1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/ConstantRange.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/PatternMatch.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include <cstring>
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0).  For vector types, returns the element type's bitwidth.
39static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
40  if (unsigned BitWidth = Ty->getScalarSizeInBits())
41    return BitWidth;
42  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43  return TD ? TD->getPointerSizeInBits() : 0;
44}
45
46static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47                                    APInt &KnownZero, APInt &KnownOne,
48                                    APInt &KnownZero2, APInt &KnownOne2,
49                                    const TargetData *TD, unsigned Depth) {
50  if (!Add) {
51    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52      // We know that the top bits of C-X are clear if X contains less bits
53      // than C (i.e. no wrap-around can happen).  For example, 20-X is
54      // positive if we can prove that X is >= 0 and < 16.
55      if (!CLHS->getValue().isNegative()) {
56        unsigned BitWidth = KnownZero.getBitWidth();
57        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58        // NLZ can't be BitWidth with no sign bit
59        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62        // If all of the MaskV bits are known to be zero, then we know the
63        // output top bits are zero, because we now know that the output is
64        // from [0-C].
65        if ((KnownZero2 & MaskV) == MaskV) {
66          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67          // Top bits known zero.
68          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69        }
70      }
71    }
72  }
73
74  unsigned BitWidth = KnownZero.getBitWidth();
75
76  // If one of the operands has trailing zeros, then the bits that the
77  // other operand has in those bit positions will be preserved in the
78  // result. For an add, this works with either operand. For a subtract,
79  // this only works if the known zeros are in the right operand.
80  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82  assert((LHSKnownZero & LHSKnownOne) == 0 &&
83         "Bits known to be one AND zero?");
84  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90  // Determine which operand has more trailing zeros, and use that
91  // many bits from the other operand.
92  if (LHSKnownZeroOut > RHSKnownZeroOut) {
93    if (Add) {
94      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95      KnownZero |= KnownZero2 & Mask;
96      KnownOne  |= KnownOne2 & Mask;
97    } else {
98      // If the known zeros are in the left operand for a subtract,
99      // fall back to the minimum known zeros in both operands.
100      KnownZero |= APInt::getLowBitsSet(BitWidth,
101                                        std::min(LHSKnownZeroOut,
102                                                 RHSKnownZeroOut));
103    }
104  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106    KnownZero |= LHSKnownZero & Mask;
107    KnownOne  |= LHSKnownOne & Mask;
108  }
109
110  // Are we still trying to solve for the sign bit?
111  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112    if (NSW) {
113      if (Add) {
114        // Adding two positive numbers can't wrap into negative
115        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116          KnownZero |= APInt::getSignBit(BitWidth);
117        // and adding two negative numbers can't wrap into positive.
118        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119          KnownOne |= APInt::getSignBit(BitWidth);
120      } else {
121        // Subtracting a negative number from a positive one can't wrap
122        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123          KnownZero |= APInt::getSignBit(BitWidth);
124        // neither can subtracting a positive number from a negative one.
125        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126          KnownOne |= APInt::getSignBit(BitWidth);
127      }
128    }
129  }
130}
131
132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133                                 APInt &KnownZero, APInt &KnownOne,
134                                 APInt &KnownZero2, APInt &KnownOne2,
135                                 const TargetData *TD, unsigned Depth) {
136  unsigned BitWidth = KnownZero.getBitWidth();
137  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142  bool isKnownNegative = false;
143  bool isKnownNonNegative = false;
144  // If the multiplication is known not to overflow, compute the sign bit.
145  if (NSW) {
146    if (Op0 == Op1) {
147      // The product of a number with itself is non-negative.
148      isKnownNonNegative = true;
149    } else {
150      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152      bool isKnownNegativeOp1 = KnownOne.isNegative();
153      bool isKnownNegativeOp0 = KnownOne2.isNegative();
154      // The product of two numbers with the same sign is non-negative.
155      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157      // The product of a negative number and a non-negative number is either
158      // negative or zero.
159      if (!isKnownNonNegative)
160        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161                           isKnownNonZero(Op0, TD, Depth)) ||
162                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163                           isKnownNonZero(Op1, TD, Depth));
164    }
165  }
166
167  // If low bits are zero in either operand, output low known-0 bits.
168  // Also compute a conserative estimate for high known-0 bits.
169  // More trickiness is possible, but this is sufficient for the
170  // interesting case of alignment computation.
171  KnownOne.clearAllBits();
172  unsigned TrailZ = KnownZero.countTrailingOnes() +
173                    KnownZero2.countTrailingOnes();
174  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175                             KnownZero2.countLeadingOnes(),
176                             BitWidth) - BitWidth;
177
178  TrailZ = std::min(TrailZ, BitWidth);
179  LeadZ = std::min(LeadZ, BitWidth);
180  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181              APInt::getHighBitsSet(BitWidth, LeadZ);
182
183  // Only make use of no-wrap flags if we failed to compute the sign bit
184  // directly.  This matters if the multiplication always overflows, in
185  // which case we prefer to follow the result of the direct computation,
186  // though as the program is invoking undefined behaviour we can choose
187  // whatever we like here.
188  if (isKnownNonNegative && !KnownOne.isNegative())
189    KnownZero.setBit(BitWidth - 1);
190  else if (isKnownNegative && !KnownZero.isNegative())
191    KnownOne.setBit(BitWidth - 1);
192}
193
194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195  unsigned BitWidth = KnownZero.getBitWidth();
196  unsigned NumRanges = Ranges.getNumOperands() / 2;
197  assert(NumRanges >= 1);
198
199  // Use the high end of the ranges to find leading zeros.
200  unsigned MinLeadingZeros = BitWidth;
201  for (unsigned i = 0; i < NumRanges; ++i) {
202    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204    ConstantRange Range(Lower->getValue(), Upper->getValue());
205    if (Range.isWrappedSet())
206      MinLeadingZeros = 0; // -1 has no zeros
207    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209  }
210
211  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212}
213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
216/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero.  If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers.  In the case
225/// where V is a vector, known zero, and known one values are the
226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229                             const TargetData *TD, unsigned Depth) {
230  assert(V && "No Value?");
231  assert(Depth <= MaxDepth && "Limit Search Depth");
232  unsigned BitWidth = KnownZero.getBitWidth();
233
234  assert((V->getType()->isIntOrIntVectorTy() ||
235          V->getType()->getScalarType()->isPointerTy()) &&
236         "Not integer or pointer type!");
237  assert((!TD ||
238          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239         (!V->getType()->isIntOrIntVectorTy() ||
240          V->getType()->getScalarSizeInBits() == BitWidth) &&
241         KnownZero.getBitWidth() == BitWidth &&
242         KnownOne.getBitWidth() == BitWidth &&
243         "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246    // We know all of the bits for a constant!
247    KnownOne = CI->getValue();
248    KnownZero = ~KnownOne;
249    return;
250  }
251  // Null and aggregate-zero are all-zeros.
252  if (isa<ConstantPointerNull>(V) ||
253      isa<ConstantAggregateZero>(V)) {
254    KnownOne.clearAllBits();
255    KnownZero = APInt::getAllOnesValue(BitWidth);
256    return;
257  }
258  // Handle a constant vector by taking the intersection of the known bits of
259  // each element.  There is no real need to handle ConstantVector here, because
260  // we don't handle undef in any particularly useful way.
