1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the AsmPrinter class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "asm-printer" 15#include "llvm/CodeGen/AsmPrinter.h" 16#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 17# include "DwarfDebug.h" 18# include "DwarfException.h" 19#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 20#include "llvm/DebugInfo.h" 21#include "llvm/Module.h" 22#include "llvm/CodeGen/GCMetadataPrinter.h" 23#include "llvm/CodeGen/MachineConstantPool.h" 24#include "llvm/CodeGen/MachineFrameInfo.h" 25#include "llvm/CodeGen/MachineFunction.h" 26#include "llvm/CodeGen/MachineJumpTableInfo.h" 27#include "llvm/CodeGen/MachineLoopInfo.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/Analysis/ConstantFolding.h" 30#include "llvm/MC/MCAsmInfo.h" 31#include "llvm/MC/MCContext.h" 32#include "llvm/MC/MCExpr.h" 33#include "llvm/MC/MCInst.h" 34#include "llvm/MC/MCSection.h" 35#include "llvm/MC/MCStreamer.h" 36#include "llvm/MC/MCSymbol.h" 37#include "llvm/Target/Mangler.h" 38#include "llvm/Target/TargetData.h" 39#include "llvm/Target/TargetInstrInfo.h" 40#include "llvm/Target/TargetLowering.h" 41#include "llvm/Target/TargetLoweringObjectFile.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Target/TargetRegisterInfo.h" 44#include "llvm/Assembly/Writer.h" 45#include "llvm/ADT/SmallString.h" 46#include "llvm/ADT/Statistic.h" 47#include "llvm/Support/ErrorHandling.h" 48#include "llvm/Support/Format.h" 49#include "llvm/Support/MathExtras.h" 50#include "llvm/Support/Timer.h" 51#include <ctype.h> 52using namespace llvm; 53 54static const char *DWARFGroupName = "DWARF Emission"; 55static const char *DbgTimerName = "DWARF Debug Writer"; 56static const char *EHTimerName = "DWARF Exception Writer"; 57 58STATISTIC(EmittedInsts, "Number of machine instrs printed"); 59 60char AsmPrinter::ID = 0; 61 62typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 63static gcp_map_type &getGCMap(void *&P) { 64 if (P == 0) 65 P = new gcp_map_type(); 66 return *(gcp_map_type*)P; 67} 68 69 70/// getGVAlignmentLog2 - Return the alignment to use for the specified global 71/// value in log2 form. This rounds up to the preferred alignment if possible 72/// and legal. 73static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 74 unsigned InBits = 0) { 75 unsigned NumBits = 0; 76 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 77 NumBits = TD.getPreferredAlignmentLog(GVar); 78 79 // If InBits is specified, round it to it. 80 if (InBits > NumBits) 81 NumBits = InBits; 82 83 // If the GV has a specified alignment, take it into account. 84 if (GV->getAlignment() == 0) 85 return NumBits; 86 87 unsigned GVAlign = Log2_32(GV->getAlignment()); 88 89 // If the GVAlign is larger than NumBits, or if we are required to obey 90 // NumBits because the GV has an assigned section, obey it. 91 if (GVAlign > NumBits || GV->hasSection()) 92 NumBits = GVAlign; 93 return NumBits; 94} 95 96 97 98 99AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 100 : MachineFunctionPass(ID), 101 TM(tm), MAI(tm.getMCAsmInfo()), 102 OutContext(Streamer.getContext()), 103 OutStreamer(Streamer), 104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 105 DD = 0; DE = 0; MMI = 0; LI = 0; 106 CurrentFnSym = CurrentFnSymForSize = 0; 107 GCMetadataPrinters = 0; 108 VerboseAsm = Streamer.isVerboseAsm(); 109} 110 111AsmPrinter::~AsmPrinter() { 112 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 113 114 if (GCMetadataPrinters != 0) { 115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 116 117 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 118 delete I->second; 119 delete &GCMap; 120 GCMetadataPrinters = 0; 121 } 122 123 delete &OutStreamer; 124} 125 126/// getFunctionNumber - Return a unique ID for the current function. 127/// 128unsigned AsmPrinter::getFunctionNumber() const { 129 return MF->getFunctionNumber(); 130} 131 132const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 133 return TM.getTargetLowering()->getObjFileLowering(); 134} 135 136 137/// getTargetData - Return information about data layout. 138const TargetData &AsmPrinter::getTargetData() const { 139 return *TM.getTargetData(); 140} 141 142/// getCurrentSection() - Return the current section we are emitting to. 143const MCSection *AsmPrinter::getCurrentSection() const { 144 return OutStreamer.getCurrentSection(); 145} 146 147 148 149void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 150 AU.setPreservesAll(); 151 MachineFunctionPass::getAnalysisUsage(AU); 152 AU.addRequired<MachineModuleInfo>(); 153 AU.addRequired<GCModuleInfo>(); 154 if (isVerbose()) 155 AU.addRequired<MachineLoopInfo>(); 156} 157 158bool AsmPrinter::doInitialization(Module &M) { 159 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 160 MMI->AnalyzeModule(M); 161 162 // Initialize TargetLoweringObjectFile. 163 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 164 .Initialize(OutContext, TM); 165 166 Mang = new Mangler(OutContext, *TM.getTargetData()); 167 168 // Allow the target to emit any magic that it wants at the start of the file. 169 EmitStartOfAsmFile(M); 170 171 // Very minimal debug info. It is ignored if we emit actual debug info. If we 172 // don't, this at least helps the user find where a global came from. 173 if (MAI->hasSingleParameterDotFile()) { 174 // .file "foo.c" 175 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 176 } 177 178 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 179 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 180 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 181 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 182 MP->beginAssembly(*this); 183 184 // Emit module-level inline asm if it exists. 185 if (!M.getModuleInlineAsm().empty()) { 186 OutStreamer.AddComment("Start of file scope inline assembly"); 187 OutStreamer.AddBlankLine(); 188 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 189 OutStreamer.AddComment("End of file scope inline assembly"); 190 OutStreamer.AddBlankLine(); 191 } 192 193#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 194 if (MAI->doesSupportDebugInformation()) 195 DD = new DwarfDebug(this, &M); 196 197 switch (MAI->getExceptionHandlingType()) { 198 case ExceptionHandling::None: 199 return false; 200 case ExceptionHandling::SjLj: 201 case ExceptionHandling::DwarfCFI: 202 DE = new DwarfCFIException(this); 203 return false; 204 case ExceptionHandling::ARM: 205 DE = new ARMException(this); 206 return false; 207 case ExceptionHandling::Win64: 208 DE = new Win64Exception(this); 209 return false; 210 } 211#else 212 return false; 213#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 214 215 llvm_unreachable("Unknown exception type."); 216} 217 218void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 219 switch ((GlobalValue::LinkageTypes)Linkage) { 220 case GlobalValue::CommonLinkage: 221 case GlobalValue::LinkOnceAnyLinkage: 222 case GlobalValue::LinkOnceODRLinkage: 223 case GlobalValue::LinkOnceODRAutoHideLinkage: 224 case GlobalValue::WeakAnyLinkage: 225 case GlobalValue::WeakODRLinkage: 226 case GlobalValue::LinkerPrivateWeakLinkage: 227 if (MAI->getWeakDefDirective() != 0) { 228 // .globl _foo 229 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 230 231 if ((GlobalValue::LinkageTypes)Linkage != 232 GlobalValue::LinkOnceODRAutoHideLinkage) 233 // .weak_definition _foo 234 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 235 else 236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 237 } else if (MAI->getLinkOnceDirective() != 0) { 238 // .globl _foo 239 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 240 //NOTE: linkonce is handled by the section the symbol was assigned to. 241 } else { 242 // .weak _foo 243 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 244 } 245 break; 246 case GlobalValue::DLLExportLinkage: 247 case GlobalValue::AppendingLinkage: 248 // FIXME: appending linkage variables should go into a section of 249 // their name or something. For now, just emit them as external. 250 case GlobalValue::ExternalLinkage: 251 // If external or appending, declare as a global symbol. 252 // .globl _foo 253 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 254 break; 255 case GlobalValue::PrivateLinkage: 256 case GlobalValue::InternalLinkage: 257 case GlobalValue::LinkerPrivateLinkage: 258 break; 259 default: 260 llvm_unreachable("Unknown linkage type!"); 261 } 262} 263 264 265/// EmitGlobalVariable - Emit the specified global variable to the .s file. 266void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 267 if (GV->hasInitializer()) { 268 // Check to see if this is a special global used by LLVM, if so, emit it. 269 if (EmitSpecialLLVMGlobal(GV)) 270 return; 271 272 if (isVerbose()) { 273 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 274 /*PrintType=*/false, GV->getParent()); 275 OutStreamer.GetCommentOS() << '\n'; 276 } 277 } 278 279 MCSymbol *GVSym = Mang->getSymbol(GV); 280 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 281 282 if (!GV->hasInitializer()) // External globals require no extra code. 283 return; 284 285 if (MAI->hasDotTypeDotSizeDirective()) 286 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 287 288 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 289 290 const TargetData *TD = TM.getTargetData(); 291 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 292 293 // If the alignment is specified, we *must* obey it. Overaligning a global 294 // with a specified alignment is a prompt way to break globals emitted to 295 // sections and expected to be contiguous (e.g. ObjC metadata). 296 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 297 298 // Handle common and BSS local symbols (.lcomm). 299 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 300 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 301 unsigned Align = 1 << AlignLog; 302 303 // Handle common symbols. 