1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
17#   include "DwarfDebug.h"
18#   include "DwarfException.h"
19#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
20#include "llvm/DebugInfo.h"
21#include "llvm/Module.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/Analysis/ConstantFolding.h"
30#include "llvm/MC/MCAsmInfo.h"
31#include "llvm/MC/MCContext.h"
32#include "llvm/MC/MCExpr.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/MC/MCSection.h"
35#include "llvm/MC/MCStreamer.h"
36#include "llvm/MC/MCSymbol.h"
37#include "llvm/Target/Mangler.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetLoweringObjectFile.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Target/TargetRegisterInfo.h"
44#include "llvm/Assembly/Writer.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Format.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/Timer.h"
51#include <ctype.h>
52using namespace llvm;
53
54static const char *DWARFGroupName = "DWARF Emission";
55static const char *DbgTimerName = "DWARF Debug Writer";
56static const char *EHTimerName = "DWARF Exception Writer";
57
58STATISTIC(EmittedInsts, "Number of machine instrs printed");
59
60char AsmPrinter::ID = 0;
61
62typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
63static gcp_map_type &getGCMap(void *&P) {
64  if (P == 0)
65    P = new gcp_map_type();
66  return *(gcp_map_type*)P;
67}
68
69
70/// getGVAlignmentLog2 - Return the alignment to use for the specified global
71/// value in log2 form.  This rounds up to the preferred alignment if possible
72/// and legal.
73static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
74                                   unsigned InBits = 0) {
75  unsigned NumBits = 0;
76  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
77    NumBits = TD.getPreferredAlignmentLog(GVar);
78
79  // If InBits is specified, round it to it.
80  if (InBits > NumBits)
81    NumBits = InBits;
82
83  // If the GV has a specified alignment, take it into account.
84  if (GV->getAlignment() == 0)
85    return NumBits;
86
87  unsigned GVAlign = Log2_32(GV->getAlignment());
88
89  // If the GVAlign is larger than NumBits, or if we are required to obey
90  // NumBits because the GV has an assigned section, obey it.
91  if (GVAlign > NumBits || GV->hasSection())
92    NumBits = GVAlign;
93  return NumBits;
94}
95
96
97
98
99AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
100  : MachineFunctionPass(ID),
101    TM(tm), MAI(tm.getMCAsmInfo()),
102    OutContext(Streamer.getContext()),
103    OutStreamer(Streamer),
104    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
105  DD = 0; DE = 0; MMI = 0; LI = 0;
106  CurrentFnSym = CurrentFnSymForSize = 0;
107  GCMetadataPrinters = 0;
108  VerboseAsm = Streamer.isVerboseAsm();
109}
110
111AsmPrinter::~AsmPrinter() {
112  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
113
114  if (GCMetadataPrinters != 0) {
115    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
116
117    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
118      delete I->second;
119    delete &GCMap;
120    GCMetadataPrinters = 0;
121  }
122
123  delete &OutStreamer;
124}
125
126/// getFunctionNumber - Return a unique ID for the current function.
127///
128unsigned AsmPrinter::getFunctionNumber() const {
129  return MF->getFunctionNumber();
130}
131
132const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
133  return TM.getTargetLowering()->getObjFileLowering();
134}
135
136
137/// getTargetData - Return information about data layout.
138const TargetData &AsmPrinter::getTargetData() const {
139  return *TM.getTargetData();
140}
141
142/// getCurrentSection() - Return the current section we are emitting to.
143const MCSection *AsmPrinter::getCurrentSection() const {
144  return OutStreamer.getCurrentSection();
145}
146
147
148
149void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
150  AU.setPreservesAll();
151  MachineFunctionPass::getAnalysisUsage(AU);
152  AU.addRequired<MachineModuleInfo>();
153  AU.addRequired<GCModuleInfo>();
154  if (isVerbose())
155    AU.addRequired<MachineLoopInfo>();
156}
157
158bool AsmPrinter::doInitialization(Module &M) {
159  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160  MMI->AnalyzeModule(M);
161
162  // Initialize TargetLoweringObjectFile.
163  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164    .Initialize(OutContext, TM);
165
166  Mang = new Mangler(OutContext, *TM.getTargetData());
167
168  // Allow the target to emit any magic that it wants at the start of the file.
169  EmitStartOfAsmFile(M);
170
171  // Very minimal debug info. It is ignored if we emit actual debug info. If we
172  // don't, this at least helps the user find where a global came from.
173  if (MAI->hasSingleParameterDotFile()) {
174    // .file "foo.c"
175    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176  }
177
178  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182      MP->beginAssembly(*this);
183
184  // Emit module-level inline asm if it exists.
185  if (!M.getModuleInlineAsm().empty()) {
186    OutStreamer.AddComment("Start of file scope inline assembly");
187    OutStreamer.AddBlankLine();
188    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189    OutStreamer.AddComment("End of file scope inline assembly");
190    OutStreamer.AddBlankLine();
191  }
192
193#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
194  if (MAI->doesSupportDebugInformation())
195    DD = new DwarfDebug(this, &M);
196
197  switch (MAI->getExceptionHandlingType()) {
198  case ExceptionHandling::None:
199    return false;
200  case ExceptionHandling::SjLj:
201  case ExceptionHandling::DwarfCFI:
202    DE = new DwarfCFIException(this);
203    return false;
204  case ExceptionHandling::ARM:
205    DE = new ARMException(this);
206    return false;
207  case ExceptionHandling::Win64:
208    DE = new Win64Exception(this);
209    return false;
210  }
211#else
212  return false;
213#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
214
215  llvm_unreachable("Unknown exception type.");
216}
217
218void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
219  switch ((GlobalValue::LinkageTypes)Linkage) {
220  case GlobalValue::CommonLinkage:
221  case GlobalValue::LinkOnceAnyLinkage:
222  case GlobalValue::LinkOnceODRLinkage:
223  case GlobalValue::LinkOnceODRAutoHideLinkage:
224  case GlobalValue::WeakAnyLinkage:
225  case GlobalValue::WeakODRLinkage:
226  case GlobalValue::LinkerPrivateWeakLinkage:
227    if (MAI->getWeakDefDirective() != 0) {
228      // .globl _foo
229      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
230
231      if ((GlobalValue::LinkageTypes)Linkage !=
232          GlobalValue::LinkOnceODRAutoHideLinkage)
233        // .weak_definition _foo
234        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
235      else
236        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
237    } else if (MAI->getLinkOnceDirective() != 0) {
238      // .globl _foo
239      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
240      //NOTE: linkonce is handled by the section the symbol was assigned to.
241    } else {
242      // .weak _foo
243      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
244    }
245    break;
246  case GlobalValue::DLLExportLinkage:
247  case GlobalValue::AppendingLinkage:
248    // FIXME: appending linkage variables should go into a section of
249    // their name or something.  For now, just emit them as external.
250  case GlobalValue::ExternalLinkage:
251    // If external or appending, declare as a global symbol.
252    // .globl _foo
253    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
254    break;
255  case GlobalValue::PrivateLinkage:
256  case GlobalValue::InternalLinkage:
257  case GlobalValue::LinkerPrivateLinkage:
258    break;
259  default:
260    llvm_unreachable("Unknown linkage type!");
261  }
262}
263
264
265/// EmitGlobalVariable - Emit the specified global variable to the .s file.
266void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
267  if (GV->hasInitializer()) {
268    // Check to see if this is a special global used by LLVM, if so, emit it.
269    if (EmitSpecialLLVMGlobal(GV))
270      return;
271
272    if (isVerbose()) {
273      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
274                     /*PrintType=*/false, GV->getParent());
275      OutStreamer.GetCommentOS() << '\n';
276    }
277  }
278
279  MCSymbol *GVSym = Mang->getSymbol(GV);
280  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
281
282  if (!GV->hasInitializer())   // External globals require no extra code.
283    return;
284
285  if (MAI->hasDotTypeDotSizeDirective())
286    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
287
288  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
289
290  const TargetData *TD = TM.getTargetData();
291  uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
292
293  // If the alignment is specified, we *must* obey it.  Overaligning a global
294  // with a specified alignment is a prompt way to break globals emitted to
295  // sections and expected to be contiguous (e.g. ObjC metadata).