261  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262    // We know that CDS must be a vector of integers. Take the intersection of
263    // each element.
264    KnownZero.setAllBits(); KnownOne.setAllBits();
265    APInt Elt(KnownZero.getBitWidth(), 0);
266    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267      Elt = CDS->getElementAsInteger(i);
268      KnownZero &= ~Elt;
269      KnownOne &= Elt;
270    }
271    return;
272  }
273
274  // The address of an aligned GlobalValue has trailing zeros.
275  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276    unsigned Align = GV->getAlignment();
277    if (Align == 0 && TD) {
278      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279        Type *ObjectType = GVar->getType()->getElementType();
280        if (ObjectType->isSized()) {
281          // If the object is defined in the current Module, we'll be giving
282          // it the preferred alignment. Otherwise, we have to assume that it
283          // may only have the minimum ABI alignment.
284          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285            Align = TD->getPreferredAlignment(GVar);
286          else
287            Align = TD->getABITypeAlignment(ObjectType);
288        }
289      }
290    }
291    if (Align > 0)
292      KnownZero = APInt::getLowBitsSet(BitWidth,
293                                       CountTrailingZeros_32(Align));
294    else
295      KnownZero.clearAllBits();
296    KnownOne.clearAllBits();
297    return;
298  }
299  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300  // the bits of its aliasee.
301  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302    if (GA->mayBeOverridden()) {
303      KnownZero.clearAllBits(); KnownOne.clearAllBits();
304    } else {
305      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306    }
307    return;
308  }
309
310  if (Argument *A = dyn_cast<Argument>(V)) {
311    // Get alignment information off byval arguments if specified in the IR.
312    if (A->hasByValAttr())
313      if (unsigned Align = A->getParamAlignment())
314        KnownZero = APInt::getLowBitsSet(BitWidth,
315                                         CountTrailingZeros_32(Align));
316    return;
317  }
318
319  // Start out not knowing anything.
320  KnownZero.clearAllBits(); KnownOne.clearAllBits();
321
322  if (Depth == MaxDepth)
323    return;  // Limit search depth.
324
325  Operator *I = dyn_cast<Operator>(V);
326  if (!I) return;
327
328  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
329  switch (I->getOpcode()) {
330  default: break;
331  case Instruction::Load:
332    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
333      computeMaskedBitsLoad(*MD, KnownZero);
334    return;
335  case Instruction::And: {
336    // If either the LHS or the RHS are Zero, the result is zero.
337    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
338    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
339    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
340    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
341
342    // Output known-1 bits are only known if set in both the LHS & RHS.
343    KnownOne &= KnownOne2;
344    // Output known-0 are known to be clear if zero in either the LHS | RHS.
345    KnownZero |= KnownZero2;
346    return;
347  }
348  case Instruction::Or: {
349    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
350    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
351    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
352    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
353
354    // Output known-0 bits are only known if clear in both the LHS & RHS.
355    KnownZero &= KnownZero2;
356    // Output known-1 are known to be set if set in either the LHS | RHS.
357    KnownOne |= KnownOne2;
358    return;
359  }
360  case Instruction::Xor: {
361    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
362    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
363    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
364    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
365
366    // Output known-0 bits are known if clear or set in both the LHS & RHS.
367    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
368    // Output known-1 are known to be set if set in only one of the LHS, RHS.
369    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
370    KnownZero = KnownZeroOut;
371    return;
372  }
373  case Instruction::Mul: {
374    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
375    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
376                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
377    break;
378  }
379  case Instruction::UDiv: {
380    // For the purposes of computing leading zeros we can conservatively
381    // treat a udiv as a logical right shift by the power of 2 known to
382    // be less than the denominator.
383    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
384    unsigned LeadZ = KnownZero2.countLeadingOnes();
385
386    KnownOne2.clearAllBits();
387    KnownZero2.clearAllBits();
388    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
389    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
390    if (RHSUnknownLeadingOnes != BitWidth)
391      LeadZ = std::min(BitWidth,
392                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
393
394    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
395    return;
396  }
397  case Instruction::Select:
398    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
399    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
400                      Depth+1);
401    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
402    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
403
404    // Only known if known in both the LHS and RHS.
405    KnownOne &= KnownOne2;
406    KnownZero &= KnownZero2;
407    return;
408  case Instruction::FPTrunc:
409  case Instruction::FPExt:
410  case Instruction::FPToUI:
411  case Instruction::FPToSI:
412  case Instruction::SIToFP:
413  case Instruction::UIToFP:
414    return; // Can't work with floating point.
415  case Instruction::PtrToInt:
416  case Instruction::IntToPtr:
417    // We can't handle these if we don't know the pointer size.
418    if (!TD) return;
419    // FALL THROUGH and handle them the same as zext/trunc.
420  case Instruction::ZExt:
421  case Instruction::Trunc: {
422    Type *SrcTy = I->getOperand(0)->getType();
423
424    unsigned SrcBitWidth;
425    // Note that we handle pointer operands here because of inttoptr/ptrtoint
426    // which fall through here.
427    if (SrcTy->isPointerTy())
428      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
429    else
430      SrcBitWidth = SrcTy->getScalarSizeInBits();
431
432    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
433    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
434    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
435    KnownZero = KnownZero.zextOrTrunc(BitWidth);
436    KnownOne = KnownOne.zextOrTrunc(BitWidth);
437    // Any top bits are known to be zero.
438    if (BitWidth > SrcBitWidth)
439      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
440    return;
441  }
442  case Instruction::BitCast: {
443    Type *SrcTy = I->getOperand(0)->getType();
444    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
445        // TODO: For now, not handling conversions like:
446        // (bitcast i64 %x to <2 x i32>)
447        !I->getType()->isVectorTy()) {
448      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
449      return;
450    }
451    break;
452  }
453  case Instruction::SExt: {
454    // Compute the bits in the result that are not present in the input.
455    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
456
457    KnownZero = KnownZero.trunc(SrcBitWidth);
458    KnownOne = KnownOne.trunc(SrcBitWidth);
459    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
460    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461    KnownZero = KnownZero.zext(BitWidth);
462    KnownOne = KnownOne.zext(BitWidth);
463
464    // If the sign bit of the input is known set or clear, then we know the
465    // top bits of the result.
466    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
467      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
468    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
469      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
470    return;
471  }
472  case Instruction::Shl:
473    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
474    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
475      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
476      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
477      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
478      KnownZero <<= ShiftAmt;
479      KnownOne  <<= ShiftAmt;
480      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
481      return;
482    }
483    break;
484  case Instruction::LShr:
485    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
486    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487      // Compute the new bits that are at the top now.
488      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
489
490      // Unsigned shift right.
491      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
492      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
494      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
495      // high bits known zero.
496      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
497      return;
498    }
499    break;
500  case Instruction::AShr:
501    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
502    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
503      // Compute the new bits that are at the top now.
504      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
505
506      // Signed shift right.
507      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
508      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
509      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
510      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
511
512      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
513      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
514        KnownZero |= HighBits;
515      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
516        KnownOne |= HighBits;
517      return;
518    }
519    break;
520  case Instruction::Sub: {
521    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
522    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
523                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
524                            Depth);
525    break;
526  }
527  case Instruction::Add: {
528    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
529    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
530                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531                            Depth);
532    break;
533  }
534  case Instruction::SRem:
535    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
536      APInt RA = Rem->getValue().abs();
537      if (RA.isPowerOf2()) {
538        APInt LowBits = RA - 1;
539        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
540
541        // The low bits of the first operand are unchanged by the srem.
