ScheduleDAGInstrs.cpp revision b4566a999970b514d7c6973d99e293a6625d3f70
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineMemOperand.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallSet.h"
33using namespace llvm;
34
35ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36                                     const MachineLoopInfo &mli,
37                                     const MachineDominatorTree &mdt,
38                                     bool IsPostRAFlag,
39                                     LiveIntervals *lis)
40  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41    InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
42    LIS(lis), UnitLatencies(false),
43    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
44    LoopRegs(MLI, MDT), FirstDbgValue(0) {
45  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
46  DbgValues.clear();
47  assert(!(IsPostRA && MF.getRegInfo().getNumVirtRegs()) &&
48         "Virtual registers must be removed prior to PostRA scheduling");
49}
50
51/// Run - perform scheduling.
52///
53void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
54                            MachineBasicBlock::iterator begin,
55                            MachineBasicBlock::iterator end,
56                            unsigned endcount) {
57  BB = bb;
58  Begin = begin;
59  InsertPosIndex = endcount;
60
61  // Check to see if the scheduler cares about latencies.
62  UnitLatencies = ForceUnitLatencies();
63
64  ScheduleDAG::Run(bb, end);
65}
66
67/// getUnderlyingObjectFromInt - This is the function that does the work of
68/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
69static const Value *getUnderlyingObjectFromInt(const Value *V) {
70  do {
71    if (const Operator *U = dyn_cast<Operator>(V)) {
72      // If we find a ptrtoint, we can transfer control back to the
73      // regular getUnderlyingObjectFromInt.
74      if (U->getOpcode() == Instruction::PtrToInt)
75        return U->getOperand(0);
76      // If we find an add of a constant or a multiplied value, it's
77      // likely that the other operand will lead us to the base
78      // object. We don't have to worry about the case where the
79      // object address is somehow being computed by the multiply,
80      // because our callers only care when the result is an
81      // identifibale object.
82      if (U->getOpcode() != Instruction::Add ||
83          (!isa<ConstantInt>(U->getOperand(1)) &&
84           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
85        return V;
86      V = U->getOperand(0);
87    } else {
88      return V;
89    }
90    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
91  } while (1);
92}
93
94/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
95/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
96static const Value *getUnderlyingObject(const Value *V) {
97  // First just call Value::getUnderlyingObject to let it do what it does.
98  do {
99    V = GetUnderlyingObject(V);
100    // If it found an inttoptr, use special code to continue climing.
101    if (Operator::getOpcode(V) != Instruction::IntToPtr)
102      break;
103    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
104    // If that succeeded in finding a pointer, continue the search.
105    if (!O->getType()->isPointerTy())
106      break;
107    V = O;
108  } while (1);
109  return V;
110}
111
112/// getUnderlyingObjectForInstr - If this machine instr has memory reference
113/// information and it can be tracked to a normal reference to a known
114/// object, return the Value for that object. Otherwise return null.
115static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
116                                                const MachineFrameInfo *MFI,
117                                                bool &MayAlias) {
118  MayAlias = true;
119  if (!MI->hasOneMemOperand() ||
120      !(*MI->memoperands_begin())->getValue() ||
121      (*MI->memoperands_begin())->isVolatile())
122    return 0;
123
124  const Value *V = (*MI->memoperands_begin())->getValue();
125  if (!V)
126    return 0;
127
128  V = getUnderlyingObject(V);
129  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
130    // For now, ignore PseudoSourceValues which may alias LLVM IR values
131    // because the code that uses this function has no way to cope with
132    // such aliases.
133    if (PSV->isAliased(MFI))
134      return 0;
135
136    MayAlias = PSV->mayAlias(MFI);
137    return V;
138  }
139
140  if (isIdentifiedObject(V))
141    return V;
142
143  return 0;
144}
145
146void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
147  LoopRegs.Deps.clear();
148  if (MachineLoop *ML = MLI.getLoopFor(BB))
149    if (BB == ML->getLoopLatch())
150      LoopRegs.VisitLoop(ML);
151}
152
153/// AddSchedBarrierDeps - Add dependencies from instructions in the current
154/// list of instructions being scheduled to scheduling barrier by adding
155/// the exit SU to the register defs and use list. This is because we want to
156/// make sure instructions which define registers that are either used by
157/// the terminator or are live-out are properly scheduled. This is
158/// especially important when the definition latency of the return value(s)
159/// are too high to be hidden by the branch or when the liveout registers
160/// used by instructions in the fallthrough block.
161void ScheduleDAGInstrs::AddSchedBarrierDeps() {
162  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
163  ExitSU.setInstr(ExitMI);
164  bool AllDepKnown = ExitMI &&
165    (ExitMI->isCall() || ExitMI->isBarrier());
166  if (ExitMI && AllDepKnown) {
167    // If it's a call or a barrier, add dependencies on the defs and uses of
168    // instruction.