304 if (GVKind.isCommon()) { 305 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 306 Align = 0; 307 308 // .comm _foo, 42, 4 309 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 310 return; 311 } 312 313 // Handle local BSS symbols. 314 if (MAI->hasMachoZeroFillDirective()) { 315 const MCSection *TheSection = 316 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 317 // .zerofill __DATA, __bss, _foo, 400, 5 318 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 319 return; 320 } 321 322 if (Align == 1 || 323 MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 324 // .lcomm _foo, 42 325 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 326 return; 327 } 328 329 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 330 Align = 0; 331 332 // .local _foo 333 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 334 // .comm _foo, 42, 4 335 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 336 return; 337 } 338 339 const MCSection *TheSection = 340 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 341 342 // Handle the zerofill directive on darwin, which is a special form of BSS 343 // emission. 344 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 345 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 346 347 // .globl _foo 348 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 349 // .zerofill __DATA, __common, _foo, 400, 5 350 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 351 return; 352 } 353 354 // Handle thread local data for mach-o which requires us to output an 355 // additional structure of data and mangle the original symbol so that we 356 // can reference it later. 357 // 358 // TODO: This should become an "emit thread local global" method on TLOF. 359 // All of this macho specific stuff should be sunk down into TLOFMachO and 360 // stuff like "TLSExtraDataSection" should no longer be part of the parent 361 // TLOF class. This will also make it more obvious that stuff like 362 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 363 // specific code. 364 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 365 // Emit the .tbss symbol 366 MCSymbol *MangSym = 367 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 368 369 if (GVKind.isThreadBSS()) 370 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 371 else if (GVKind.isThreadData()) { 372 OutStreamer.SwitchSection(TheSection); 373 374 EmitAlignment(AlignLog, GV); 375 OutStreamer.EmitLabel(MangSym); 376 377 EmitGlobalConstant(GV->getInitializer()); 378 } 379 380 OutStreamer.AddBlankLine(); 381 382 // Emit the variable struct for the runtime. 383 const MCSection *TLVSect 384 = getObjFileLowering().getTLSExtraDataSection(); 385 386 OutStreamer.SwitchSection(TLVSect); 387 // Emit the linkage here. 388 EmitLinkage(GV->getLinkage(), GVSym); 389 OutStreamer.EmitLabel(GVSym); 390 391 // Three pointers in size: 392 // - __tlv_bootstrap - used to make sure support exists 393 // - spare pointer, used when mapped by the runtime 394 // - pointer to mangled symbol above with initializer 395 unsigned PtrSize = TD->getPointerSizeInBits()/8; 396 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 397 PtrSize, 0); 398 OutStreamer.EmitIntValue(0, PtrSize, 0); 399 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 400 401 OutStreamer.AddBlankLine(); 402 return; 403 } 404 405 OutStreamer.SwitchSection(TheSection); 406 407 EmitLinkage(GV->getLinkage(), GVSym); 408 EmitAlignment(AlignLog, GV); 409 410 OutStreamer.EmitLabel(GVSym); 411 412 EmitGlobalConstant(GV->getInitializer()); 413 414 if (MAI->hasDotTypeDotSizeDirective()) 415 // .size foo, 42 416 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 417 418 OutStreamer.AddBlankLine(); 419} 420 421/// EmitFunctionHeader - This method emits the header for the current 422/// function. 423void AsmPrinter::EmitFunctionHeader() { 424 // Print out constants referenced by the function 425 EmitConstantPool(); 426 427 // Print the 'header' of function. 428 const Function *F = MF->getFunction(); 429 430 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 431 EmitVisibility(CurrentFnSym, F->getVisibility()); 432 433 EmitLinkage(F->getLinkage(), CurrentFnSym); 434 EmitAlignment(MF->getAlignment(), F); 435 436 if (MAI->hasDotTypeDotSizeDirective()) 437 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 438 439 if (isVerbose()) { 440 WriteAsOperand(OutStreamer.GetCommentOS(), F, 441 /*PrintType=*/false, F->getParent()); 442 OutStreamer.GetCommentOS() << '\n'; 443 } 444 445 // Emit the CurrentFnSym. This is a virtual function to allow targets to 446 // do their wild and crazy things as required. 447 EmitFunctionEntryLabel(); 448 449 // If the function had address-taken blocks that got deleted, then we have 450 // references to the dangling symbols. Emit them at the start of the function 451 // so that we don't get references to undefined symbols. 452 std::vector<MCSymbol*> DeadBlockSyms; 453 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 454 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 455 OutStreamer.AddComment("Address taken block that was later removed"); 456 OutStreamer.EmitLabel(DeadBlockSyms[i]); 457 } 458 459 // Add some workaround for linkonce linkage on Cygwin\MinGW. 460 if (MAI->getLinkOnceDirective() != 0 && 461 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 462 // FIXME: What is this? 463 MCSymbol *FakeStub = 464 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 465 CurrentFnSym->getName()); 466 OutStreamer.EmitLabel(FakeStub); 467 } 468 469 // Emit pre-function debug and/or EH information. 470#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 471 if (DE) { 472 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 473 DE->BeginFunction(MF); 474 } 475 if (DD) { 476 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 477 DD->beginFunction(MF); 478 } 479#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 480} 481 482/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 483/// function. This can be overridden by targets as required to do custom stuff. 484void AsmPrinter::EmitFunctionEntryLabel() { 485 // The function label could have already been emitted if two symbols end up 486 // conflicting due to asm renaming. Detect this and emit an error. 487 if (CurrentFnSym->isUndefined()) 488 return OutStreamer.EmitLabel(CurrentFnSym); 489 490 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 491 "' label emitted multiple times to assembly file"); 492} 493 494/// emitComments - Pretty-print comments for instructions. 495static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 496 const MachineFunction *MF = MI.getParent()->getParent(); 497 const TargetMachine &TM = MF->getTarget(); 498 499 // Check for spills and reloads 500 int FI; 501 502 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 503 504 // We assume a single instruction only has a spill or reload, not 505 // both. 506 const MachineMemOperand *MMO; 507 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 508 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 509 MMO = *MI.memoperands_begin(); 510 CommentOS << MMO->getSize() << "-byte Reload\n"; 511 } 512 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 513 if (FrameInfo->isSpillSlotObjectIndex(FI)) 514 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 515 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 516 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 517 MMO = *MI.memoperands_begin(); 518 CommentOS << MMO->getSize() << "-byte Spill\n"; 519 } 520 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 521 if (FrameInfo->isSpillSlotObjectIndex(FI)) 522 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 523 } 524 525 // Check for spill-induced copies 526 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 527 CommentOS << " Reload Reuse\n"; 528} 529 530/// emitImplicitDef - This method emits the specified machine instruction 531/// that is an implicit def. 532static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 533 unsigned RegNo = MI->getOperand(0).getReg(); 534 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 535 AP.TM.getRegisterInfo()->getName(RegNo)); 536 AP.OutStreamer.AddBlankLine(); 537} 538 539static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 540 std::string Str = "kill:"; 541 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 542 const MachineOperand &Op = MI->getOperand(i); 543 assert(Op.isReg() && "KILL instruction must have only register operands"); 544 Str += ' '; 545 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 546 Str += (Op.isDef() ? "<def>" : "<kill>"); 547 } 548 AP.OutStreamer.AddComment(Str); 549 AP.OutStreamer.AddBlankLine(); 550} 551 552/// emitDebugValueComment - This method handles the target-independent form 553/// of DBG_VALUE, returning true if it was able to do so. A false return 554/// means the target will need to handle MI in EmitInstruction. 555static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 556 // This code handles only the 3-operand target-independent form. 557 if (MI->getNumOperands() != 3) 558 return false; 559 560 SmallString<128> Str; 561 raw_svector_ostream OS(Str); 562 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 563 564 // cast away const; DIetc do not take const operands for some reason. 565 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 566 if (V.getContext().isSubprogram()) 567 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 568 OS << V.getName() << " <- "; 569 570 // Register or immediate value. Register 0 means undef. 571 if (MI->getOperand(0).isFPImm()) { 572 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 573 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 574 OS << (double)APF.convertToFloat(); 575 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 576 OS << APF.convertToDouble(); 577 } else { 578 // There is no good way to print long double. Convert a copy to 579 // double. Ah well, it's only a comment. 