542        KnownZero = KnownZero2 & LowBits;
543        KnownOne = KnownOne2 & LowBits;
544
545        // If the first operand is non-negative or has all low bits zero, then
546        // the upper bits are all zero.
547        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
548          KnownZero |= ~LowBits;
549
550        // If the first operand is negative and not all low bits are zero, then
551        // the upper bits are all one.
552        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
553          KnownOne |= ~LowBits;
554
555        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556      }
557    }
558
559    // The sign bit is the LHS's sign bit, except when the result of the
560    // remainder is zero.
561    if (KnownZero.isNonNegative()) {
562      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
563      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
564                        Depth+1);
565      // If it's known zero, our sign bit is also zero.
566      if (LHSKnownZero.isNegative())
567        KnownZero.setBit(BitWidth - 1);
568    }
569
570    break;
571  case Instruction::URem: {
572    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
573      APInt RA = Rem->getValue();
574      if (RA.isPowerOf2()) {
575        APInt LowBits = (RA - 1);
576        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
577                          Depth+1);
578        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
579        KnownZero |= ~LowBits;
580        KnownOne &= LowBits;
581        break;
582      }
583    }
584
585    // Since the result is less than or equal to either operand, any leading
586    // zero bits in either operand must also exist in the result.
587    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
588    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
589
590    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
591                                KnownZero2.countLeadingOnes());
592    KnownOne.clearAllBits();
593    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
594    break;
595  }
596
597  case Instruction::Alloca: {
598    AllocaInst *AI = cast<AllocaInst>(V);
599    unsigned Align = AI->getAlignment();
600    if (Align == 0 && TD)
601      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
602
603    if (Align > 0)
604      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
605    break;
606  }
607  case Instruction::GetElementPtr: {
608    // Analyze all of the subscripts of this getelementptr instruction
609    // to determine if we can prove known low zero bits.
610    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
611    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
612                      Depth+1);
613    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
614
615    gep_type_iterator GTI = gep_type_begin(I);
616    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
617      Value *Index = I->getOperand(i);
618      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
619        // Handle struct member offset arithmetic.
620        if (!TD) return;
621        const StructLayout *SL = TD->getStructLayout(STy);
622        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
623        uint64_t Offset = SL->getElementOffset(Idx);
624        TrailZ = std::min(TrailZ,
625                          CountTrailingZeros_64(Offset));
626      } else {
627        // Handle array index arithmetic.
628        Type *IndexedTy = GTI.getIndexedType();
629        if (!IndexedTy->isSized()) return;
630        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
631        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
632        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
633        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
634        TrailZ = std::min(TrailZ,
635                          unsigned(CountTrailingZeros_64(TypeSize) +
636                                   LocalKnownZero.countTrailingOnes()));
637      }
638    }
639
640    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
641    break;
642  }
643  case Instruction::PHI: {
644    PHINode *P = cast<PHINode>(I);
645    // Handle the case of a simple two-predecessor recurrence PHI.
646    // There's a lot more that could theoretically be done here, but
647    // this is sufficient to catch some interesting cases.
648    if (P->getNumIncomingValues() == 2) {
649      for (unsigned i = 0; i != 2; ++i) {
650        Value *L = P->getIncomingValue(i);
651        Value *R = P->getIncomingValue(!i);
652        Operator *LU = dyn_cast<Operator>(L);
653        if (!LU)
654          continue;
655        unsigned Opcode = LU->getOpcode();
656        // Check for operations that have the property that if
657        // both their operands have low zero bits, the result
658        // will have low zero bits.
659        if (Opcode == Instruction::Add ||
660            Opcode == Instruction::Sub ||
661            Opcode == Instruction::And ||
662            Opcode == Instruction::Or ||
663            Opcode == Instruction::Mul) {
664          Value *LL = LU->getOperand(0);
665          Value *LR = LU->getOperand(1);
666          // Find a recurrence.
667          if (LL == I)
668            L = LR;
669          else if (LR == I)
670            L = LL;
671          else
672            break;
673          // Ok, we have a PHI of the form L op= R. Check for low
674          // zero bits.
675          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
676
677          // We need to take the minimum number of known bits
678          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
679          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
680
681          KnownZero = APInt::getLowBitsSet(BitWidth,
682                                           std::min(KnownZero2.countTrailingOnes(),
683                                                    KnownZero3.countTrailingOnes()));
684          break;
685        }
686      }
687    }
688
689    // Unreachable blocks may have zero-operand PHI nodes.
690    if (P->getNumIncomingValues() == 0)
691      return;
692
693    // Otherwise take the unions of the known bit sets of the operands,
694    // taking conservative care to avoid excessive recursion.
695    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
696      // Skip if every incoming value references to ourself.
697      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
698        break;
699
700      KnownZero = APInt::getAllOnesValue(BitWidth);
701      KnownOne = APInt::getAllOnesValue(BitWidth);
702      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
703        // Skip direct self references.
704        if (P->getIncomingValue(i) == P) continue;
705
706        KnownZero2 = APInt(BitWidth, 0);
707        KnownOne2 = APInt(BitWidth, 0);
708        // Recurse, but cap the recursion to one level, because we don't
709        // want to waste time spinning around in loops.
710        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
711                          MaxDepth-1);
712        KnownZero &= KnownZero2;
713        KnownOne &= KnownOne2;
714        // If all bits have been ruled out, there's no need to check
715        // more operands.
716        if (!KnownZero && !KnownOne)
717          break;
718      }
719    }
720    break;
721  }
722  case Instruction::Call:
723    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
724      switch (II->getIntrinsicID()) {
725      default: break;
726      case Intrinsic::ctlz:
727      case Intrinsic::cttz: {
728        unsigned LowBits = Log2_32(BitWidth)+1;
729        // If this call is undefined for 0, the result will be less than 2^n.
730        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
731          LowBits -= 1;
732        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
733        break;
734      }
735      case Intrinsic::ctpop: {
736        unsigned LowBits = Log2_32(BitWidth)+1;
737        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
738        break;
739      }
740      case Intrinsic::x86_sse42_crc32_64_8:
741      case Intrinsic::x86_sse42_crc32_64_64:
742        KnownZero = APInt::getHighBitsSet(64, 32);
743        break;
744      }
745    }
746    break;
747  case Instruction::ExtractValue:
748    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
749      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
750      if (EVI->getNumIndices() != 1) break;
751      if (EVI->getIndices()[0] == 0) {
752        switch (II->getIntrinsicID()) {
753        default: break;
754        case Intrinsic::uadd_with_overflow:
755        case Intrinsic::sadd_with_overflow:
756          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
757                                  II->getArgOperand(1), false, KnownZero,
758                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
759          break;
760        case Intrinsic::usub_with_overflow:
761        case Intrinsic::ssub_with_overflow:
762          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
763                                  II->getArgOperand(1), false, KnownZero,
764                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
765          break;
766        case Intrinsic::umul_with_overflow:
767        case Intrinsic::smul_with_overflow:
768          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
769                               false, KnownZero, KnownOne,
770                               KnownZero2, KnownOne2, TD, Depth);
771          break;
772        }
773      }
774    }
775  }
776}
777
778/// ComputeSignBit - Determine whether the sign bit is known to be zero or
779/// one.  Convenience wrapper around ComputeMaskedBits.