296  unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
297
298  // Handle common and BSS local symbols (.lcomm).
299  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
300    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
301    unsigned Align = 1 << AlignLog;
302
303    // Handle common symbols.
304    if (GVKind.isCommon()) {
305      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
306        Align = 0;
307
308      // .comm _foo, 42, 4
309      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
310      return;
311    }
312
313    // Handle local BSS symbols.
314    if (MAI->hasMachoZeroFillDirective()) {
315      const MCSection *TheSection =
316        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
317      // .zerofill __DATA, __bss, _foo, 400, 5
318      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
319      return;
320    }
321
322    if (Align == 1 ||
323        MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
324      // .lcomm _foo, 42
325      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
326      return;
327    }
328
329    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
330      Align = 0;
331
332    // .local _foo
333    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
334    // .comm _foo, 42, 4
335    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
336    return;
337  }
338
339  const MCSection *TheSection =
340    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
341
342  // Handle the zerofill directive on darwin, which is a special form of BSS
343  // emission.
344  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
345    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
346
347    // .globl _foo
348    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
349    // .zerofill __DATA, __common, _foo, 400, 5
350    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
351    return;
352  }
353
354  // Handle thread local data for mach-o which requires us to output an
355  // additional structure of data and mangle the original symbol so that we
356  // can reference it later.
357  //
358  // TODO: This should become an "emit thread local global" method on TLOF.
359  // All of this macho specific stuff should be sunk down into TLOFMachO and
360  // stuff like "TLSExtraDataSection" should no longer be part of the parent
361  // TLOF class.  This will also make it more obvious that stuff like
362  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
363  // specific code.
364  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
365    // Emit the .tbss symbol
366    MCSymbol *MangSym =
367      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
368
369    if (GVKind.isThreadBSS())
370      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
371    else if (GVKind.isThreadData()) {
372      OutStreamer.SwitchSection(TheSection);
373
374      EmitAlignment(AlignLog, GV);
375      OutStreamer.EmitLabel(MangSym);
376
377      EmitGlobalConstant(GV->getInitializer());
378    }
379
380    OutStreamer.AddBlankLine();
381
382    // Emit the variable struct for the runtime.
383    const MCSection *TLVSect
384      = getObjFileLowering().getTLSExtraDataSection();
385
386    OutStreamer.SwitchSection(TLVSect);
387    // Emit the linkage here.
388    EmitLinkage(GV->getLinkage(), GVSym);
389    OutStreamer.EmitLabel(GVSym);
390
391    // Three pointers in size:
392    //   - __tlv_bootstrap - used to make sure support exists
393    //   - spare pointer, used when mapped by the runtime
394    //   - pointer to mangled symbol above with initializer
395    unsigned PtrSize = TD->getPointerSizeInBits()/8;
396    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
397                          PtrSize, 0);
398    OutStreamer.EmitIntValue(0, PtrSize, 0);
399    OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
400
401    OutStreamer.AddBlankLine();
402    return;
403  }
404
405  OutStreamer.SwitchSection(TheSection);
406
407  EmitLinkage(GV->getLinkage(), GVSym);
408  EmitAlignment(AlignLog, GV);
409
410  OutStreamer.EmitLabel(GVSym);
411
412  EmitGlobalConstant(GV->getInitializer());
413
414  if (MAI->hasDotTypeDotSizeDirective())
415    // .size foo, 42
416    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
417
418  OutStreamer.AddBlankLine();
419}
420
421/// EmitFunctionHeader - This method emits the header for the current
422/// function.
423void AsmPrinter::EmitFunctionHeader() {
424  // Print out constants referenced by the function
425  EmitConstantPool();
426
427  // Print the 'header' of function.
428  const Function *F = MF->getFunction();
429
430  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
431  EmitVisibility(CurrentFnSym, F->getVisibility());
432
433  EmitLinkage(F->getLinkage(), CurrentFnSym);
434  EmitAlignment(MF->getAlignment(), F);
435
436  if (MAI->hasDotTypeDotSizeDirective())
437    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
438
439  if (isVerbose()) {
440    WriteAsOperand(OutStreamer.GetCommentOS(), F,
441                   /*PrintType=*/false, F->getParent());
442    OutStreamer.GetCommentOS() << '\n';
443  }
444
445  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
446  // do their wild and crazy things as required.
447  EmitFunctionEntryLabel();
448
449  // If the function had address-taken blocks that got deleted, then we have
450  // references to the dangling symbols.  Emit them at the start of the function
451  // so that we don't get references to undefined symbols.
452  std::vector<MCSymbol*> DeadBlockSyms;
453  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
454  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
455    OutStreamer.AddComment("Address taken block that was later removed");
456    OutStreamer.EmitLabel(DeadBlockSyms[i]);
457  }
458
459  // Add some workaround for linkonce linkage on Cygwin\MinGW.
460  if (MAI->getLinkOnceDirective() != 0 &&
461      (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
462    // FIXME: What is this?
463    MCSymbol *FakeStub =
464      OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
465                                   CurrentFnSym->getName());
466    OutStreamer.EmitLabel(FakeStub);
467  }
468
469  // Emit pre-function debug and/or EH information.
470#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
471  if (DE) {
472    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473    DE->BeginFunction(MF);
474  }
475  if (DD) {
476    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477    DD->beginFunction(MF);
478  }
479#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
480}
481
482/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483/// function.  This can be overridden by targets as required to do custom stuff.
484void AsmPrinter::EmitFunctionEntryLabel() {
485  // The function label could have already been emitted if two symbols end up
486  // conflicting due to asm renaming.  Detect this and emit an error.
487  if (CurrentFnSym->isUndefined())
488    return OutStreamer.EmitLabel(CurrentFnSym);
489
490  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
491                     "' label emitted multiple times to assembly file");
492}
493
494/// emitComments - Pretty-print comments for instructions.
495static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
496  const MachineFunction *MF = MI.getParent()->getParent();
497  const TargetMachine &TM = MF->getTarget();
498
499  // Check for spills and reloads
500  int FI;
501
502  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
503
504  // We assume a single instruction only has a spill or reload, not
505  // both.
506  const MachineMemOperand *MMO;
507  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
508    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509      MMO = *MI.memoperands_begin();
510      CommentOS << MMO->getSize() << "-byte Reload\n";
511    }
512  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
513    if (FrameInfo->isSpillSlotObjectIndex(FI))
514      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
515  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
516    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
517      MMO = *MI.memoperands_begin();
518      CommentOS << MMO->getSize() << "-byte Spill\n";
519    }
520  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
521    if (FrameInfo->isSpillSlotObjectIndex(FI))
522      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
523  }
524
525  // Check for spill-induced copies
526  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
527    CommentOS << " Reload Reuse\n";
528}
529
530/// emitImplicitDef - This method emits the specified machine instruction
531/// that is an implicit def.
532static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
533  unsigned RegNo = MI->getOperand(0).getReg();
534  AP.OutStreamer.AddComment(Twine("implicit-def: ") +
535                            AP.TM.getRegisterInfo()->getName(RegNo));
536  AP.OutStreamer.AddBlankLine();
537}
538
539static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
540  std::string Str = "kill:";
541  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
542    const MachineOperand &Op = MI->getOperand(i);
543    assert(Op.isReg() && "KILL instruction must have only register operands");
544    Str += ' ';
545    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
546    Str += (Op.isDef() ? "<def>" : "<kill>");
547  }
548  AP.OutStreamer.AddComment(Str);
549  AP.OutStreamer.AddBlankLine();
550}
551
552/// emitDebugValueComment - This method handles the target-independent form
553/// of DBG_VALUE, returning true if it was able to do so.  A false return
554/// means the target will need to handle MI in EmitInstruction.
555static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
556  // This code handles only the 3-operand target-independent form.
557  if (MI->getNumOperands() != 3)
558    return false;
559
560  SmallString<128> Str;
561  raw_svector_ostream OS(Str);
562  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
563
564  // cast away const; DIetc do not take const operands for some reason.
