1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/RegisterPressure.h"
25#include "llvm/CodeGen/ScheduleDAGInstrs.h"
26#include "llvm/MC/MCInstrItineraries.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Target/TargetSubtargetInfo.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallPtrSet.h"
36using namespace llvm;
37
38static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
39    cl::ZeroOrMore, cl::init(false),
40    cl::desc("Enable use of AA during MI GAD construction"));
41
42ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
43                                     const MachineLoopInfo &mli,
44                                     const MachineDominatorTree &mdt,
45                                     bool IsPostRAFlag,
46                                     LiveIntervals *lis)
47  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
48    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
49    IsPostRA(IsPostRAFlag), UnitLatencies(false), CanHandleTerminators(false),
50    LoopRegs(MDT), FirstDbgValue(0) {
51  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
52  DbgValues.clear();
53  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
54         "Virtual registers must be removed prior to PostRA scheduling");
55}
56
57/// getUnderlyingObjectFromInt - This is the function that does the work of
58/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59static const Value *getUnderlyingObjectFromInt(const Value *V) {
60  do {
61    if (const Operator *U = dyn_cast<Operator>(V)) {
62      // If we find a ptrtoint, we can transfer control back to the
63      // regular getUnderlyingObjectFromInt.
64      if (U->getOpcode() == Instruction::PtrToInt)
65        return U->getOperand(0);
66      // If we find an add of a constant or a multiplied value, it's
67      // likely that the other operand will lead us to the base
68      // object. We don't have to worry about the case where the
69      // object address is somehow being computed by the multiply,
70      // because our callers only care when the result is an
71      // identifibale object.
72      if (U->getOpcode() != Instruction::Add ||
73          (!isa<ConstantInt>(U->getOperand(1)) &&
74           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75        return V;
76      V = U->getOperand(0);
77    } else {
78      return V;
79    }
80    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81  } while (1);
82}
83
84/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86static const Value *getUnderlyingObject(const Value *V) {
87  // First just call Value::getUnderlyingObject to let it do what it does.
88  do {
89    V = GetUnderlyingObject(V);
90    // If it found an inttoptr, use special code to continue climing.
91    if (Operator::getOpcode(V) != Instruction::IntToPtr)
92      break;
93    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94    // If that succeeded in finding a pointer, continue the search.
95    if (!O->getType()->isPointerTy())
96      break;
97    V = O;
98  } while (1);
99  return V;
100}
101
102/// getUnderlyingObjectForInstr - If this machine instr has memory reference
103/// information and it can be tracked to a normal reference to a known
104/// object, return the Value for that object. Otherwise return null.
105static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                const MachineFrameInfo *MFI,
107                                                bool &MayAlias) {
108  MayAlias = true;
109  if (!MI->hasOneMemOperand() ||
110      !(*MI->memoperands_begin())->getValue() ||
111      (*MI->memoperands_begin())->isVolatile())
112    return 0;
113
114  const Value *V = (*MI->memoperands_begin())->getValue();
115  if (!V)
116    return 0;
117
118  V = getUnderlyingObject(V);
119  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120    // For now, ignore PseudoSourceValues which may alias LLVM IR values
121    // because the code that uses this function has no way to cope with
122    // such aliases.
123    if (PSV->isAliased(MFI))
124      return 0;
125
126    MayAlias = PSV->mayAlias(MFI);
127    return V;
128  }
129
130  if (isIdentifiedObject(V))
131    return V;
132
133  return 0;
134}
135
136void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
137  BB = bb;
138  LoopRegs.Deps.clear();
139  if (MachineLoop *ML = MLI.getLoopFor(BB))
140    if (BB == ML->getLoopLatch())
141      LoopRegs.VisitLoop(ML);
142}
143
144void ScheduleDAGInstrs::finishBlock() {
145  // Subclasses should no longer refer to the old block.
146  BB = 0;
147}
148
149/// Initialize the map with the number of registers.
150void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
151  PhysRegSet.setUniverse(Limit);
152  SUnits.resize(Limit);
153}
154
155/// Clear the map without deallocating storage.
