1//===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live interval for register v if there is no instruction with number j' >= j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation intervals can have holes,
15// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
16// individual range is represented as an instance of LiveRange, and the whole
17// interval is represented as an instance of LiveInterval.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
22#define LLVM_CODEGEN_LIVEINTERVAL_H
23
24#include "llvm/ADT/IntEqClasses.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/AlignOf.h"
27#include "llvm/CodeGen/SlotIndexes.h"
28#include <cassert>
29#include <climits>
30
31namespace llvm {
32  class CoalescerPair;
33  class LiveIntervals;
34  class MachineInstr;
35  class MachineRegisterInfo;
36  class TargetRegisterInfo;
37  class raw_ostream;
38
39  /// VNInfo - Value Number Information.
40  /// This class holds information about a machine level values, including
41  /// definition and use points.
42  ///
43  class VNInfo {
44  public:
45    typedef BumpPtrAllocator Allocator;
46
47    /// The ID number of this value.
48    unsigned id;
49
50    /// The index of the defining instruction.
51    SlotIndex def;
52
53    /// VNInfo constructor.
54    VNInfo(unsigned i, SlotIndex d)
55      : id(i), def(d)
56    { }
57
58    /// VNInfo construtor, copies values from orig, except for the value number.
59    VNInfo(unsigned i, const VNInfo &orig)
60      : id(i), def(orig.def)
61    { }
62
63    /// Copy from the parameter into this VNInfo.
64    void copyFrom(VNInfo &src) {
65      def = src.def;
66    }
67
68    /// Returns true if this value is defined by a PHI instruction (or was,
69    /// PHI instrucions may have been eliminated).
70    /// PHI-defs begin at a block boundary, all other defs begin at register or
71    /// EC slots.
72    bool isPHIDef() const { return def.isBlock(); }
73
74    /// Returns true if this value is unused.
75    bool isUnused() const { return !def.isValid(); }
76
77    /// Mark this value as unused.
78    void markUnused() { def = SlotIndex(); }
79  };
80
81  /// LiveRange structure - This represents a simple register range in the
82  /// program, with an inclusive start point and an exclusive end point.
83  /// These ranges are rendered as [start,end).
84  struct LiveRange {
85    SlotIndex start;  // Start point of the interval (inclusive)
86    SlotIndex end;    // End point of the interval (exclusive)
87    VNInfo *valno;   // identifier for the value contained in this interval.
88
89    LiveRange(SlotIndex S, SlotIndex E, VNInfo *V)
90      : start(S), end(E), valno(V) {
91
92      assert(S < E && "Cannot create empty or backwards range");
93    }
94
95    /// contains - Return true if the index is covered by this range.
96    ///
97    bool contains(SlotIndex I) const {
98      return start <= I && I < end;
99    }
100
101    /// containsRange - Return true if the given range, [S, E), is covered by
102    /// this range.
103    bool containsRange(SlotIndex S, SlotIndex E) const {
104      assert((S < E) && "Backwards interval?");
105      return (start <= S && S < end) && (start < E && E <= end);
106    }
107
108    bool operator<(const LiveRange &LR) const {
109      return start < LR.start || (start == LR.start && end < LR.end);
110    }
111    bool operator==(const LiveRange &LR) const {
112      return start == LR.start && end == LR.end;
113    }
114
115    void dump() const;
116    void print(raw_ostream &os) const;
117
118  private:
119    LiveRange(); // DO NOT IMPLEMENT
120  };
121
122  template <> struct isPodLike<LiveRange> { static const bool value = true; };
123
124  raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
125
126
127  inline bool operator<(SlotIndex V, const LiveRange &LR) {
128    return V < LR.start;
129  }
130
131  inline bool operator<(const LiveRange &LR, SlotIndex V) {
132    return LR.start < V;
133  }
134
135  /// LiveInterval - This class represents some number of live ranges for a
136  /// register or value.  This class also contains a bit of register allocator
137  /// state.
138  class LiveInterval {
139  public:
140
141    typedef SmallVector<LiveRange,4> Ranges;
142    typedef SmallVector<VNInfo*,4> VNInfoList;
143
144    const unsigned reg;  // the register or stack slot of this interval.
