1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/GlobalAlias.h"
22#include "llvm/Operator.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/PatternMatch.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Target/TargetData.h"
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38enum { RecursionLimit = 3 };
39
40STATISTIC(NumExpand,  "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
44struct Query {
45  const TargetData *TD;
46  const TargetLibraryInfo *TLI;
47  const DominatorTree *DT;
48
49  Query(const TargetData *td, const TargetLibraryInfo *tli,
50        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
51};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55                            unsigned);
56static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57                              unsigned);
58static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
65  assert(Ty->getScalarType()->isIntegerTy(1) &&
66         "Expected i1 type or a vector of i1!");
67  return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
73  assert(Ty->getScalarType()->isIntegerTy(1) &&
74         "Expected i1 type or a vector of i1!");
75  return Constant::getAllOnesValue(Ty);
76}
77
78/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80                          Value *RHS) {
81  CmpInst *Cmp = dyn_cast<CmpInst>(V);
82  if (!Cmp)
83    return false;
84  CmpInst::Predicate CPred = Cmp->getPredicate();
85  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87    return true;
88  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89    CRHS == LHS;
90}
91
92/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94  Instruction *I = dyn_cast<Instruction>(V);
95  if (!I)
96    // Arguments and constants dominate all instructions.
97    return true;
98
99  // If we are processing instructions (and/or basic blocks) that have not been
100  // fully added to a function, the parent nodes may still be null. Simply
101  // return the conservative answer in these cases.
102  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103    return false;
104
105  // If we have a DominatorTree then do a precise test.
106  if (DT) {
107    if (!DT->isReachableFromEntry(P->getParent()))
108      return true;
109    if (!DT->isReachableFromEntry(I->getParent()))
110      return false;
111    return DT->dominates(I, P);
112  }
113
114  // Otherwise, if the instruction is in the entry block, and is not an invoke,
115  // then it obviously dominates all phi nodes.
116  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117      !isa<InvokeInst>(I))
118    return true;
119
120  return false;
121}
122
123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129                          unsigned OpcToExpand, const Query &Q,
130                          unsigned MaxRecurse) {
131  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132  // Recursion is always used, so bail out at once if we already hit the limit.
133  if (!MaxRecurse--)
134    return 0;
135
136  // Check whether the expression has the form "(A op' B) op C".
137  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138    if (Op0->getOpcode() == OpcodeToExpand) {
139      // It does!  Try turning it into "(A op C) op' (B op C)".
140      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141      // Do "A op C" and "B op C" both simplify?
142      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144          // They do! Return "L op' R" if it simplifies or is already available.
145          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147                                     && L == B && R == A)) {
148            ++NumExpand;
149            return LHS;
150          }
151          // Otherwise return "L op' R" if it simplifies.
152          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153            ++NumExpand;
154            return V;
155          }
156        }
157    }
158
159  // Check whether the expression has the form "A op (B op' C)".
160  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161    if (Op1->getOpcode() == OpcodeToExpand) {
162      // It does!  Try turning it into "(A op B) op' (A op C)".
163      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164      // Do "A op B" and "A op C" both simplify?
165      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167          // They do! Return "L op' R" if it simplifies or is already available.
168          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170                                     && L == C && R == B)) {
171            ++NumExpand;
172            return RHS;
173          }
174          // Otherwise return "L op' R" if it simplifies.
175          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176            ++NumExpand;
177            return V;
178          }
179        }
180    }
181
182  return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190                             unsigned OpcToExtract, const Query &Q,
191                             unsigned MaxRecurse) {
192  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193  // Recursion is always used, so bail out at once if we already hit the limit.
194  if (!MaxRecurse--)
195    return 0;
196
197  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201      !Op1 || Op1->getOpcode() != OpcodeToExtract)
202    return 0;
203
204  // The expression has the form "(A op' B) op (C op' D)".
205  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210  // commutative case, "(A op' B) op (C op' A)"?
211  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212    Value *DD = A == C ? D : C;
213    // Form "A op' (B op DD)" if it simplifies completely.
214    // Does "B op DD" simplify?
215    if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216      // It does!  Return "A op' V" if it simplifies or is already available.
217      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
218      // "A op' V" is just the RHS.
219      if (V == B || V == DD) {
220        ++NumFactor;
221        return V == B ? LHS : RHS;
222      }
223      // Otherwise return "A op' V" if it simplifies.
224      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225        ++NumFactor;
226        return W;
227      }
228    }
229  }
230
231  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233  // commutative case, "(A op' B) op (B op' D)"?
234  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235    Value *CC = B == D ? C : D;
236    // Form "(A op CC) op' B" if it simplifies completely..
237    // Does "A op CC" simplify?
238    if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239      // It does!  Return "V op' B" if it simplifies or is already available.
240      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
241      // "V op' B" is just the RHS.
242      if (V == A || V == CC) {
243        ++NumFactor;
244        return V == A ? LHS : RHS;
245      }
246      // Otherwise return "V op' B" if it simplifies.
247      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248        ++NumFactor;
249        return W;
250      }
251    }
252  }
253
254  return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations.  Returns the simpler value, or null if none was found.
259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260                                       const Query &Q, unsigned MaxRecurse) {
261  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264  // Recursion is always used, so bail out at once if we already hit the limit.
265  if (!MaxRecurse--)
266    return 0;
267
268  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272  if (Op0 && Op0->getOpcode() == Opcode) {
273    Value *A = Op0->getOperand(0);
274    Value *B = Op0->getOperand(1);
275    Value *C = RHS;
276
277    // Does "B op C" simplify?
278    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279      // It does!  Return "A op V" if it simplifies or is already available.
280      // If V equals B then "A op V" is just the LHS.
281      if (V == B) return LHS;
282      // Otherwise return "A op V" if it simplifies.
283      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284        ++NumReassoc;
285        return W;
286      }
287    }
288  }
289
290  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291  if (Op1 && Op1->getOpcode() == Opcode) {
292    Value *A = LHS;
293    Value *B = Op1->getOperand(0);
294    Value *C = Op1->getOperand(1);
295
296    // Does "A op B" simplify?
297    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298      // It does!  Return "V op C" if it simplifies or is already available.
299      // If V equals B then "V op C" is just the RHS.
300      if (V == B) return RHS;
301      // Otherwise return "V op C" if it simplifies.
302      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303        ++NumReassoc;
304        return W;
305      }
306    }
307  }
308
309  // The remaining transforms require commutativity as well as associativity.
310  if (!Instruction::isCommutative(Opcode))
311    return 0;
312
313  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314  if (Op0 && Op0->getOpcode() == Opcode) {
315    Value *A = Op0->getOperand(0);
316    Value *B = Op0->getOperand(1);
317    Value *C = RHS;
318
319    // Does "C op A" simplify?
320    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321      // It does!  Return "V op B" if it simplifies or is already available.
322      // If V equals A then "V op B" is just the LHS.
323      if (V == A) return LHS;
324      // Otherwise return "V op B" if it simplifies.
325      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326        ++NumReassoc;
327        return W;
328      }
329    }
330  }
331
332  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333  if (Op1 && Op1->getOpcode() == Opcode) {
334    Value *A = LHS;
335    Value *B = Op1->getOperand(0);
336    Value *C = Op1->getOperand(1);
337
338    // Does "C op A" simplify?
339    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340      // It does!  Return "B op V" if it simplifies or is already available.
341      // If V equals C then "B op V" is just the RHS.
342      if (V == C) return RHS;
343      // Otherwise return "B op V" if it simplifies.
344      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345        ++NumReassoc;
346        return W;
347      }
348    }
349  }
350
351  return 0;
352}
353
354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359                                    const Query &Q, unsigned MaxRecurse) {
360  // Recursion is always used, so bail out at once if we already hit the limit.
361  if (!MaxRecurse--)
362    return 0;
363
364  SelectInst *SI;
365  if (isa<SelectInst>(LHS)) {
366    SI = cast<SelectInst>(LHS);
367  } else {
368    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369    SI = cast<SelectInst>(RHS);
370  }
371
372  // Evaluate the BinOp on the true and false branches of the select.
373  Value *TV;
374  Value *FV;
375  if (SI == LHS) {
376    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378  } else {
379    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381  }
382
383  // If they simplified to the same value, then return the common value.
384  // If they both failed to simplify then return null.
385  if (TV == FV)
386    return TV;
387
388  // If one branch simplified to undef, return the other one.
389  if (TV && isa<UndefValue>(TV))
390    return FV;
391  if (FV && isa<UndefValue>(FV))
392    return TV;
393
394  // If applying the operation did not change the true and false select values,
395  // then the result of the binop is the select itself.
396  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397    return SI;
398
399  // If one branch simplified and the other did not, and the simplified
400  // value is equal to the unsimplified one, return the simplified value.
401  // For example, select (cond, X, X & Z) & Z -> X & Z.
402  if ((FV && !TV) || (TV && !FV)) {
403    // Check that the simplified value has the form "X op Y" where "op" is the
404    // same as the original operation.
405    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406    if (Simplified && Simplified->getOpcode() == Opcode) {
407      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408      // We already know that "op" is the same as for the simplified value.  See
409      // if the operands match too.  If so, return the simplified value.
410      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414          Simplified->getOperand(1) == UnsimplifiedRHS)
415        return Simplified;
416      if (Simplified->isCommutative() &&
417          Simplified->getOperand(1) == UnsimplifiedLHS &&
418          Simplified->getOperand(0) == UnsimplifiedRHS)
419        return Simplified;
420    }
421  }
422
423  return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value.  Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431                                  Value *RHS, const Query &Q,
432                                  unsigned MaxRecurse) {
433  // Recursion is always used, so bail out at once if we already hit the limit.
434  if (!MaxRecurse--)
435    return 0;
436
437  // Make sure the select is on the LHS.
438  if (!isa<SelectInst>(LHS)) {
439    std::swap(LHS, RHS);
440    Pred = CmpInst::getSwappedPredicate(Pred);
441  }
442  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443  SelectInst *SI = cast<SelectInst>(LHS);
444  Value *Cond = SI->getCondition();
445  Value *TV = SI->getTrueValue();
446  Value *FV = SI->getFalseValue();
447
448  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449  // Does "cmp TV, RHS" simplify?
450  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451  if (TCmp == Cond) {
452    // It not only simplified, it simplified to the select condition.  Replace
453    // it with 'true'.
454    TCmp = getTrue(Cond->getType());
455  } else if (!TCmp) {
456    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
457    // condition then we can replace it with 'true'.  Otherwise give up.
458    if (!isSameCompare(Cond, Pred, TV, RHS))
459      return 0;
460    TCmp = getTrue(Cond->getType());
461  }
462
463  // Does "cmp FV, RHS" simplify?