780void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
781                          const TargetData *TD, unsigned Depth) {
782  unsigned BitWidth = getBitWidth(V->getType(), TD);
783  if (!BitWidth) {
784    KnownZero = false;
785    KnownOne = false;
786    return;
787  }
788  APInt ZeroBits(BitWidth, 0);
789  APInt OneBits(BitWidth, 0);
790  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
791  KnownOne = OneBits[BitWidth - 1];
792  KnownZero = ZeroBits[BitWidth - 1];
793}
794
795/// isPowerOfTwo - Return true if the given value is known to have exactly one
796/// bit set when defined. For vectors return true if every element is known to
797/// be a power of two when defined.  Supports values with integer or pointer
798/// types and vectors of integers.
799bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
800                        unsigned Depth) {
801  if (Constant *C = dyn_cast<Constant>(V)) {
802    if (C->isNullValue())
803      return OrZero;
804    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
805      return CI->getValue().isPowerOf2();
806    // TODO: Handle vector constants.
807  }
808
809  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
810  // it is shifted off the end then the result is undefined.
811  if (match(V, m_Shl(m_One(), m_Value())))
812    return true;
813
814  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
815  // bottom.  If it is shifted off the bottom then the result is undefined.
816  if (match(V, m_LShr(m_SignBit(), m_Value())))
817    return true;
818
819  // The remaining tests are all recursive, so bail out if we hit the limit.
820  if (Depth++ == MaxDepth)
821    return false;
822
823  Value *X = 0, *Y = 0;
824  // A shift of a power of two is a power of two or zero.
825  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
826                 match(V, m_Shr(m_Value(X), m_Value()))))
827    return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
828
829  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
830    return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
831
832  if (SelectInst *SI = dyn_cast<SelectInst>(V))
833    return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
834      isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
835
836  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
837    // A power of two and'd with anything is a power of two or zero.
838    if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
839        isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
840      return true;
841    // X & (-X) is always a power of two or zero.
842    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
843      return true;
844    return false;
845  }
846
847  // An exact divide or right shift can only shift off zero bits, so the result
848  // is a power of two only if the first operand is a power of two and not
849  // copying a sign bit (sdiv int_min, 2).
850  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
851      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
852    return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
853  }
854
855  return false;
856}
857
858/// isKnownNonZero - Return true if the given value is known to be non-zero
859/// when defined.  For vectors return true if every element is known to be
860/// non-zero when defined.  Supports values with integer or pointer type and
861/// vectors of integers.
862bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
863  if (Constant *C = dyn_cast<Constant>(V)) {
864    if (C->isNullValue())
865      return false;
866    if (isa<ConstantInt>(C))
867      // Must be non-zero due to null test above.
868      return true;
869    // TODO: Handle vectors
870    return false;
871  }
872
873  // The remaining tests are all recursive, so bail out if we hit the limit.
874  if (Depth++ >= MaxDepth)
875    return false;
876
877  unsigned BitWidth = getBitWidth(V->getType(), TD);
878
879  // X | Y != 0 if X != 0 or Y != 0.
880  Value *X = 0, *Y = 0;
881  if (match(V, m_Or(m_Value(X), m_Value(Y))))
882    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
883
884  // ext X != 0 if X != 0.
885  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
886    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
887
888  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
889  // if the lowest bit is shifted off the end.
890  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
891    // shl nuw can't remove any non-zero bits.
892    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
893    if (BO->hasNoUnsignedWrap())
894      return isKnownNonZero(X, TD, Depth);
895
896    APInt KnownZero(BitWidth, 0);
897    APInt KnownOne(BitWidth, 0);
898    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
899    if (KnownOne[0])
900      return true;
901  }
902  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
903  // defined if the sign bit is shifted off the end.
904  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
905    // shr exact can only shift out zero bits.
906    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
907    if (BO->isExact())
908      return isKnownNonZero(X, TD, Depth);
909
910    bool XKnownNonNegative, XKnownNegative;
911    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
912    if (XKnownNegative)
913      return true;
914  }
915  // div exact can only produce a zero if the dividend is zero.
916  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
917    return isKnownNonZero(X, TD, Depth);
918  }
919  // X + Y.
920  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
921    bool XKnownNonNegative, XKnownNegative;
922    bool YKnownNonNegative, YKnownNegative;
923    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
924    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
925
926    // If X and Y are both non-negative (as signed values) then their sum is not
927    // zero unless both X and Y are zero.
928    if (XKnownNonNegative && YKnownNonNegative)
929      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
930        return true;
931
932    // If X and Y are both negative (as signed values) then their sum is not
933    // zero unless both X and Y equal INT_MIN.
934    if (BitWidth && XKnownNegative && YKnownNegative) {
935      APInt KnownZero(BitWidth, 0);
936      APInt KnownOne(BitWidth, 0);
937      APInt Mask = APInt::getSignedMaxValue(BitWidth);
938      // The sign bit of X is set.  If some other bit is set then X is not equal
939      // to INT_MIN.
940      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
941      if ((KnownOne & Mask) != 0)
942        return true;
943      // The sign bit of Y is set.  If some other bit is set then Y is not equal
944      // to INT_MIN.
945      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
946      if ((KnownOne & Mask) != 0)
947        return true;
948    }
949
950    // The sum of a non-negative number and a power of two is not zero.
951    if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
952      return true;
953    if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
954      return true;
955  }
956  // X * Y.
957  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
958    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
959    // If X and Y are non-zero then so is X * Y as long as the multiplication
960    // does not overflow.
961    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
962        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
963      return true;
964  }
965  // (C ? X : Y) != 0 if X != 0 and Y != 0.
966  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
967    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
968        isKnownNonZero(SI->getFalseValue(), TD, Depth))
969      return true;
970  }
971
972  if (!BitWidth) return false;
973  APInt KnownZero(BitWidth, 0);
974  APInt KnownOne(BitWidth, 0);
975  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
976  return KnownOne != 0;
977}
978
979/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
980/// this predicate to simplify operations downstream.  Mask is known to be zero
981/// for bits that V cannot have.
982///
983/// This function is defined on values with integer type, values with pointer
984/// type (but only if TD is non-null), and vectors of integers.  In the case
985/// where V is a vector, the mask, known zero, and known one values are the
986/// same width as the vector element, and the bit is set only if it is true
987/// for all of the elements in the vector.
988bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
989                             const TargetData *TD, unsigned Depth) {
990  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
991  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
992  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
993  return (KnownZero & Mask) == Mask;
994}
995
996
997
998/// ComputeNumSignBits - Return the number of times the sign bit of the
999/// register is replicated into the other bits.  We know that at least 1 bit
1000/// is always equal to the sign bit (itself), but other cases can give us
1001/// information.  For example, immediately after an "ashr X, 2", we know that
1002/// the top 3 bits are all equal to each other, so we return 3.
1003///
1004/// 'Op' must have a scalar integer type.
1005///
1006unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
1007                                  unsigned Depth) {
1008  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1009         "ComputeNumSignBits requires a TargetData object to operate "
1010         "on non-integer values!");
1011  Type *Ty = V->getType();
1012  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1013                         Ty->getScalarSizeInBits();
1014  unsigned Tmp, Tmp2;
1015  unsigned FirstAnswer = 1;
1016
1017  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1018  // below.