145    float weight;        // weight of this interval
146    Ranges ranges;       // the ranges in which this register is live
147    VNInfoList valnos;   // value#'s
148
149    struct InstrSlots {
150      enum {
151        LOAD  = 0,
152        USE   = 1,
153        DEF   = 2,
154        STORE = 3,
155        NUM   = 4
156      };
157
158    };
159
160    LiveInterval(unsigned Reg, float Weight)
161      : reg(Reg), weight(Weight) {}
162
163    typedef Ranges::iterator iterator;
164    iterator begin() { return ranges.begin(); }
165    iterator end()   { return ranges.end(); }
166
167    typedef Ranges::const_iterator const_iterator;
168    const_iterator begin() const { return ranges.begin(); }
169    const_iterator end() const  { return ranges.end(); }
170
171    typedef VNInfoList::iterator vni_iterator;
172    vni_iterator vni_begin() { return valnos.begin(); }
173    vni_iterator vni_end() { return valnos.end(); }
174
175    typedef VNInfoList::const_iterator const_vni_iterator;
176    const_vni_iterator vni_begin() const { return valnos.begin(); }
177    const_vni_iterator vni_end() const { return valnos.end(); }
178
179    /// advanceTo - Advance the specified iterator to point to the LiveRange
180    /// containing the specified position, or end() if the position is past the
181    /// end of the interval.  If no LiveRange contains this position, but the
182    /// position is in a hole, this method returns an iterator pointing to the
183    /// LiveRange immediately after the hole.
184    iterator advanceTo(iterator I, SlotIndex Pos) {
185      assert(I != end());
186      if (Pos >= endIndex())
187        return end();
188      while (I->end <= Pos) ++I;
189      return I;
190    }
191
192    /// find - Return an iterator pointing to the first range that ends after
193    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
194    /// when searching large intervals.
195    ///
196    /// If Pos is contained in a LiveRange, that range is returned.
197    /// If Pos is in a hole, the following LiveRange is returned.
198    /// If Pos is beyond endIndex, end() is returned.
199    iterator find(SlotIndex Pos);
200
201    const_iterator find(SlotIndex Pos) const {
202      return const_cast<LiveInterval*>(this)->find(Pos);
203    }
204
205    void clear() {
206      valnos.clear();
207      ranges.clear();
208    }
209
210    bool hasAtLeastOneValue() const { return !valnos.empty(); }
211
212    bool containsOneValue() const { return valnos.size() == 1; }
213
214    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
215
216    /// getValNumInfo - Returns pointer to the specified val#.
217    ///
218    inline VNInfo *getValNumInfo(unsigned ValNo) {
219      return valnos[ValNo];
220    }
221    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
222      return valnos[ValNo];
223    }
224
225    /// containsValue - Returns true if VNI belongs to this interval.
226    bool containsValue(const VNInfo *VNI) const {
227      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
228    }
229
230    /// getNextValue - Create a new value number and return it.  MIIdx specifies
231    /// the instruction that defines the value number.
232    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
233      VNInfo *VNI =
234        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
235      valnos.push_back(VNI);
236      return VNI;
237    }
238
239    /// createDeadDef - Make sure the interval has a value defined at Def.
240    /// If one already exists, return it. Otherwise allocate a new value and
241    /// add liveness for a dead def.
242    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
243
244    /// Create a copy of the given value. The new value will be identical except
245    /// for the Value number.
246    VNInfo *createValueCopy(const VNInfo *orig,
247                            VNInfo::Allocator &VNInfoAllocator) {
248      VNInfo *VNI =
249        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
250      valnos.push_back(VNI);
251      return VNI;
252    }
253
254    /// RenumberValues - Renumber all values in order of appearance and remove
255    /// unused values.
256    void RenumberValues(LiveIntervals &lis);
257
258    /// MergeValueNumberInto - This method is called when two value nubmers
259    /// are found to be equivalent.  This eliminates V1, replacing all
260    /// LiveRanges with the V1 value number with the V2 value number.  This can
261    /// cause merging of V1/V2 values numbers and compaction of the value space.
262    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
263
264    /// MergeValueInAsValue - Merge all of the live ranges of a specific val#
265    /// in RHS into this live interval as the specified value number.
266    /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
267    /// current interval, it will replace the value numbers of the overlaped
268    /// live ranges with the specified value number.