464  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465  if (FCmp == Cond) {
466    // It not only simplified, it simplified to the select condition.  Replace
467    // it with 'false'.
468    FCmp = getFalse(Cond->getType());
469  } else if (!FCmp) {
470    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
471    // condition then we can replace it with 'false'.  Otherwise give up.
472    if (!isSameCompare(Cond, Pred, FV, RHS))
473      return 0;
474    FCmp = getFalse(Cond->getType());
475  }
476
477  // If both sides simplified to the same value, then use it as the result of
478  // the original comparison.
479  if (TCmp == FCmp)
480    return TCmp;
481
482  // The remaining cases only make sense if the select condition has the same
483  // type as the result of the comparison, so bail out if this is not so.
484  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485    return 0;
486  // If the false value simplified to false, then the result of the compare
487  // is equal to "Cond && TCmp".  This also catches the case when the false
488  // value simplified to false and the true value to true, returning "Cond".
489  if (match(FCmp, m_Zero()))
490    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491      return V;
492  // If the true value simplified to true, then the result of the compare
493  // is equal to "Cond || FCmp".
494  if (match(TCmp, m_One()))
495    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496      return V;
497  // Finally, if the false value simplified to true and the true value to
498  // false, then the result of the compare is equal to "!Cond".
499  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500    if (Value *V =
501        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502                        Q, MaxRecurse))
503      return V;
504
505  return 0;
506}
507
508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value.  If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513                                 const Query &Q, unsigned MaxRecurse) {
514  // Recursion is always used, so bail out at once if we already hit the limit.
515  if (!MaxRecurse--)
516    return 0;
517
518  PHINode *PI;
519  if (isa<PHINode>(LHS)) {
520    PI = cast<PHINode>(LHS);
521    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522    if (!ValueDominatesPHI(RHS, PI, Q.DT))
523      return 0;
524  } else {
525    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526    PI = cast<PHINode>(RHS);
527    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528    if (!ValueDominatesPHI(LHS, PI, Q.DT))
529      return 0;
530  }
531
532  // Evaluate the BinOp on the incoming phi values.
533  Value *CommonValue = 0;
534  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535    Value *Incoming = PI->getIncomingValue(i);
536    // If the incoming value is the phi node itself, it can safely be skipped.
537    if (Incoming == PI) continue;
538    Value *V = PI == LHS ?
539      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541    // If the operation failed to simplify, or simplified to a different value
542    // to previously, then give up.
543    if (!V || (CommonValue && V != CommonValue))
544      return 0;
545    CommonValue = V;
546  }
547
548  return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time.  If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556                               const Query &Q, unsigned MaxRecurse) {
557  // Recursion is always used, so bail out at once if we already hit the limit.
558  if (!MaxRecurse--)
559    return 0;
560
561  // Make sure the phi is on the LHS.
562  if (!isa<PHINode>(LHS)) {
563    std::swap(LHS, RHS);
564    Pred = CmpInst::getSwappedPredicate(Pred);
565  }
566  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567  PHINode *PI = cast<PHINode>(LHS);
568
569  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570  if (!ValueDominatesPHI(RHS, PI, Q.DT))
571    return 0;
572
573  // Evaluate the BinOp on the incoming phi values.
574  Value *CommonValue = 0;
575  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576    Value *Incoming = PI->getIncomingValue(i);
577    // If the incoming value is the phi node itself, it can safely be skipped.
578    if (Incoming == PI) continue;
579    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580    // If the operation failed to simplify, or simplified to a different value
581    // to previously, then give up.
582    if (!V || (CommonValue && V != CommonValue))
583      return 0;
584    CommonValue = V;
585  }
586
587  return CommonValue;
588}
589
590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result.  If not, this returns null.
592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593                              const Query &Q, unsigned MaxRecurse) {
594  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596      Constant *Ops[] = { CLHS, CRHS };
597      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598                                      Q.TD, Q.TLI);
599    }
600
601    // Canonicalize the constant to the RHS.
602    std::swap(Op0, Op1);
603  }
604
605  // X + undef -> undef
606  if (match(Op1, m_Undef()))
607    return Op1;
608
609  // X + 0 -> X
610  if (match(Op1, m_Zero()))
611    return Op0;
612
613  // X + (Y - X) -> Y
614  // (Y - X) + X -> Y
615  // Eg: X + -X -> 0
616  Value *Y = 0;
617  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619    return Y;
620
621  // X + ~X -> -1   since   ~X = -X-1
622  if (match(Op0, m_Not(m_Specific(Op1))) ||
623      match(Op1, m_Not(m_Specific(Op0))))
624    return Constant::getAllOnesValue(Op0->getType());
625
626  /// i1 add -> xor.
627  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629      return V;
630
631  // Try some generic simplifications for associative operations.
632  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633                                          MaxRecurse))
634    return V;
635
636  // Mul distributes over Add.  Try some generic simplifications based on this.
637  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638                                Q, MaxRecurse))
639    return V;
640
641  // Threading Add over selects and phi nodes is pointless, so don't bother.
642  // Threading over the select in "A + select(cond, B, C)" means evaluating
643  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644  // only if B and C are equal.  If B and C are equal then (since we assume
645  // that operands have already been simplified) "select(cond, B, C)" should
646  // have been simplified to the common value of B and C already.  Analysing
647  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
648  // for threading over phi nodes.
649
650  return 0;
651}
652
653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654                             const TargetData *TD, const TargetLibraryInfo *TLI,
655                             const DominatorTree *DT) {
656  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657                           RecursionLimit);
658}
659
660/// \brief Accumulate the constant integer offset a GEP represents.
661///
662/// Given a getelementptr instruction/constantexpr, accumulate the constant
663/// offset from the base pointer into the provided APInt 'Offset'. Returns true
664/// if the GEP has all-constant indices. Returns false if any non-constant
665/// index is encountered leaving the 'Offset' in an undefined state. The
666/// 'Offset' APInt must be the bitwidth of the target's pointer size.
667static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
668                                APInt &Offset) {
669  unsigned IntPtrWidth = TD.getPointerSizeInBits();
670  assert(IntPtrWidth == Offset.getBitWidth());
671
672  gep_type_iterator GTI = gep_type_begin(GEP);
673  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
674       ++I, ++GTI) {
675    ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
676    if (!OpC) return false;
677    if (OpC->isZero()) continue;
678
679    // Handle a struct index, which adds its field offset to the pointer.
680    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
681      unsigned ElementIdx = OpC->getZExtValue();
682      const StructLayout *SL = TD.getStructLayout(STy);
683      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
684      continue;
685    }
686
687    APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
688    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
689  }
690  return true;
691}
692
693/// \brief Compute the base pointer and cumulative constant offsets for V.
694///
695/// This strips all constant offsets off of V, leaving it the base pointer, and
696/// accumulates the total constant offset applied in the returned constant. It
697/// returns 0 if V is not a pointer, and returns the constant '0' if there are
698/// no constant offsets applied.
699static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
700                                                Value *&V) {
701  if (!V->getType()->isPointerTy())
702    return 0;
703
704  unsigned IntPtrWidth = TD.getPointerSizeInBits();
705  APInt Offset = APInt::getNullValue(IntPtrWidth);
706
707  // Even though we don't look through PHI nodes, we could be called on an
708  // instruction in an unreachable block, which may be on a cycle.
709  SmallPtrSet<Value *, 4> Visited;
710  Visited.insert(V);
711  do {
712    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
713      if (!GEP->isInBounds() || !accumulateGEPOffset(TD, GEP, Offset))
714        break;
715      V = GEP->getPointerOperand();
716    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
717      V = cast<Operator>(V)->getOperand(0);
718    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
719      if (GA->mayBeOverridden())
720        break;
721      V = GA->getAliasee();
722    } else {
723      break;
724    }
725    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
726  } while (Visited.insert(V));
727
728  Type *IntPtrTy = TD.getIntPtrType(V->getContext());
729  return ConstantInt::get(IntPtrTy, Offset);
730}
731
732/// \brief Compute the constant difference between two pointer values.
733/// If the difference is not a constant, returns zero.
734static Constant *computePointerDifference(const TargetData &TD,
735                                          Value *LHS, Value *RHS) {
736  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
737  if (!LHSOffset)
738    return 0;
739  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
740  if (!RHSOffset)
741    return 0;
742
743  // If LHS and RHS are not related via constant offsets to the same base
744  // value, there is nothing we can do here.
745  if (LHS != RHS)
746    return 0;
747
748  // Otherwise, the difference of LHS - RHS can be computed as:
749  //    LHS - RHS
750  //  = (LHSOffset + Base) - (RHSOffset + Base)
751  //  = LHSOffset - RHSOffset
752  return ConstantExpr::getSub(LHSOffset, RHSOffset);
753}
754
755/// SimplifySubInst - Given operands for a Sub, see if we can
756/// fold the result.  If not, this returns null.
757static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
758                              const Query &Q, unsigned MaxRecurse) {
759  if (Constant *CLHS = dyn_cast<Constant>(Op0))
760    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
761      Constant *Ops[] = { CLHS, CRHS };
762      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
763                                      Ops, Q.TD, Q.TLI);
764    }
765
766  // X - undef -> undef
767  // undef - X -> undef
768  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
769    return UndefValue::get(Op0->getType());
770
771  // X - 0 -> X
772  if (match(Op1, m_Zero()))
773    return Op0;
774
775  // X - X -> 0
776  if (Op0 == Op1)
777    return Constant::getNullValue(Op0->getType());
778
779  // (X*2) - X -> X
780  // (X<<1) - X -> X
781  Value *X = 0;
782  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
783      match(Op0, m_Shl(m_Specific(Op1), m_One())))
784    return Op1;
785
786  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
787  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
788  Value *Y = 0, *Z = Op1;
789  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
790    // See if "V === Y - Z" simplifies.
791    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
792      // It does!  Now see if "X + V" simplifies.
793      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
794        // It does, we successfully reassociated!
795        ++NumReassoc;
796        return W;
797      }
798    // See if "V === X - Z" simplifies.
799    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800      // It does!  Now see if "Y + V" simplifies.
801      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
802        // It does, we successfully reassociated!
803        ++NumReassoc;
804        return W;
805      }
806  }
807
808  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
809  // For example, X - (X + 1) -> -1
810  X = Op0;
811  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
812    // See if "V === X - Y" simplifies.
813    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
814      // It does!  Now see if "V - Z" simplifies.
815      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
816        // It does, we successfully reassociated!
817        ++NumReassoc;
818        return W;
819      }
820    // See if "V === X - Z" simplifies.