1019
1020  if (Depth == 6)
1021    return 1;  // Limit search depth.
1022
1023  Operator *U = dyn_cast<Operator>(V);
1024  switch (Operator::getOpcode(V)) {
1025  default: break;
1026  case Instruction::SExt:
1027    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1028    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1029
1030  case Instruction::AShr: {
1031    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1032    // ashr X, C   -> adds C sign bits.  Vectors too.
1033    const APInt *ShAmt;
1034    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1035      Tmp += ShAmt->getZExtValue();
1036      if (Tmp > TyBits) Tmp = TyBits;
1037    }
1038    return Tmp;
1039  }
1040  case Instruction::Shl: {
1041    const APInt *ShAmt;
1042    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1043      // shl destroys sign bits.
1044      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1045      Tmp2 = ShAmt->getZExtValue();
1046      if (Tmp2 >= TyBits ||      // Bad shift.
1047          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1048      return Tmp - Tmp2;
1049    }
1050    break;
1051  }
1052  case Instruction::And:
1053  case Instruction::Or:
1054  case Instruction::Xor:    // NOT is handled here.
1055    // Logical binary ops preserve the number of sign bits at the worst.
1056    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1057    if (Tmp != 1) {
1058      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1059      FirstAnswer = std::min(Tmp, Tmp2);
1060      // We computed what we know about the sign bits as our first
1061      // answer. Now proceed to the generic code that uses
1062      // ComputeMaskedBits, and pick whichever answer is better.
1063    }
1064    break;
1065
1066  case Instruction::Select:
1067    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1068    if (Tmp == 1) return 1;  // Early out.
1069    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1070    return std::min(Tmp, Tmp2);
1071
1072  case Instruction::Add:
1073    // Add can have at most one carry bit.  Thus we know that the output
1074    // is, at worst, one more bit than the inputs.
1075    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1076    if (Tmp == 1) return 1;  // Early out.
1077
1078    // Special case decrementing a value (ADD X, -1):
1079    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1080      if (CRHS->isAllOnesValue()) {
1081        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1082        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1083
1084        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1085        // sign bits set.
1086        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1087          return TyBits;
1088
1089        // If we are subtracting one from a positive number, there is no carry
1090        // out of the result.
1091        if (KnownZero.isNegative())
1092          return Tmp;
1093      }
1094
1095    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1096    if (Tmp2 == 1) return 1;
1097    return std::min(Tmp, Tmp2)-1;
1098
1099  case Instruction::Sub:
1100    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1101    if (Tmp2 == 1) return 1;
1102
1103    // Handle NEG.
1104    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1105      if (CLHS->isNullValue()) {
1106        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1107        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1108        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1109        // sign bits set.
1110        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1111          return TyBits;
1112
1113        // If the input is known to be positive (the sign bit is known clear),
1114        // the output of the NEG has the same number of sign bits as the input.
1115        if (KnownZero.isNegative())
1116          return Tmp2;
1117
1118        // Otherwise, we treat this like a SUB.
1119      }
1120
1121    // Sub can have at most one carry bit.  Thus we know that the output
1122    // is, at worst, one more bit than the inputs.
1123    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1124    if (Tmp == 1) return 1;  // Early out.
1125    return std::min(Tmp, Tmp2)-1;
1126
1127  case Instruction::PHI: {
1128    PHINode *PN = cast<PHINode>(U);
1129    // Don't analyze large in-degree PHIs.
1130    if (PN->getNumIncomingValues() > 4) break;
1131
1132    // Take the minimum of all incoming values.  This can't infinitely loop
1133    // because of our depth threshold.
1134    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1135    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1136      if (Tmp == 1) return Tmp;
1137      Tmp = std::min(Tmp,
1138                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1139    }
1140    return Tmp;
1141  }
1142
1143  case Instruction::Trunc:
1144    // FIXME: it's tricky to do anything useful for this, but it is an important
1145    // case for targets like X86.
1146    break;
1147  }
1148
1149  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1150  // use this information.
1151  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1152  APInt Mask;
1153  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1154
1155  if (KnownZero.isNegative()) {        // sign bit is 0
1156    Mask = KnownZero;
1157  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1158    Mask = KnownOne;
1159  } else {
1160    // Nothing known.
1161    return FirstAnswer;
1162  }
1163
1164  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1165  // the number of identical bits in the top of the input value.
1166  Mask = ~Mask;
1167  Mask <<= Mask.getBitWidth()-TyBits;
1168  // Return # leading zeros.  We use 'min' here in case Val was zero before
1169  // shifting.  We don't want to return '64' as for an i32 "0".
1170  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1171}
1172
1173/// ComputeMultiple - This function computes the integer multiple of Base that
1174/// equals V.  If successful, it returns true and returns the multiple in
1175/// Multiple.  If unsuccessful, it returns false. It looks
1176/// through SExt instructions only if LookThroughSExt is true.
1177bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1178                           bool LookThroughSExt, unsigned Depth) {
1179  const unsigned MaxDepth = 6;
1180
1181  assert(V && "No Value?");
1182  assert(Depth <= MaxDepth && "Limit Search Depth");
1183  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1184
1185  Type *T = V->getType();
1186
1187  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1188
1189  if (Base == 0)
1190    return false;
1191
1192  if (Base == 1) {
1193    Multiple = V;
1194    return true;
1195  }
1196
1197  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1198  Constant *BaseVal = ConstantInt::get(T, Base);
1199  if (CO && CO == BaseVal) {
1200    // Multiple is 1.
1201    Multiple = ConstantInt::get(T, 1);
1202    return true;
1203  }
1204
1205  if (CI && CI->getZExtValue() % Base == 0) {
1206    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1207    return true;
1208  }
1209
1210  if (Depth == MaxDepth) return false;  // Limit search depth.
1211
1212  Operator *I = dyn_cast<Operator>(V);
1213  if (!I) return false;
1214
1215  switch (I->getOpcode()) {
1216  default: break;
1217  case Instruction::SExt:
1218    if (!LookThroughSExt) return false;
1219    // otherwise fall through to ZExt
1220  case Instruction::ZExt:
1221    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1222                           LookThroughSExt, Depth+1);
1223  case Instruction::Shl:
1224  case Instruction::Mul: {
1225    Value *Op0 = I->getOperand(0);
1226    Value *Op1 = I->getOperand(1);
1227
1228    if (I->getOpcode() == Instruction::Shl) {
1229      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1230      if (!Op1CI) return false;
1231      // Turn Op0 << Op1 into Op0 * 2^Op1
1232      APInt Op1Int = Op1CI->getValue();
1233      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1234      APInt API(Op1Int.getBitWidth(), 0);
1235      API.setBit(BitToSet);
1236      Op1 = ConstantInt::get(V->getContext(), API);
1237    }
1238
1239    Value *Mul0 = NULL;
1240    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1241      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1242        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1243          if (Op1C->getType()->getPrimitiveSizeInBits() <
1244              MulC->getType()->getPrimitiveSizeInBits())
1245            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1246          if (Op1C->getType()->getPrimitiveSizeInBits() >
1247              MulC->getType()->getPrimitiveSizeInBits())
1248            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1249
1250          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1251          Multiple = ConstantExpr::getMul(MulC, Op1C);
1252          return true;
1253        }
1254
1255      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1256        if (Mul0CI->getValue() == 1) {
1257          // V == Base * Op1, so return Op1
1258          Multiple = Op1;
1259          return true;
1260        }
1261    }
1262
1263    Value *Mul1 = NULL;
1264    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1265      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1266        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1267          if (Op0C->getType()->getPrimitiveSizeInBits() <
1268              MulC->getType()->getPrimitiveSizeInBits())
1269            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1270          if (Op0C->getType()->getPrimitiveSizeInBits() >
1271              MulC->getType()->getPrimitiveSizeInBits())
1272            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1273
1274          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1275          Multiple = ConstantExpr::getMul(MulC, Op0C);
1276          return true;
1277        }
1278
1279      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1280        if (Mul1CI->getValue() == 1) {
1281          // V == Base * Op0, so return Op0
1282          Multiple = Op0;
1283          return true;
1284        }
1285    }
1286  }
1287  }
1288
1289  // We could not determine if V is a multiple of Base.