156void Reg2SUnitsMap::clear() {
157  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
158    SUnits[*I].clear();
159  }
160  PhysRegSet.clear();
161}
162
163/// Initialize the DAG and common scheduler state for the current scheduling
164/// region. This does not actually create the DAG, only clears it. The
165/// scheduling driver may call BuildSchedGraph multiple times per scheduling
166/// region.
167void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
168                                    MachineBasicBlock::iterator begin,
169                                    MachineBasicBlock::iterator end,
170                                    unsigned endcount) {
171  assert(bb == BB && "startBlock should set BB");
172  RegionBegin = begin;
173  RegionEnd = end;
174  EndIndex = endcount;
175  MISUnitMap.clear();
176
177  // Check to see if the scheduler cares about latencies.
178  UnitLatencies = forceUnitLatencies();
179
180  ScheduleDAG::clearDAG();
181}
182
183/// Close the current scheduling region. Don't clear any state in case the
184/// driver wants to refer to the previous scheduling region.
185void ScheduleDAGInstrs::exitRegion() {
186  // Nothing to do.
187}
188
189/// addSchedBarrierDeps - Add dependencies from instructions in the current
190/// list of instructions being scheduled to scheduling barrier by adding
191/// the exit SU to the register defs and use list. This is because we want to
192/// make sure instructions which define registers that are either used by
193/// the terminator or are live-out are properly scheduled. This is
194/// especially important when the definition latency of the return value(s)
195/// are too high to be hidden by the branch or when the liveout registers
196/// used by instructions in the fallthrough block.
197void ScheduleDAGInstrs::addSchedBarrierDeps() {
198  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
199  ExitSU.setInstr(ExitMI);
200  bool AllDepKnown = ExitMI &&
201    (ExitMI->isCall() || ExitMI->isBarrier());
202  if (ExitMI && AllDepKnown) {
203    // If it's a call or a barrier, add dependencies on the defs and uses of
204    // instruction.
205    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
206      const MachineOperand &MO = ExitMI->getOperand(i);
207      if (!MO.isReg() || MO.isDef()) continue;
208      unsigned Reg = MO.getReg();
209      if (Reg == 0) continue;
210
211      if (TRI->isPhysicalRegister(Reg))
212        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
213      else {
214        assert(!IsPostRA && "Virtual register encountered after regalloc.");
215        addVRegUseDeps(&ExitSU, i);
216      }
217    }
218  } else {
219    // For others, e.g. fallthrough, conditional branch, assume the exit
220    // uses all the registers that are livein to the successor blocks.
221    assert(Uses.empty() && "Uses in set before adding deps?");
222    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
223           SE = BB->succ_end(); SI != SE; ++SI)
224      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
225             E = (*SI)->livein_end(); I != E; ++I) {
226        unsigned Reg = *I;
227        if (!Uses.contains(Reg))
228          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
229      }
230  }
231}
232
233/// MO is an operand of SU's instruction that defines a physical register. Add
234/// data dependencies from SU to any uses of the physical register.
235void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
236  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
237  assert(MO.isDef() && "expect physreg def");
238
239  // Ask the target if address-backscheduling is desirable, and if so how much.
240  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
241  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
242  unsigned DataLatency = SU->Latency;
243
244  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
245       Alias.isValid(); ++Alias) {
246    if (!Uses.contains(*Alias))
247      continue;
248    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
249    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
250      SUnit *UseSU = UseList[i].SU;
251      if (UseSU == SU)
252        continue;
253      MachineInstr *UseMI = UseSU->getInstr();
254      int UseOp = UseList[i].OpIdx;
255      unsigned LDataLatency = DataLatency;
256      // Optionally add in a special extra latency for nodes that
257      // feed addresses.
258      // TODO: Perhaps we should get rid of
259      // SpecialAddressLatency and just move this into
260      // adjustSchedDependency for the targets that care about it.
261      if (SpecialAddressLatency != 0 && !UnitLatencies &&
262          UseSU != &ExitSU) {
263        const MCInstrDesc &UseMCID = UseMI->getDesc();
264        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
265        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
266        if (RegUseIndex >= 0 &&
267            (UseMI->mayLoad() || UseMI->mayStore()) &&
268            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
269            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
270          LDataLatency += SpecialAddressLatency;
271      }
272      // Adjust the dependence latency using operand def/use
273      // information (if any), and then allow the target to
274      // perform its own adjustments.