269    void MergeRangesInAsValue(const LiveInterval &RHS, VNInfo *LHSValNo);
270
271    /// MergeValueInAsValue - Merge all of the live ranges of a specific val#
272    /// in RHS into this live interval as the specified value number.
273    /// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
274    /// current interval, but only if the overlapping LiveRanges have the
275    /// specified value number.
276    void MergeValueInAsValue(const LiveInterval &RHS,
277                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
278
279    /// Copy - Copy the specified live interval. This copies all the fields
280    /// except for the register of the interval.
281    void Copy(const LiveInterval &RHS, MachineRegisterInfo *MRI,
282              VNInfo::Allocator &VNInfoAllocator);
283
284    bool empty() const { return ranges.empty(); }
285
286    /// beginIndex - Return the lowest numbered slot covered by interval.
287    SlotIndex beginIndex() const {
288      assert(!empty() && "Call to beginIndex() on empty interval.");
289      return ranges.front().start;
290    }
291
292    /// endNumber - return the maximum point of the interval of the whole,
293    /// exclusive.
294    SlotIndex endIndex() const {
295      assert(!empty() && "Call to endIndex() on empty interval.");
296      return ranges.back().end;
297    }
298
299    bool expiredAt(SlotIndex index) const {
300      return index >= endIndex();
301    }
302
303    bool liveAt(SlotIndex index) const {
304      const_iterator r = find(index);
305      return r != end() && r->start <= index;
306    }
307
308    /// killedAt - Return true if a live range ends at index. Note that the kill
309    /// point is not contained in the half-open live range. It is usually the
310    /// getDefIndex() slot following its last use.
311    bool killedAt(SlotIndex index) const {
312      const_iterator r = find(index.getRegSlot(true));
313      return r != end() && r->end == index;
314    }
315
316    /// killedInRange - Return true if the interval has kills in [Start,End).
317    /// Note that the kill point is considered the end of a live range, so it is
318    /// not contained in the live range. If a live range ends at End, it won't
319    /// be counted as a kill by this method.
320    bool killedInRange(SlotIndex Start, SlotIndex End) const;
321
322    /// getLiveRangeContaining - Return the live range that contains the
323    /// specified index, or null if there is none.
324    const LiveRange *getLiveRangeContaining(SlotIndex Idx) const {
325      const_iterator I = FindLiveRangeContaining(Idx);
326      return I == end() ? 0 : &*I;
327    }
328
329    /// getLiveRangeContaining - Return the live range that contains the
330    /// specified index, or null if there is none.
331    LiveRange *getLiveRangeContaining(SlotIndex Idx) {
332      iterator I = FindLiveRangeContaining(Idx);
333      return I == end() ? 0 : &*I;
334    }
335
336    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
337    VNInfo *getVNInfoAt(SlotIndex Idx) const {
338      const_iterator I = FindLiveRangeContaining(Idx);
339      return I == end() ? 0 : I->valno;
340    }
341
342    /// getVNInfoBefore - Return the VNInfo that is live up to but not
343    /// necessarilly including Idx, or NULL. Use this to find the reaching def
344    /// used by an instruction at this SlotIndex position.
345    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
346      const_iterator I = FindLiveRangeContaining(Idx.getPrevSlot());
347      return I == end() ? 0 : I->valno;
348    }
349
350    /// FindLiveRangeContaining - Return an iterator to the live range that
351    /// contains the specified index, or end() if there is none.
352    iterator FindLiveRangeContaining(SlotIndex Idx) {
353      iterator I = find(Idx);
354      return I != end() && I->start <= Idx ? I : end();
355    }
356
357    const_iterator FindLiveRangeContaining(SlotIndex Idx) const {
358      const_iterator I = find(Idx);
359      return I != end() && I->start <= Idx ? I : end();
360    }
361
362    /// overlaps - Return true if the intersection of the two live intervals is
363    /// not empty.
364    bool overlaps(const LiveInterval& other) const {
365      if (other.empty())
366        return false;
367      return overlapsFrom(other, other.begin());
368    }
369
370    /// overlaps - Return true if the two intervals have overlapping segments
371    /// that are not coalescable according to CP.
372    ///
373    /// Overlapping segments where one interval is defined by a coalescable
374    /// copy are allowed.