580 bool ignored; 581 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 582 &ignored); 583 OS << "(long double) " << APF.convertToDouble(); 584 } 585 } else if (MI->getOperand(0).isImm()) { 586 OS << MI->getOperand(0).getImm(); 587 } else if (MI->getOperand(0).isCImm()) { 588 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 589 } else { 590 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 591 if (MI->getOperand(0).getReg() == 0) { 592 // Suppress offset, it is not meaningful here. 593 OS << "undef"; 594 // NOTE: Want this comment at start of line, don't emit with AddComment. 595 AP.OutStreamer.EmitRawText(OS.str()); 596 return true; 597 } 598 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 599 } 600 601 OS << '+' << MI->getOperand(1).getImm(); 602 // NOTE: Want this comment at start of line, don't emit with AddComment. 603 AP.OutStreamer.EmitRawText(OS.str()); 604 return true; 605} 606 607AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 608 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 609 MF->getFunction()->needsUnwindTableEntry()) 610 return CFI_M_EH; 611 612 if (MMI->hasDebugInfo()) 613 return CFI_M_Debug; 614 615 return CFI_M_None; 616} 617 618bool AsmPrinter::needsSEHMoves() { 619 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 620 MF->getFunction()->needsUnwindTableEntry(); 621} 622 623bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 624 return MAI->doesDwarfUseRelocationsAcrossSections(); 625} 626 627void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 628 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 629 630 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 631 return; 632 633 if (needsCFIMoves() == CFI_M_None) 634 return; 635 636 if (MMI->getCompactUnwindEncoding() != 0) 637 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 638 639 MachineModuleInfo &MMI = MF->getMMI(); 640 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 641 bool FoundOne = false; 642 (void)FoundOne; 643 for (std::vector<MachineMove>::iterator I = Moves.begin(), 644 E = Moves.end(); I != E; ++I) { 645 if (I->getLabel() == Label) { 646 EmitCFIFrameMove(*I); 647 FoundOne = true; 648 } 649 } 650 assert(FoundOne); 651} 652 653/// EmitFunctionBody - This method emits the body and trailer for a 654/// function. 655void AsmPrinter::EmitFunctionBody() { 656 // Emit target-specific gunk before the function body. 657 EmitFunctionBodyStart(); 658 659 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 660 661 // Print out code for the function. 662 bool HasAnyRealCode = false; 663 const MachineInstr *LastMI = 0; 664 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 665 I != E; ++I) { 666 // Print a label for the basic block. 667 EmitBasicBlockStart(I); 668 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 669 II != IE; ++II) { 670 LastMI = II; 671 672 // Print the assembly for the instruction. 673 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 674 !II->isDebugValue()) { 675 HasAnyRealCode = true; 676 677 ++EmittedInsts; 678 } 679#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 680 if (ShouldPrintDebugScopes) { 681 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 682 DD->beginInstruction(II); 683 } 684#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 685 686 if (isVerbose()) 687 emitComments(*II, OutStreamer.GetCommentOS()); 688 689 switch (II->getOpcode()) { 690 case TargetOpcode::PROLOG_LABEL: 691 emitPrologLabel(*II); 692 break; 693 694 case TargetOpcode::EH_LABEL: 695 case TargetOpcode::GC_LABEL: 696 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 697 break; 698 case TargetOpcode::INLINEASM: 699 EmitInlineAsm(II); 700 break; 701 case TargetOpcode::DBG_VALUE: 702 if (isVerbose()) { 703 if (!emitDebugValueComment(II, *this)) 704 EmitInstruction(II); 705 } 706 break; 707 case TargetOpcode::IMPLICIT_DEF: 708 if (isVerbose()) emitImplicitDef(II, *this); 709 break; 710 case TargetOpcode::KILL: 711 if (isVerbose()) emitKill(II, *this); 712 break; 713 default: 714 if (!TM.hasMCUseLoc()) 715 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 716 717 EmitInstruction(II); 718 break; 719 } 720 721#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 722 if (ShouldPrintDebugScopes) { 723 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 724 DD->endInstruction(II); 725 } 726#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 727 } 728 } 729 730 // If the last instruction was a prolog label, then we have a situation where 731 // we emitted a prolog but no function body. This results in the ending prolog 732 // label equaling the end of function label and an invalid "row" in the 733 // FDE. We need to emit a noop in this situation so that the FDE's rows are 734 // valid. 735 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 736 737 // If the function is empty and the object file uses .subsections_via_symbols, 738 // then we need to emit *something* to the function body to prevent the 739 // labels from collapsing together. Just emit a noop. 740 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 741 MCInst Noop; 742 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 743 if (Noop.getOpcode()) { 744 OutStreamer.AddComment("avoids zero-length function"); 745 OutStreamer.EmitInstruction(Noop); 746 } else // Target not mc-ized yet. 747 OutStreamer.EmitRawText(StringRef("\tnop\n")); 748 } 749 750 const Function *F = MF->getFunction(); 751 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 752 const BasicBlock *BB = i; 753 if (!BB->hasAddressTaken()) 754 continue; 755 MCSymbol *Sym = GetBlockAddressSymbol(BB); 756 if (Sym->isDefined()) 757 continue; 758 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 759 OutStreamer.EmitLabel(Sym); 760 } 761 762 // Emit target-specific gunk after the function body. 763 EmitFunctionBodyEnd(); 764 765 // If the target wants a .size directive for the size of the function, emit 766 // it. 767 if (MAI->hasDotTypeDotSizeDirective()) { 768 // Create a symbol for the end of function, so we can get the size as 769 // difference between the function label and the temp label. 770 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 771 OutStreamer.EmitLabel(FnEndLabel); 772 773 const MCExpr *SizeExp = 774 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 775 MCSymbolRefExpr::Create(CurrentFnSymForSize, 776 OutContext), 777 OutContext); 778 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 779 } 780 781 // Emit post-function debug information. 782#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 783 if (DD) { 784 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 785 DD->endFunction(MF); 786 } 787 if (DE) { 788 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 789 DE->EndFunction(); 790 } 791#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 792 MMI->EndFunction(); 793 794 // Print out jump tables referenced by the function. 795 EmitJumpTableInfo(); 796 797 OutStreamer.AddBlankLine(); 798} 799 800/// getDebugValueLocation - Get location information encoded by DBG_VALUE 801/// operands. 802MachineLocation AsmPrinter:: 803getDebugValueLocation(const MachineInstr *MI) const { 804 // Target specific DBG_VALUE instructions are handled by each target. 805 return MachineLocation(); 806} 807 808/// EmitDwarfRegOp - Emit dwarf register operation. 809void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 810 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 811 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 812 813 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 814 ++SR) { 815 Reg = TRI->getDwarfRegNum(*SR, false); 816 // FIXME: Get the bit range this register uses of the superregister 817 // so that we can produce a DW_OP_bit_piece 818 } 819 820 // FIXME: Handle cases like a super register being encoded as 821 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 822 823 // FIXME: We have no reasonable way of handling errors in here. The 824 // caller might be in the middle of an dwarf expression. We should 825 // probably assert that Reg >= 0 once debug info generation is more mature. 826 827 if (int Offset = MLoc.getOffset()) { 828 if (Reg < 32) { 829 OutStreamer.AddComment( 830 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 831 EmitInt8(dwarf::DW_OP_breg0 + Reg); 832 } else { 833 OutStreamer.AddComment("DW_OP_bregx"); 834 EmitInt8(dwarf::DW_OP_bregx); 835 OutStreamer.AddComment(Twine(Reg)); 836 EmitULEB128(Reg); 837 } 838 EmitSLEB128(Offset); 839 } else { 840 if (Reg < 32) { 841 OutStreamer.AddComment( 842 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 843 EmitInt8(dwarf::DW_OP_reg0 + Reg); 844 } else { 845 OutStreamer.AddComment("DW_OP_regx"); 846 EmitInt8(dwarf::DW_OP_regx); 847 OutStreamer.AddComment(Twine(Reg)); 848 EmitULEB128(Reg); 849 } 850 } 851 852 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 853} 854 855bool AsmPrinter::doFinalization(Module &M) { 856 // Emit global variables. 857 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 858 I != E; ++I) 859 EmitGlobalVariable(I); 860 861 // Emit visibility info for declarations 862 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 863 const Function &F = *I; 864 if (!F.isDeclaration()) 865 continue; 866 GlobalValue::VisibilityTypes V = F.getVisibility(); 867 if (V == GlobalValue::DefaultVisibility) 868 continue; 869 870 MCSymbol *Name = Mang->getSymbol(&F); 871 EmitVisibility(Name, V, false); 872 } 873 874 // Emit module flags. 875 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 876 M.getModuleFlagsMetadata(ModuleFlags); 877 if (!ModuleFlags.empty()) 878 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 879 880 // Finalize debug and EH information. 