275      SDep dep(SU, SDep::Data, LDataLatency, *Alias);
276      if (!UnitLatencies) {
277        unsigned Latency =
278          TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
279                                     (UseOp < 0 ? 0 : UseMI), UseOp);
280        dep.setLatency(Latency);
281        unsigned MinLatency =
282          TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx,
283                                     (UseOp < 0 ? 0 : UseMI), UseOp,
284                                     /*FindMin=*/true);
285        dep.setMinLatency(MinLatency);
286
287        ST.adjustSchedDependency(SU, UseSU, dep);
288      }
289      UseSU->addPred(dep);
290    }
291  }
292}
293
294/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
295/// this SUnit to following instructions in the same scheduling region that
296/// depend the physical register referenced at OperIdx.
297void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
298  const MachineInstr *MI = SU->getInstr();
299  const MachineOperand &MO = MI->getOperand(OperIdx);
300
301  // Optionally add output and anti dependencies. For anti
302  // dependencies we use a latency of 0 because for a multi-issue
303  // target we want to allow the defining instruction to issue
304  // in the same cycle as the using instruction.
305  // TODO: Using a latency of 1 here for output dependencies assumes
306  //       there's no cost for reusing registers.
307  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
308  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
309       Alias.isValid(); ++Alias) {
310    if (!Defs.contains(*Alias))
311      continue;
312    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
313    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
314      SUnit *DefSU = DefList[i].SU;
315      if (DefSU == &ExitSU)
316        continue;
317      if (DefSU != SU &&
318          (Kind != SDep::Output || !MO.isDead() ||
319           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
320        if (Kind == SDep::Anti)
321          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
322        else {
323          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
324                                                 DefSU->getInstr());
325          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
326        }
327      }
328    }
329  }
330
331  if (!MO.isDef()) {
332    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
333    // retrieve the existing SUnits list for this register's uses.
334    // Push this SUnit on the use list.
335    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
336  }
337  else {
338    addPhysRegDataDeps(SU, OperIdx);
339
340    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
341    // retrieve the existing SUnits list for this register's defs.
342    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
343
344    // If a def is going to wrap back around to the top of the loop,
345    // backschedule it.
346    if (!UnitLatencies && DefList.empty()) {
347      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
348      if (I != LoopRegs.Deps.end()) {
349        const MachineOperand *UseMO = I->second.first;
350        unsigned Count = I->second.second;
351        const MachineInstr *UseMI = UseMO->getParent();
352        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
353        const MCInstrDesc &UseMCID = UseMI->getDesc();
354        const TargetSubtargetInfo &ST =
355          TM.getSubtarget<TargetSubtargetInfo>();
356        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
357        // TODO: If we knew the total depth of the region here, we could
358        // handle the case where the whole loop is inside the region but
359        // is large enough that the isScheduleHigh trick isn't needed.
360        if (UseMOIdx < UseMCID.getNumOperands()) {
361          // Currently, we only support scheduling regions consisting of
362          // single basic blocks. Check to see if the instruction is in
363          // the same region by checking to see if it has the same parent.
364          if (UseMI->getParent() != MI->getParent()) {
365            unsigned Latency = SU->Latency;
366            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
367              Latency += SpecialAddressLatency;
368            // This is a wild guess as to the portion of the latency which
369            // will be overlapped by work done outside the current
370            // scheduling region.
371            Latency -= std::min(Latency, Count);
372            // Add the artificial edge.
373            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
374                                /*Reg=*/0, /*isNormalMemory=*/false,
375                                /*isMustAlias=*/false,
376                                /*isArtificial=*/true));
377          } else if (SpecialAddressLatency > 0 &&
378                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
379            // The entire loop body is within the current scheduling region
380            // and the latency of this operation is assumed to be greater
381            // than the latency of the loop.
382            // TODO: Recursively mark data-edge predecessors as
383            //       isScheduleHigh too.
384            SU->isScheduleHigh = true;
385          }
386        }
387        LoopRegs.Deps.erase(I);
388      }
389    }
390
391    // clear this register's use list
392    if (Uses.contains(MO.getReg()))
393      Uses[MO.getReg()].clear();
394
395    if (!MO.isDead())
396      DefList.clear();
397
398    // Calls will not be reordered because of chain dependencies (see
399    // below). Since call operands are dead, calls may continue to be added
400    // to the DefList making dependence checking quadratic in the size of
401    // the block. Instead, we leave only one call at the back of the
402    // DefList.