565  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
566  if (V.getContext().isSubprogram())
567    OS << DISubprogram(V.getContext()).getDisplayName() << ":";
568  OS << V.getName() << " <- ";
569
570  // Register or immediate value. Register 0 means undef.
571  if (MI->getOperand(0).isFPImm()) {
572    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
573    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
574      OS << (double)APF.convertToFloat();
575    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
576      OS << APF.convertToDouble();
577    } else {
578      // There is no good way to print long double.  Convert a copy to
579      // double.  Ah well, it's only a comment.
580      bool ignored;
581      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
582                  &ignored);
583      OS << "(long double) " << APF.convertToDouble();
584    }
585  } else if (MI->getOperand(0).isImm()) {
586    OS << MI->getOperand(0).getImm();
587  } else if (MI->getOperand(0).isCImm()) {
588    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
589  } else {
590    assert(MI->getOperand(0).isReg() && "Unknown operand type");
591    if (MI->getOperand(0).getReg() == 0) {
592      // Suppress offset, it is not meaningful here.
593      OS << "undef";
594      // NOTE: Want this comment at start of line, don't emit with AddComment.
595      AP.OutStreamer.EmitRawText(OS.str());
596      return true;
597    }
598    OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
599  }
600
601  OS << '+' << MI->getOperand(1).getImm();
602  // NOTE: Want this comment at start of line, don't emit with AddComment.
603  AP.OutStreamer.EmitRawText(OS.str());
604  return true;
605}
606
607AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
608  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
609      MF->getFunction()->needsUnwindTableEntry())
610    return CFI_M_EH;
611
612  if (MMI->hasDebugInfo())
613    return CFI_M_Debug;
614
615  return CFI_M_None;
616}
617
618bool AsmPrinter::needsSEHMoves() {
619  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
620    MF->getFunction()->needsUnwindTableEntry();
621}
622
623bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
624  return MAI->doesDwarfUseRelocationsAcrossSections();
625}
626
627void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
628  MCSymbol *Label = MI.getOperand(0).getMCSymbol();
629
630  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
631    return;
632
633  if (needsCFIMoves() == CFI_M_None)
634    return;
635
636  if (MMI->getCompactUnwindEncoding() != 0)
637    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
638
639  MachineModuleInfo &MMI = MF->getMMI();
640  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
641  bool FoundOne = false;
642  (void)FoundOne;
643  for (std::vector<MachineMove>::iterator I = Moves.begin(),
644         E = Moves.end(); I != E; ++I) {
645    if (I->getLabel() == Label) {
646      EmitCFIFrameMove(*I);
647      FoundOne = true;
648    }
649  }
650  assert(FoundOne);
651}
652
653/// EmitFunctionBody - This method emits the body and trailer for a
654/// function.
655void AsmPrinter::EmitFunctionBody() {
656  // Emit target-specific gunk before the function body.
657  EmitFunctionBodyStart();
658
659  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
660
661  // Print out code for the function.
662  bool HasAnyRealCode = false;
663  const MachineInstr *LastMI = 0;
664  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
665       I != E; ++I) {
666    // Print a label for the basic block.
667    EmitBasicBlockStart(I);
668    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
669         II != IE; ++II) {
670      LastMI = II;
671
672      // Print the assembly for the instruction.
673      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
674          !II->isDebugValue()) {
675        HasAnyRealCode = true;
676
677        ++EmittedInsts;
678      }
679#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
680      if (ShouldPrintDebugScopes) {
681        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
682        DD->beginInstruction(II);
683      }
684#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
685
686      if (isVerbose())
687        emitComments(*II, OutStreamer.GetCommentOS());
688
689      switch (II->getOpcode()) {
690      case TargetOpcode::PROLOG_LABEL:
691        emitPrologLabel(*II);
692        break;
693
694      case TargetOpcode::EH_LABEL:
695      case TargetOpcode::GC_LABEL:
696        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
697        break;
698      case TargetOpcode::INLINEASM:
699        EmitInlineAsm(II);
700        break;
701      case TargetOpcode::DBG_VALUE:
702        if (isVerbose()) {
703          if (!emitDebugValueComment(II, *this))
704            EmitInstruction(II);
705        }
706        break;
707      case TargetOpcode::IMPLICIT_DEF:
708        if (isVerbose()) emitImplicitDef(II, *this);
709        break;
710      case TargetOpcode::KILL:
711        if (isVerbose()) emitKill(II, *this);
712        break;
713      default:
714        if (!TM.hasMCUseLoc())
715          MCLineEntry::Make(&OutStreamer, getCurrentSection());
716
717        EmitInstruction(II);
718        break;
719      }
720
721#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
722      if (ShouldPrintDebugScopes) {
723        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
724        DD->endInstruction(II);
725      }
726#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
727    }
728  }
729
730  // If the last instruction was a prolog label, then we have a situation where
731  // we emitted a prolog but no function body. This results in the ending prolog
732  // label equaling the end of function label and an invalid "row" in the
733  // FDE. We need to emit a noop in this situation so that the FDE's rows are
734  // valid.
735  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
736
737  // If the function is empty and the object file uses .subsections_via_symbols,
738  // then we need to emit *something* to the function body to prevent the
739  // labels from collapsing together.  Just emit a noop.
740  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
741    MCInst Noop;
742    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
743    if (Noop.getOpcode()) {
744      OutStreamer.AddComment("avoids zero-length function");
745      OutStreamer.EmitInstruction(Noop);
746    } else  // Target not mc-ized yet.
747      OutStreamer.EmitRawText(StringRef("\tnop\n"));
748  }
749
750  const Function *F = MF->getFunction();
751  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
752    const BasicBlock *BB = i;
753    if (!BB->hasAddressTaken())
754      continue;
755    MCSymbol *Sym = GetBlockAddressSymbol(BB);
756    if (Sym->isDefined())
757      continue;
758    OutStreamer.AddComment("Address of block that was removed by CodeGen");
759    OutStreamer.EmitLabel(Sym);
760  }
761
762  // Emit target-specific gunk after the function body.
763  EmitFunctionBodyEnd();
764
765  // If the target wants a .size directive for the size of the function, emit
766  // it.
767  if (MAI->hasDotTypeDotSizeDirective()) {
768    // Create a symbol for the end of function, so we can get the size as
769    // difference between the function label and the temp label.
770    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
771    OutStreamer.EmitLabel(FnEndLabel);
772
773    const MCExpr *SizeExp =
774      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
775                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
776                                                      OutContext),
777                              OutContext);
778    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
779  }
780
781  // Emit post-function debug information.
782#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
783  if (DD) {
784    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
785    DD->endFunction(MF);
786  }
787  if (DE) {
788    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
789    DE->EndFunction();
790  }
791#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
792  MMI->EndFunction();
793
794  // Print out jump tables referenced by the function.
795  EmitJumpTableInfo();
796
797  OutStreamer.AddBlankLine();
798}
799
800/// getDebugValueLocation - Get location information encoded by DBG_VALUE
801/// operands.
802MachineLocation AsmPrinter::
803getDebugValueLocation(const MachineInstr *MI) const {
804  // Target specific DBG_VALUE instructions are handled by each target.
805  return MachineLocation();
806}
807
808/// EmitDwarfRegOp - Emit dwarf register operation.
809void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
810  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
811  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
812
813  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
814       ++SR) {
815    Reg = TRI->getDwarfRegNum(*SR, false);
816    // FIXME: Get the bit range this register uses of the superregister
817    // so that we can produce a DW_OP_bit_piece
818  }
819
820  // FIXME: Handle cases like a super register being encoded as
821  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
822
823  // FIXME: We have no reasonable way of handling errors in here. The
824  // caller might be in the middle of an dwarf expression. We should
825  // probably assert that Reg >= 0 once debug info generation is more mature.