881#if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD) 882 if (DE) { 883 { 884 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 885 DE->EndModule(); 886 } 887 delete DE; DE = 0; 888 } 889 if (DD) { 890 { 891 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 892 DD->endModule(); 893 } 894 delete DD; DD = 0; 895 } 896#endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD 897 898 // If the target wants to know about weak references, print them all. 899 if (MAI->getWeakRefDirective()) { 900 // FIXME: This is not lazy, it would be nice to only print weak references 901 // to stuff that is actually used. Note that doing so would require targets 902 // to notice uses in operands (due to constant exprs etc). This should 903 // happen with the MC stuff eventually. 904 905 // Print out module-level global variables here. 906 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 907 I != E; ++I) { 908 if (!I->hasExternalWeakLinkage()) continue; 909 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 910 } 911 912 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 913 if (!I->hasExternalWeakLinkage()) continue; 914 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 915 } 916 } 917 918 if (MAI->hasSetDirective()) { 919 OutStreamer.AddBlankLine(); 920 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 921 I != E; ++I) { 922 MCSymbol *Name = Mang->getSymbol(I); 923 924 const GlobalValue *GV = I->getAliasedGlobal(); 925 MCSymbol *Target = Mang->getSymbol(GV); 926 927 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 928 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 929 else if (I->hasWeakLinkage()) 930 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 931 else 932 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 933 934 EmitVisibility(Name, I->getVisibility()); 935 936 // Emit the directives as assignments aka .set: 937 OutStreamer.EmitAssignment(Name, 938 MCSymbolRefExpr::Create(Target, OutContext)); 939 } 940 } 941 942 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 943 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 944 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 945 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 946 MP->finishAssembly(*this); 947 948 // If we don't have any trampolines, then we don't require stack memory 949 // to be executable. Some targets have a directive to declare this. 950 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 951 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 952 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 953 OutStreamer.SwitchSection(S); 954 955 // Allow the target to emit any magic that it wants at the end of the file, 956 // after everything else has gone out. 957 EmitEndOfAsmFile(M); 958 959 delete Mang; Mang = 0; 960 MMI = 0; 961 962 OutStreamer.Finish(); 963 return false; 964} 965 966void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 967 this->MF = &MF; 968 // Get the function symbol. 969 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 970 CurrentFnSymForSize = CurrentFnSym; 971 972 if (isVerbose()) 973 LI = &getAnalysis<MachineLoopInfo>(); 974} 975 976namespace { 977 // SectionCPs - Keep track the alignment, constpool entries per Section. 978 struct SectionCPs { 979 const MCSection *S; 980 unsigned Alignment; 981 SmallVector<unsigned, 4> CPEs; 982 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 983 }; 984} 985 986/// EmitConstantPool - Print to the current output stream assembly 987/// representations of the constants in the constant pool MCP. This is 988/// used to print out constants which have been "spilled to memory" by 989/// the code generator. 990/// 991void AsmPrinter::EmitConstantPool() { 992 const MachineConstantPool *MCP = MF->getConstantPool(); 993 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 994 if (CP.empty()) return; 995 996 // Calculate sections for constant pool entries. We collect entries to go into 997 // the same section together to reduce amount of section switch statements. 998 SmallVector<SectionCPs, 4> CPSections; 999 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1000 const MachineConstantPoolEntry &CPE = CP[i]; 1001 unsigned Align = CPE.getAlignment(); 1002 1003 SectionKind Kind; 1004 switch (CPE.getRelocationInfo()) { 1005 default: llvm_unreachable("Unknown section kind"); 1006 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1007 case 1: 1008 Kind = SectionKind::getReadOnlyWithRelLocal(); 1009 break; 1010 case 0: 1011 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 1012 case 4: Kind = SectionKind::getMergeableConst4(); break; 1013 case 8: Kind = SectionKind::getMergeableConst8(); break; 1014 case 16: Kind = SectionKind::getMergeableConst16();break; 1015 default: Kind = SectionKind::getMergeableConst(); break; 1016 } 1017 } 1018 1019 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1020 1021 // The number of sections are small, just do a linear search from the 1022 // last section to the first. 1023 bool Found = false; 1024 unsigned SecIdx = CPSections.size(); 1025 while (SecIdx != 0) { 1026 if (CPSections[--SecIdx].S == S) { 1027 Found = true; 1028 break; 1029 } 1030 } 1031 if (!Found) { 1032 SecIdx = CPSections.size(); 1033 CPSections.push_back(SectionCPs(S, Align)); 1034 } 1035 1036 if (Align > CPSections[SecIdx].Alignment) 1037 CPSections[SecIdx].Alignment = Align; 1038 CPSections[SecIdx].CPEs.push_back(i); 1039 } 1040 1041 // Now print stuff into the calculated sections. 1042 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1043 OutStreamer.SwitchSection(CPSections[i].S); 1044 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1045 1046 unsigned Offset = 0; 1047 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1048 unsigned CPI = CPSections[i].CPEs[j]; 1049 MachineConstantPoolEntry CPE = CP[CPI]; 1050 1051 // Emit inter-object padding for alignment. 1052 unsigned AlignMask = CPE.getAlignment() - 1; 1053 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1054 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1055 1056 Type *Ty = CPE.getType(); 1057 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1058 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1059 1060 if (CPE.isMachineConstantPoolEntry()) 1061 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1062 else 1063 EmitGlobalConstant(CPE.Val.ConstVal); 1064 } 1065 } 1066} 1067 1068/// EmitJumpTableInfo - Print assembly representations of the jump tables used 1069/// by the current function to the current output stream. 1070/// 1071void AsmPrinter::EmitJumpTableInfo() { 1072 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1073 if (MJTI == 0) return; 1074 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1075 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1076 if (JT.empty()) return; 1077 1078 // Pick the directive to use to print the jump table entries, and switch to 1079 // the appropriate section. 1080 const Function *F = MF->getFunction(); 1081 bool JTInDiffSection = false; 1082 if (// In PIC mode, we need to emit the jump table to the same section as the 1083 // function body itself, otherwise the label differences won't make sense. 1084 // FIXME: Need a better predicate for this: what about custom entries? 1085 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1086 // We should also do if the section name is NULL or function is declared 1087 // in discardable section 1088 // FIXME: this isn't the right predicate, should be based on the MCSection 1089 // for the function. 1090 F->isWeakForLinker()) { 1091 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1092 } else { 1093 // Otherwise, drop it in the readonly section. 1094 const MCSection *ReadOnlySection = 1095 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1096 OutStreamer.SwitchSection(ReadOnlySection); 1097 JTInDiffSection = true; 1098 } 1099 1100 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1101 1102 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1103 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1104 1105 // If this jump table was deleted, ignore it. 1106 if (JTBBs.empty()) continue; 1107 1108 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1109 // .set directive for each unique entry. This reduces the number of 1110 // relocations the assembler will generate for the jump table. 1111 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1112 MAI->hasSetDirective()) { 1113 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1114 const TargetLowering *TLI = TM.getTargetLowering(); 1115 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1116 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1117 const MachineBasicBlock *MBB = JTBBs[ii]; 1118 if (!EmittedSets.insert(MBB)) continue; 1119 1120 // .set LJTSet, LBB32-base 1121 const MCExpr *LHS = 1122 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1123 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1124 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1125 } 1126 } 1127 1128 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1129 // before each jump table. The first label is never referenced, but tells 1130 // the assembler and linker the extents of the jump table object. The 1131 // second label is actually referenced by the code. 1132 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1133 // FIXME: This doesn't have to have any specific name, just any randomly 1134 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1135 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1136 1137 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1138 1139 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1140 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1141 } 1142} 1143 1144/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1145/// current stream. 