403    if (SU->isCall) {
404      while (!DefList.empty() && DefList.back().SU->isCall)
405        DefList.pop_back();
406    }
407    // Defs are pushed in the order they are visited and never reordered.
408    DefList.push_back(PhysRegSUOper(SU, OperIdx));
409  }
410}
411
412/// addVRegDefDeps - Add register output and data dependencies from this SUnit
413/// to instructions that occur later in the same scheduling region if they read
414/// from or write to the virtual register defined at OperIdx.
415///
416/// TODO: Hoist loop induction variable increments. This has to be
417/// reevaluated. Generally, IV scheduling should be done before coalescing.
418void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
419  const MachineInstr *MI = SU->getInstr();
420  unsigned Reg = MI->getOperand(OperIdx).getReg();
421
422  // Singly defined vregs do not have output/anti dependencies.
423  // The current operand is a def, so we have at least one.
424  // Check here if there are any others...
425  if (MRI.hasOneDef(Reg))
426    return;
427
428  // Add output dependence to the next nearest def of this vreg.
429  //
430  // Unless this definition is dead, the output dependence should be
431  // transitively redundant with antidependencies from this definition's
432  // uses. We're conservative for now until we have a way to guarantee the uses
433  // are not eliminated sometime during scheduling. The output dependence edge
434  // is also useful if output latency exceeds def-use latency.
435  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
436  if (DefI == VRegDefs.end())
437    VRegDefs.insert(VReg2SUnit(Reg, SU));
438  else {
439    SUnit *DefSU = DefI->SU;
440    if (DefSU != SU && DefSU != &ExitSU) {
441      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
442                                                  DefSU->getInstr());
443      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
444    }
445    DefI->SU = SU;
446  }
447}
448
449/// addVRegUseDeps - Add a register data dependency if the instruction that
450/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
451/// register antidependency from this SUnit to instructions that occur later in
452/// the same scheduling region if they write the virtual register.
453///
454/// TODO: Handle ExitSU "uses" properly.
455void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
456  MachineInstr *MI = SU->getInstr();
457  unsigned Reg = MI->getOperand(OperIdx).getReg();
458
459  // Lookup this operand's reaching definition.
460  assert(LIS && "vreg dependencies requires LiveIntervals");
461  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
462  VNInfo *VNI = LRQ.valueIn();
463
464  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
465  assert(VNI && "No value to read by operand");
466  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
467  // Phis and other noninstructions (after coalescing) have a NULL Def.
468  if (Def) {
469    SUnit *DefSU = getSUnit(Def);
470    if (DefSU) {
471      // The reaching Def lives within this scheduling region.
472      // Create a data dependence.
473      //
474      // TODO: Handle "special" address latencies cleanly.
475      SDep dep(DefSU, SDep::Data, DefSU->Latency, Reg);
476      if (!UnitLatencies) {
477        // Adjust the dependence latency using operand def/use information, then
478        // allow the target to perform its own adjustments.
479        int DefOp = Def->findRegisterDefOperandIdx(Reg);
480        unsigned Latency =
481          TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx);
482        dep.setLatency(Latency);
483        unsigned MinLatency =
484          TII->computeOperandLatency(InstrItins, Def, DefOp, MI, OperIdx,
485                                     /*FindMin=*/true);
486        dep.setMinLatency(MinLatency);
487
488        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
489        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
490      }
491      SU->addPred(dep);
492    }
493  }
494
495  // Add antidependence to the following def of the vreg it uses.
496  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
497  if (DefI != VRegDefs.end() && DefI->SU != SU)
498    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
499}
500
501/// Return true if MI is an instruction we are unable to reason about
502/// (like a call or something with unmodeled side effects).
503static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
504  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
505      (MI->hasOrderedMemoryRef() &&
506       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
507    return true;
508  return false;
509}
510
511// This MI might have either incomplete info, or known to be unsafe
512// to deal with (i.e. volatile object).