169    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
170      const MachineOperand &MO = ExitMI->getOperand(i);
171      if (!MO.isReg() || MO.isDef()) continue;
172      unsigned Reg = MO.getReg();
173      if (Reg == 0) continue;
174
175      if (TRI->isPhysicalRegister(Reg))
176        Uses[Reg].push_back(&ExitSU);
177      else
178        assert(!IsPostRA && "Virtual register encountered after regalloc.");
179    }
180  } else {
181    // For others, e.g. fallthrough, conditional branch, assume the exit
182    // uses all the registers that are livein to the successor blocks.
183    SmallSet<unsigned, 8> Seen;
184    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
185           SE = BB->succ_end(); SI != SE; ++SI)
186      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
187             E = (*SI)->livein_end(); I != E; ++I) {
188        unsigned Reg = *I;
189        if (Seen.insert(Reg))
190          Uses[Reg].push_back(&ExitSU);
191      }
192  }
193}
194
195/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
196/// this SUnit to following instructions in the same scheduling region that
197/// depend the physical register referenced at OperIdx.
198void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
199  const MachineInstr *MI = SU->getInstr();
200  const MachineOperand &MO = MI->getOperand(OperIdx);
201  unsigned Reg = MO.getReg();
202
203  // Ask the target if address-backscheduling is desirable, and if so how much.
204  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
205  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
206
207  // Optionally add output and anti dependencies. For anti
208  // dependencies we use a latency of 0 because for a multi-issue
209  // target we want to allow the defining instruction to issue
210  // in the same cycle as the using instruction.
211  // TODO: Using a latency of 1 here for output dependencies assumes
212  //       there's no cost for reusing registers.
213  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
214  for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
215    std::vector<SUnit *> &DefList = Defs[*Alias];
216    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
217      SUnit *DefSU = DefList[i];
218      if (DefSU == &ExitSU)
219        continue;
220      if (DefSU != SU &&
221          (Kind != SDep::Output || !MO.isDead() ||
222           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
223        if (Kind == SDep::Anti)
224          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
225        else {
226          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
227                                                 DefSU->getInstr());
228          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
229        }
230      }
231    }
232  }
233
234  // Retrieve the UseList to add data dependencies and update uses.
235  std::vector<SUnit *> &UseList = Uses[Reg];
236  if (MO.isDef()) {
237    // Update DefList. Defs are pushed in the order they are visited and
238    // never reordered.
239    std::vector<SUnit *> &DefList = Defs[Reg];
240
241    // Add any data dependencies.
242    unsigned DataLatency = SU->Latency;
243    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
244      SUnit *UseSU = UseList[i];
245      if (UseSU == SU)
246        continue;
247      unsigned LDataLatency = DataLatency;
248      // Optionally add in a special extra latency for nodes that
249      // feed addresses.
250      // TODO: Do this for register aliases too.
251      // TODO: Perhaps we should get rid of
252      // SpecialAddressLatency and just move this into
253      // adjustSchedDependency for the targets that care about it.
254      if (SpecialAddressLatency != 0 && !UnitLatencies &&
255          UseSU != &ExitSU) {
256        MachineInstr *UseMI = UseSU->getInstr();
257        const MCInstrDesc &UseMCID = UseMI->getDesc();
258        int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
259        assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
260        if (RegUseIndex >= 0 &&
261            (UseMI->mayLoad() || UseMI->mayStore()) &&
262            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
263            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
264          LDataLatency += SpecialAddressLatency;
265      }
266      // Adjust the dependence latency using operand def/use
267      // information (if any), and then allow the target to
268      // perform its own adjustments.
269      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
270      if (!UnitLatencies) {
271        ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
272        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
273      }
274      UseSU->addPred(dep);
275    }
276    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
277      std::vector<SUnit *> &UseList = Uses[*Alias];
278      for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
279        SUnit *UseSU = UseList[i];
280        if (UseSU == SU)
281          continue;
282        const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
283        if (!UnitLatencies) {
284          ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
285          ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
286        }
287        UseSU->addPred(dep);
288      }
289    }
290
291    // If a def is going to wrap back around to the top of the loop,
292    // backschedule it.
293    if (!UnitLatencies && DefList.empty()) {
294      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
295      if (I != LoopRegs.Deps.end()) {
296        const MachineOperand *UseMO = I->second.first;
297        unsigned Count = I->second.second;
298        const MachineInstr *UseMI = UseMO->getParent();
299        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
300        const MCInstrDesc &UseMCID = UseMI->getDesc();
301        // TODO: If we knew the total depth of the region here, we could
302        // handle the case where the whole loop is inside the region but
303        // is large enough that the isScheduleHigh trick isn't needed.