826
827  if (int Offset =  MLoc.getOffset()) {
828    if (Reg < 32) {
829      OutStreamer.AddComment(
830        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
831      EmitInt8(dwarf::DW_OP_breg0 + Reg);
832    } else {
833      OutStreamer.AddComment("DW_OP_bregx");
834      EmitInt8(dwarf::DW_OP_bregx);
835      OutStreamer.AddComment(Twine(Reg));
836      EmitULEB128(Reg);
837    }
838    EmitSLEB128(Offset);
839  } else {
840    if (Reg < 32) {
841      OutStreamer.AddComment(
842        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
843      EmitInt8(dwarf::DW_OP_reg0 + Reg);
844    } else {
845      OutStreamer.AddComment("DW_OP_regx");
846      EmitInt8(dwarf::DW_OP_regx);
847      OutStreamer.AddComment(Twine(Reg));
848      EmitULEB128(Reg);
849    }
850  }
851
852  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
853}
854
855bool AsmPrinter::doFinalization(Module &M) {
856  // Emit global variables.
857  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
858       I != E; ++I)
859    EmitGlobalVariable(I);
860
861  // Emit visibility info for declarations
862  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
863    const Function &F = *I;
864    if (!F.isDeclaration())
865      continue;
866    GlobalValue::VisibilityTypes V = F.getVisibility();
867    if (V == GlobalValue::DefaultVisibility)
868      continue;
869
870    MCSymbol *Name = Mang->getSymbol(&F);
871    EmitVisibility(Name, V, false);
872  }
873
874  // Emit module flags.
875  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
876  M.getModuleFlagsMetadata(ModuleFlags);
877  if (!ModuleFlags.empty())
878    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
879
880  // Finalize debug and EH information.
881#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
882  if (DE) {
883    {
884      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
885      DE->EndModule();
886    }
887    delete DE; DE = 0;
888  }
889  if (DD) {
890    {
891      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
892      DD->endModule();
893    }
894    delete DD; DD = 0;
895  }
896#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
897
898  // If the target wants to know about weak references, print them all.
899  if (MAI->getWeakRefDirective()) {
900    // FIXME: This is not lazy, it would be nice to only print weak references
901    // to stuff that is actually used.  Note that doing so would require targets
902    // to notice uses in operands (due to constant exprs etc).  This should
903    // happen with the MC stuff eventually.
904
905    // Print out module-level global variables here.
906    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
907         I != E; ++I) {
908      if (!I->hasExternalWeakLinkage()) continue;
909      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
910    }
911
912    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
913      if (!I->hasExternalWeakLinkage()) continue;
914      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
915    }
916  }
917
918  if (MAI->hasSetDirective()) {
919    OutStreamer.AddBlankLine();
920    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
921         I != E; ++I) {
922      MCSymbol *Name = Mang->getSymbol(I);
923
924      const GlobalValue *GV = I->getAliasedGlobal();
925      MCSymbol *Target = Mang->getSymbol(GV);
926
927      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
928        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
929      else if (I->hasWeakLinkage())
930        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
931      else
932        assert(I->hasLocalLinkage() && "Invalid alias linkage");
933
934      EmitVisibility(Name, I->getVisibility());
935
936      // Emit the directives as assignments aka .set:
937      OutStreamer.EmitAssignment(Name,
938                                 MCSymbolRefExpr::Create(Target, OutContext));
939    }
940  }
941
942  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
943  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
944  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
945    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
946      MP->finishAssembly(*this);
947
948  // If we don't have any trampolines, then we don't require stack memory
949  // to be executable. Some targets have a directive to declare this.
950  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
951  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
952    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
953      OutStreamer.SwitchSection(S);
954
955  // Allow the target to emit any magic that it wants at the end of the file,
956  // after everything else has gone out.
957  EmitEndOfAsmFile(M);
958
959  delete Mang; Mang = 0;
960  MMI = 0;
961
962  OutStreamer.Finish();
963  return false;
964}
965
966void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
967  this->MF = &MF;
968  // Get the function symbol.
969  CurrentFnSym = Mang->getSymbol(MF.getFunction());
970  CurrentFnSymForSize = CurrentFnSym;
971
972  if (isVerbose())
973    LI = &getAnalysis<MachineLoopInfo>();
974}
975
976namespace {
977  // SectionCPs - Keep track the alignment, constpool entries per Section.
978  struct SectionCPs {
979    const MCSection *S;
980    unsigned Alignment;
981    SmallVector<unsigned, 4> CPEs;
982    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
983  };
984}
985
986/// EmitConstantPool - Print to the current output stream assembly
987/// representations of the constants in the constant pool MCP. This is
988/// used to print out constants which have been "spilled to memory" by
989/// the code generator.
990///
991void AsmPrinter::EmitConstantPool() {
992  const MachineConstantPool *MCP = MF->getConstantPool();
993  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
994  if (CP.empty()) return;
995
996  // Calculate sections for constant pool entries. We collect entries to go into
997  // the same section together to reduce amount of section switch statements.
998  SmallVector<SectionCPs, 4> CPSections;
999  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1000    const MachineConstantPoolEntry &CPE = CP[i];
1001    unsigned Align = CPE.getAlignment();
1002
1003    SectionKind Kind;
1004    switch (CPE.getRelocationInfo()) {
1005    default: llvm_unreachable("Unknown section kind");
1006    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1007    case 1:
1008      Kind = SectionKind::getReadOnlyWithRelLocal();
1009      break;
1010    case 0:
1011    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
1012    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1013    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1014    case 16: Kind = SectionKind::getMergeableConst16();break;
1015    default: Kind = SectionKind::getMergeableConst(); break;
1016    }
1017    }
1018
1019    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1020
1021    // The number of sections are small, just do a linear search from the
1022    // last section to the first.
1023    bool Found = false;
1024    unsigned SecIdx = CPSections.size();
1025    while (SecIdx != 0) {
1026      if (CPSections[--SecIdx].S == S) {
1027        Found = true;
1028        break;
1029      }
1030    }
1031    if (!Found) {
1032      SecIdx = CPSections.size();
1033      CPSections.push_back(SectionCPs(S, Align));
1034    }
1035
1036    if (Align > CPSections[SecIdx].Alignment)
1037      CPSections[SecIdx].Alignment = Align;
1038    CPSections[SecIdx].CPEs.push_back(i);
1039  }
1040
1041  // Now print stuff into the calculated sections.
1042  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1043    OutStreamer.SwitchSection(CPSections[i].S);
1044    EmitAlignment(Log2_32(CPSections[i].Alignment));
1045
1046    unsigned Offset = 0;
1047    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1048      unsigned CPI = CPSections[i].CPEs[j];
1049      MachineConstantPoolEntry CPE = CP[CPI];
1050
1051      // Emit inter-object padding for alignment.
1052      unsigned AlignMask = CPE.getAlignment() - 1;
1053      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1054      OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1055
1056      Type *Ty = CPE.getType();
1057      Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1058      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1059
1060      if (CPE.isMachineConstantPoolEntry())
1061        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1062      else
1063        EmitGlobalConstant(CPE.Val.ConstVal);
1064    }
1065  }
1066}
1067
1068/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1069/// by the current function to the current output stream.
1070///
1071void AsmPrinter::EmitJumpTableInfo() {
1072  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1073  if (MJTI == 0) return;
1074  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1075  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1076  if (JT.empty()) return;
1077
1078  // Pick the directive to use to print the jump table entries, and switch to
1079  // the appropriate section.
1080  const Function *F = MF->getFunction();
1081  bool JTInDiffSection = false;
1082  if (// In PIC mode, we need to emit the jump table to the same section as the
1083      // function body itself, otherwise the label differences won't make sense.
1084      // FIXME: Need a better predicate for this: what about custom entries?
1085      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1086      // We should also do if the section name is NULL or function is declared
1087      // in discardable section
1088      // FIXME: this isn't the right predicate, should be based on the MCSection
1089      // for the function.
1090      F->isWeakForLinker()) {
1091    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1092  } else {
1093    // Otherwise, drop it in the readonly section.
1094    const MCSection *ReadOnlySection =
1095      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1096    OutStreamer.SwitchSection(ReadOnlySection);
1097    JTInDiffSection = true;
1098  }
1099
1100  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1101
1102  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1103    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1104
1105    // If this jump table was deleted, ignore it.