1290  return false;
1291}
1292
1293/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1294/// value is never equal to -0.0.
1295///
1296/// NOTE: this function will need to be revisited when we support non-default
1297/// rounding modes!
1298///
1299bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1300  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1301    return !CFP->getValueAPF().isNegZero();
1302
1303  if (Depth == 6)
1304    return 1;  // Limit search depth.
1305
1306  const Operator *I = dyn_cast<Operator>(V);
1307  if (I == 0) return false;
1308
1309  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1310  if (I->getOpcode() == Instruction::FAdd &&
1311      isa<ConstantFP>(I->getOperand(1)) &&
1312      cast<ConstantFP>(I->getOperand(1))->isNullValue())
1313    return true;
1314
1315  // sitofp and uitofp turn into +0.0 for zero.
1316  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1317    return true;
1318
1319  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1320    // sqrt(-0.0) = -0.0, no other negative results are possible.
1321    if (II->getIntrinsicID() == Intrinsic::sqrt)
1322      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1323
1324  if (const CallInst *CI = dyn_cast<CallInst>(I))
1325    if (const Function *F = CI->getCalledFunction()) {
1326      if (F->isDeclaration()) {
1327        // abs(x) != -0.0
1328        if (F->getName() == "abs") return true;
1329        // fabs[lf](x) != -0.0
1330        if (F->getName() == "fabs") return true;
1331        if (F->getName() == "fabsf") return true;
1332        if (F->getName() == "fabsl") return true;
1333        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1334            F->getName() == "sqrtl")
1335          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1336      }
1337    }
1338
1339  return false;
1340}
1341
1342/// isBytewiseValue - If the specified value can be set by repeating the same
1343/// byte in memory, return the i8 value that it is represented with.  This is
1344/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1345/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1346/// byte store (e.g. i16 0x1234), return null.
1347Value *llvm::isBytewiseValue(Value *V) {
1348  // All byte-wide stores are splatable, even of arbitrary variables.
1349  if (V->getType()->isIntegerTy(8)) return V;
1350
1351  // Handle 'null' ConstantArrayZero etc.
1352  if (Constant *C = dyn_cast<Constant>(V))
1353    if (C->isNullValue())
1354      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1355
1356  // Constant float and double values can be handled as integer values if the
1357  // corresponding integer value is "byteable".  An important case is 0.0.
1358  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1359    if (CFP->getType()->isFloatTy())
1360      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1361    if (CFP->getType()->isDoubleTy())
1362      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1363    // Don't handle long double formats, which have strange constraints.
1364  }
1365
1366  // We can handle constant integers that are power of two in size and a
1367  // multiple of 8 bits.
1368  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1369    unsigned Width = CI->getBitWidth();
1370    if (isPowerOf2_32(Width) && Width > 8) {
1371      // We can handle this value if the recursive binary decomposition is the
1372      // same at all levels.
1373      APInt Val = CI->getValue();
1374      APInt Val2;
1375      while (Val.getBitWidth() != 8) {
1376        unsigned NextWidth = Val.getBitWidth()/2;
1377        Val2  = Val.lshr(NextWidth);
1378        Val2 = Val2.trunc(Val.getBitWidth()/2);
1379        Val = Val.trunc(Val.getBitWidth()/2);
1380
1381        // If the top/bottom halves aren't the same, reject it.
1382        if (Val != Val2)
1383          return 0;
1384      }
1385      return ConstantInt::get(V->getContext(), Val);
1386    }
1387  }
1388
1389  // A ConstantDataArray/Vector is splatable if all its members are equal and
1390  // also splatable.
1391  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1392    Value *Elt = CA->getElementAsConstant(0);
1393    Value *Val = isBytewiseValue(Elt);
1394    if (!Val)
1395      return 0;
1396
1397    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1398      if (CA->getElementAsConstant(I) != Elt)
1399        return 0;
1400
1401    return Val;
1402  }
1403
1404  // Conceptually, we could handle things like:
1405  //   %a = zext i8 %X to i16
1406  //   %b = shl i16 %a, 8
1407  //   %c = or i16 %a, %b
1408  // but until there is an example that actually needs this, it doesn't seem
1409  // worth worrying about.
1410  return 0;
1411}
1412
1413
1414// This is the recursive version of BuildSubAggregate. It takes a few different
1415// arguments. Idxs is the index within the nested struct From that we are
1416// looking at now (which is of type IndexedType). IdxSkip is the number of
1417// indices from Idxs that should be left out when inserting into the resulting
1418// struct. To is the result struct built so far, new insertvalue instructions
1419// build on that.
1420static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1421                                SmallVector<unsigned, 10> &Idxs,
1422                                unsigned IdxSkip,
1423                                Instruction *InsertBefore) {
1424  llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1425  if (STy) {
1426    // Save the original To argument so we can modify it
1427    Value *OrigTo = To;
1428    // General case, the type indexed by Idxs is a struct
1429    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1430      // Process each struct element recursively
1431      Idxs.push_back(i);
1432      Value *PrevTo = To;
1433      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1434                             InsertBefore);
1435      Idxs.pop_back();
1436      if (!To) {
1437        // Couldn't find any inserted value for this index? Cleanup
1438        while (PrevTo != OrigTo) {
1439          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1440          PrevTo = Del->getAggregateOperand();
1441          Del->eraseFromParent();
1442        }
1443        // Stop processing elements
1444        break;
1445      }
1446    }
1447    // If we successfully found a value for each of our subaggregates
1448    if (To)
1449      return To;
1450  }
1451  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1452  // the struct's elements had a value that was inserted directly. In the latter
1453  // case, perhaps we can't determine each of the subelements individually, but
1454  // we might be able to find the complete struct somewhere.
1455
1456  // Find the value that is at that particular spot
1457  Value *V = FindInsertedValue(From, Idxs);
1458
1459  if (!V)
1460    return NULL;
1461
1462  // Insert the value in the new (sub) aggregrate
1463  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1464                                       "tmp", InsertBefore);
1465}
1466
1467// This helper takes a nested struct and extracts a part of it (which is again a
1468// struct) into a new value. For example, given the struct:
1469// { a, { b, { c, d }, e } }
1470// and the indices "1, 1" this returns
1471// { c, d }.
1472//
1473// It does this by inserting an insertvalue for each element in the resulting
1474// struct, as opposed to just inserting a single struct. This will only work if
1475// each of the elements of the substruct are known (ie, inserted into From by an
1476// insertvalue instruction somewhere).