304        if (UseMOIdx < UseMCID.getNumOperands()) {
305          // Currently, we only support scheduling regions consisting of
306          // single basic blocks. Check to see if the instruction is in
307          // the same region by checking to see if it has the same parent.
308          if (UseMI->getParent() != MI->getParent()) {
309            unsigned Latency = SU->Latency;
310            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
311              Latency += SpecialAddressLatency;
312            // This is a wild guess as to the portion of the latency which
313            // will be overlapped by work done outside the current
314            // scheduling region.
315            Latency -= std::min(Latency, Count);
316            // Add the artificial edge.
317            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
318                                /*Reg=*/0, /*isNormalMemory=*/false,
319                                /*isMustAlias=*/false,
320                                /*isArtificial=*/true));
321          } else if (SpecialAddressLatency > 0 &&
322                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
323            // The entire loop body is within the current scheduling region
324            // and the latency of this operation is assumed to be greater
325            // than the latency of the loop.
326            // TODO: Recursively mark data-edge predecessors as
327            //       isScheduleHigh too.
328            SU->isScheduleHigh = true;
329          }
330        }
331        LoopRegs.Deps.erase(I);
332      }
333    }
334
335    UseList.clear();
336    if (!MO.isDead())
337      DefList.clear();
338
339    // Calls will not be reordered because of chain dependencies (see
340    // below). Since call operands are dead, calls may continue to be added
341    // to the DefList making dependence checking quadratic in the size of
342    // the block. Instead, we leave only one call at the back of the
343    // DefList.
344    if (SU->isCall) {
345      while (!DefList.empty() && DefList.back()->isCall)
346        DefList.pop_back();
347    }
348    DefList.push_back(SU);
349  } else {
350    UseList.push_back(SU);
351  }
352}
353
354/// addVRegDefDeps - Add register output and data dependencies from this SUnit
355/// to instructions that occur later in the same scheduling region if they read
356/// from or write to the virtual register defined at OperIdx.
357///
358/// TODO: Hoist loop induction variable increments. This has to be
359/// reevaluated. Generally, IV scheduling should be done before coalescing.
360void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
361  const MachineInstr *MI = SU->getInstr();
362  unsigned Reg = MI->getOperand(OperIdx).getReg();
363
364  // Add output dependence to the next nearest def of this vreg.
365  //
366  // Unless this definition is dead, the output dependence should be
367  // transitively redundant with antidependencies from this definition's
368  // uses. We're conservative for now until we have a way to guarantee the uses
369  // are not eliminated sometime during scheduling. The output dependence edge
370  // is also useful if output latency exceeds def-use latency.
371  SUnit *&DefSU = VRegDefs[Reg];
372  if (DefSU && DefSU != SU && DefSU != &ExitSU) {
373    unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
374                                                DefSU->getInstr());
375    DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
376  }
377  DefSU = SU;
378}
379
380/// addVRegUseDeps - Add a register data dependency if the instruction that
381/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
382/// register antidependency from this SUnit to instructions that occur later in
383/// the same scheduling region if they write the virtual register.
384///
385/// TODO: Handle ExitSU "uses" properly.
386void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
387  MachineInstr *MI = SU->getInstr();
388  unsigned Reg = MI->getOperand(OperIdx).getReg();
389
390  // Lookup this operand's reaching definition.
391  assert(LIS && "vreg dependencies requires LiveIntervals");
392  SlotIndex UseIdx = LIS->getSlotIndexes()->getInstructionIndex(MI);
393  LiveInterval *LI = &LIS->getInterval(Reg);
394  VNInfo *VNI = LI->getVNInfoAt(UseIdx);
395  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
396  if (Def) {
397    SUnit *DefSU = getSUnit(Def);
398    if (DefSU) {
399      // The reaching Def lives within this scheduling region.
400      // Create a data dependence.
401      //
402      // TODO: Handle "special" address latencies cleanly.
403      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
404      if (!UnitLatencies) {
405        // Adjust the dependence latency using operand def/use information, then
406        // allow the target to perform its own adjustments.
407        ComputeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
408        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
409        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
410      }
411      SU->addPred(dep);
412    }
413  }
414
415  // Add antidependence to the following def of the vreg it uses.
416  DenseMap<unsigned, SUnit*>::const_iterator I = VRegDefs.find(Reg);
417  if (I != VRegDefs.end()) {
418    SUnit *DefSU = I->second;
419    if (DefSU != SU)
420      DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
421  }
422}
423
424/// Create an SUnit for each real instruction, numbered in top-down toplological
425/// order. The instruction order A < B, implies that no edge exists from B to A.
426///
427/// Map each real instruction to its SUnit.
428///
429/// After initSUnits, the SUnits vector is cannot be resized and the scheduler
430/// may hang onto SUnit pointers. We may relax this in the future by using SUnit
431/// IDs instead of pointers.