1146void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1147 const MachineBasicBlock *MBB, 1148 unsigned UID) const { 1149 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1150 const MCExpr *Value = 0; 1151 switch (MJTI->getEntryKind()) { 1152 case MachineJumpTableInfo::EK_Inline: 1153 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1154 case MachineJumpTableInfo::EK_Custom32: 1155 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1156 OutContext); 1157 break; 1158 case MachineJumpTableInfo::EK_BlockAddress: 1159 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1160 // .word LBB123 1161 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1162 break; 1163 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1164 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1165 // with a relocation as gp-relative, e.g.: 1166 // .gprel32 LBB123 1167 MCSymbol *MBBSym = MBB->getSymbol(); 1168 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1169 return; 1170 } 1171 1172 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1173 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1174 // with a relocation as gp-relative, e.g.: 1175 // .gpdword LBB123 1176 MCSymbol *MBBSym = MBB->getSymbol(); 1177 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1178 return; 1179 } 1180 1181 case MachineJumpTableInfo::EK_LabelDifference32: { 1182 // EK_LabelDifference32 - Each entry is the address of the block minus 1183 // the address of the jump table. This is used for PIC jump tables where 1184 // gprel32 is not supported. e.g.: 1185 // .word LBB123 - LJTI1_2 1186 // If the .set directive is supported, this is emitted as: 1187 // .set L4_5_set_123, LBB123 - LJTI1_2 1188 // .word L4_5_set_123 1189 1190 // If we have emitted set directives for the jump table entries, print 1191 // them rather than the entries themselves. If we're emitting PIC, then 1192 // emit the table entries as differences between two text section labels. 1193 if (MAI->hasSetDirective()) { 1194 // If we used .set, reference the .set's symbol. 1195 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1196 OutContext); 1197 break; 1198 } 1199 // Otherwise, use the difference as the jump table entry. 1200 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1201 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1202 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1203 break; 1204 } 1205 } 1206 1207 assert(Value && "Unknown entry kind!"); 1208 1209 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1210 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1211} 1212 1213 1214/// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1215/// special global used by LLVM. If so, emit it and return true, otherwise 1216/// do nothing and return false. 1217bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1218 if (GV->getName() == "llvm.used") { 1219 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1220 EmitLLVMUsedList(GV->getInitializer()); 1221 return true; 1222 } 1223 1224 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1225 if (GV->getSection() == "llvm.metadata" || 1226 GV->hasAvailableExternallyLinkage()) 1227 return true; 1228 1229 if (!GV->hasAppendingLinkage()) return false; 1230 1231 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1232 1233 if (GV->getName() == "llvm.global_ctors") { 1234 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1235 1236 if (TM.getRelocationModel() == Reloc::Static && 1237 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1238 StringRef Sym(".constructors_used"); 1239 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1240 MCSA_Reference); 1241 } 1242 return true; 1243 } 1244 1245 if (GV->getName() == "llvm.global_dtors") { 1246 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1247 1248 if (TM.getRelocationModel() == Reloc::Static && 1249 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1250 StringRef Sym(".destructors_used"); 1251 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1252 MCSA_Reference); 1253 } 1254 return true; 1255 } 1256 1257 return false; 1258} 1259 1260/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1261/// global in the specified llvm.used list for which emitUsedDirectiveFor 1262/// is true, as being used with this directive. 1263void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1264 // Should be an array of 'i8*'. 1265 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1266 if (InitList == 0) return; 1267 1268 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1269 const GlobalValue *GV = 1270 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1271 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1272 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1273 } 1274} 1275 1276typedef std::pair<unsigned, Constant*> Structor; 1277 1278static bool priority_order(const Structor& lhs, const Structor& rhs) { 1279 return lhs.first < rhs.first; 1280} 1281 1282/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1283/// priority. 1284void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1285 // Should be an array of '{ int, void ()* }' structs. The first value is the 1286 // init priority. 1287 if (!isa<ConstantArray>(List)) return; 1288 1289 // Sanity check the structors list. 1290 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1291 if (!InitList) return; // Not an array! 1292 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1293 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1294 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1295 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1296 1297 // Gather the structors in a form that's convenient for sorting by priority. 1298 SmallVector<Structor, 8> Structors; 1299 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1300 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1301 if (!CS) continue; // Malformed. 1302 if (CS->getOperand(1)->isNullValue()) 1303 break; // Found a null terminator, skip the rest. 1304 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1305 if (!Priority) continue; // Malformed. 1306 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1307 CS->getOperand(1))); 1308 } 1309 1310 // Emit the function pointers in the target-specific order 1311 const TargetData *TD = TM.getTargetData(); 1312 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1313 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1314 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1315 const MCSection *OutputSection = 1316 (isCtor ? 1317 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1318 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1319 OutStreamer.SwitchSection(OutputSection); 1320 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1321 EmitAlignment(Align); 1322 EmitXXStructor(Structors[i].second); 1323 } 1324} 1325 1326//===--------------------------------------------------------------------===// 1327// Emission and print routines 1328// 1329 1330/// EmitInt8 - Emit a byte directive and value. 1331/// 1332void AsmPrinter::EmitInt8(int Value) const { 1333 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1334} 1335 1336/// EmitInt16 - Emit a short directive and value. 1337/// 1338void AsmPrinter::EmitInt16(int Value) const { 1339 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1340} 1341 1342/// EmitInt32 - Emit a long directive and value. 1343/// 1344void AsmPrinter::EmitInt32(int Value) const { 1345 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1346} 1347 1348/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1349/// in bytes of the directive is specified by Size and Hi/Lo specify the 1350/// labels. This implicitly uses .set if it is available. 1351void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1352 unsigned Size) const { 1353 // Get the Hi-Lo expression. 1354 const MCExpr *Diff = 1355 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1356 MCSymbolRefExpr::Create(Lo, OutContext), 1357 OutContext); 1358 1359 if (!MAI->hasSetDirective()) { 1360 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1361 return; 1362 } 1363 1364 // Otherwise, emit with .set (aka assignment). 1365 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1366 OutStreamer.EmitAssignment(SetLabel, Diff); 1367 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1368} 1369 1370/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1371/// where the size in bytes of the directive is specified by Size and Hi/Lo 1372/// specify the labels. This implicitly uses .set if it is available. 1373void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1374 const MCSymbol *Lo, unsigned Size) 1375 const { 1376 1377 // Emit Hi+Offset - Lo 1378 // Get the Hi+Offset expression. 1379 const MCExpr *Plus = 1380 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1381 MCConstantExpr::Create(Offset, OutContext), 1382 OutContext); 1383 1384 // Get the Hi+Offset-Lo expression. 1385 const MCExpr *Diff = 1386 MCBinaryExpr::CreateSub(Plus, 1387 MCSymbolRefExpr::Create(Lo, OutContext), 1388 OutContext); 1389 1390 if (!MAI->hasSetDirective()) 1391 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1392 else { 1393 // Otherwise, emit with .set (aka assignment). 1394 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1395 OutStreamer.EmitAssignment(SetLabel, Diff); 1396 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1397 } 1398} 1399 1400/// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1401/// where the size in bytes of the directive is specified by Size and Label 1402/// specifies the label. This implicitly uses .set if it is available. 