1477//
1478// All inserted insertvalue instructions are inserted before InsertBefore
1479static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1480                                Instruction *InsertBefore) {
1481  assert(InsertBefore && "Must have someplace to insert!");
1482  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1483                                                             idx_range);
1484  Value *To = UndefValue::get(IndexedType);
1485  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1486  unsigned IdxSkip = Idxs.size();
1487
1488  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1489}
1490
1491/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1492/// the scalar value indexed is already around as a register, for example if it
1493/// were inserted directly into the aggregrate.
1494///
1495/// If InsertBefore is not null, this function will duplicate (modified)
1496/// insertvalues when a part of a nested struct is extracted.
1497Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1498                               Instruction *InsertBefore) {
1499  // Nothing to index? Just return V then (this is useful at the end of our
1500  // recursion).
1501  if (idx_range.empty())
1502    return V;
1503  // We have indices, so V should have an indexable type.
1504  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1505         "Not looking at a struct or array?");
1506  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1507         "Invalid indices for type?");
1508
1509  if (Constant *C = dyn_cast<Constant>(V)) {
1510    C = C->getAggregateElement(idx_range[0]);
1511    if (C == 0) return 0;
1512    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1513  }
1514
1515  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1516    // Loop the indices for the insertvalue instruction in parallel with the
1517    // requested indices
1518    const unsigned *req_idx = idx_range.begin();
1519    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1520         i != e; ++i, ++req_idx) {
1521      if (req_idx == idx_range.end()) {
1522        // We can't handle this without inserting insertvalues
1523        if (!InsertBefore)
1524          return 0;
1525
1526        // The requested index identifies a part of a nested aggregate. Handle
1527        // this specially. For example,
1528        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1529        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1530        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1531        // This can be changed into
1532        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1533        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1534        // which allows the unused 0,0 element from the nested struct to be
1535        // removed.
1536        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1537                                 InsertBefore);
1538      }
1539
1540      // This insert value inserts something else than what we are looking for.
1541      // See if the (aggregrate) value inserted into has the value we are
1542      // looking for, then.
1543      if (*req_idx != *i)
1544        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1545                                 InsertBefore);
1546    }
1547    // If we end up here, the indices of the insertvalue match with those
1548    // requested (though possibly only partially). Now we recursively look at
1549    // the inserted value, passing any remaining indices.
1550    return FindInsertedValue(I->getInsertedValueOperand(),
1551                             makeArrayRef(req_idx, idx_range.end()),
1552                             InsertBefore);
1553  }
1554
1555  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1556    // If we're extracting a value from an aggregrate that was extracted from
1557    // something else, we can extract from that something else directly instead.
1558    // However, we will need to chain I's indices with the requested indices.
1559
1560    // Calculate the number of indices required
1561    unsigned size = I->getNumIndices() + idx_range.size();
1562    // Allocate some space to put the new indices in
1563    SmallVector<unsigned, 5> Idxs;
1564    Idxs.reserve(size);
1565    // Add indices from the extract value instruction
1566    Idxs.append(I->idx_begin(), I->idx_end());
1567
1568    // Add requested indices
1569    Idxs.append(idx_range.begin(), idx_range.end());
1570
1571    assert(Idxs.size() == size
1572           && "Number of indices added not correct?");
1573
1574    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1575  }
1576  // Otherwise, we don't know (such as, extracting from a function return value
1577  // or load instruction)
1578  return 0;
1579}
1580
1581/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1582/// it can be expressed as a base pointer plus a constant offset.  Return the
1583/// base and offset to the caller.
1584Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1585                                              const TargetData &TD) {
1586  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1587  if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1588    return Ptr;
1589
1590  // Just look through bitcasts.
1591  if (PtrOp->getOpcode() == Instruction::BitCast)
1592    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1593
1594  // If this is a GEP with constant indices, we can look through it.
1595  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1596  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1597
1598  gep_type_iterator GTI = gep_type_begin(GEP);
1599  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1600       ++I, ++GTI) {
1601    ConstantInt *OpC = cast<ConstantInt>(*I);
1602    if (OpC->isZero()) continue;
1603
1604    // Handle a struct and array indices which add their offset to the pointer.
1605    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1606      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1607    } else {
1608      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1609      Offset += OpC->getSExtValue()*Size;
1610    }
1611  }
1612
1613  // Re-sign extend from the pointer size if needed to get overflow edge cases
1614  // right.
1615  unsigned PtrSize = TD.getPointerSizeInBits();
1616  if (PtrSize < 64)
1617    Offset = SignExtend64(Offset, PtrSize);
1618
1619  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1620}
1621
1622
1623/// getConstantStringInfo - This function computes the length of a
1624/// null-terminated C string pointed to by V.  If successful, it returns true
1625/// and returns the string in Str.  If unsuccessful, it returns false.
1626bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1627                                 uint64_t Offset, bool TrimAtNul) {
1628  assert(V);
1629
1630  // Look through bitcast instructions and geps.
1631  V = V->stripPointerCasts();
1632
1633  // If the value is a GEP instructionor  constant expression, treat it as an
1634  // offset.
1635  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1636    // Make sure the GEP has exactly three arguments.
1637    if (GEP->getNumOperands() != 3)
1638      return false;
1639
1640    // Make sure the index-ee is a pointer to array of i8.
1641    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1642    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1643    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1644      return false;
1645
1646    // Check to make sure that the first operand of the GEP is an integer and
1647    // has value 0 so that we are sure we're indexing into the initializer.
1648    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1649    if (FirstIdx == 0 || !FirstIdx->isZero())
1650      return false;
1651
1652    // If the second index isn't a ConstantInt, then this is a variable index
1653    // into the array.  If this occurs, we can't say anything meaningful about
1654    // the string.
1655    uint64_t StartIdx = 0;
1656    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1657      StartIdx = CI->getZExtValue();
1658    else
1659      return false;
1660    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1661  }
1662
1663  // The GEP instruction, constant or instruction, must reference a global
1664  // variable that is a constant and is initialized. The referenced constant
1665  // initializer is the array that we'll use for optimization.
1666  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1667  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1668    return false;
1669
1670  // Handle the all-zeros case
1671  if (GV->getInitializer()->isNullValue()) {
1672    // This is a degenerate case. The initializer is constant zero so the
1673    // length of the string must be zero.
1674    Str = "";
1675    return true;
1676  }
1677
1678  // Must be a Constant Array
1679  const ConstantDataArray *Array =
1680    dyn_cast<ConstantDataArray>(GV->getInitializer());
1681  if (Array == 0 || !Array->isString())
1682    return false;
1683
1684  // Get the number of elements in the array
1685  uint64_t NumElts = Array->getType()->getArrayNumElements();
1686
1687  // Start out with the entire array in the StringRef.
1688  Str = Array->getAsString();
1689
1690  if (Offset > NumElts)
1691    return false;
1692
1693  // Skip over 'offset' bytes.
1694  Str = Str.substr(Offset);
1695
1696  if (TrimAtNul) {
1697    // Trim off the \0 and anything after it.  If the array is not nul
1698    // terminated, we just return the whole end of string.  The client may know
1699    // some other way that the string is length-bound.
1700    Str = Str.substr(0, Str.find('\0'));
1701  }
1702  return true;
1703}
1704
1705// These next two are very similar to the above, but also look through PHI
1706// nodes.