821    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
822      // It does!  Now see if "V - Y" simplifies.
823      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
824        // It does, we successfully reassociated!
825        ++NumReassoc;
826        return W;
827      }
828  }
829
830  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
831  // For example, X - (X - Y) -> Y.
832  Z = Op0;
833  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
834    // See if "V === Z - X" simplifies.
835    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
836      // It does!  Now see if "V + Y" simplifies.
837      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
838        // It does, we successfully reassociated!
839        ++NumReassoc;
840        return W;
841      }
842
843  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
844  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
845      match(Op1, m_Trunc(m_Value(Y))))
846    if (X->getType() == Y->getType())
847      // See if "V === X - Y" simplifies.
848      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
849        // It does!  Now see if "trunc V" simplifies.
850        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
851          // It does, return the simplified "trunc V".
852          return W;
853
854  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
855  if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
856      match(Op1, m_PtrToInt(m_Value(Y))))
857    if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
858      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
859
860  // Mul distributes over Sub.  Try some generic simplifications based on this.
861  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
862                                Q, MaxRecurse))
863    return V;
864
865  // i1 sub -> xor.
866  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
867    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
868      return V;
869
870  // Threading Sub over selects and phi nodes is pointless, so don't bother.
871  // Threading over the select in "A - select(cond, B, C)" means evaluating
872  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
873  // only if B and C are equal.  If B and C are equal then (since we assume
874  // that operands have already been simplified) "select(cond, B, C)" should
875  // have been simplified to the common value of B and C already.  Analysing
876  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
877  // for threading over phi nodes.
878
879  return 0;
880}
881
882Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
883                             const TargetData *TD, const TargetLibraryInfo *TLI,
884                             const DominatorTree *DT) {
885  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
886                           RecursionLimit);
887}
888
889/// SimplifyMulInst - Given operands for a Mul, see if we can
890/// fold the result.  If not, this returns null.
891static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
892                              unsigned MaxRecurse) {
893  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
894    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
895      Constant *Ops[] = { CLHS, CRHS };
896      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
897                                      Ops, Q.TD, Q.TLI);
898    }
899
900    // Canonicalize the constant to the RHS.
901    std::swap(Op0, Op1);
902  }
903
904  // X * undef -> 0
905  if (match(Op1, m_Undef()))
906    return Constant::getNullValue(Op0->getType());
907
908  // X * 0 -> 0
909  if (match(Op1, m_Zero()))
910    return Op1;
911
912  // X * 1 -> X
913  if (match(Op1, m_One()))
914    return Op0;
915
916  // (X / Y) * Y -> X if the division is exact.
917  Value *X = 0;
918  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
919      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
920    return X;
921
922  // i1 mul -> and.
923  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
924    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
925      return V;
926
927  // Try some generic simplifications for associative operations.
928  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
929                                          MaxRecurse))
930    return V;
931
932  // Mul distributes over Add.  Try some generic simplifications based on this.
933  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
934                             Q, MaxRecurse))
935    return V;
936
937  // If the operation is with the result of a select instruction, check whether
938  // operating on either branch of the select always yields the same value.
939  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
940    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
941                                         MaxRecurse))
942      return V;
943
944  // If the operation is with the result of a phi instruction, check whether
945  // operating on all incoming values of the phi always yields the same value.
946  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
947    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
948                                      MaxRecurse))
949      return V;
950
951  return 0;
952}
953
954Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
955                             const TargetLibraryInfo *TLI,
956                             const DominatorTree *DT) {
957  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
958}
959
960/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
961/// fold the result.  If not, this returns null.
962static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
963                          const Query &Q, unsigned MaxRecurse) {
964  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
965    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
966      Constant *Ops[] = { C0, C1 };
967      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
968    }
969  }
970
971  bool isSigned = Opcode == Instruction::SDiv;
972
973  // X / undef -> undef
974  if (match(Op1, m_Undef()))
975    return Op1;
976
977  // undef / X -> 0
978  if (match(Op0, m_Undef()))
979    return Constant::getNullValue(Op0->getType());
980
981  // 0 / X -> 0, we don't need to preserve faults!
982  if (match(Op0, m_Zero()))
983    return Op0;
984
985  // X / 1 -> X
986  if (match(Op1, m_One()))
987    return Op0;
988
989  if (Op0->getType()->isIntegerTy(1))
990    // It can't be division by zero, hence it must be division by one.
991    return Op0;
992
993  // X / X -> 1
994  if (Op0 == Op1)
995    return ConstantInt::get(Op0->getType(), 1);
996
997  // (X * Y) / Y -> X if the multiplication does not overflow.
998  Value *X = 0, *Y = 0;
999  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1000    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1001    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1002    // If the Mul knows it does not overflow, then we are good to go.
1003    if ((isSigned && Mul->hasNoSignedWrap()) ||
1004        (!isSigned && Mul->hasNoUnsignedWrap()))
1005      return X;
1006    // If X has the form X = A / Y then X * Y cannot overflow.
1007    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1008      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1009        return X;
1010  }
1011
1012  // (X rem Y) / Y -> 0
1013  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1014      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1015    return Constant::getNullValue(Op0->getType());
1016
1017  // If the operation is with the result of a select instruction, check whether
1018  // operating on either branch of the select always yields the same value.
1019  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1020    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1021      return V;
1022
1023  // If the operation is with the result of a phi instruction, check whether
1024  // operating on all incoming values of the phi always yields the same value.
1025  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1026    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1027      return V;
1028
1029  return 0;
1030}
1031
1032/// SimplifySDivInst - Given operands for an SDiv, see if we can
1033/// fold the result.  If not, this returns null.
1034static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1035                               unsigned MaxRecurse) {
1036  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1037    return V;
1038
1039  return 0;
1040}
1041
1042Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1043                              const TargetLibraryInfo *TLI,
1044                              const DominatorTree *DT) {
1045  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1046}
1047
1048/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1049/// fold the result.  If not, this returns null.
1050static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1051                               unsigned MaxRecurse) {
1052  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1053    return V;
1054
1055  return 0;
1056}
1057
1058Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1059                              const TargetLibraryInfo *TLI,
1060                              const DominatorTree *DT) {
1061  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1062}
1063
1064static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1065                               unsigned) {
1066  // undef / X -> undef    (the undef could be a snan).
1067  if (match(Op0, m_Undef()))
1068    return Op0;
1069
1070  // X / undef -> undef
1071  if (match(Op1, m_Undef()))
1072    return Op1;
1073
1074  return 0;
1075}
1076
1077Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1078                              const TargetLibraryInfo *TLI,
1079                              const DominatorTree *DT) {
1080  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1081}
1082
1083/// SimplifyRem - Given operands for an SRem or URem, see if we can
1084/// fold the result.  If not, this returns null.
1085static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1086                          const Query &Q, unsigned MaxRecurse) {
1087  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1088    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1089      Constant *Ops[] = { C0, C1 };
1090      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1091    }
1092  }
1093
1094  // X % undef -> undef
1095  if (match(Op1, m_Undef()))
1096    return Op1;
1097
1098  // undef % X -> 0
1099  if (match(Op0, m_Undef()))
1100    return Constant::getNullValue(Op0->getType());
1101
1102  // 0 % X -> 0, we don't need to preserve faults!
1103  if (match(Op0, m_Zero()))
1104    return Op0;
1105
1106  // X % 0 -> undef, we don't need to preserve faults!
1107  if (match(Op1, m_Zero()))
1108    return UndefValue::get(Op0->getType());
1109
1110  // X % 1 -> 0
1111  if (match(Op1, m_One()))
1112    return Constant::getNullValue(Op0->getType());
1113
1114  if (Op0->getType()->isIntegerTy(1))
1115    // It can't be remainder by zero, hence it must be remainder by one.
1116    return Constant::getNullValue(Op0->getType());
1117
1118  // X % X -> 0
1119  if (Op0 == Op1)
1120    return Constant::getNullValue(Op0->getType());
1121
1122  // If the operation is with the result of a select instruction, check whether
1123  // operating on either branch of the select always yields the same value.
1124  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1125    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1126      return V;
1127
1128  // If the operation is with the result of a phi instruction, check whether
1129  // operating on all incoming values of the phi always yields the same value.
1130  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1131    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1132      return V;
1133
1134  return 0;
1135}
1136
1137/// SimplifySRemInst - Given operands for an SRem, see if we can
1138/// fold the result.  If not, this returns null.
1139static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1140                               unsigned MaxRecurse) {
1141  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1142    return V;
1143
1144  return 0;
1145}
1146
1147Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1148                              const TargetLibraryInfo *TLI,
1149                              const DominatorTree *DT) {
1150  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1151}
1152
1153/// SimplifyURemInst - Given operands for a URem, see if we can
1154/// fold the result.  If not, this returns null.
1155static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1156                               unsigned MaxRecurse) {
1157  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1158    return V;
1159
1160  return 0;
1161}
1162
1163Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1164                              const TargetLibraryInfo *TLI,
1165                              const DominatorTree *DT) {
1166  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1167}
1168
1169static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1170                               unsigned) {
1171  // undef % X -> undef    (the undef could be a snan).
1172  if (match(Op0, m_Undef()))
1173    return Op0;
1174
1175  // X % undef -> undef
1176  if (match(Op1, m_Undef()))
1177    return Op1;
1178
1179  return 0;
1180}
1181
1182Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1183                              const TargetLibraryInfo *TLI,
1184                              const DominatorTree *DT) {
1185  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1186}
1187
1188/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1189/// fold the result.  If not, this returns null.
1190static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1191                            const Query &Q, unsigned MaxRecurse) {
1192  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1193    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1194      Constant *Ops[] = { C0, C1 };
1195      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1196    }
1197  }
1198
1199  // 0 shift by X -> 0
1200  if (match(Op0, m_Zero()))
1201    return Op0;
1202
1203  // X shift by 0 -> X
1204  if (match(Op1, m_Zero()))
1205    return Op0;
1206
1207  // X shift by undef -> undef because it may shift by the bitwidth.
1208  if (match(Op1, m_Undef()))
1209    return Op1;
1210
1211  // Shifting by the bitwidth or more is undefined.
1212  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1213    if (CI->getValue().getLimitedValue() >=
1214        Op0->getType()->getScalarSizeInBits())
1215      return UndefValue::get(Op0->getType());
1216
1217  // If the operation is with the result of a select instruction, check whether
1218  // operating on either branch of the select always yields the same value.
1219  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1220    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1221      return V;
1222
1223  // If the operation is with the result of a phi instruction, check whether
1224  // operating on all incoming values of the phi always yields the same value.