1403void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1404 unsigned Size) 1405 const { 1406 1407 // Emit Label+Offset (or just Label if Offset is zero) 1408 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1409 if (Offset) 1410 Expr = MCBinaryExpr::CreateAdd(Expr, 1411 MCConstantExpr::Create(Offset, OutContext), 1412 OutContext); 1413 1414 OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/); 1415} 1416 1417 1418//===----------------------------------------------------------------------===// 1419 1420// EmitAlignment - Emit an alignment directive to the specified power of 1421// two boundary. For example, if you pass in 3 here, you will get an 8 1422// byte alignment. If a global value is specified, and if that global has 1423// an explicit alignment requested, it will override the alignment request 1424// if required for correctness. 1425// 1426void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1427 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1428 1429 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1430 1431 if (getCurrentSection()->getKind().isText()) 1432 OutStreamer.EmitCodeAlignment(1 << NumBits); 1433 else 1434 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1435} 1436 1437//===----------------------------------------------------------------------===// 1438// Constant emission. 1439//===----------------------------------------------------------------------===// 1440 1441/// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1442/// 1443static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1444 MCContext &Ctx = AP.OutContext; 1445 1446 if (CV->isNullValue() || isa<UndefValue>(CV)) 1447 return MCConstantExpr::Create(0, Ctx); 1448 1449 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1450 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1451 1452 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1453 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1454 1455 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1456 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1457 1458 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1459 if (CE == 0) { 1460 llvm_unreachable("Unknown constant value to lower!"); 1461 } 1462 1463 switch (CE->getOpcode()) { 1464 default: 1465 // If the code isn't optimized, there may be outstanding folding 1466 // opportunities. Attempt to fold the expression using TargetData as a 1467 // last resort before giving up. 1468 if (Constant *C = 1469 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1470 if (C != CE) 1471 return lowerConstant(C, AP); 1472 1473 // Otherwise report the problem to the user. 1474 { 1475 std::string S; 1476 raw_string_ostream OS(S); 1477 OS << "Unsupported expression in static initializer: "; 1478 WriteAsOperand(OS, CE, /*PrintType=*/false, 1479 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1480 report_fatal_error(OS.str()); 1481 } 1482 case Instruction::GetElementPtr: { 1483 const TargetData &TD = *AP.TM.getTargetData(); 1484 // Generate a symbolic expression for the byte address 1485 const Constant *PtrVal = CE->getOperand(0); 1486 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1487 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1488 1489 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1490 if (Offset == 0) 1491 return Base; 1492 1493 // Truncate/sext the offset to the pointer size. 1494 unsigned Width = TD.getPointerSizeInBits(); 1495 if (Width < 64) 1496 Offset = SignExtend64(Offset, Width); 1497 1498 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1499 Ctx); 1500 } 1501 1502 case Instruction::Trunc: 1503 // We emit the value and depend on the assembler to truncate the generated 1504 // expression properly. This is important for differences between 1505 // blockaddress labels. Since the two labels are in the same function, it 1506 // is reasonable to treat their delta as a 32-bit value. 1507 // FALL THROUGH. 1508 case Instruction::BitCast: 1509 return lowerConstant(CE->getOperand(0), AP); 1510 1511 case Instruction::IntToPtr: { 1512 const TargetData &TD = *AP.TM.getTargetData(); 1513 // Handle casts to pointers by changing them into casts to the appropriate 1514 // integer type. This promotes constant folding and simplifies this code. 1515 Constant *Op = CE->getOperand(0); 1516 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1517 false/*ZExt*/); 1518 return lowerConstant(Op, AP); 1519 } 1520 1521 case Instruction::PtrToInt: { 1522 const TargetData &TD = *AP.TM.getTargetData(); 1523 // Support only foldable casts to/from pointers that can be eliminated by 1524 // changing the pointer to the appropriately sized integer type. 1525 Constant *Op = CE->getOperand(0); 1526 Type *Ty = CE->getType(); 1527 1528 const MCExpr *OpExpr = lowerConstant(Op, AP); 1529 1530 // We can emit the pointer value into this slot if the slot is an 1531 // integer slot equal to the size of the pointer. 1532 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1533 return OpExpr; 1534 1535 // Otherwise the pointer is smaller than the resultant integer, mask off 1536 // the high bits so we are sure to get a proper truncation if the input is 1537 // a constant expr. 1538 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1539 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1540 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1541 } 1542 1543 // The MC library also has a right-shift operator, but it isn't consistently 1544 // signed or unsigned between different targets. 1545 case Instruction::Add: 1546 case Instruction::Sub: 1547 case Instruction::Mul: 1548 case Instruction::SDiv: 1549 case Instruction::SRem: 1550 case Instruction::Shl: 1551 case Instruction::And: 1552 case Instruction::Or: 1553 case Instruction::Xor: { 1554 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1555 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1556 switch (CE->getOpcode()) { 1557 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1558 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1559 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1560 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1561 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1562 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1563 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1564 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1565 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1566 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1567 } 1568 } 1569 } 1570} 1571 1572static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1573 AsmPrinter &AP); 1574 1575/// isRepeatedByteSequence - Determine whether the given value is 1576/// composed of a repeated sequence of identical bytes and return the 1577/// byte value. If it is not a repeated sequence, return -1. 1578static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1579 StringRef Data = V->getRawDataValues(); 1580 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1581 char C = Data[0]; 1582 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1583 if (Data[i] != C) return -1; 1584 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1585} 1586 1587 1588/// isRepeatedByteSequence - Determine whether the given value is 1589/// composed of a repeated sequence of identical bytes and return the 1590/// byte value. If it is not a repeated sequence, return -1. 1591static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1592 1593 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1594 if (CI->getBitWidth() > 64) return -1; 1595 1596 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1597 uint64_t Value = CI->getZExtValue(); 1598 1599 // Make sure the constant is at least 8 bits long and has a power 1600 // of 2 bit width. This guarantees the constant bit width is 1601 // always a multiple of 8 bits, avoiding issues with padding out 1602 // to Size and other such corner cases. 1603 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1604 1605 uint8_t Byte = static_cast<uint8_t>(Value); 1606 1607 for (unsigned i = 1; i < Size; ++i) { 1608 Value >>= 8; 1609 if (static_cast<uint8_t>(Value) != Byte) return -1; 1610 } 1611 return Byte; 1612 } 1613 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1614 // Make sure all array elements are sequences of the same repeated 1615 // byte. 1616 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1617 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1618 if (Byte == -1) return -1; 1619 1620 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1621 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1622 if (ThisByte == -1) return -1; 1623 if (Byte != ThisByte) return -1; 1624 } 1625 return Byte; 1626 } 1627 1628 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1629 return isRepeatedByteSequence(CDS); 1630 1631 return -1; 1632} 1633 1634static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1635 unsigned AddrSpace,AsmPrinter &AP){ 1636 1637 // See if we can aggregate this into a .fill, if so, emit it as such. 1638 int Value = isRepeatedByteSequence(CDS, AP.TM); 1639 if (Value != -1) { 1640 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType()); 1641 // Don't emit a 1-byte object as a .fill. 1642 if (Bytes > 1) 1643 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1644 } 1645 1646 // If this can be emitted with .ascii/.asciz, emit it as such. 1647 if (CDS->isString()) 1648 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1649 1650 // Otherwise, emit the values in successive locations. 1651 unsigned ElementByteSize = CDS->getElementByteSize(); 1652 if (isa<IntegerType>(CDS->getElementType())) { 1653 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1654 if (AP.isVerbose()) 1655 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1656 CDS->getElementAsInteger(i)); 1657 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1658 ElementByteSize, AddrSpace); 1659 } 1660 } else if (ElementByteSize == 4) { 1661 // FP Constants are printed as integer constants to avoid losing 1662 // precision. 