513static inline bool isUnsafeMemoryObject(MachineInstr *MI,
514                                        const MachineFrameInfo *MFI) {
515  if (!MI || MI->memoperands_empty())
516    return true;
517  // We purposefully do no check for hasOneMemOperand() here
518  // in hope to trigger an assert downstream in order to
519  // finish implementation.
520  if ((*MI->memoperands_begin())->isVolatile() ||
521       MI->hasUnmodeledSideEffects())
522    return true;
523
524  const Value *V = (*MI->memoperands_begin())->getValue();
525  if (!V)
526    return true;
527
528  V = getUnderlyingObject(V);
529  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
530    // Similarly to getUnderlyingObjectForInstr:
531    // For now, ignore PseudoSourceValues which may alias LLVM IR values
532    // because the code that uses this function has no way to cope with
533    // such aliases.
534    if (PSV->isAliased(MFI))
535      return true;
536  }
537  // Does this pointer refer to a distinct and identifiable object?
538  if (!isIdentifiedObject(V))
539    return true;
540
541  return false;
542}
543
544/// This returns true if the two MIs need a chain edge betwee them.
545/// If these are not even memory operations, we still may need
546/// chain deps between them. The question really is - could
547/// these two MIs be reordered during scheduling from memory dependency
548/// point of view.
549static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
550                             MachineInstr *MIa,
551                             MachineInstr *MIb) {
552  // Cover a trivial case - no edge is need to itself.
553  if (MIa == MIb)
554    return false;
555
556  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
557    return true;
558
559  // If we are dealing with two "normal" loads, we do not need an edge
560  // between them - they could be reordered.
561  if (!MIa->mayStore() && !MIb->mayStore())
562    return false;
563
564  // To this point analysis is generic. From here on we do need AA.
565  if (!AA)
566    return true;
567
568  MachineMemOperand *MMOa = *MIa->memoperands_begin();
569  MachineMemOperand *MMOb = *MIb->memoperands_begin();
570
571  // FIXME: Need to handle multiple memory operands to support all targets.
572  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
573    llvm_unreachable("Multiple memory operands.");
574
575  // The following interface to AA is fashioned after DAGCombiner::isAlias
576  // and operates with MachineMemOperand offset with some important
577  // assumptions:
578  //   - LLVM fundamentally assumes flat address spaces.
579  //   - MachineOperand offset can *only* result from legalization and
580  //     cannot affect queries other than the trivial case of overlap
581  //     checking.
582  //   - These offsets never wrap and never step outside
583  //     of allocated objects.
584  //   - There should never be any negative offsets here.
585  //
586  // FIXME: Modify API to hide this math from "user"
587  // FIXME: Even before we go to AA we can reason locally about some
588  // memory objects. It can save compile time, and possibly catch some
589  // corner cases not currently covered.
590
591  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
592  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
593
594  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
595  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
596  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
597
598  AliasAnalysis::AliasResult AAResult = AA->alias(
599  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
600                          MMOa->getTBAAInfo()),
601  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
602                          MMOb->getTBAAInfo()));
603
604  return (AAResult != AliasAnalysis::NoAlias);
605}
606
607/// This recursive function iterates over chain deps of SUb looking for
608/// "latest" node that needs a chain edge to SUa.
609static unsigned
610iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
611                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
612                 SmallPtrSet<const SUnit*, 16> &Visited) {
613  if (!SUa || !SUb || SUb == ExitSU)
614    return *Depth;
615
616  // Remember visited nodes.
617  if (!Visited.insert(SUb))
618      return *Depth;
619  // If there is _some_ dependency already in place, do not
620  // descend any further.
621  // TODO: Need to make sure that if that dependency got eliminated or ignored
622  // for any reason in the future, we would not violate DAG topology.
623  // Currently it does not happen, but makes an implicit assumption about
624  // future implementation.
625  //
626  // Independently, if we encounter node that is some sort of global
627  // object (like a call) we already have full set of dependencies to it
628  // and we can stop descending.
629  if (SUa->isSucc(SUb) ||
630      isGlobalMemoryObject(AA, SUb->getInstr()))
631    return *Depth;
632
633  // If we do need an edge, or we have exceeded depth budget,
634  // add that edge to the predecessors chain of SUb,
635  // and stop descending.