1225  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1226    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1227      return V;
1228
1229  return 0;
1230}
1231
1232/// SimplifyShlInst - Given operands for an Shl, see if we can
1233/// fold the result.  If not, this returns null.
1234static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1235                              const Query &Q, unsigned MaxRecurse) {
1236  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1237    return V;
1238
1239  // undef << X -> 0
1240  if (match(Op0, m_Undef()))
1241    return Constant::getNullValue(Op0->getType());
1242
1243  // (X >> A) << A -> X
1244  Value *X;
1245  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1246    return X;
1247  return 0;
1248}
1249
1250Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1251                             const TargetData *TD, const TargetLibraryInfo *TLI,
1252                             const DominatorTree *DT) {
1253  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1254                           RecursionLimit);
1255}
1256
1257/// SimplifyLShrInst - Given operands for an LShr, see if we can
1258/// fold the result.  If not, this returns null.
1259static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1260                               const Query &Q, unsigned MaxRecurse) {
1261  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1262    return V;
1263
1264  // undef >>l X -> 0
1265  if (match(Op0, m_Undef()))
1266    return Constant::getNullValue(Op0->getType());
1267
1268  // (X << A) >> A -> X
1269  Value *X;
1270  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1271      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1272    return X;
1273
1274  return 0;
1275}
1276
1277Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1278                              const TargetData *TD,
1279                              const TargetLibraryInfo *TLI,
1280                              const DominatorTree *DT) {
1281  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1282                            RecursionLimit);
1283}
1284
1285/// SimplifyAShrInst - Given operands for an AShr, see if we can
1286/// fold the result.  If not, this returns null.
1287static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1288                               const Query &Q, unsigned MaxRecurse) {
1289  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1290    return V;
1291
1292  // all ones >>a X -> all ones
1293  if (match(Op0, m_AllOnes()))
1294    return Op0;
1295
1296  // undef >>a X -> all ones
1297  if (match(Op0, m_Undef()))
1298    return Constant::getAllOnesValue(Op0->getType());
1299
1300  // (X << A) >> A -> X
1301  Value *X;
1302  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1303      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1304    return X;
1305
1306  return 0;
1307}
1308
1309Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1310                              const TargetData *TD,
1311                              const TargetLibraryInfo *TLI,
1312                              const DominatorTree *DT) {
1313  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1314                            RecursionLimit);
1315}
1316
1317/// SimplifyAndInst - Given operands for an And, see if we can
1318/// fold the result.  If not, this returns null.
1319static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1320                              unsigned MaxRecurse) {
1321  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1322    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1323      Constant *Ops[] = { CLHS, CRHS };
1324      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1325                                      Ops, Q.TD, Q.TLI);
1326    }
1327
1328    // Canonicalize the constant to the RHS.
1329    std::swap(Op0, Op1);
1330  }
1331
1332  // X & undef -> 0
1333  if (match(Op1, m_Undef()))
1334    return Constant::getNullValue(Op0->getType());
1335
1336  // X & X = X
1337  if (Op0 == Op1)
1338    return Op0;
1339
1340  // X & 0 = 0
1341  if (match(Op1, m_Zero()))
1342    return Op1;
1343
1344  // X & -1 = X
1345  if (match(Op1, m_AllOnes()))
1346    return Op0;
1347
1348  // A & ~A  =  ~A & A  =  0
1349  if (match(Op0, m_Not(m_Specific(Op1))) ||
1350      match(Op1, m_Not(m_Specific(Op0))))
1351    return Constant::getNullValue(Op0->getType());
1352
1353  // (A | ?) & A = A
1354  Value *A = 0, *B = 0;
1355  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1356      (A == Op1 || B == Op1))
1357    return Op1;
1358
1359  // A & (A | ?) = A
1360  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1361      (A == Op0 || B == Op0))
1362    return Op0;
1363
1364  // A & (-A) = A if A is a power of two or zero.
1365  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1366      match(Op1, m_Neg(m_Specific(Op0)))) {
1367    if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
1368      return Op0;
1369    if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
1370      return Op1;
1371  }
1372
1373  // Try some generic simplifications for associative operations.
1374  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1375                                          MaxRecurse))
1376    return V;
1377
1378  // And distributes over Or.  Try some generic simplifications based on this.
1379  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1380                             Q, MaxRecurse))
1381    return V;
1382
1383  // And distributes over Xor.  Try some generic simplifications based on this.
1384  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1385                             Q, MaxRecurse))
1386    return V;
1387
1388  // Or distributes over And.  Try some generic simplifications based on this.
1389  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1390                                Q, MaxRecurse))
1391    return V;
1392
1393  // If the operation is with the result of a select instruction, check whether
1394  // operating on either branch of the select always yields the same value.
1395  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1396    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1397                                         MaxRecurse))
1398      return V;
1399
1400  // If the operation is with the result of a phi instruction, check whether
1401  // operating on all incoming values of the phi always yields the same value.
1402  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1403    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1404                                      MaxRecurse))
1405      return V;
1406
1407  return 0;
1408}
1409
1410Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1411                             const TargetLibraryInfo *TLI,
1412                             const DominatorTree *DT) {
1413  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1414}
1415
1416/// SimplifyOrInst - Given operands for an Or, see if we can
1417/// fold the result.  If not, this returns null.
1418static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1419                             unsigned MaxRecurse) {
1420  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1421    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1422      Constant *Ops[] = { CLHS, CRHS };
1423      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1424                                      Ops, Q.TD, Q.TLI);
1425    }
1426
1427    // Canonicalize the constant to the RHS.
1428    std::swap(Op0, Op1);
1429  }
1430
1431  // X | undef -> -1
1432  if (match(Op1, m_Undef()))
1433    return Constant::getAllOnesValue(Op0->getType());
1434
1435  // X | X = X
1436  if (Op0 == Op1)
1437    return Op0;
1438
1439  // X | 0 = X
1440  if (match(Op1, m_Zero()))
1441    return Op0;
1442
1443  // X | -1 = -1
1444  if (match(Op1, m_AllOnes()))
1445    return Op1;
1446
1447  // A | ~A  =  ~A | A  =  -1
1448  if (match(Op0, m_Not(m_Specific(Op1))) ||
1449      match(Op1, m_Not(m_Specific(Op0))))
1450    return Constant::getAllOnesValue(Op0->getType());
1451
1452  // (A & ?) | A = A
1453  Value *A = 0, *B = 0;
1454  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1455      (A == Op1 || B == Op1))
1456    return Op1;
1457
1458  // A | (A & ?) = A
1459  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1460      (A == Op0 || B == Op0))
1461    return Op0;
1462
1463  // ~(A & ?) | A = -1
1464  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1465      (A == Op1 || B == Op1))
1466    return Constant::getAllOnesValue(Op1->getType());
1467
1468  // A | ~(A & ?) = -1
1469  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1470      (A == Op0 || B == Op0))
1471    return Constant::getAllOnesValue(Op0->getType());
1472
1473  // Try some generic simplifications for associative operations.
1474  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1475                                          MaxRecurse))
1476    return V;
1477
1478  // Or distributes over And.  Try some generic simplifications based on this.
1479  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1480                             MaxRecurse))
1481    return V;
1482
1483  // And distributes over Or.  Try some generic simplifications based on this.
1484  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1485                                Q, MaxRecurse))
1486    return V;
1487
1488  // If the operation is with the result of a select instruction, check whether
1489  // operating on either branch of the select always yields the same value.
1490  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1491    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1492                                         MaxRecurse))
1493      return V;
1494
1495  // If the operation is with the result of a phi instruction, check whether
1496  // operating on all incoming values of the phi always yields the same value.
1497  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1498    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1499      return V;
1500
1501  return 0;
1502}
1503
1504Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1505                            const TargetLibraryInfo *TLI,
1506                            const DominatorTree *DT) {
1507  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1508}
1509
1510/// SimplifyXorInst - Given operands for a Xor, see if we can
1511/// fold the result.  If not, this returns null.
1512static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1513                              unsigned MaxRecurse) {
1514  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1515    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1516      Constant *Ops[] = { CLHS, CRHS };
1517      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1518                                      Ops, Q.TD, Q.TLI);
1519    }
1520
1521    // Canonicalize the constant to the RHS.
1522    std::swap(Op0, Op1);
1523  }
1524
1525  // A ^ undef -> undef
1526  if (match(Op1, m_Undef()))
1527    return Op1;
1528
1529  // A ^ 0 = A
1530  if (match(Op1, m_Zero()))
1531    return Op0;
1532
1533  // A ^ A = 0
1534  if (Op0 == Op1)
1535    return Constant::getNullValue(Op0->getType());
1536
1537  // A ^ ~A  =  ~A ^ A  =  -1
1538  if (match(Op0, m_Not(m_Specific(Op1))) ||
1539      match(Op1, m_Not(m_Specific(Op0))))
1540    return Constant::getAllOnesValue(Op0->getType());
1541
1542  // Try some generic simplifications for associative operations.
1543  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1544                                          MaxRecurse))
1545    return V;
1546
1547  // And distributes over Xor.  Try some generic simplifications based on this.
1548  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1549                                Q, MaxRecurse))
1550    return V;
1551
1552  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1553  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1554  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1555  // only if B and C are equal.  If B and C are equal then (since we assume
1556  // that operands have already been simplified) "select(cond, B, C)" should
1557  // have been simplified to the common value of B and C already.  Analysing
1558  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1559  // for threading over phi nodes.
1560
1561  return 0;
1562}
1563
1564Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1565                             const TargetLibraryInfo *TLI,
1566                             const DominatorTree *DT) {
1567  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1568}
1569
1570static Type *GetCompareTy(Value *Op) {
1571  return CmpInst::makeCmpResultType(Op->getType());
1572}
1573
1574/// ExtractEquivalentCondition - Rummage around inside V looking for something
1575/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1576/// otherwise return null.  Helper function for analyzing max/min idioms.
1577static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1578                                         Value *LHS, Value *RHS) {
1579  SelectInst *SI = dyn_cast<SelectInst>(V);
1580  if (!SI)
1581    return 0;
1582  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1583  if (!Cmp)
1584    return 0;
1585  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1586  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1587    return Cmp;
1588  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1589      LHS == CmpRHS && RHS == CmpLHS)
1590    return Cmp;
1591  return 0;
1592}
1593
1594static Constant *computePointerICmp(const TargetData &TD,
1595                                    CmpInst::Predicate Pred,
1596                                    Value *LHS, Value *RHS) {
1597  // We can only fold certain predicates on pointer comparisons.
1598  switch (Pred) {
1599  default:
1600    return 0;
1601
1602    // Equality comaprisons are easy to fold.