1663 assert(CDS->getElementType()->isFloatTy()); 1664 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1665 union { 1666 float F; 1667 uint32_t I; 1668 }; 1669 1670 F = CDS->getElementAsFloat(i); 1671 if (AP.isVerbose()) 1672 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1673 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1674 } 1675 } else { 1676 assert(CDS->getElementType()->isDoubleTy()); 1677 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1678 union { 1679 double F; 1680 uint64_t I; 1681 }; 1682 1683 F = CDS->getElementAsDouble(i); 1684 if (AP.isVerbose()) 1685 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1686 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1687 } 1688 } 1689 1690 const TargetData &TD = *AP.TM.getTargetData(); 1691 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1692 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1693 CDS->getNumElements(); 1694 if (unsigned Padding = Size - EmittedSize) 1695 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1696 1697} 1698 1699static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1700 AsmPrinter &AP) { 1701 // See if we can aggregate some values. Make sure it can be 1702 // represented as a series of bytes of the constant value. 1703 int Value = isRepeatedByteSequence(CA, AP.TM); 1704 1705 if (Value != -1) { 1706 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1707 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1708 } 1709 else { 1710 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1711 emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1712 } 1713} 1714 1715static void emitGlobalConstantVector(const ConstantVector *CV, 1716 unsigned AddrSpace, AsmPrinter &AP) { 1717 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1718 emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1719 1720 const TargetData &TD = *AP.TM.getTargetData(); 1721 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1722 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1723 CV->getType()->getNumElements(); 1724 if (unsigned Padding = Size - EmittedSize) 1725 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1726} 1727 1728static void emitGlobalConstantStruct(const ConstantStruct *CS, 1729 unsigned AddrSpace, AsmPrinter &AP) { 1730 // Print the fields in successive locations. Pad to align if needed! 1731 const TargetData *TD = AP.TM.getTargetData(); 1732 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1733 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1734 uint64_t SizeSoFar = 0; 1735 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1736 const Constant *Field = CS->getOperand(i); 1737 1738 // Check if padding is needed and insert one or more 0s. 1739 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1740 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1741 - Layout->getElementOffset(i)) - FieldSize; 1742 SizeSoFar += FieldSize + PadSize; 1743 1744 // Now print the actual field value. 1745 emitGlobalConstantImpl(Field, AddrSpace, AP); 1746 1747 // Insert padding - this may include padding to increase the size of the 1748 // current field up to the ABI size (if the struct is not packed) as well 1749 // as padding to ensure that the next field starts at the right offset. 1750 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1751 } 1752 assert(SizeSoFar == Layout->getSizeInBytes() && 1753 "Layout of constant struct may be incorrect!"); 1754} 1755 1756static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1757 AsmPrinter &AP) { 1758 if (CFP->getType()->isHalfTy()) { 1759 if (AP.isVerbose()) { 1760 SmallString<10> Str; 1761 CFP->getValueAPF().toString(Str); 1762 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1763 } 1764 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1765 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1766 return; 1767 } 1768 1769 if (CFP->getType()->isFloatTy()) { 1770 if (AP.isVerbose()) { 1771 float Val = CFP->getValueAPF().convertToFloat(); 1772 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1773 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n' 1774 << " (" << format("0x%x", IntVal) << ")\n"; 1775 } 1776 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1777 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1778 return; 1779 } 1780 1781 // FP Constants are printed as integer constants to avoid losing 1782 // precision. 1783 if (CFP->getType()->isDoubleTy()) { 1784 if (AP.isVerbose()) { 1785 double Val = CFP->getValueAPF().convertToDouble(); 1786 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1787 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n' 1788 << " (" << format("0x%lx", IntVal) << ")\n"; 1789 } 1790 1791 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1792 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1793 return; 1794 } 1795 1796 if (CFP->getType()->isX86_FP80Ty()) { 1797 // all long double variants are printed as hex 1798 // API needed to prevent premature destruction 1799 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1800 const uint64_t *p = API.getRawData(); 1801 if (AP.isVerbose()) { 1802 // Convert to double so we can print the approximate val as a comment. 1803 APFloat DoubleVal = CFP->getValueAPF(); 1804 bool ignored; 1805 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1806 &ignored); 1807 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1808 << DoubleVal.convertToDouble() << '\n'; 1809 } 1810 1811 if (AP.TM.getTargetData()->isBigEndian()) { 1812 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1813 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1814 } else { 1815 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1816 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1817 } 1818 1819 // Emit the tail padding for the long double. 1820 const TargetData &TD = *AP.TM.getTargetData(); 1821 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1822 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1823 return; 1824 } 1825 1826 assert(CFP->getType()->isPPC_FP128Ty() && 1827 "Floating point constant type not handled"); 1828 // All long double variants are printed as hex 1829 // API needed to prevent premature destruction. 1830 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1831 const uint64_t *p = API.getRawData(); 1832 if (AP.TM.getTargetData()->isBigEndian()) { 1833 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1834 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1835 } else { 1836 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1837 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1838 } 1839} 1840 1841static void emitGlobalConstantLargeInt(const ConstantInt *CI, 1842 unsigned AddrSpace, AsmPrinter &AP) { 1843 const TargetData *TD = AP.TM.getTargetData(); 1844 unsigned BitWidth = CI->getBitWidth(); 1845 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1846 1847 // We don't expect assemblers to support integer data directives 1848 // for more than 64 bits, so we emit the data in at most 64-bit 1849 // quantities at a time. 1850 const uint64_t *RawData = CI->getValue().getRawData(); 1851 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1852 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1853 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1854 } 1855} 1856 1857static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1858 AsmPrinter &AP) { 1859 const TargetData *TD = AP.TM.getTargetData(); 1860 uint64_t Size = TD->getTypeAllocSize(CV->getType()); 1861 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1862 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1863 1864 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1865 switch (Size) { 1866 case 1: 1867 case 2: 1868 case 4: 1869 case 8: 1870 if (AP.isVerbose()) 1871 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1872 CI->getZExtValue()); 1873 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1874 return; 1875 default: 1876 emitGlobalConstantLargeInt(CI, AddrSpace, AP); 1877 return; 1878 } 1879 } 1880 1881 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1882 return emitGlobalConstantFP(CFP, AddrSpace, AP); 1883 1884 if (isa<ConstantPointerNull>(CV)) { 1885 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1886 return; 1887 } 1888 1889 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1890 return emitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1891 1892 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1893 return emitGlobalConstantArray(CVA, AddrSpace, AP); 1894 1895 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1896 return emitGlobalConstantStruct(CVS, AddrSpace, AP); 1897 1898 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1899 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1900 // vectors). 1901 if (CE->getOpcode() == Instruction::BitCast) 1902 return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1903 1904 if (Size > 8) { 1905 // If the constant expression's size is greater than 64-bits, then we have 1906 // to emit the value in chunks. Try to constant fold the value and emit it 1907 // that way. 1908 Constant *New = ConstantFoldConstantExpression(CE, TD); 1909 if (New && New != CE) 1910 return emitGlobalConstantImpl(New, AddrSpace, AP); 1911 } 1912 } 1913 1914 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1915 return emitGlobalConstantVector(V, AddrSpace, AP); 1916 1917 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1918 // thread the streamer with EmitValue. 1919 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace); 1920} 1921 1922/// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1923void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1924 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1925 if (Size) 1926 emitGlobalConstantImpl(CV, AddrSpace, *this); 1927 else if (MAI->hasSubsectionsViaSymbols()) { 1928 // If the global has zero size, emit a single byte so that two labels don't 1929 // look like they are at the same location. 