375    bool overlaps(const LiveInterval &Other, const CoalescerPair &CP,
376                  const SlotIndexes&) const;
377
378    /// overlaps - Return true if the live interval overlaps a range specified
379    /// by [Start, End).
380    bool overlaps(SlotIndex Start, SlotIndex End) const;
381
382    /// overlapsFrom - Return true if the intersection of the two live intervals
383    /// is not empty.  The specified iterator is a hint that we can begin
384    /// scanning the Other interval starting at I.
385    bool overlapsFrom(const LiveInterval& other, const_iterator I) const;
386
387    /// addRange - Add the specified LiveRange to this interval, merging
388    /// intervals as appropriate.  This returns an iterator to the inserted live
389    /// range (which may have grown since it was inserted.
390    void addRange(LiveRange LR) {
391      addRangeFrom(LR, ranges.begin());
392    }
393
394    /// extendInBlock - If this interval is live before Kill in the basic block
395    /// that starts at StartIdx, extend it to be live up to Kill, and return
396    /// the value. If there is no live range before Kill, return NULL.
397    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
398
399    /// join - Join two live intervals (this, and other) together.  This applies
400    /// mappings to the value numbers in the LHS/RHS intervals as specified.  If
401    /// the intervals are not joinable, this aborts.
402    void join(LiveInterval &Other,
403              const int *ValNoAssignments,
404              const int *RHSValNoAssignments,
405              SmallVector<VNInfo*, 16> &NewVNInfo,
406              MachineRegisterInfo *MRI);
407
408    /// isInOneLiveRange - Return true if the range specified is entirely in the
409    /// a single LiveRange of the live interval.
410    bool isInOneLiveRange(SlotIndex Start, SlotIndex End) const {
411      const_iterator r = find(Start);
412      return r != end() && r->containsRange(Start, End);
413    }
414
415    /// removeRange - Remove the specified range from this interval.  Note that
416    /// the range must be a single LiveRange in its entirety.
417    void removeRange(SlotIndex Start, SlotIndex End,
418                     bool RemoveDeadValNo = false);
419
420    void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
421      removeRange(LR.start, LR.end, RemoveDeadValNo);
422    }
423
424    /// removeValNo - Remove all the ranges defined by the specified value#.
425    /// Also remove the value# from value# list.
426    void removeValNo(VNInfo *ValNo);
427
428    /// getSize - Returns the sum of sizes of all the LiveRange's.
429    ///
430    unsigned getSize() const;
431
432    /// Returns true if the live interval is zero length, i.e. no live ranges
433    /// span instructions. It doesn't pay to spill such an interval.
434    bool isZeroLength(SlotIndexes *Indexes) const {
435      for (const_iterator i = begin(), e = end(); i != e; ++i)
436        if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() <
437            i->end.getBaseIndex())
438          return false;
439      return true;
440    }
441
442    /// isSpillable - Can this interval be spilled?
443    bool isSpillable() const {
444      return weight != HUGE_VALF;
445    }
446
447    /// markNotSpillable - Mark interval as not spillable
448    void markNotSpillable() {
449      weight = HUGE_VALF;
450    }
451
452    bool operator<(const LiveInterval& other) const {
453      const SlotIndex &thisIndex = beginIndex();
454      const SlotIndex &otherIndex = other.beginIndex();
455      return (thisIndex < otherIndex ||
456              (thisIndex == otherIndex && reg < other.reg));
457    }
458
459    void print(raw_ostream &OS) const;
460    void dump() const;
461
462    /// \brief Walk the interval and assert if any invariants fail to hold.
463    ///
464    /// Note that this is a no-op when asserts are disabled.
465#ifdef NDEBUG
466    void verify() const {}
467#else
468    void verify() const;
469#endif
470
471  private:
472
473    Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
474    void extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd);
475    Ranges::iterator extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStr);
476    void markValNoForDeletion(VNInfo *V);
477    void mergeIntervalRanges(const LiveInterval &RHS,
478                             VNInfo *LHSValNo = 0,
479                             const VNInfo *RHSValNo = 0);
480
481    LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT
482
483  };
484
485  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
486    LI.print(OS);
487    return OS;
488  }
489
490  /// LiveRangeQuery - Query information about a live range around a given
491  /// instruction. This class hides the implementation details of live ranges,
492  /// and it should be used as the primary interface for examining live ranges
493  /// around instructions.