1603  case CmpInst::ICMP_EQ:
1604  case CmpInst::ICMP_NE:
1605    break;
1606
1607    // We can only handle unsigned relational comparisons because 'inbounds' on
1608    // a GEP only protects against unsigned wrapping.
1609  case CmpInst::ICMP_UGT:
1610  case CmpInst::ICMP_UGE:
1611  case CmpInst::ICMP_ULT:
1612  case CmpInst::ICMP_ULE:
1613    // However, we have to switch them to their signed variants to handle
1614    // negative indices from the base pointer.
1615    Pred = ICmpInst::getSignedPredicate(Pred);
1616    break;
1617  }
1618
1619  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1620  if (!LHSOffset)
1621    return 0;
1622  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1623  if (!RHSOffset)
1624    return 0;
1625
1626  // If LHS and RHS are not related via constant offsets to the same base
1627  // value, there is nothing we can do here.
1628  if (LHS != RHS)
1629    return 0;
1630
1631  return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1632}
1633
1634/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1635/// fold the result.  If not, this returns null.
1636static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1637                               const Query &Q, unsigned MaxRecurse) {
1638  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1639  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1640
1641  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1642    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1643      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1644
1645    // If we have a constant, make sure it is on the RHS.
1646    std::swap(LHS, RHS);
1647    Pred = CmpInst::getSwappedPredicate(Pred);
1648  }
1649
1650  Type *ITy = GetCompareTy(LHS); // The return type.
1651  Type *OpTy = LHS->getType();   // The operand type.
1652
1653  // icmp X, X -> true/false
1654  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1655  // because X could be 0.
1656  if (LHS == RHS || isa<UndefValue>(RHS))
1657    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1658
1659  // Special case logic when the operands have i1 type.
1660  if (OpTy->getScalarType()->isIntegerTy(1)) {
1661    switch (Pred) {
1662    default: break;
1663    case ICmpInst::ICMP_EQ:
1664      // X == 1 -> X
1665      if (match(RHS, m_One()))
1666        return LHS;
1667      break;
1668    case ICmpInst::ICMP_NE:
1669      // X != 0 -> X
1670      if (match(RHS, m_Zero()))
1671        return LHS;
1672      break;
1673    case ICmpInst::ICMP_UGT:
1674      // X >u 0 -> X
1675      if (match(RHS, m_Zero()))
1676        return LHS;
1677      break;
1678    case ICmpInst::ICMP_UGE:
1679      // X >=u 1 -> X
1680      if (match(RHS, m_One()))
1681        return LHS;
1682      break;
1683    case ICmpInst::ICMP_SLT:
1684      // X <s 0 -> X
1685      if (match(RHS, m_Zero()))
1686        return LHS;
1687      break;
1688    case ICmpInst::ICMP_SLE:
1689      // X <=s -1 -> X
1690      if (match(RHS, m_One()))
1691        return LHS;
1692      break;
1693    }
1694  }
1695
1696  // icmp <object*>, <object*/null> - Different identified objects have
1697  // different addresses (unless null), and what's more the address of an
1698  // identified local is never equal to another argument (again, barring null).
1699  // Note that generalizing to the case where LHS is a global variable address
1700  // or null is pointless, since if both LHS and RHS are constants then we
1701  // already constant folded the compare, and if only one of them is then we
1702  // moved it to RHS already.
1703  Value *LHSPtr = LHS->stripPointerCasts();
1704  Value *RHSPtr = RHS->stripPointerCasts();
1705  if (LHSPtr == RHSPtr)
1706    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1707
1708  // Be more aggressive about stripping pointer adjustments when checking a
1709  // comparison of an alloca address to another object.  We can rip off all
1710  // inbounds GEP operations, even if they are variable.
1711  LHSPtr = LHSPtr->stripInBoundsOffsets();
1712  if (llvm::isIdentifiedObject(LHSPtr)) {
1713    RHSPtr = RHSPtr->stripInBoundsOffsets();
1714    if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1715      // If both sides are different identified objects, they aren't equal
1716      // unless they're null.
1717      if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
1718          Pred == CmpInst::ICMP_EQ)
1719        return ConstantInt::get(ITy, false);
1720
1721      // A local identified object (alloca or noalias call) can't equal any
1722      // incoming argument, unless they're both null or they belong to
1723      // different functions. The latter happens during inlining.
1724      if (Instruction *LHSInst = dyn_cast<Instruction>(LHSPtr))
1725        if (Argument *RHSArg = dyn_cast<Argument>(RHSPtr))
1726          if (LHSInst->getParent()->getParent() == RHSArg->getParent() &&
1727              Pred == CmpInst::ICMP_EQ)
1728            return ConstantInt::get(ITy, false);
1729    }
1730
1731    // Assume that the constant null is on the right.
1732    if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
1733      if (Pred == CmpInst::ICMP_EQ)
1734        return ConstantInt::get(ITy, false);
1735      else if (Pred == CmpInst::ICMP_NE)
1736        return ConstantInt::get(ITy, true);
1737    }
1738  } else if (Argument *LHSArg = dyn_cast<Argument>(LHSPtr)) {
1739    RHSPtr = RHSPtr->stripInBoundsOffsets();
1740    // An alloca can't be equal to an argument unless they come from separate
1741    // functions via inlining.
1742    if (AllocaInst *RHSInst = dyn_cast<AllocaInst>(RHSPtr)) {
1743      if (LHSArg->getParent() == RHSInst->getParent()->getParent()) {
1744        if (Pred == CmpInst::ICMP_EQ)
1745          return ConstantInt::get(ITy, false);
1746        else if (Pred == CmpInst::ICMP_NE)
1747          return ConstantInt::get(ITy, true);
1748      }
1749    }
1750  }
1751
1752  // If we are comparing with zero then try hard since this is a common case.
1753  if (match(RHS, m_Zero())) {
1754    bool LHSKnownNonNegative, LHSKnownNegative;
1755    switch (Pred) {
1756    default: llvm_unreachable("Unknown ICmp predicate!");
1757    case ICmpInst::ICMP_ULT:
1758      return getFalse(ITy);
1759    case ICmpInst::ICMP_UGE:
1760      return getTrue(ITy);
1761    case ICmpInst::ICMP_EQ:
1762    case ICmpInst::ICMP_ULE:
1763      if (isKnownNonZero(LHS, Q.TD))
1764        return getFalse(ITy);
1765      break;
1766    case ICmpInst::ICMP_NE:
1767    case ICmpInst::ICMP_UGT:
1768      if (isKnownNonZero(LHS, Q.TD))
1769        return getTrue(ITy);
1770      break;
1771    case ICmpInst::ICMP_SLT:
1772      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1773      if (LHSKnownNegative)
1774        return getTrue(ITy);
1775      if (LHSKnownNonNegative)
1776        return getFalse(ITy);
1777      break;
1778    case ICmpInst::ICMP_SLE:
1779      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1780      if (LHSKnownNegative)
1781        return getTrue(ITy);
1782      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1783        return getFalse(ITy);
1784      break;
1785    case ICmpInst::ICMP_SGE:
1786      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1787      if (LHSKnownNegative)
1788        return getFalse(ITy);
1789      if (LHSKnownNonNegative)
1790        return getTrue(ITy);
1791      break;
1792    case ICmpInst::ICMP_SGT:
1793      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1794      if (LHSKnownNegative)
1795        return getFalse(ITy);
1796      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1797        return getTrue(ITy);
1798      break;
1799    }
1800  }
1801
1802  // See if we are doing a comparison with a constant integer.
1803  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1804    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1805    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1806    if (RHS_CR.isEmptySet())
1807      return ConstantInt::getFalse(CI->getContext());
1808    if (RHS_CR.isFullSet())
1809      return ConstantInt::getTrue(CI->getContext());
1810
1811    // Many binary operators with constant RHS have easy to compute constant
1812    // range.  Use them to check whether the comparison is a tautology.
1813    uint32_t Width = CI->getBitWidth();
1814    APInt Lower = APInt(Width, 0);
1815    APInt Upper = APInt(Width, 0);
1816    ConstantInt *CI2;
1817    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1818      // 'urem x, CI2' produces [0, CI2).
1819      Upper = CI2->getValue();
1820    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1821      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1822      Upper = CI2->getValue().abs();
1823      Lower = (-Upper) + 1;
1824    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1825      // 'udiv CI2, x' produces [0, CI2].
1826      Upper = CI2->getValue() + 1;
1827    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1828      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1829      APInt NegOne = APInt::getAllOnesValue(Width);
1830      if (!CI2->isZero())
1831        Upper = NegOne.udiv(CI2->getValue()) + 1;
1832    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1833      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1834      APInt IntMin = APInt::getSignedMinValue(Width);
1835      APInt IntMax = APInt::getSignedMaxValue(Width);
1836      APInt Val = CI2->getValue().abs();
1837      if (!Val.isMinValue()) {
1838        Lower = IntMin.sdiv(Val);
1839        Upper = IntMax.sdiv(Val) + 1;
1840      }
1841    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1842      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1843      APInt NegOne = APInt::getAllOnesValue(Width);
1844      if (CI2->getValue().ult(Width))
1845        Upper = NegOne.lshr(CI2->getValue()) + 1;
1846    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1847      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1848      APInt IntMin = APInt::getSignedMinValue(Width);
1849      APInt IntMax = APInt::getSignedMaxValue(Width);
1850      if (CI2->getValue().ult(Width)) {
1851        Lower = IntMin.ashr(CI2->getValue());
1852        Upper = IntMax.ashr(CI2->getValue()) + 1;
1853      }
1854    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1855      // 'or x, CI2' produces [CI2, UINT_MAX].
1856      Lower = CI2->getValue();
1857    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1858      // 'and x, CI2' produces [0, CI2].
1859      Upper = CI2->getValue() + 1;
1860    }
1861    if (Lower != Upper) {
1862      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1863      if (RHS_CR.contains(LHS_CR))
1864        return ConstantInt::getTrue(RHS->getContext());
1865      if (RHS_CR.inverse().contains(LHS_CR))
1866        return ConstantInt::getFalse(RHS->getContext());
1867    }
1868  }
1869
1870  // Compare of cast, for example (zext X) != 0 -> X != 0
1871  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1872    Instruction *LI = cast<CastInst>(LHS);
1873    Value *SrcOp = LI->getOperand(0);
1874    Type *SrcTy = SrcOp->getType();
1875    Type *DstTy = LI->getType();
1876
1877    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1878    // if the integer type is the same size as the pointer type.
1879    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
1880        Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1881      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1882        // Transfer the cast to the constant.