1930 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1931 } 1932} 1933 1934void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1935 // Target doesn't support this yet! 1936 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1937} 1938 1939void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1940 if (Offset > 0) 1941 OS << '+' << Offset; 1942 else if (Offset < 0) 1943 OS << Offset; 1944} 1945 1946//===----------------------------------------------------------------------===// 1947// Symbol Lowering Routines. 1948//===----------------------------------------------------------------------===// 1949 1950/// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1951/// temporary label with the specified stem and unique ID. 1952MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1953 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1954 Name + Twine(ID)); 1955} 1956 1957/// GetTempSymbol - Return an assembler temporary label with the specified 1958/// stem. 1959MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1960 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1961 Name); 1962} 1963 1964 1965MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1966 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1967} 1968 1969MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1970 return MMI->getAddrLabelSymbol(BB); 1971} 1972 1973/// GetCPISymbol - Return the symbol for the specified constant pool entry. 1974MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1975 return OutContext.GetOrCreateSymbol 1976 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1977 + "_" + Twine(CPID)); 1978} 1979 1980/// GetJTISymbol - Return the symbol for the specified jump table entry. 1981MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1982 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1983} 1984 1985/// GetJTSetSymbol - Return the symbol for the specified jump table .set 1986/// FIXME: privatize to AsmPrinter. 1987MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1988 return OutContext.GetOrCreateSymbol 1989 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1990 Twine(UID) + "_set_" + Twine(MBBID)); 1991} 1992 1993/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1994/// global value name as its base, with the specified suffix, and where the 1995/// symbol is forced to have private linkage if ForcePrivate is true. 1996MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1997 StringRef Suffix, 1998 bool ForcePrivate) const { 1999 SmallString<60> NameStr; 2000 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 2001 NameStr.append(Suffix.begin(), Suffix.end()); 2002 return OutContext.GetOrCreateSymbol(NameStr.str()); 2003} 2004 2005/// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2006/// ExternalSymbol. 2007MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2008 SmallString<60> NameStr; 2009 Mang->getNameWithPrefix(NameStr, Sym); 2010 return OutContext.GetOrCreateSymbol(NameStr.str()); 2011} 2012 2013 2014 2015/// PrintParentLoopComment - Print comments about parent loops of this one. 2016static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2017 unsigned FunctionNumber) { 2018 if (Loop == 0) return; 2019 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2020 OS.indent(Loop->getLoopDepth()*2) 2021 << "Parent Loop BB" << FunctionNumber << "_" 2022 << Loop->getHeader()->getNumber() 2023 << " Depth=" << Loop->getLoopDepth() << '\n'; 2024} 2025 2026 2027/// PrintChildLoopComment - Print comments about child loops within 2028/// the loop for this basic block, with nesting. 2029static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2030 unsigned FunctionNumber) { 2031 // Add child loop information 2032 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2033 OS.indent((*CL)->getLoopDepth()*2) 2034 << "Child Loop BB" << FunctionNumber << "_" 2035 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2036 << '\n'; 2037 PrintChildLoopComment(OS, *CL, FunctionNumber); 2038 } 2039} 2040 2041/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2042static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2043 const MachineLoopInfo *LI, 2044 const AsmPrinter &AP) { 2045 // Add loop depth information 2046 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2047 if (Loop == 0) return; 2048 2049 MachineBasicBlock *Header = Loop->getHeader(); 2050 assert(Header && "No header for loop"); 2051 2052 // If this block is not a loop header, just print out what is the loop header 2053 // and return. 2054 if (Header != &MBB) { 2055 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2056 Twine(AP.getFunctionNumber())+"_" + 2057 Twine(Loop->getHeader()->getNumber())+ 2058 " Depth="+Twine(Loop->getLoopDepth())); 2059 return; 2060 } 2061 2062 // Otherwise, it is a loop header. Print out information about child and 2063 // parent loops. 2064 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2065 2066 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2067 2068 OS << "=>"; 2069 OS.indent(Loop->getLoopDepth()*2-2); 2070 2071 OS << "This "; 2072 if (Loop->empty()) 2073 OS << "Inner "; 2074 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2075 2076 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2077} 2078 2079 2080/// EmitBasicBlockStart - This method prints the label for the specified 2081/// MachineBasicBlock, an alignment (if present) and a comment describing 2082/// it if appropriate. 2083void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2084 // Emit an alignment directive for this block, if needed. 2085 if (unsigned Align = MBB->getAlignment()) 2086 EmitAlignment(Align); 2087 2088 // If the block has its address taken, emit any labels that were used to 2089 // reference the block. It is possible that there is more than one label 2090 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2091 // the references were generated. 2092 if (MBB->hasAddressTaken()) { 2093 const BasicBlock *BB = MBB->getBasicBlock(); 2094 if (isVerbose()) 2095 OutStreamer.AddComment("Block address taken"); 2096 2097 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2098 2099 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2100 OutStreamer.EmitLabel(Syms[i]); 2101 } 2102 2103 // Print some verbose block comments. 2104 if (isVerbose()) { 2105 if (const BasicBlock *BB = MBB->getBasicBlock()) 2106 if (BB->hasName()) 2107 OutStreamer.AddComment("%" + BB->getName()); 2108 emitBasicBlockLoopComments(*MBB, LI, *this); 2109 } 2110 2111 // Print the main label for the block. 2112 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2113 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2114 // NOTE: Want this comment at start of line, don't emit with AddComment. 2115 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2116 Twine(MBB->getNumber()) + ":"); 2117 } 2118 } else { 2119 OutStreamer.EmitLabel(MBB->getSymbol()); 2120 } 2121} 2122 2123void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2124 bool IsDefinition) const { 2125 MCSymbolAttr Attr = MCSA_Invalid; 2126 2127 switch (Visibility) { 2128 default: break; 2129 case GlobalValue::HiddenVisibility: 2130 if (IsDefinition) 2131 Attr = MAI->getHiddenVisibilityAttr(); 2132 else 2133 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2134 break; 2135 case GlobalValue::ProtectedVisibility: 2136 Attr = MAI->getProtectedVisibilityAttr(); 2137 break; 2138 } 2139 2140 if (Attr != MCSA_Invalid) 2141 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2142} 2143 2144/// isBlockOnlyReachableByFallthough - Return true if the basic block has 2145/// exactly one predecessor and the control transfer mechanism between 2146/// the predecessor and this block is a fall-through. 2147bool AsmPrinter:: 2148isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2149 // If this is a landing pad, it isn't a fall through. If it has no preds, 2150 // then nothing falls through to it. 2151 if (MBB->isLandingPad() || MBB->pred_empty()) 2152 return false; 2153 2154 // If there isn't exactly one predecessor, it can't be a fall through. 2155 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2156 ++PI2; 2157 if (PI2 != MBB->pred_end()) 2158 return false; 2159 2160 // The predecessor has to be immediately before this block. 2161 MachineBasicBlock *Pred = *PI; 2162 2163 if (!Pred->isLayoutSuccessor(MBB)) 2164 return false; 2165 2166 // If the block is completely empty, then it definitely does fall through. 2167 if (Pred->empty()) 2168 return true; 2169 2170 // Check the terminators in the previous blocks 2171 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2172 IE = Pred->end(); II != IE; ++II) { 2173 MachineInstr &MI = *II; 2174 2175 // If it is not a simple branch, we are in a table somewhere. 2176 if (!MI.isBranch() || MI.isIndirectBranch()) 2177 return false; 2178 2179 // If we are the operands of one of the branches, this is not 2180 // a fall through. 2181 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2182 OE = MI.operands_end(); OI != OE; ++OI) { 2183 const MachineOperand& OP = *OI; 2184 if (OP.isJTI()) 2185 return false; 2186 if (OP.isMBB() && OP.getMBB() == MBB) 2187 return false; 2188 } 2189 } 2190 2191 return true; 2192} 2193 2194 2195 2196GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2197 if (!S->usesMetadata()) 2198 return 0; 2199 2200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2201 gcp_map_type::iterator GCPI = GCMap.find(S); 2202 if (GCPI != GCMap.end()) 2203 return GCPI->second; 2204 2205 const char *Name = S->getName().c_str(); 2206 2207 for (GCMetadataPrinterRegistry::iterator 2208 I = GCMetadataPrinterRegistry::begin(), 2209 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2210 if (strcmp(Name, I->getName()) == 0) { 2211 GCMetadataPrinter *GMP = I->instantiate(); 2212 GMP->S = S; 2213 GCMap.insert(std::make_pair(S, GMP)); 2214 return GMP; 2215 } 2216 2217 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2218} 2219