1106    if (JTBBs.empty()) continue;
1107
1108    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1109    // .set directive for each unique entry.  This reduces the number of
1110    // relocations the assembler will generate for the jump table.
1111    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1112        MAI->hasSetDirective()) {
1113      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1114      const TargetLowering *TLI = TM.getTargetLowering();
1115      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1116      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1117        const MachineBasicBlock *MBB = JTBBs[ii];
1118        if (!EmittedSets.insert(MBB)) continue;
1119
1120        // .set LJTSet, LBB32-base
1121        const MCExpr *LHS =
1122          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1123        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1124                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1125      }
1126    }
1127
1128    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1129    // before each jump table.  The first label is never referenced, but tells
1130    // the assembler and linker the extents of the jump table object.  The
1131    // second label is actually referenced by the code.
1132    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1133      // FIXME: This doesn't have to have any specific name, just any randomly
1134      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1135      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1136
1137    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1138
1139    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1140      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1141  }
1142}
1143
1144/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1145/// current stream.
1146void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1147                                    const MachineBasicBlock *MBB,
1148                                    unsigned UID) const {
1149  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1150  const MCExpr *Value = 0;
1151  switch (MJTI->getEntryKind()) {
1152  case MachineJumpTableInfo::EK_Inline:
1153    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1154  case MachineJumpTableInfo::EK_Custom32:
1155    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1156                                                              OutContext);
1157    break;
1158  case MachineJumpTableInfo::EK_BlockAddress:
1159    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1160    //     .word LBB123
1161    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1162    break;
1163  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1164    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1165    // with a relocation as gp-relative, e.g.:
1166    //     .gprel32 LBB123
1167    MCSymbol *MBBSym = MBB->getSymbol();
1168    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1169    return;
1170  }
1171
1172  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1173    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1174    // with a relocation as gp-relative, e.g.:
1175    //     .gpdword LBB123
1176    MCSymbol *MBBSym = MBB->getSymbol();
1177    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1178    return;
1179  }
1180
1181  case MachineJumpTableInfo::EK_LabelDifference32: {
1182    // EK_LabelDifference32 - Each entry is the address of the block minus
1183    // the address of the jump table.  This is used for PIC jump tables where
1184    // gprel32 is not supported.  e.g.:
1185    //      .word LBB123 - LJTI1_2
1186    // If the .set directive is supported, this is emitted as:
1187    //      .set L4_5_set_123, LBB123 - LJTI1_2
1188    //      .word L4_5_set_123
1189
1190    // If we have emitted set directives for the jump table entries, print
1191    // them rather than the entries themselves.  If we're emitting PIC, then
1192    // emit the table entries as differences between two text section labels.
1193    if (MAI->hasSetDirective()) {
1194      // If we used .set, reference the .set's symbol.
1195      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1196                                      OutContext);
1197      break;
1198    }
1199    // Otherwise, use the difference as the jump table entry.
1200    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1201    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1202    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1203    break;
1204  }
1205  }
1206
1207  assert(Value && "Unknown entry kind!");
1208
1209  unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1210  OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1211}
1212
1213
1214/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1215/// special global used by LLVM.  If so, emit it and return true, otherwise
1216/// do nothing and return false.
1217bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1218  if (GV->getName() == "llvm.used") {
1219    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1220      EmitLLVMUsedList(GV->getInitializer());
1221    return true;
1222  }
1223
1224  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1225  if (GV->getSection() == "llvm.metadata" ||
1226      GV->hasAvailableExternallyLinkage())
1227    return true;
1228
1229  if (!GV->hasAppendingLinkage()) return false;
1230
1231  assert(GV->hasInitializer() && "Not a special LLVM global!");
1232
1233  if (GV->getName() == "llvm.global_ctors") {
1234    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1235
1236    if (TM.getRelocationModel() == Reloc::Static &&
1237        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1238      StringRef Sym(".constructors_used");
1239      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1240                                      MCSA_Reference);
1241    }
1242    return true;
1243  }
1244
1245  if (GV->getName() == "llvm.global_dtors") {
1246    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1247
1248    if (TM.getRelocationModel() == Reloc::Static &&
1249        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1250      StringRef Sym(".destructors_used");
1251      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1252                                      MCSA_Reference);
1253    }
1254    return true;
1255  }
1256
1257  return false;
1258}
1259
1260/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1261/// global in the specified llvm.used list for which emitUsedDirectiveFor
1262/// is true, as being used with this directive.
1263void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1264  // Should be an array of 'i8*'.
1265  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1266  if (InitList == 0) return;
1267
1268  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1269    const GlobalValue *GV =
1270      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1271    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1272      OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1273  }
1274}
1275
1276typedef std::pair<unsigned, Constant*> Structor;
1277
1278static bool priority_order(const Structor& lhs, const Structor& rhs) {
1279  return lhs.first < rhs.first;
1280}
1281
1282/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1283/// priority.
1284void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1285  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1286  // init priority.
1287  if (!isa<ConstantArray>(List)) return;
1288
1289  // Sanity check the structors list.
1290  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1291  if (!InitList) return; // Not an array!
1292  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1293  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1294  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1295      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1296
1297  // Gather the structors in a form that's convenient for sorting by priority.
1298  SmallVector<Structor, 8> Structors;
1299  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1300    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1301    if (!CS) continue; // Malformed.
1302    if (CS->getOperand(1)->isNullValue())
1303      break;  // Found a null terminator, skip the rest.
1304    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1305    if (!Priority) continue; // Malformed.
1306    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1307                                       CS->getOperand(1)));
1308  }
1309
1310  // Emit the function pointers in the target-specific order
1311  const TargetData *TD = TM.getTargetData();
1312  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1313  std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1314  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1315    const MCSection *OutputSection =
1316      (isCtor ?
1317       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1318       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1319    OutStreamer.SwitchSection(OutputSection);
1320    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1321      EmitAlignment(Align);
1322    EmitXXStructor(Structors[i].second);
1323  }
1324}
1325
1326//===--------------------------------------------------------------------===//
1327// Emission and print routines
1328//
1329
1330/// EmitInt8 - Emit a byte directive and value.
1331///
1332void AsmPrinter::EmitInt8(int Value) const {
1333  OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1334}
1335
1336/// EmitInt16 - Emit a short directive and value.
1337///
1338void AsmPrinter::EmitInt16(int Value) const {
1339  OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1340}
1341
1342/// EmitInt32 - Emit a long directive and value.
1343///
1344void AsmPrinter::EmitInt32(int Value) const {
1345  OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1346}
1347
1348/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1349/// in bytes of the directive is specified by Size and Hi/Lo specify the
1350/// labels.  This implicitly uses .set if it is available.
1351void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1352                                     unsigned Size) const {
1353  // Get the Hi-Lo expression.
1354  const MCExpr *Diff =
1355    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1356                            MCSymbolRefExpr::Create(Lo, OutContext),
1357                            OutContext);
1358
1359  if (!MAI->hasSetDirective()) {
1360    OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1361    return;
1362  }
1363
1364  // Otherwise, emit with .set (aka assignment).
1365  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1366  OutStreamer.EmitAssignment(SetLabel, Diff);
1367  OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1368}
1369
1370/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1371/// where the size in bytes of the directive is specified by Size and Hi/Lo
1372/// specify the labels.  This implicitly uses .set if it is available.
1373void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1374                                           const MCSymbol *Lo, unsigned Size)
1375  const {
1376
1377  // Emit Hi+Offset - Lo
1378  // Get the Hi+Offset expression.
1379  const MCExpr *Plus =
1380    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1381                            MCConstantExpr::Create(Offset, OutContext),
1382                            OutContext);
1383
1384  // Get the Hi+Offset-Lo expression.
1385  const MCExpr *Diff =
1386    MCBinaryExpr::CreateSub(Plus,
1387                            MCSymbolRefExpr::Create(Lo, OutContext),
1388                            OutContext);
1389
1390  if (!MAI->hasSetDirective())
1391    OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1392  else {
1393    // Otherwise, emit with .set (aka assignment).