1883        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1884                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1885                                        Q, MaxRecurse-1))
1886          return V;
1887      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1888        if (RI->getOperand(0)->getType() == SrcTy)
1889          // Compare without the cast.
1890          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1891                                          Q, MaxRecurse-1))
1892            return V;
1893      }
1894    }
1895
1896    if (isa<ZExtInst>(LHS)) {
1897      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1898      // same type.
1899      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1900        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1901          // Compare X and Y.  Note that signed predicates become unsigned.
1902          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1903                                          SrcOp, RI->getOperand(0), Q,
1904                                          MaxRecurse-1))
1905            return V;
1906      }
1907      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1908      // too.  If not, then try to deduce the result of the comparison.
1909      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1910        // Compute the constant that would happen if we truncated to SrcTy then
1911        // reextended to DstTy.
1912        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1913        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1914
1915        // If the re-extended constant didn't change then this is effectively
1916        // also a case of comparing two zero-extended values.
1917        if (RExt == CI && MaxRecurse)
1918          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1919                                        SrcOp, Trunc, Q, MaxRecurse-1))
1920            return V;
1921
1922        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1923        // there.  Use this to work out the result of the comparison.
1924        if (RExt != CI) {
1925          switch (Pred) {
1926          default: llvm_unreachable("Unknown ICmp predicate!");
1927          // LHS <u RHS.
1928          case ICmpInst::ICMP_EQ:
1929          case ICmpInst::ICMP_UGT:
1930          case ICmpInst::ICMP_UGE:
1931            return ConstantInt::getFalse(CI->getContext());
1932
1933          case ICmpInst::ICMP_NE:
1934          case ICmpInst::ICMP_ULT:
1935          case ICmpInst::ICMP_ULE:
1936            return ConstantInt::getTrue(CI->getContext());
1937
1938          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1939          // is non-negative then LHS <s RHS.
1940          case ICmpInst::ICMP_SGT:
1941          case ICmpInst::ICMP_SGE:
1942            return CI->getValue().isNegative() ?
1943              ConstantInt::getTrue(CI->getContext()) :
1944              ConstantInt::getFalse(CI->getContext());
1945
1946          case ICmpInst::ICMP_SLT:
1947          case ICmpInst::ICMP_SLE:
1948            return CI->getValue().isNegative() ?
1949              ConstantInt::getFalse(CI->getContext()) :
1950              ConstantInt::getTrue(CI->getContext());
1951          }
1952        }
1953      }
1954    }
1955
1956    if (isa<SExtInst>(LHS)) {
1957      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1958      // same type.
1959      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1960        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1961          // Compare X and Y.  Note that the predicate does not change.
1962          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1963                                          Q, MaxRecurse-1))
1964            return V;
1965      }
1966      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1967      // too.  If not, then try to deduce the result of the comparison.
1968      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1969        // Compute the constant that would happen if we truncated to SrcTy then
1970        // reextended to DstTy.
1971        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1972        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1973
1974        // If the re-extended constant didn't change then this is effectively
1975        // also a case of comparing two sign-extended values.
1976        if (RExt == CI && MaxRecurse)
1977          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
1978            return V;
1979
1980        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1981        // bits there.  Use this to work out the result of the comparison.
1982        if (RExt != CI) {
1983          switch (Pred) {
1984          default: llvm_unreachable("Unknown ICmp predicate!");
1985          case ICmpInst::ICMP_EQ:
1986            return ConstantInt::getFalse(CI->getContext());
1987          case ICmpInst::ICMP_NE:
1988            return ConstantInt::getTrue(CI->getContext());
1989
1990          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1991          // LHS >s RHS.
1992          case ICmpInst::ICMP_SGT:
1993          case ICmpInst::ICMP_SGE:
1994            return CI->getValue().isNegative() ?
1995              ConstantInt::getTrue(CI->getContext()) :
1996              ConstantInt::getFalse(CI->getContext());
1997          case ICmpInst::ICMP_SLT:
1998          case ICmpInst::ICMP_SLE:
1999            return CI->getValue().isNegative() ?
2000              ConstantInt::getFalse(CI->getContext()) :
2001              ConstantInt::getTrue(CI->getContext());
2002
2003          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2004          // LHS >u RHS.
2005          case ICmpInst::ICMP_UGT:
2006          case ICmpInst::ICMP_UGE:
2007            // Comparison is true iff the LHS <s 0.
2008            if (MaxRecurse)
2009              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2010                                              Constant::getNullValue(SrcTy),
2011                                              Q, MaxRecurse-1))
2012                return V;
2013            break;
2014          case ICmpInst::ICMP_ULT:
2015          case ICmpInst::ICMP_ULE:
2016            // Comparison is true iff the LHS >=s 0.
2017            if (MaxRecurse)
2018              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2019                                              Constant::getNullValue(SrcTy),
2020                                              Q, MaxRecurse-1))
2021                return V;
2022            break;
2023          }
2024        }
2025      }
2026    }
2027  }
2028
2029  // Special logic for binary operators.
2030  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2031  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2032  if (MaxRecurse && (LBO || RBO)) {
2033    // Analyze the case when either LHS or RHS is an add instruction.
2034    Value *A = 0, *B = 0, *C = 0, *D = 0;
2035    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2036    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2037    if (LBO && LBO->getOpcode() == Instruction::Add) {
2038      A = LBO->getOperand(0); B = LBO->getOperand(1);
2039      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2040        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2041        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2042    }
2043    if (RBO && RBO->getOpcode() == Instruction::Add) {
2044      C = RBO->getOperand(0); D = RBO->getOperand(1);
2045      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2046        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2047        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2048    }
2049
2050    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2051    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2052      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2053                                      Constant::getNullValue(RHS->getType()),
2054                                      Q, MaxRecurse-1))
2055        return V;
2056
2057    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2058    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2059      if (Value *V = SimplifyICmpInst(Pred,
2060                                      Constant::getNullValue(LHS->getType()),
2061                                      C == LHS ? D : C, Q, MaxRecurse-1))
2062        return V;
2063
2064    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2065    if (A && C && (A == C || A == D || B == C || B == D) &&
2066        NoLHSWrapProblem && NoRHSWrapProblem) {
2067      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2068      Value *Y = (A == C || A == D) ? B : A;
2069      Value *Z = (C == A || C == B) ? D : C;
2070      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2071        return V;
2072    }
2073  }
2074
2075  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2076    bool KnownNonNegative, KnownNegative;
2077    switch (Pred) {
2078    default:
2079      break;
2080    case ICmpInst::ICMP_SGT:
2081    case ICmpInst::ICMP_SGE:
2082      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2083      if (!KnownNonNegative)
2084        break;
2085      // fall-through
2086    case ICmpInst::ICMP_EQ:
2087    case ICmpInst::ICMP_UGT:
2088    case ICmpInst::ICMP_UGE:
2089      return getFalse(ITy);
2090    case ICmpInst::ICMP_SLT:
2091    case ICmpInst::ICMP_SLE:
2092      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2093      if (!KnownNonNegative)
2094        break;
2095      // fall-through
2096    case ICmpInst::ICMP_NE:
2097    case ICmpInst::ICMP_ULT:
2098    case ICmpInst::ICMP_ULE:
2099      return getTrue(ITy);
2100    }
2101  }
2102  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2103    bool KnownNonNegative, KnownNegative;
2104    switch (Pred) {
2105    default:
2106      break;
2107    case ICmpInst::ICMP_SGT:
2108    case ICmpInst::ICMP_SGE:
2109      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2110      if (!KnownNonNegative)
2111        break;
2112      // fall-through
2113    case ICmpInst::ICMP_NE:
2114    case ICmpInst::ICMP_UGT:
2115    case ICmpInst::ICMP_UGE:
2116      return getTrue(ITy);
2117    case ICmpInst::ICMP_SLT:
2118    case ICmpInst::ICMP_SLE:
2119      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2120      if (!KnownNonNegative)
2121        break;
2122      // fall-through
2123    case ICmpInst::ICMP_EQ:
2124    case ICmpInst::ICMP_ULT:
2125    case ICmpInst::ICMP_ULE:
2126      return getFalse(ITy);
2127    }
2128  }
2129
2130  // x udiv y <=u x.
2131  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2132    // icmp pred (X /u Y), X
2133    if (Pred == ICmpInst::ICMP_UGT)
2134      return getFalse(ITy);
2135    if (Pred == ICmpInst::ICMP_ULE)
2136      return getTrue(ITy);
2137  }
2138
2139  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2140      LBO->getOperand(1) == RBO->getOperand(1)) {
2141    switch (LBO->getOpcode()) {
2142    default: break;
2143    case Instruction::UDiv:
2144    case Instruction::LShr:
2145      if (ICmpInst::isSigned(Pred))
2146        break;
2147      // fall-through
2148    case Instruction::SDiv:
2149    case Instruction::AShr:
2150      if (!LBO->isExact() || !RBO->isExact())
2151        break;
2152      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2153                                      RBO->getOperand(0), Q, MaxRecurse-1))
2154        return V;
2155      break;
2156    case Instruction::Shl: {
2157      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2158      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2159      if (!NUW && !NSW)
2160        break;
2161      if (!NSW && ICmpInst::isSigned(Pred))
2162        break;
2163      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2164                                      RBO->getOperand(0), Q, MaxRecurse-1))
2165        return V;
2166      break;
2167    }
2168    }
2169  }
2170
2171  // Simplify comparisons involving max/min.
2172  Value *A, *B;
2173  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2174  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2175
2176  // Signed variants on "max(a,b)>=a -> true".
2177  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2178    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2179    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2180    // We analyze this as smax(A, B) pred A.
2181    P = Pred;
2182  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2183             (A == LHS || B == LHS)) {
2184    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2185    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2186    // We analyze this as smax(A, B) swapped-pred A.
2187    P = CmpInst::getSwappedPredicate(Pred);
2188  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2189             (A == RHS || B == RHS)) {
2190    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2191    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2192    // We analyze this as smax(-A, -B) swapped-pred -A.
2193    // Note that we do not need to actually form -A or -B thanks to EqP.
2194    P = CmpInst::getSwappedPredicate(Pred);
2195  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2196             (A == LHS || B == LHS)) {
2197    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2198    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2199    // We analyze this as smax(-A, -B) pred -A.
2200    // Note that we do not need to actually form -A or -B thanks to EqP.
2201    P = Pred;
2202  }
2203  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2204    // Cases correspond to "max(A, B) p A".
2205    switch (P) {
2206    default:
2207      break;
2208    case CmpInst::ICMP_EQ:
2209    case CmpInst::ICMP_SLE:
2210      // Equivalent to "A EqP B".  This may be the same as the condition tested
2211      // in the max/min; if so, we can just return that.