636  if (*Depth > 200 ||
637      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
638    SUb->addPred(SDep(SUa, SDep::Order, /*Latency=*/0, /*Reg=*/0,
639                      /*isNormalMemory=*/true));
640    return *Depth;
641  }
642  // Track current depth.
643  (*Depth)++;
644  // Iterate over chain dependencies only.
645  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
646       I != E; ++I)
647    if (I->isCtrl())
648      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
649  return *Depth;
650}
651
652/// This function assumes that "downward" from SU there exist
653/// tail/leaf of already constructed DAG. It iterates downward and
654/// checks whether SU can be aliasing any node dominated
655/// by it.
656static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
657                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
658                            unsigned LatencyToLoad) {
659  if (!SU)
660    return;
661
662  SmallPtrSet<const SUnit*, 16> Visited;
663  unsigned Depth = 0;
664
665  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
666       I != IE; ++I) {
667    if (SU == *I)
668      continue;
669    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
670      unsigned Latency = ((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0;
671      (*I)->addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0,
672                         /*isNormalMemory=*/true));
673    }
674    // Now go through all the chain successors and iterate from them.
675    // Keep track of visited nodes.
676    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
677         JE = (*I)->Succs.end(); J != JE; ++J)
678      if (J->isCtrl())
679        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
680                          ExitSU, &Depth, Visited);
681  }
682}
683
684/// Check whether two objects need a chain edge, if so, add it
685/// otherwise remember the rejected SU.
686static inline
687void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
688                         SUnit *SUa, SUnit *SUb,
689                         std::set<SUnit *> &RejectList,
690                         unsigned TrueMemOrderLatency = 0,
691                         bool isNormalMemory = false) {
692  // If this is a false dependency,
693  // do not add the edge, but rememeber the rejected node.
694  if (!EnableAASchedMI ||
695      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr()))
696    SUb->addPred(SDep(SUa, SDep::Order, TrueMemOrderLatency, /*Reg=*/0,
697                      isNormalMemory));
698  else {
699    // Duplicate entries should be ignored.
700    RejectList.insert(SUb);
701    DEBUG(dbgs() << "\tReject chain dep between SU("
702          << SUa->NodeNum << ") and SU("
703          << SUb->NodeNum << ")\n");
704  }
705}
706
707/// Create an SUnit for each real instruction, numbered in top-down toplological
708/// order. The instruction order A < B, implies that no edge exists from B to A.
709///
710/// Map each real instruction to its SUnit.
711///
712/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
713/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
714/// instead of pointers.
715///
716/// MachineScheduler relies on initSUnits numbering the nodes by their order in
717/// the original instruction list.
718void ScheduleDAGInstrs::initSUnits() {
719  // We'll be allocating one SUnit for each real instruction in the region,
720  // which is contained within a basic block.
721  SUnits.reserve(BB->size());
722
723  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
724    MachineInstr *MI = I;
725    if (MI->isDebugValue())
726      continue;
727
728    SUnit *SU = newSUnit(MI);
729    MISUnitMap[MI] = SU;
730
731    SU->isCall = MI->isCall();
732    SU->isCommutable = MI->isCommutable();
733
734    // Assign the Latency field of SU using target-provided information.
735    if (UnitLatencies)
736      SU->Latency = 1;
737    else
738      computeLatency(SU);
739  }
740}
741
742/// If RegPressure is non null, compute register pressure as a side effect. The
743/// DAG builder is an efficient place to do it because it already visits
744/// operands.
745void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
746                                        RegPressureTracker *RPTracker) {
747  // Create an SUnit for each real instruction.
748  initSUnits();
749
750  // We build scheduling units by walking a block's instruction list from bottom
751  // to top.
752
753  // Remember where a generic side-effecting instruction is as we procede.
754  SUnit *BarrierChain = 0, *AliasChain = 0;
755
756  // Memory references to specific known memory locations are tracked
757  // so that they can be given more precise dependencies. We track
758  // separately the known memory locations that may alias and those
759  // that are known not to alias
760  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
761  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
762  std::set<SUnit*> RejectMemNodes;
763
764  // Remove any stale debug info; sometimes BuildSchedGraph is called again
765  // without emitting the info from the previous call.