1707// TODO: See if we can integrate these two together.
1708
1709/// GetStringLengthH - If we can compute the length of the string pointed to by
1710/// the specified pointer, return 'len+1'.  If we can't, return 0.
1711static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1712  // Look through noop bitcast instructions.
1713  V = V->stripPointerCasts();
1714
1715  // If this is a PHI node, there are two cases: either we have already seen it
1716  // or we haven't.
1717  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1718    if (!PHIs.insert(PN))
1719      return ~0ULL;  // already in the set.
1720
1721    // If it was new, see if all the input strings are the same length.
1722    uint64_t LenSoFar = ~0ULL;
1723    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1724      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1725      if (Len == 0) return 0; // Unknown length -> unknown.
1726
1727      if (Len == ~0ULL) continue;
1728
1729      if (Len != LenSoFar && LenSoFar != ~0ULL)
1730        return 0;    // Disagree -> unknown.
1731      LenSoFar = Len;
1732    }
1733
1734    // Success, all agree.
1735    return LenSoFar;
1736  }
1737
1738  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1739  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1740    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1741    if (Len1 == 0) return 0;
1742    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1743    if (Len2 == 0) return 0;
1744    if (Len1 == ~0ULL) return Len2;
1745    if (Len2 == ~0ULL) return Len1;
1746    if (Len1 != Len2) return 0;
1747    return Len1;
1748  }
1749
1750  // Otherwise, see if we can read the string.
1751  StringRef StrData;
1752  if (!getConstantStringInfo(V, StrData))
1753    return 0;
1754
1755  return StrData.size()+1;
1756}
1757
1758/// GetStringLength - If we can compute the length of the string pointed to by
1759/// the specified pointer, return 'len+1'.  If we can't, return 0.
1760uint64_t llvm::GetStringLength(Value *V) {
1761  if (!V->getType()->isPointerTy()) return 0;
1762
1763  SmallPtrSet<PHINode*, 32> PHIs;
1764  uint64_t Len = GetStringLengthH(V, PHIs);
1765  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1766  // an empty string as a length.
1767  return Len == ~0ULL ? 1 : Len;
1768}
1769
1770Value *
1771llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
1772  if (!V->getType()->isPointerTy())
1773    return V;
1774  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1775    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1776      V = GEP->getPointerOperand();
1777    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1778      V = cast<Operator>(V)->getOperand(0);
1779    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1780      if (GA->mayBeOverridden())
1781        return V;
1782      V = GA->getAliasee();
1783    } else {
1784      // See if InstructionSimplify knows any relevant tricks.
1785      if (Instruction *I = dyn_cast<Instruction>(V))
1786        // TODO: Acquire a DominatorTree and use it.
1787        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1788          V = Simplified;
1789          continue;
1790        }
1791
1792      return V;
1793    }
1794    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1795  }
1796  return V;
1797}
1798
1799void
1800llvm::GetUnderlyingObjects(Value *V,
1801                           SmallVectorImpl<Value *> &Objects,
1802                           const TargetData *TD,
1803                           unsigned MaxLookup) {
1804  SmallPtrSet<Value *, 4> Visited;
1805  SmallVector<Value *, 4> Worklist;
1806  Worklist.push_back(V);
1807  do {
1808    Value *P = Worklist.pop_back_val();
1809    P = GetUnderlyingObject(P, TD, MaxLookup);
1810
1811    if (!Visited.insert(P))
1812      continue;
1813
1814    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1815      Worklist.push_back(SI->getTrueValue());
1816      Worklist.push_back(SI->getFalseValue());
1817      continue;
1818    }
1819
1820    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1821      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1822        Worklist.push_back(PN->getIncomingValue(i));
1823      continue;
1824    }
1825
1826    Objects.push_back(P);
1827  } while (!Worklist.empty());
1828}
1829
1830/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1831/// are lifetime markers.
1832///
1833bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1834  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1835       UI != UE; ++UI) {
1836    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1837    if (!II) return false;
1838
1839    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1840        II->getIntrinsicID() != Intrinsic::lifetime_end)
1841      return false;
1842  }
1843  return true;
1844}
1845
1846bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1847                                        const TargetData *TD) {
1848  const Operator *Inst = dyn_cast<Operator>(V);
1849  if (!Inst)
1850    return false;
1851
1852  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1853    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1854      if (C->canTrap())
1855        return false;
1856
1857  switch (Inst->getOpcode()) {
1858  default:
1859    return true;
1860  case Instruction::UDiv:
1861  case Instruction::URem:
1862    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1863    return isKnownNonZero(Inst->getOperand(1), TD);
1864  case Instruction::SDiv:
1865  case Instruction::SRem: {
1866    Value *Op = Inst->getOperand(1);
1867    // x / y is undefined if y == 0
1868    if (!isKnownNonZero(Op, TD))
1869      return false;
1870    // x / y might be undefined if y == -1
1871    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1872    if (BitWidth == 0)
1873      return false;
1874    APInt KnownZero(BitWidth, 0);
1875    APInt KnownOne(BitWidth, 0);
1876    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1877    return !!KnownZero;
1878  }
1879  case Instruction::Load: {
1880    const LoadInst *LI = cast<LoadInst>(Inst);
1881    if (!LI->isUnordered())
1882      return false;
1883    return LI->getPointerOperand()->isDereferenceablePointer();
1884  }
1885  case Instruction::Call: {
1886   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1887     switch (II->getIntrinsicID()) {
1888       // These synthetic intrinsics have no side-effects, and just mark
1889       // information about their operands.
1890       // FIXME: There are other no-op synthetic instructions that potentially
1891       // should be considered at least *safe* to speculate...
1892       case Intrinsic::dbg_declare:
1893       case Intrinsic::dbg_value:
1894         return true;
1895
1896       case Intrinsic::bswap:
1897       case Intrinsic::ctlz:
1898       case Intrinsic::ctpop:
1899       case Intrinsic::cttz:
1900       case Intrinsic::objectsize:
1901       case Intrinsic::sadd_with_overflow:
1902       case Intrinsic::smul_with_overflow:
1903       case Intrinsic::ssub_with_overflow:
1904       case Intrinsic::uadd_with_overflow:
1905       case Intrinsic::umul_with_overflow:
1906       case Intrinsic::usub_with_overflow:
1907         return true;
1908       // TODO: some fp intrinsics are marked as having the same error handling
1909       // as libm. They're safe to speculate when they won't error.
1910       // TODO: are convert_{from,to}_fp16 safe?
1911       // TODO: can we list target-specific intrinsics here?
1912       default: break;
1913     }
1914   }
1915    return false; // The called function could have undefined behavior or
1916                  // side-effects, even if marked readnone nounwind.
1917  }
1918  case Instruction::VAArg:
1919  case Instruction::Alloca:
1920  case Instruction::Invoke:
1921  case Instruction::PHI:
1922  case Instruction::Store:
1923  case Instruction::Ret:
1924  case Instruction::Br:
1925  case Instruction::IndirectBr:
1926  case Instruction::Switch:
1927  case Instruction::Unreachable:
1928  case Instruction::Fence:
1929  case Instruction::LandingPad:
1930  case Instruction::AtomicRMW:
1931  case Instruction::AtomicCmpXchg:
1932  case Instruction::Resume:
1933    return false; // Misc instructions which have effects
1934  }
1935}
1936