2212      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2213        return V;
2214      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2215        return V;
2216      // Otherwise, see if "A EqP B" simplifies.
2217      if (MaxRecurse)
2218        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2219          return V;
2220      break;
2221    case CmpInst::ICMP_NE:
2222    case CmpInst::ICMP_SGT: {
2223      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2224      // Equivalent to "A InvEqP B".  This may be the same as the condition
2225      // tested in the max/min; if so, we can just return that.
2226      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2227        return V;
2228      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2229        return V;
2230      // Otherwise, see if "A InvEqP B" simplifies.
2231      if (MaxRecurse)
2232        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2233          return V;
2234      break;
2235    }
2236    case CmpInst::ICMP_SGE:
2237      // Always true.
2238      return getTrue(ITy);
2239    case CmpInst::ICMP_SLT:
2240      // Always false.
2241      return getFalse(ITy);
2242    }
2243  }
2244
2245  // Unsigned variants on "max(a,b)>=a -> true".
2246  P = CmpInst::BAD_ICMP_PREDICATE;
2247  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2248    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2249    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2250    // We analyze this as umax(A, B) pred A.
2251    P = Pred;
2252  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2253             (A == LHS || B == LHS)) {
2254    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2255    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2256    // We analyze this as umax(A, B) swapped-pred A.
2257    P = CmpInst::getSwappedPredicate(Pred);
2258  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2259             (A == RHS || B == RHS)) {
2260    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2261    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2262    // We analyze this as umax(-A, -B) swapped-pred -A.
2263    // Note that we do not need to actually form -A or -B thanks to EqP.
2264    P = CmpInst::getSwappedPredicate(Pred);
2265  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2266             (A == LHS || B == LHS)) {
2267    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2268    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2269    // We analyze this as umax(-A, -B) pred -A.
2270    // Note that we do not need to actually form -A or -B thanks to EqP.
2271    P = Pred;
2272  }
2273  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2274    // Cases correspond to "max(A, B) p A".
2275    switch (P) {
2276    default:
2277      break;
2278    case CmpInst::ICMP_EQ:
2279    case CmpInst::ICMP_ULE:
2280      // Equivalent to "A EqP B".  This may be the same as the condition tested
2281      // in the max/min; if so, we can just return that.
2282      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2283        return V;
2284      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2285        return V;
2286      // Otherwise, see if "A EqP B" simplifies.
2287      if (MaxRecurse)
2288        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2289          return V;
2290      break;
2291    case CmpInst::ICMP_NE:
2292    case CmpInst::ICMP_UGT: {
2293      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2294      // Equivalent to "A InvEqP B".  This may be the same as the condition
2295      // tested in the max/min; if so, we can just return that.
2296      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2297        return V;
2298      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2299        return V;
2300      // Otherwise, see if "A InvEqP B" simplifies.
2301      if (MaxRecurse)
2302        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2303          return V;
2304      break;
2305    }
2306    case CmpInst::ICMP_UGE:
2307      // Always true.
2308      return getTrue(ITy);
2309    case CmpInst::ICMP_ULT:
2310      // Always false.
2311      return getFalse(ITy);
2312    }
2313  }
2314
2315  // Variants on "max(x,y) >= min(x,z)".
2316  Value *C, *D;
2317  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2318      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2319      (A == C || A == D || B == C || B == D)) {
2320    // max(x, ?) pred min(x, ?).
2321    if (Pred == CmpInst::ICMP_SGE)
2322      // Always true.
2323      return getTrue(ITy);
2324    if (Pred == CmpInst::ICMP_SLT)
2325      // Always false.
2326      return getFalse(ITy);
2327  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2328             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2329             (A == C || A == D || B == C || B == D)) {
2330    // min(x, ?) pred max(x, ?).
2331    if (Pred == CmpInst::ICMP_SLE)
2332      // Always true.
2333      return getTrue(ITy);
2334    if (Pred == CmpInst::ICMP_SGT)
2335      // Always false.
2336      return getFalse(ITy);
2337  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2338             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2339             (A == C || A == D || B == C || B == D)) {
2340    // max(x, ?) pred min(x, ?).
2341    if (Pred == CmpInst::ICMP_UGE)
2342      // Always true.
2343      return getTrue(ITy);
2344    if (Pred == CmpInst::ICMP_ULT)
2345      // Always false.
2346      return getFalse(ITy);
2347  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2348             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2349             (A == C || A == D || B == C || B == D)) {
2350    // min(x, ?) pred max(x, ?).
2351    if (Pred == CmpInst::ICMP_ULE)
2352      // Always true.
2353      return getTrue(ITy);
2354    if (Pred == CmpInst::ICMP_UGT)
2355      // Always false.
2356      return getFalse(ITy);
2357  }
2358
2359  // Simplify comparisons of related pointers using a powerful, recursive
2360  // GEP-walk when we have target data available..
2361  if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy())
2362    if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS))
2363      return C;
2364
2365  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2366    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2367      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2368          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2369          (ICmpInst::isEquality(Pred) ||
2370           (GLHS->isInBounds() && GRHS->isInBounds() &&
2371            Pred == ICmpInst::getSignedPredicate(Pred)))) {
2372        // The bases are equal and the indices are constant.  Build a constant
2373        // expression GEP with the same indices and a null base pointer to see
2374        // what constant folding can make out of it.
2375        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2376        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2377        Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2378
2379        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2380        Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2381        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2382      }
2383    }
2384  }
2385
2386  // If the comparison is with the result of a select instruction, check whether
2387  // comparing with either branch of the select always yields the same value.
2388  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2389    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2390      return V;
2391
2392  // If the comparison is with the result of a phi instruction, check whether
2393  // doing the compare with each incoming phi value yields a common result.
2394  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2395    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2396      return V;
2397
2398  return 0;
2399}
2400
2401Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2402                              const TargetData *TD,
2403                              const TargetLibraryInfo *TLI,
2404                              const DominatorTree *DT) {
2405  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2406                            RecursionLimit);
2407}
2408
2409/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2410/// fold the result.  If not, this returns null.
2411static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2412                               const Query &Q, unsigned MaxRecurse) {
2413  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2414  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2415
2416  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2417    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2418      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2419
2420    // If we have a constant, make sure it is on the RHS.
2421    std::swap(LHS, RHS);
2422    Pred = CmpInst::getSwappedPredicate(Pred);
2423  }
2424
2425  // Fold trivial predicates.
2426  if (Pred == FCmpInst::FCMP_FALSE)
2427    return ConstantInt::get(GetCompareTy(LHS), 0);
2428  if (Pred == FCmpInst::FCMP_TRUE)
2429    return ConstantInt::get(GetCompareTy(LHS), 1);
2430
2431  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2432    return UndefValue::get(GetCompareTy(LHS));
2433
2434  // fcmp x,x -> true/false.  Not all compares are foldable.
2435  if (LHS == RHS) {
2436    if (CmpInst::isTrueWhenEqual(Pred))
2437      return ConstantInt::get(GetCompareTy(LHS), 1);
2438    if (CmpInst::isFalseWhenEqual(Pred))
2439      return ConstantInt::get(GetCompareTy(LHS), 0);
2440  }
2441
2442  // Handle fcmp with constant RHS
2443  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2444    // If the constant is a nan, see if we can fold the comparison based on it.
2445    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2446      if (CFP->getValueAPF().isNaN()) {
2447        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2448          return ConstantInt::getFalse(CFP->getContext());
2449        assert(FCmpInst::isUnordered(Pred) &&
2450               "Comparison must be either ordered or unordered!");
2451        // True if unordered.
2452        return ConstantInt::getTrue(CFP->getContext());
2453      }
2454      // Check whether the constant is an infinity.
2455      if (CFP->getValueAPF().isInfinity()) {
2456        if (CFP->getValueAPF().isNegative()) {
2457          switch (Pred) {
2458          case FCmpInst::FCMP_OLT:
2459            // No value is ordered and less than negative infinity.
2460            return ConstantInt::getFalse(CFP->getContext());
2461          case FCmpInst::FCMP_UGE:
2462            // All values are unordered with or at least negative infinity.
2463            return ConstantInt::getTrue(CFP->getContext());
2464          default:
2465            break;
2466          }
2467        } else {
2468          switch (Pred) {
2469          case FCmpInst::FCMP_OGT:
2470            // No value is ordered and greater than infinity.
2471            return ConstantInt::getFalse(CFP->getContext());
2472          case FCmpInst::FCMP_ULE:
2473            // All values are unordered with and at most infinity.
2474            return ConstantInt::getTrue(CFP->getContext());
2475          default:
2476            break;
2477          }
2478        }
2479      }
2480    }
2481  }
2482
2483  // If the comparison is with the result of a select instruction, check whether
2484  // comparing with either branch of the select always yields the same value.
2485  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2486    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2487      return V;
2488
2489  // If the comparison is with the result of a phi instruction, check whether
2490  // doing the compare with each incoming phi value yields a common result.
2491  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2492    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2493      return V;
2494
2495  return 0;
2496}
2497
2498Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2499                              const TargetData *TD,
2500                              const TargetLibraryInfo *TLI,
2501                              const DominatorTree *DT) {
2502  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2503                            RecursionLimit);
2504}
2505
2506/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2507/// the result.  If not, this returns null.
2508static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2509                                 Value *FalseVal, const Query &Q,
2510                                 unsigned MaxRecurse) {
2511  // select true, X, Y  -> X
2512  // select false, X, Y -> Y
2513  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2514    return CB->getZExtValue() ? TrueVal : FalseVal;
2515
2516  // select C, X, X -> X
2517  if (TrueVal == FalseVal)
2518    return TrueVal;
2519
2520  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2521    if (isa<Constant>(TrueVal))
2522      return TrueVal;
2523    return FalseVal;
2524  }
2525  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2526    return FalseVal;
2527  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2528    return TrueVal;
2529
2530  return 0;
2531}
2532
2533Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2534                                const TargetData *TD,
2535                                const TargetLibraryInfo *TLI,
2536                                const DominatorTree *DT) {
2537  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2538                              RecursionLimit);
2539}
2540
2541/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2542/// fold the result.  If not, this returns null.
2543static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2544  // The type of the GEP pointer operand.
2545  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2546  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2547  if (!PtrTy)
2548    return 0;
2549
2550  // getelementptr P -> P.
2551  if (Ops.size() == 1)
2552    return Ops[0];
2553
2554  if (isa<UndefValue>(Ops[0])) {
2555    // Compute the (pointer) type returned by the GEP instruction.
2556    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2557    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2558    return UndefValue::get(GEPTy);
2559  }
2560
2561  if (Ops.size() == 2) {
2562    // getelementptr P, 0 -> P.