1394    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1395    OutStreamer.EmitAssignment(SetLabel, Diff);
1396    OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1397  }
1398}
1399
1400/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1401/// where the size in bytes of the directive is specified by Size and Label
1402/// specifies the label.  This implicitly uses .set if it is available.
1403void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1404                                      unsigned Size)
1405  const {
1406
1407  // Emit Label+Offset (or just Label if Offset is zero)
1408  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1409  if (Offset)
1410    Expr = MCBinaryExpr::CreateAdd(Expr,
1411                                   MCConstantExpr::Create(Offset, OutContext),
1412                                   OutContext);
1413
1414  OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1415}
1416
1417
1418//===----------------------------------------------------------------------===//
1419
1420// EmitAlignment - Emit an alignment directive to the specified power of
1421// two boundary.  For example, if you pass in 3 here, you will get an 8
1422// byte alignment.  If a global value is specified, and if that global has
1423// an explicit alignment requested, it will override the alignment request
1424// if required for correctness.
1425//
1426void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1427  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1428
1429  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1430
1431  if (getCurrentSection()->getKind().isText())
1432    OutStreamer.EmitCodeAlignment(1 << NumBits);
1433  else
1434    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1435}
1436
1437//===----------------------------------------------------------------------===//
1438// Constant emission.
1439//===----------------------------------------------------------------------===//
1440
1441/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1442///
1443static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1444  MCContext &Ctx = AP.OutContext;
1445
1446  if (CV->isNullValue() || isa<UndefValue>(CV))
1447    return MCConstantExpr::Create(0, Ctx);
1448
1449  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1450    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1451
1452  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1453    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1454
1455  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1456    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1457
1458  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1459  if (CE == 0) {
1460    llvm_unreachable("Unknown constant value to lower!");
1461  }
1462
1463  switch (CE->getOpcode()) {
1464  default:
1465    // If the code isn't optimized, there may be outstanding folding
1466    // opportunities. Attempt to fold the expression using TargetData as a
1467    // last resort before giving up.
1468    if (Constant *C =
1469          ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1470      if (C != CE)
1471        return lowerConstant(C, AP);
1472
1473    // Otherwise report the problem to the user.
1474    {
1475      std::string S;
1476      raw_string_ostream OS(S);
1477      OS << "Unsupported expression in static initializer: ";
1478      WriteAsOperand(OS, CE, /*PrintType=*/false,
1479                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1480      report_fatal_error(OS.str());
1481    }
1482  case Instruction::GetElementPtr: {
1483    const TargetData &TD = *AP.TM.getTargetData();
1484    // Generate a symbolic expression for the byte address
1485    const Constant *PtrVal = CE->getOperand(0);
1486    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1487    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1488
1489    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1490    if (Offset == 0)
1491      return Base;
1492
1493    // Truncate/sext the offset to the pointer size.
1494    unsigned Width = TD.getPointerSizeInBits();
1495    if (Width < 64)
1496      Offset = SignExtend64(Offset, Width);
1497
1498    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1499                                   Ctx);
1500  }
1501
1502  case Instruction::Trunc:
1503    // We emit the value and depend on the assembler to truncate the generated
1504    // expression properly.  This is important for differences between
1505    // blockaddress labels.  Since the two labels are in the same function, it
1506    // is reasonable to treat their delta as a 32-bit value.
1507    // FALL THROUGH.
1508  case Instruction::BitCast:
1509    return lowerConstant(CE->getOperand(0), AP);
1510
1511  case Instruction::IntToPtr: {
1512    const TargetData &TD = *AP.TM.getTargetData();
1513    // Handle casts to pointers by changing them into casts to the appropriate
1514    // integer type.  This promotes constant folding and simplifies this code.
1515    Constant *Op = CE->getOperand(0);
1516    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1517                                      false/*ZExt*/);
1518    return lowerConstant(Op, AP);
1519  }
1520
1521  case Instruction::PtrToInt: {
1522    const TargetData &TD = *AP.TM.getTargetData();
1523    // Support only foldable casts to/from pointers that can be eliminated by
1524    // changing the pointer to the appropriately sized integer type.
1525    Constant *Op = CE->getOperand(0);
1526    Type *Ty = CE->getType();
1527
1528    const MCExpr *OpExpr = lowerConstant(Op, AP);
1529
1530    // We can emit the pointer value into this slot if the slot is an
1531    // integer slot equal to the size of the pointer.
1532    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1533      return OpExpr;
1534
1535    // Otherwise the pointer is smaller than the resultant integer, mask off
1536    // the high bits so we are sure to get a proper truncation if the input is
1537    // a constant expr.
1538    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1539    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1540    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1541  }
1542
1543  // The MC library also has a right-shift operator, but it isn't consistently
1544  // signed or unsigned between different targets.
1545  case Instruction::Add:
1546  case Instruction::Sub:
1547  case Instruction::Mul:
1548  case Instruction::SDiv:
1549  case Instruction::SRem:
1550  case Instruction::Shl:
1551  case Instruction::And:
1552  case Instruction::Or:
1553  case Instruction::Xor: {
1554    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1555    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1556    switch (CE->getOpcode()) {
1557    default: llvm_unreachable("Unknown binary operator constant cast expr");
1558    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1559    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1560    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1561    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1562    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1563    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1564    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1565    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1566    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1567    }
1568  }
1569  }
1570}
1571
1572static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1573                                   AsmPrinter &AP);
1574
1575/// isRepeatedByteSequence - Determine whether the given value is
1576/// composed of a repeated sequence of identical bytes and return the
1577/// byte value.  If it is not a repeated sequence, return -1.
1578static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1579  StringRef Data = V->getRawDataValues();
1580  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1581  char C = Data[0];
1582  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1583    if (Data[i] != C) return -1;
1584  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1585}
1586
1587
1588/// isRepeatedByteSequence - Determine whether the given value is
1589/// composed of a repeated sequence of identical bytes and return the
1590/// byte value.  If it is not a repeated sequence, return -1.
1591static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1592
1593  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1594    if (CI->getBitWidth() > 64) return -1;
1595
1596    uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1597    uint64_t Value = CI->getZExtValue();
1598
1599    // Make sure the constant is at least 8 bits long and has a power
1600    // of 2 bit width.  This guarantees the constant bit width is
1601    // always a multiple of 8 bits, avoiding issues with padding out
1602    // to Size and other such corner cases.
1603    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1604
1605    uint8_t Byte = static_cast<uint8_t>(Value);
1606
1607    for (unsigned i = 1; i < Size; ++i) {
1608      Value >>= 8;
1609      if (static_cast<uint8_t>(Value) != Byte) return -1;
1610    }
1611    return Byte;
1612  }
1613  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1614    // Make sure all array elements are sequences of the same repeated
1615    // byte.
1616    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1617    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1618    if (Byte == -1) return -1;
1619
1620    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1621      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1622      if (ThisByte == -1) return -1;
1623      if (Byte != ThisByte) return -1;
1624    }
1625    return Byte;
1626  }
1627
1628  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1629    return isRepeatedByteSequence(CDS);
1630
1631  return -1;
1632}
1633
1634static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1635                                             unsigned AddrSpace,AsmPrinter &AP){
1636
1637  // See if we can aggregate this into a .fill, if so, emit it as such.
1638  int Value = isRepeatedByteSequence(CDS, AP.TM);
1639  if (Value != -1) {
1640    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1641    // Don't emit a 1-byte object as a .fill.
1642    if (Bytes > 1)
1643      return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1644  }
1645
1646  // If this can be emitted with .ascii/.asciz, emit it as such.
1647  if (CDS->isString())
1648    return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1649
1650  // Otherwise, emit the values in successive locations.
1651  unsigned ElementByteSize = CDS->getElementByteSize();
1652  if (isa<IntegerType>(CDS->getElementType())) {
1653    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1654      if (AP.isVerbose())
1655        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1656                                                CDS->getElementAsInteger(i));
1657      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1658                                  ElementByteSize, AddrSpace);
1659    }
1660  } else if (ElementByteSize == 4) {
1661    // FP Constants are printed as integer constants to avoid losing
1662    // precision.