766  DbgValues.clear();
767  FirstDbgValue = NULL;
768
769  assert(Defs.empty() && Uses.empty() &&
770         "Only BuildGraph should update Defs/Uses");
771  Defs.setRegLimit(TRI->getNumRegs());
772  Uses.setRegLimit(TRI->getNumRegs());
773
774  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
775  // FIXME: Allow SparseSet to reserve space for the creation of virtual
776  // registers during scheduling. Don't artificially inflate the Universe
777  // because we want to assert that vregs are not created during DAG building.
778  VRegDefs.setUniverse(MRI.getNumVirtRegs());
779
780  // Model data dependencies between instructions being scheduled and the
781  // ExitSU.
782  addSchedBarrierDeps();
783
784  // Walk the list of instructions, from bottom moving up.
785  MachineInstr *PrevMI = NULL;
786  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
787       MII != MIE; --MII) {
788    MachineInstr *MI = prior(MII);
789    if (MI && PrevMI) {
790      DbgValues.push_back(std::make_pair(PrevMI, MI));
791      PrevMI = NULL;
792    }
793
794    if (MI->isDebugValue()) {
795      PrevMI = MI;
796      continue;
797    }
798    if (RPTracker) {
799      RPTracker->recede();
800      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
801    }
802
803    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
804           "Cannot schedule terminators or labels!");
805
806    SUnit *SU = MISUnitMap[MI];
807    assert(SU && "No SUnit mapped to this MI");
808
809    // Add register-based dependencies (data, anti, and output).
810    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
811      const MachineOperand &MO = MI->getOperand(j);
812      if (!MO.isReg()) continue;
813      unsigned Reg = MO.getReg();
814      if (Reg == 0) continue;
815
816      if (TRI->isPhysicalRegister(Reg))
817        addPhysRegDeps(SU, j);
818      else {
819        assert(!IsPostRA && "Virtual register encountered!");
820        if (MO.isDef())
821          addVRegDefDeps(SU, j);
822        else if (MO.readsReg()) // ignore undef operands
823          addVRegUseDeps(SU, j);
824      }
825    }
826
827    // Add chain dependencies.
828    // Chain dependencies used to enforce memory order should have
829    // latency of 0 (except for true dependency of Store followed by
830    // aliased Load... we estimate that with a single cycle of latency
831    // assuming the hardware will bypass)
832    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
833    // after stack slots are lowered to actual addresses.
834    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
835    // produce more precise dependence information.
836    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
837    if (isGlobalMemoryObject(AA, MI)) {
838      // Be conservative with these and add dependencies on all memory
839      // references, even those that are known to not alias.
840      for (std::map<const Value *, SUnit *>::iterator I =
841             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
842        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
843      }
844      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
845             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
846        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
847          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
848      }
849      // Add SU to the barrier chain.
850      if (BarrierChain)
851        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
852      BarrierChain = SU;
853      // This is a barrier event that acts as a pivotal node in the DAG,
854      // so it is safe to clear list of exposed nodes.
855      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
856                      TrueMemOrderLatency);
857      RejectMemNodes.clear();
858      NonAliasMemDefs.clear();
859      NonAliasMemUses.clear();
860
861      // fall-through
862    new_alias_chain:
863      // Chain all possibly aliasing memory references though SU.
864      if (AliasChain) {
865        unsigned ChainLatency = 0;
866        if (AliasChain->getInstr()->mayLoad())
867          ChainLatency = TrueMemOrderLatency;
868        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
869                           ChainLatency);
870      }
871      AliasChain = SU;
872      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
873        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
874                           TrueMemOrderLatency);
875      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
876           E = AliasMemDefs.end(); I != E; ++I)
877        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
878      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
879           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
880        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
881          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
882                             TrueMemOrderLatency);
883      }
884      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
885                      TrueMemOrderLatency);
886      PendingLoads.clear();
887      AliasMemDefs.clear();
888      AliasMemUses.clear();
889    } else if (MI->mayStore()) {
890      bool MayAlias = true;
891      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
892        // A store to a specific PseudoSourceValue. Add precise dependencies.
893        // Record the def in MemDefs, first adding a dep if there is
894        // an existing def.