494  ///
495  class LiveRangeQuery {
496    VNInfo *EarlyVal;
497    VNInfo *LateVal;
498    SlotIndex EndPoint;
499    bool Kill;
500
501  public:
502    /// Create a LiveRangeQuery for the given live range and instruction index.
503    /// The sub-instruction slot of Idx doesn't matter, only the instruction it
504    /// refers to is considered.
505    LiveRangeQuery(const LiveInterval &LI, SlotIndex Idx)
506      : EarlyVal(0), LateVal(0), Kill(false) {
507      // Find the segment that enters the instruction.
508      LiveInterval::const_iterator I = LI.find(Idx.getBaseIndex());
509      LiveInterval::const_iterator E = LI.end();
510      if (I == E)
511        return;
512      // Is this an instruction live-in segment?
513      if (SlotIndex::isEarlierInstr(I->start, Idx)) {
514        EarlyVal = I->valno;
515        EndPoint = I->end;
516        // Move to the potentially live-out segment.
517        if (SlotIndex::isSameInstr(Idx, I->end)) {
518          Kill = true;
519          if (++I == E)
520            return;
521        }
522      }
523      // I now points to the segment that may be live-through, or defined by
524      // this instr. Ignore segments starting after the current instr.
525      if (SlotIndex::isEarlierInstr(Idx, I->start))
526        return;
527      LateVal = I->valno;
528      EndPoint = I->end;
529    }
530
531    /// Return the value that is live-in to the instruction. This is the value
532    /// that will be read by the instruction's use operands. Return NULL if no
533    /// value is live-in.
534    VNInfo *valueIn() const {
535      return EarlyVal;
536    }
537
538    /// Return true if the live-in value is killed by this instruction. This
539    /// means that either the live range ends at the instruction, or it changes
540    /// value.
541    bool isKill() const {
542      return Kill;
543    }
544
545    /// Return true if this instruction has a dead def.
546    bool isDeadDef() const {
547      return EndPoint.isDead();
548    }
549
550    /// Return the value leaving the instruction, if any. This can be a
551    /// live-through value, or a live def. A dead def returns NULL.
552    VNInfo *valueOut() const {
553      return isDeadDef() ? 0 : LateVal;
554    }
555
556    /// Return the value defined by this instruction, if any. This includes
557    /// dead defs, it is the value created by the instruction's def operands.
558    VNInfo *valueDefined() const {
559      return EarlyVal == LateVal ? 0 : LateVal;
560    }
561
562    /// Return the end point of the last live range segment to interact with
563    /// the instruction, if any.
564    ///
565    /// The end point is an invalid SlotIndex only if the live range doesn't
566    /// intersect the instruction at all.
567    ///
568    /// The end point may be at or past the end of the instruction's basic
569    /// block. That means the value was live out of the block.
570    SlotIndex endPoint() const {
571      return EndPoint;
572    }
573  };
574
575  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
576  /// LiveInterval into equivalence clases of connected components. A
577  /// LiveInterval that has multiple connected components can be broken into
578  /// multiple LiveIntervals.
579  ///
580  /// Given a LiveInterval that may have multiple connected components, run:
581  ///
582  ///   unsigned numComps = ConEQ.Classify(LI);
583  ///   if (numComps > 1) {
584  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
585  ///     ConEQ.Distribute(LIS);
586  /// }
587
588  class ConnectedVNInfoEqClasses {
589    LiveIntervals &LIS;
590    IntEqClasses EqClass;
591
592    // Note that values a and b are connected.
593    void Connect(unsigned a, unsigned b);
594
595    unsigned Renumber();
596
597  public:
598    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
599
600    /// Classify - Classify the values in LI into connected components.
601    /// Return the number of connected components.
602    unsigned Classify(const LiveInterval *LI);
603
604    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
605    /// the equivalence class assigned the VNI.
606    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
607
608    /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
609    /// for each connected component. LIV must have a LiveInterval for each
610    /// connected component. The LiveIntervals in Liv[1..] must be empty.
611    /// Instructions using LIV[0] are rewritten.
612    void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
613
614  };
615
616}
617#endif
618