1663    assert(CDS->getElementType()->isFloatTy());
1664    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1665      union {
1666        float F;
1667        uint32_t I;
1668      };
1669
1670      F = CDS->getElementAsFloat(i);
1671      if (AP.isVerbose())
1672        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1673      AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1674    }
1675  } else {
1676    assert(CDS->getElementType()->isDoubleTy());
1677    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1678      union {
1679        double F;
1680        uint64_t I;
1681      };
1682
1683      F = CDS->getElementAsDouble(i);
1684      if (AP.isVerbose())
1685        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1686      AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1687    }
1688  }
1689
1690  const TargetData &TD = *AP.TM.getTargetData();
1691  unsigned Size = TD.getTypeAllocSize(CDS->getType());
1692  unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1693                        CDS->getNumElements();
1694  if (unsigned Padding = Size - EmittedSize)
1695    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1696
1697}
1698
1699static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1700                                    AsmPrinter &AP) {
1701  // See if we can aggregate some values.  Make sure it can be
1702  // represented as a series of bytes of the constant value.
1703  int Value = isRepeatedByteSequence(CA, AP.TM);
1704
1705  if (Value != -1) {
1706    uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1707    AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1708  }
1709  else {
1710    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1711      emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1712  }
1713}
1714
1715static void emitGlobalConstantVector(const ConstantVector *CV,
1716                                     unsigned AddrSpace, AsmPrinter &AP) {
1717  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1718    emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1719
1720  const TargetData &TD = *AP.TM.getTargetData();
1721  unsigned Size = TD.getTypeAllocSize(CV->getType());
1722  unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1723                         CV->getType()->getNumElements();
1724  if (unsigned Padding = Size - EmittedSize)
1725    AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1726}
1727
1728static void emitGlobalConstantStruct(const ConstantStruct *CS,
1729                                     unsigned AddrSpace, AsmPrinter &AP) {
1730  // Print the fields in successive locations. Pad to align if needed!
1731  const TargetData *TD = AP.TM.getTargetData();
1732  unsigned Size = TD->getTypeAllocSize(CS->getType());
1733  const StructLayout *Layout = TD->getStructLayout(CS->getType());
1734  uint64_t SizeSoFar = 0;
1735  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1736    const Constant *Field = CS->getOperand(i);
1737
1738    // Check if padding is needed and insert one or more 0s.
1739    uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1740    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1741                        - Layout->getElementOffset(i)) - FieldSize;
1742    SizeSoFar += FieldSize + PadSize;
1743
1744    // Now print the actual field value.
1745    emitGlobalConstantImpl(Field, AddrSpace, AP);
1746
1747    // Insert padding - this may include padding to increase the size of the
1748    // current field up to the ABI size (if the struct is not packed) as well
1749    // as padding to ensure that the next field starts at the right offset.
1750    AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1751  }
1752  assert(SizeSoFar == Layout->getSizeInBytes() &&
1753         "Layout of constant struct may be incorrect!");
1754}
1755
1756static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1757                                 AsmPrinter &AP) {
1758  if (CFP->getType()->isHalfTy()) {
1759    if (AP.isVerbose()) {
1760      SmallString<10> Str;
1761      CFP->getValueAPF().toString(Str);
1762      AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1763    }
1764    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1765    AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1766    return;
1767  }
1768
1769  if (CFP->getType()->isFloatTy()) {
1770    if (AP.isVerbose()) {
1771      float Val = CFP->getValueAPF().convertToFloat();
1772      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1773      AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1774                                    << " (" << format("0x%x", IntVal) << ")\n";
1775    }
1776    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777    AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1778    return;
1779  }
1780
1781  // FP Constants are printed as integer constants to avoid losing
1782  // precision.
1783  if (CFP->getType()->isDoubleTy()) {
1784    if (AP.isVerbose()) {
1785      double Val = CFP->getValueAPF().convertToDouble();
1786      uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1787      AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1788                                    << " (" << format("0x%lx", IntVal) << ")\n";
1789    }
1790
1791    uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1792    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1793    return;
1794  }
1795
1796  if (CFP->getType()->isX86_FP80Ty()) {
1797    // all long double variants are printed as hex
1798    // API needed to prevent premature destruction
1799    APInt API = CFP->getValueAPF().bitcastToAPInt();
1800    const uint64_t *p = API.getRawData();
1801    if (AP.isVerbose()) {
1802      // Convert to double so we can print the approximate val as a comment.
1803      APFloat DoubleVal = CFP->getValueAPF();
1804      bool ignored;
1805      DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1806                        &ignored);
1807      AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1808        << DoubleVal.convertToDouble() << '\n';
1809    }
1810
1811    if (AP.TM.getTargetData()->isBigEndian()) {
1812      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1813      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1814    } else {
1815      AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1816      AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1817    }
1818
1819    // Emit the tail padding for the long double.
1820    const TargetData &TD = *AP.TM.getTargetData();
1821    AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1822                             TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1823    return;
1824  }
1825
1826  assert(CFP->getType()->isPPC_FP128Ty() &&
1827         "Floating point constant type not handled");
1828  // All long double variants are printed as hex
1829  // API needed to prevent premature destruction.
1830  APInt API = CFP->getValueAPF().bitcastToAPInt();
1831  const uint64_t *p = API.getRawData();
1832  if (AP.TM.getTargetData()->isBigEndian()) {
1833    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1834    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1835  } else {
1836    AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1837    AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1838  }
1839}
1840
1841static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1842                                       unsigned AddrSpace, AsmPrinter &AP) {
1843  const TargetData *TD = AP.TM.getTargetData();
1844  unsigned BitWidth = CI->getBitWidth();
1845  assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1846
1847  // We don't expect assemblers to support integer data directives
1848  // for more than 64 bits, so we emit the data in at most 64-bit
1849  // quantities at a time.
1850  const uint64_t *RawData = CI->getValue().getRawData();
1851  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1852    uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1853    AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1854  }
1855}
1856
1857static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1858                                   AsmPrinter &AP) {
1859  const TargetData *TD = AP.TM.getTargetData();
1860  uint64_t Size = TD->getTypeAllocSize(CV->getType());
1861  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1862    return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1863
1864  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1865    switch (Size) {
1866    case 1:
1867    case 2:
1868    case 4:
1869    case 8:
1870      if (AP.isVerbose())
1871        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1872                                                CI->getZExtValue());
1873      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1874      return;
1875    default:
1876      emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1877      return;
1878    }
1879  }
1880
1881  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1882    return emitGlobalConstantFP(CFP, AddrSpace, AP);
1883
1884  if (isa<ConstantPointerNull>(CV)) {
1885    AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1886    return;
1887  }
1888
1889  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1890    return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1891
1892  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1893    return emitGlobalConstantArray(CVA, AddrSpace, AP);
1894
1895  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1896    return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1897
1898  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1899    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1900    // vectors).
1901    if (CE->getOpcode() == Instruction::BitCast)
1902      return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1903
1904    if (Size > 8) {
1905      // If the constant expression's size is greater than 64-bits, then we have
1906      // to emit the value in chunks. Try to constant fold the value and emit it
1907      // that way.
1908      Constant *New = ConstantFoldConstantExpression(CE, TD);
1909      if (New && New != CE)
1910        return emitGlobalConstantImpl(New, AddrSpace, AP);
1911    }
1912  }
1913
1914  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1915    return emitGlobalConstantVector(V, AddrSpace, AP);
1916
1917  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1918  // thread the streamer with EmitValue.
1919  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1920}
1921
1922/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1923void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1924  uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1925  if (Size)
1926    emitGlobalConstantImpl(CV, AddrSpace, *this);
1927  else if (MAI->hasSubsectionsViaSymbols()) {
1928    // If the global has zero size, emit a single byte so that two labels don't
1929    // look like they are at the same location.
1930    OutStreamer.EmitIntValue(0, 1, AddrSpace);
1931  }
1932}
1933
1934void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1935  // Target doesn't support this yet!
1936  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1937}
1938
1939void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1940  if (Offset > 0)
1941    OS << '+' << Offset;
1942  else if (Offset < 0)
1943    OS << Offset;
1944}
1945
1946//===----------------------------------------------------------------------===//
1947// Symbol Lowering Routines.