895        std::map<const Value *, SUnit *>::iterator I =
896          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
897        std::map<const Value *, SUnit *>::iterator IE =
898          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
899        if (I != IE) {
900          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
901                             0, true);
902          I->second = SU;
903        } else {
904          if (MayAlias)
905            AliasMemDefs[V] = SU;
906          else
907            NonAliasMemDefs[V] = SU;
908        }
909        // Handle the uses in MemUses, if there are any.
910        std::map<const Value *, std::vector<SUnit *> >::iterator J =
911          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
912        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
913          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
914        if (J != JE) {
915          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
916            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
917                               TrueMemOrderLatency, true);
918          J->second.clear();
919        }
920        if (MayAlias) {
921          // Add dependencies from all the PendingLoads, i.e. loads
922          // with no underlying object.
923          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
924            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
925                               TrueMemOrderLatency);
926          // Add dependence on alias chain, if needed.
927          if (AliasChain)
928            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
929          // But we also should check dependent instructions for the
930          // SU in question.
931          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
932                          TrueMemOrderLatency);
933        }
934        // Add dependence on barrier chain, if needed.
935        // There is no point to check aliasing on barrier event. Even if
936        // SU and barrier _could_ be reordered, they should not. In addition,
937        // we have lost all RejectMemNodes below barrier.
938        if (BarrierChain)
939          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
940      } else {
941        // Treat all other stores conservatively.
942        goto new_alias_chain;
943      }
944
945      if (!ExitSU.isPred(SU))
946        // Push store's up a bit to avoid them getting in between cmp
947        // and branches.
948        ExitSU.addPred(SDep(SU, SDep::Order, 0,
949                            /*Reg=*/0, /*isNormalMemory=*/false,
950                            /*isMustAlias=*/false,
951                            /*isArtificial=*/true));
952    } else if (MI->mayLoad()) {
953      bool MayAlias = true;
954      if (MI->isInvariantLoad(AA)) {
955        // Invariant load, no chain dependencies needed!
956      } else {
957        if (const Value *V =
958            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
959          // A load from a specific PseudoSourceValue. Add precise dependencies.
960          std::map<const Value *, SUnit *>::iterator I =
961            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
962          std::map<const Value *, SUnit *>::iterator IE =
963            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
964          if (I != IE)
965            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
966          if (MayAlias)
967            AliasMemUses[V].push_back(SU);
968          else
969            NonAliasMemUses[V].push_back(SU);
970        } else {
971          // A load with no underlying object. Depend on all
972          // potentially aliasing stores.
973          for (std::map<const Value *, SUnit *>::iterator I =
974                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
975            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
976
977          PendingLoads.push_back(SU);
978          MayAlias = true;
979        }
980        if (MayAlias)
981          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
982        // Add dependencies on alias and barrier chains, if needed.
983        if (MayAlias && AliasChain)
984          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
985        if (BarrierChain)
986          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
987      }
988    }
989  }
990  if (PrevMI)
991    FirstDbgValue = PrevMI;
992
993  Defs.clear();
994  Uses.clear();
995  VRegDefs.clear();
996  PendingLoads.clear();
997}
998
999void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
1000  // Compute the latency for the node. We only provide a default for missing
1001  // itineraries. Empty itineraries still have latency properties.
1002  if (!InstrItins) {
1003    SU->Latency = 1;
1004
1005    // Simplistic target-independent heuristic: assume that loads take
1006    // extra time.
1007    if (SU->getInstr()->mayLoad())
1008      SU->Latency += 2;
1009  } else {
1010    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
1011  }
1012}
1013
1014void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1015#ifndef NDEBUG
1016  SU->getInstr()->dump();
1017#endif
1018}
1019
1020std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1021  std::string s;
1022  raw_string_ostream oss(s);
1023  if (SU == &EntrySU)
1024    oss << "<entry>";
1025  else if (SU == &ExitSU)
1026    oss << "<exit>";
1027  else
1028    SU->getInstr()->print(oss);
1029  return oss.str();
1030}
1031
1032/// Return the basic block label. It is not necessarilly unique because a block
1033/// contains multiple scheduling regions. But it is fine for visualization.
1034std::string ScheduleDAGInstrs::getDAGName() const {
1035  return "dag." + BB->getFullName();
1036}
1037