2563    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2564      if (C->isZero())
2565        return Ops[0];
2566    // getelementptr P, N -> P if P points to a type of zero size.
2567    if (Q.TD) {
2568      Type *Ty = PtrTy->getElementType();
2569      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2570        return Ops[0];
2571    }
2572  }
2573
2574  // Check to see if this is constant foldable.
2575  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2576    if (!isa<Constant>(Ops[i]))
2577      return 0;
2578
2579  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2580}
2581
2582Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2583                             const TargetLibraryInfo *TLI,
2584                             const DominatorTree *DT) {
2585  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2586}
2587
2588/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2589/// can fold the result.  If not, this returns null.
2590static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2591                                      ArrayRef<unsigned> Idxs, const Query &Q,
2592                                      unsigned) {
2593  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2594    if (Constant *CVal = dyn_cast<Constant>(Val))
2595      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2596
2597  // insertvalue x, undef, n -> x
2598  if (match(Val, m_Undef()))
2599    return Agg;
2600
2601  // insertvalue x, (extractvalue y, n), n
2602  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2603    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2604        EV->getIndices() == Idxs) {
2605      // insertvalue undef, (extractvalue y, n), n -> y
2606      if (match(Agg, m_Undef()))
2607        return EV->getAggregateOperand();
2608
2609      // insertvalue y, (extractvalue y, n), n -> y
2610      if (Agg == EV->getAggregateOperand())
2611        return Agg;
2612    }
2613
2614  return 0;
2615}
2616
2617Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2618                                     ArrayRef<unsigned> Idxs,
2619                                     const TargetData *TD,
2620                                     const TargetLibraryInfo *TLI,
2621                                     const DominatorTree *DT) {
2622  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2623                                   RecursionLimit);
2624}
2625
2626/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2627static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2628  // If all of the PHI's incoming values are the same then replace the PHI node
2629  // with the common value.
2630  Value *CommonValue = 0;
2631  bool HasUndefInput = false;
2632  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2633    Value *Incoming = PN->getIncomingValue(i);
2634    // If the incoming value is the phi node itself, it can safely be skipped.
2635    if (Incoming == PN) continue;
2636    if (isa<UndefValue>(Incoming)) {
2637      // Remember that we saw an undef value, but otherwise ignore them.
2638      HasUndefInput = true;
2639      continue;
2640    }
2641    if (CommonValue && Incoming != CommonValue)
2642      return 0;  // Not the same, bail out.
2643    CommonValue = Incoming;
2644  }
2645
2646  // If CommonValue is null then all of the incoming values were either undef or
2647  // equal to the phi node itself.
2648  if (!CommonValue)
2649    return UndefValue::get(PN->getType());
2650
2651  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2652  // instruction, we cannot return X as the result of the PHI node unless it
2653  // dominates the PHI block.
2654  if (HasUndefInput)
2655    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2656
2657  return CommonValue;
2658}
2659
2660static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2661  if (Constant *C = dyn_cast<Constant>(Op))
2662    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2663
2664  return 0;
2665}
2666
2667Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
2668                               const TargetLibraryInfo *TLI,
2669                               const DominatorTree *DT) {
2670  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2671}
2672
2673//=== Helper functions for higher up the class hierarchy.
2674
2675/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2676/// fold the result.  If not, this returns null.
2677static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2678                            const Query &Q, unsigned MaxRecurse) {
2679  switch (Opcode) {
2680  case Instruction::Add:
2681    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2682                           Q, MaxRecurse);
2683  case Instruction::Sub:
2684    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2685                           Q, MaxRecurse);
2686  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2687  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2688  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2689  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2690  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2691  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2692  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2693  case Instruction::Shl:
2694    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2695                           Q, MaxRecurse);
2696  case Instruction::LShr:
2697    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2698  case Instruction::AShr:
2699    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2700  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2701  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2702  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2703  default:
2704    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2705      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2706        Constant *COps[] = {CLHS, CRHS};
2707        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2708                                        Q.TLI);
2709      }
2710
2711    // If the operation is associative, try some generic simplifications.
2712    if (Instruction::isAssociative(Opcode))
2713      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2714        return V;
2715
2716    // If the operation is with the result of a select instruction check whether
2717    // operating on either branch of the select always yields the same value.
2718    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2719      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2720        return V;
2721
2722    // If the operation is with the result of a phi instruction, check whether
2723    // operating on all incoming values of the phi always yields the same value.
2724    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2725      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2726        return V;
2727
2728    return 0;
2729  }
2730}
2731
2732Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2733                           const TargetData *TD, const TargetLibraryInfo *TLI,
2734                           const DominatorTree *DT) {
2735  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2736}
2737
2738/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2739/// fold the result.
2740static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2741                              const Query &Q, unsigned MaxRecurse) {
2742  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2743    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2744  return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2745}
2746
2747Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2748                             const TargetData *TD, const TargetLibraryInfo *TLI,
2749                             const DominatorTree *DT) {
2750  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2751                           RecursionLimit);
2752}
2753
2754static Value *SimplifyCallInst(CallInst *CI, const Query &) {
2755  // call undef -> undef
2756  if (isa<UndefValue>(CI->getCalledValue()))
2757    return UndefValue::get(CI->getType());
2758
2759  return 0;
2760}
2761
2762/// SimplifyInstruction - See if we can compute a simplified version of this
2763/// instruction.  If not, this returns null.
2764Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2765                                 const TargetLibraryInfo *TLI,
2766                                 const DominatorTree *DT) {
2767  Value *Result;
2768
2769  switch (I->getOpcode()) {
2770  default:
2771    Result = ConstantFoldInstruction(I, TD, TLI);
2772    break;
2773  case Instruction::Add:
2774    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2775                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2776                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2777                             TD, TLI, DT);
2778    break;
2779  case Instruction::Sub:
2780    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2781                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2782                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2783                             TD, TLI, DT);
2784    break;
2785  case Instruction::Mul:
2786    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2787    break;
2788  case Instruction::SDiv:
2789    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2790    break;
2791  case Instruction::UDiv:
2792    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2793    break;
2794  case Instruction::FDiv:
2795    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2796    break;
2797  case Instruction::SRem:
2798    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2799    break;
2800  case Instruction::URem:
2801    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2802    break;
2803  case Instruction::FRem:
2804    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2805    break;
2806  case Instruction::Shl:
2807    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2808                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2809                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2810                             TD, TLI, DT);
2811    break;
2812  case Instruction::LShr:
2813    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2814                              cast<BinaryOperator>(I)->isExact(),
2815                              TD, TLI, DT);
2816    break;
2817  case Instruction::AShr:
2818    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2819                              cast<BinaryOperator>(I)->isExact(),
2820                              TD, TLI, DT);
2821    break;
2822  case Instruction::And:
2823    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2824    break;
2825  case Instruction::Or:
2826    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2827    break;
2828  case Instruction::Xor:
2829    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2830    break;
2831  case Instruction::ICmp:
2832    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2833                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2834    break;
2835  case Instruction::FCmp:
2836    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2837                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2838    break;
2839  case Instruction::Select:
2840    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2841                                I->getOperand(2), TD, TLI, DT);
2842    break;
2843  case Instruction::GetElementPtr: {
2844    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2845    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
2846    break;
2847  }
2848  case Instruction::InsertValue: {
2849    InsertValueInst *IV = cast<InsertValueInst>(I);
2850    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2851                                     IV->getInsertedValueOperand(),
2852                                     IV->getIndices(), TD, TLI, DT);
2853    break;
2854  }
2855  case Instruction::PHI:
2856    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
2857    break;
2858  case Instruction::Call:
2859    Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
2860    break;
2861  case Instruction::Trunc:
2862    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2863    break;
2864  }
2865
2866  /// If called on unreachable code, the above logic may report that the
2867  /// instruction simplified to itself.  Make life easier for users by
2868  /// detecting that case here, returning a safe value instead.
2869  return Result == I ? UndefValue::get(I->getType()) : Result;
2870}
2871
2872/// \brief Implementation of recursive simplification through an instructions
2873/// uses.
2874///
2875/// This is the common implementation of the recursive simplification routines.
2876/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
2877/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
2878/// instructions to process and attempt to simplify it using
2879/// InstructionSimplify.
2880///
2881/// This routine returns 'true' only when *it* simplifies something. The passed
2882/// in simplified value does not count toward this.
2883static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
2884                                              const TargetData *TD,
2885                                              const TargetLibraryInfo *TLI,
2886                                              const DominatorTree *DT) {
2887  bool Simplified = false;
2888  SmallSetVector<Instruction *, 8> Worklist;
2889
2890  // If we have an explicit value to collapse to, do that round of the
2891  // simplification loop by hand initially.
2892  if (SimpleV) {
2893    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2894         ++UI)
2895      if (*UI != I)
2896        Worklist.insert(cast<Instruction>(*UI));
2897
2898    // Replace the instruction with its simplified value.
2899    I->replaceAllUsesWith(SimpleV);
2900
2901    // Gracefully handle edge cases where the instruction is not wired into any
2902    // parent block.
2903    if (I->getParent())
2904      I->eraseFromParent();
2905  } else {
2906    Worklist.insert(I);
2907  }
2908
2909  // Note that we must test the size on each iteration, the worklist can grow.
2910  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
2911    I = Worklist[Idx];
2912
2913    // See if this instruction simplifies.
2914    SimpleV = SimplifyInstruction(I, TD, TLI, DT);
2915    if (!SimpleV)
2916      continue;
2917
2918    Simplified = true;
2919
2920    // Stash away all the uses of the old instruction so we can check them for
2921    // recursive simplifications after a RAUW. This is cheaper than checking all
2922    // uses of To on the recursive step in most cases.
2923    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2924         ++UI)
2925      Worklist.insert(cast<Instruction>(*UI));
2926
2927    // Replace the instruction with its simplified value.
2928    I->replaceAllUsesWith(SimpleV);
2929
2930    // Gracefully handle edge cases where the instruction is not wired into any
2931    // parent block.
2932    if (I->getParent())
2933      I->eraseFromParent();
2934  }
2935  return Simplified;
2936}
2937
2938bool llvm::recursivelySimplifyInstruction(Instruction *I,
2939                                          const TargetData *TD,
2940                                          const TargetLibraryInfo *TLI,
2941                                          const DominatorTree *DT) {
2942  return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
2943}
2944
2945bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
2946                                         const TargetData *TD,
2947                                         const TargetLibraryInfo *TLI,
2948                                         const DominatorTree *DT) {
2949  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
2950  assert(SimpleV && "Must provide a simplified value.");
2951  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
2952}
2953