1948//===----------------------------------------------------------------------===//
1949
1950/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1951/// temporary label with the specified stem and unique ID.
1952MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1953  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1954                                      Name + Twine(ID));
1955}
1956
1957/// GetTempSymbol - Return an assembler temporary label with the specified
1958/// stem.
1959MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1960  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1961                                      Name);
1962}
1963
1964
1965MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1966  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1967}
1968
1969MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1970  return MMI->getAddrLabelSymbol(BB);
1971}
1972
1973/// GetCPISymbol - Return the symbol for the specified constant pool entry.
1974MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1975  return OutContext.GetOrCreateSymbol
1976    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1977     + "_" + Twine(CPID));
1978}
1979
1980/// GetJTISymbol - Return the symbol for the specified jump table entry.
1981MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1982  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1983}
1984
1985/// GetJTSetSymbol - Return the symbol for the specified jump table .set
1986/// FIXME: privatize to AsmPrinter.
1987MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1988  return OutContext.GetOrCreateSymbol
1989  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1990   Twine(UID) + "_set_" + Twine(MBBID));
1991}
1992
1993/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1994/// global value name as its base, with the specified suffix, and where the
1995/// symbol is forced to have private linkage if ForcePrivate is true.
1996MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1997                                                   StringRef Suffix,
1998                                                   bool ForcePrivate) const {
1999  SmallString<60> NameStr;
2000  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2001  NameStr.append(Suffix.begin(), Suffix.end());
2002  return OutContext.GetOrCreateSymbol(NameStr.str());
2003}
2004
2005/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2006/// ExternalSymbol.
2007MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2008  SmallString<60> NameStr;
2009  Mang->getNameWithPrefix(NameStr, Sym);
2010  return OutContext.GetOrCreateSymbol(NameStr.str());
2011}
2012
2013
2014
2015/// PrintParentLoopComment - Print comments about parent loops of this one.
2016static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2017                                   unsigned FunctionNumber) {
2018  if (Loop == 0) return;
2019  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2020  OS.indent(Loop->getLoopDepth()*2)
2021    << "Parent Loop BB" << FunctionNumber << "_"
2022    << Loop->getHeader()->getNumber()
2023    << " Depth=" << Loop->getLoopDepth() << '\n';
2024}
2025
2026
2027/// PrintChildLoopComment - Print comments about child loops within
2028/// the loop for this basic block, with nesting.
2029static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2030                                  unsigned FunctionNumber) {
2031  // Add child loop information
2032  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2033    OS.indent((*CL)->getLoopDepth()*2)
2034      << "Child Loop BB" << FunctionNumber << "_"
2035      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2036      << '\n';
2037    PrintChildLoopComment(OS, *CL, FunctionNumber);
2038  }
2039}
2040
2041/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2042static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2043                                       const MachineLoopInfo *LI,
2044                                       const AsmPrinter &AP) {
2045  // Add loop depth information
2046  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2047  if (Loop == 0) return;
2048
2049  MachineBasicBlock *Header = Loop->getHeader();
2050  assert(Header && "No header for loop");
2051
2052  // If this block is not a loop header, just print out what is the loop header
2053  // and return.
2054  if (Header != &MBB) {
2055    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2056                              Twine(AP.getFunctionNumber())+"_" +
2057                              Twine(Loop->getHeader()->getNumber())+
2058                              " Depth="+Twine(Loop->getLoopDepth()));
2059    return;
2060  }
2061
2062  // Otherwise, it is a loop header.  Print out information about child and
2063  // parent loops.
2064  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2065
2066  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2067
2068  OS << "=>";
2069  OS.indent(Loop->getLoopDepth()*2-2);
2070
2071  OS << "This ";
2072  if (Loop->empty())
2073    OS << "Inner ";
2074  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2075
2076  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2077}
2078
2079
2080/// EmitBasicBlockStart - This method prints the label for the specified
2081/// MachineBasicBlock, an alignment (if present) and a comment describing
2082/// it if appropriate.
2083void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2084  // Emit an alignment directive for this block, if needed.
2085  if (unsigned Align = MBB->getAlignment())
2086    EmitAlignment(Align);
2087
2088  // If the block has its address taken, emit any labels that were used to
2089  // reference the block.  It is possible that there is more than one label
2090  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2091  // the references were generated.
2092  if (MBB->hasAddressTaken()) {
2093    const BasicBlock *BB = MBB->getBasicBlock();
2094    if (isVerbose())
2095      OutStreamer.AddComment("Block address taken");
2096
2097    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2098
2099    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2100      OutStreamer.EmitLabel(Syms[i]);
2101  }
2102
2103  // Print some verbose block comments.
2104  if (isVerbose()) {
2105    if (const BasicBlock *BB = MBB->getBasicBlock())
2106      if (BB->hasName())
2107        OutStreamer.AddComment("%" + BB->getName());
2108    emitBasicBlockLoopComments(*MBB, LI, *this);
2109  }
2110
2111  // Print the main label for the block.
2112  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2113    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2114      // NOTE: Want this comment at start of line, don't emit with AddComment.
2115      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2116                              Twine(MBB->getNumber()) + ":");
2117    }
2118  } else {
2119    OutStreamer.EmitLabel(MBB->getSymbol());
2120  }
2121}
2122
2123void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2124                                bool IsDefinition) const {
2125  MCSymbolAttr Attr = MCSA_Invalid;
2126
2127  switch (Visibility) {
2128  default: break;
2129  case GlobalValue::HiddenVisibility:
2130    if (IsDefinition)
2131      Attr = MAI->getHiddenVisibilityAttr();
2132    else
2133      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2134    break;
2135  case GlobalValue::ProtectedVisibility:
2136    Attr = MAI->getProtectedVisibilityAttr();
2137    break;
2138  }
2139
2140  if (Attr != MCSA_Invalid)
2141    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2142}
2143
2144/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2145/// exactly one predecessor and the control transfer mechanism between
2146/// the predecessor and this block is a fall-through.
2147bool AsmPrinter::
2148isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2149  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2150  // then nothing falls through to it.
2151  if (MBB->isLandingPad() || MBB->pred_empty())
2152    return false;
2153
2154  // If there isn't exactly one predecessor, it can't be a fall through.
2155  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2156  ++PI2;
2157  if (PI2 != MBB->pred_end())
2158    return false;
2159
2160  // The predecessor has to be immediately before this block.
2161  MachineBasicBlock *Pred = *PI;
2162
2163  if (!Pred->isLayoutSuccessor(MBB))
2164    return false;
2165
2166  // If the block is completely empty, then it definitely does fall through.
2167  if (Pred->empty())
2168    return true;
2169
2170  // Check the terminators in the previous blocks
2171  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2172         IE = Pred->end(); II != IE; ++II) {
2173    MachineInstr &MI = *II;
2174
2175    // If it is not a simple branch, we are in a table somewhere.
2176    if (!MI.isBranch() || MI.isIndirectBranch())
2177      return false;
2178
2179    // If we are the operands of one of the branches, this is not
2180    // a fall through.
2181    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2182           OE = MI.operands_end(); OI != OE; ++OI) {
2183      const MachineOperand& OP = *OI;
2184      if (OP.isJTI())
2185        return false;
2186      if (OP.isMBB() && OP.getMBB() == MBB)
2187        return false;
2188    }
2189  }
2190
2191  return true;
2192}
2193
2194
2195
2196GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2197  if (!S->usesMetadata())
2198    return 0;
2199
2200  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2201  gcp_map_type::iterator GCPI = GCMap.find(S);
2202  if (GCPI != GCMap.end())
2203    return GCPI->second;
2204
2205  const char *Name = S->getName().c_str();
2206
2207  for (GCMetadataPrinterRegistry::iterator
2208         I = GCMetadataPrinterRegistry::begin(),
2209         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2210    if (strcmp(Name, I->getName()) == 0) {
2211      GCMetadataPrinter *GMP = I->instantiate();
2212      GMP->S = S;
2213      GCMap.insert(std::make_pair(S, GMP));
2214      return GMP;
2215    }
2216
2217  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2218}
2219