaf>(IM.height);
1765    IP = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1766    assert(IP.second <= Leaf::Capacity && "overflow() didn't make room");
1767  }
1768
1769  // Inserted, update offset and leaf size.
1770  P.leafOffset() = IP.first;
1771  P.setSize(IM.height, IP.second);
1772
1773  // Insert was the last node entry, update stops.
1774  if (IP.first == IP.second - 1)
1775    setNodeStop(IM.height, P.leaf<Leaf>().stop(IP.first));
1776}
1777
1778/// erase - erase the current interval and move to the next position.
1779template <typename KeyT, typename ValT, unsigned N, typename Traits>
1780void IntervalMap<KeyT, ValT, N, Traits>::
1781iterator::erase() {
1782  IntervalMap &IM = *this->map;
1783  IntervalMapImpl::Path &P = this->path;
1784  assert(P.valid() && "Cannot erase end()");
1785  if (this->branched())
1786    return treeErase();
1787  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1788  P.setSize(0, --IM.rootSize);
1789}
1790
1791/// treeErase - erase() for a branched tree.
1792template <typename KeyT, typename ValT, unsigned N, typename Traits>
1793void IntervalMap<KeyT, ValT, N, Traits>::
1794iterator::treeErase(bool UpdateRoot) {
1795  IntervalMap &IM = *this->map;
1796  IntervalMapImpl::Path &P = this->path;
1797  Leaf &Node = P.leaf<Leaf>();
1798
1799  // Nodes are not allowed to become empty.
1800  if (P.leafSize() == 1) {
1801    IM.deleteNode(&Node);
1802    eraseNode(IM.height);
1803    // Update rootBranchStart if we erased begin().
1804    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1805      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1806    return;
1807  }
1808
1809  // Erase current entry.
1810  Node.erase(P.leafOffset(), P.leafSize());
1811  unsigned NewSize = P.leafSize() - 1;
1812  P.setSize(IM.height, NewSize);
1813  // When we erase the last entry, update stop and move to a legal position.
1814  if (P.leafOffset() == NewSize) {
1815    setNodeStop(IM.height, Node.stop(NewSize - 1));
1816    P.moveRight(IM.height);
1817  } else if (UpdateRoot && P.atBegin())
1818    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1819}
1820
1821/// eraseNode - Erase the current node at Level from its parent and move path to
1822/// the first entry of the next sibling node.
1823/// The node must be deallocated by the caller.
1824/// @param Level 1..height, the root node cannot be erased.
1825template <typename KeyT, typename ValT, unsigned N, typename Traits>
1826void IntervalMap<KeyT, ValT, N, Traits>::
1827iterator::eraseNode(unsigned Level) {
1828  assert(Level && "Cannot erase root node");
1829  IntervalMap &IM = *this->map;
1830  IntervalMapImpl::Path &P = this->path;
1831
1832  if (--Level == 0) {
1833    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1834    P.setSize(0, --IM.rootSize);
1835    // If this cleared the root, switch to height=0.
1836    if (IM.empty()) {
1837      IM.switchRootToLeaf();
1838      this->setRoot(0);
1839      return;
1840    }
1841  } else {
1842    // Remove node ref from branch node at Level.
1843    Branch &Parent = P.node<Branch>(Level);
1844    if (P.size(Level) == 1) {
1845      // Branch node became empty, remove it recursively.
1846      IM.deleteNode(&Parent);
1847      eraseNode(Level);
1848    } else {
1849      // Branch node won't become empty.
1850      Parent.erase(P.offset(Level), P.size(Level));
1851      unsigned NewSize = P.size(Level) - 1;
1852      P.setSize(Level, NewSize);
1853      // If we removed the last branch, update stop and move to a legal pos.
1854      if (P.offset(Level) == NewSize) {
1855        setNodeStop(Level, Parent.stop(NewSize - 1));
1856        P.moveRight(Level);
1857      }
1858    }
1859  }
1860  // Update path cache for the new right sibling position.
1861  if (P.valid()) {
1862    P.reset(Level + 1);
1863    P.offset(Level + 1) = 0;
1864  }
1865}
1866
1867/// overflow - Distribute entries of the current node evenly among
1868/// its siblings and ensure that the current node is not full.
1869/// This may require allocating a new node.
1870/// @param NodeT The type of node at Level (Leaf or Branch).
1871/// @param Level path index of the overflowing node.
1872/// @return True when the tree height was changed.
1873template <typename KeyT, typename ValT, unsigned N, typename Traits>
1874template <typename NodeT>
1875bool IntervalMap<KeyT, ValT, N, Traits>::
1876iterator::overflow(unsigned Level) {
1877  using namespace IntervalMapImpl;
1878  Path &P = this->path;
1879  unsigned CurSize[4];
1880  NodeT *Node[4];
1881  unsigned Nodes = 0;
1882  unsigned Elements = 0;
1883  unsigned Offset = P.offset(Level);
1884
1885  // Do we have a left sibling?
1886  NodeRef LeftSib = P.getLeftSibling(Level);
1887  if (LeftSib) {
1888    Offset += Elements = CurSize[Nodes] = LeftSib.size();
1889    Node[Nodes++] = &LeftSib.get<NodeT>();
1890  }
1891
1892  // Current node.
1893  Elements += CurSize[Nodes] = P.size(Level);
1894  Node[Nodes++] = &P.node<NodeT>(Level);
1895
1896  // Do we have a right sibling?
1897  NodeRef RightSib = P.getRightSibling(Level);
1898  if (RightSib) {
1899    Elements += CurSize[Nodes] = RightSib.size();
1900    Node[Nodes++] = &RightSib.get<NodeT>();
1901  }
1902
1903  // Do we need to allocate a new node?
1904  unsigned NewNode = 0;
1905  if (Elements + 1 > Nodes * NodeT::Capacity) {
1906    // Insert NewNode at the penultimate position, or after a single node.
1907    NewNode = Nodes == 1 ? 1 : Nodes - 1;
1908    CurSize[Nodes] = CurSize[NewNode];
1909    Node[Nodes] = Node[NewNode];
1910    CurSize[NewNode] = 0;
1911    Node[NewNode] = this->map->newNode<NodeT>();
1912    ++Nodes;
1913  }
1914
1915  // Compute the new element distribution.
1916  unsigned NewSize[4];
1917  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1918                                 CurSize, NewSize, Offset, true);
1919  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1920
1921  // Move current location to the leftmost node.
1922  if (LeftSib)
1923    P.moveLeft(Level);
1924
1925  // Elements have been rearranged, now update node sizes and stops.
1926  bool SplitRoot = false;
1927  unsigned Pos = 0;
1928  for (;;) {
1929    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1930    if (NewNode && Pos == NewNode) {
1931      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
1932      Level += SplitRoot;
1933    } else {
1934      P.setSize(Level, NewSize[Pos]);
1935      setNodeStop(Level, Stop);
1936    }
1937    if (Pos + 1 == Nodes)
1938      break;
1939    P.moveRight(Level);
1940    ++Pos;
1941  }
1942
1943  // Where was I? Find NewOffset.
1944  while(Pos != NewOffset.first) {
1945    P.moveLeft(Level);
1946    --Pos;
1947  }
1948  P.offset(Level) = NewOffset.second;
1949  return SplitRoot;
1950}
1951
1952} // namespace llvm
1953
1954#endif
1955