432void ScheduleDAGInstrs::initSUnits() {
433  // We'll be allocating one SUnit for each real instruction in the region,
434  // which is contained within a basic block.
435  SUnits.reserve(BB->size());
436
437  for (MachineBasicBlock::iterator I = Begin; I != InsertPos; ++I) {
438    MachineInstr *MI = I;
439    if (MI->isDebugValue())
440      continue;
441
442    SUnit *SU = NewSUnit(MI);
443    MISUnitMap[MI] = SU;
444
445    SU->isCall = MI->isCall();
446    SU->isCommutable = MI->isCommutable();
447
448    // Assign the Latency field of SU using target-provided information.
449    if (UnitLatencies)
450      SU->Latency = 1;
451    else
452      ComputeLatency(SU);
453  }
454}
455
456void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
457  // Create an SUnit for each real instruction.
458  initSUnits();
459
460  // We build scheduling units by walking a block's instruction list from bottom
461  // to top.
462
463  // Remember where a generic side-effecting instruction is as we procede.
464  SUnit *BarrierChain = 0, *AliasChain = 0;
465
466  // Memory references to specific known memory locations are tracked
467  // so that they can be given more precise dependencies. We track
468  // separately the known memory locations that may alias and those
469  // that are known not to alias
470  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
471  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
472
473  // Remove any stale debug info; sometimes BuildSchedGraph is called again
474  // without emitting the info from the previous call.
475  DbgValues.clear();
476  FirstDbgValue = NULL;
477
478  // Model data dependencies between instructions being scheduled and the
479  // ExitSU.
480  AddSchedBarrierDeps();
481
482  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
483    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
484  }
485
486  assert(VRegDefs.size() == 0 && "Only BuildSchedGraph may access VRegDefs");
487
488  // Walk the list of instructions, from bottom moving up.
489  MachineInstr *PrevMI = NULL;
490  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
491       MII != MIE; --MII) {
492    MachineInstr *MI = prior(MII);
493    if (MI && PrevMI) {
494      DbgValues.push_back(std::make_pair(PrevMI, MI));
495      PrevMI = NULL;
496    }
497
498    if (MI->isDebugValue()) {
499      PrevMI = MI;
500      continue;
501    }
502
503    assert(!MI->isTerminator() && !MI->isLabel() &&
504           "Cannot schedule terminators or labels!");
505
506    SUnit *SU = MISUnitMap[MI];
507    assert(SU && "No SUnit mapped to this MI");
508
509    // Add register-based dependencies (data, anti, and output).
510    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
511      const MachineOperand &MO = MI->getOperand(j);
512      if (!MO.isReg()) continue;
513      unsigned Reg = MO.getReg();
514      if (Reg == 0) continue;
515
516      if (TRI->isPhysicalRegister(Reg))
517        addPhysRegDeps(SU, j);
518      else {
519        assert(!IsPostRA && "Virtual register encountered!");
520        if (MO.isDef())
521          addVRegDefDeps(SU, j);
522        else
523          addVRegUseDeps(SU, j);
524      }
525    }
526
527    // Add chain dependencies.
528    // Chain dependencies used to enforce memory order should have
529    // latency of 0 (except for true dependency of Store followed by
530    // aliased Load... we estimate that with a single cycle of latency
531    // assuming the hardware will bypass)
532    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
533    // after stack slots are lowered to actual addresses.
534    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
535    // produce more precise dependence information.
536#define STORE_LOAD_LATENCY 1
537    unsigned TrueMemOrderLatency = 0;
538    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
539        (MI->hasVolatileMemoryRef() &&
540         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
541      // Be conservative with these and add dependencies on all memory
542      // references, even those that are known to not alias.
543      for (std::map<const Value *, SUnit *>::iterator I =
544             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
545        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
546      }
547      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
548             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
549        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
550          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
551      }
552      NonAliasMemDefs.clear();
553      NonAliasMemUses.clear();
554      // Add SU to the barrier chain.
555      if (BarrierChain)
556        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
557      BarrierChain = SU;
558
559      // fall-through
560    new_alias_chain:
561      // Chain all possibly aliasing memory references though SU.
562      if (AliasChain)
563        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
564      AliasChain = SU;
565      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
566        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
567      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
568           E = AliasMemDefs.end(); I != E; ++I) {
569        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
570      }
571      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
572           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
573        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
574          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
575      }
576      PendingLoads.clear();
577      AliasMemDefs.clear();
578      AliasMemUses.clear();
579    } else if (MI->mayStore()) {
580      bool MayAlias = true;
581      TrueMemOrderLatency = STORE_LOAD_LATENCY;
582      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
583        // A store to a specific PseudoSourceValue. Add precise dependencies.
584        // Record the def in MemDefs, first adding a dep if there is
585        // an existing def.
586        std::map<const Value *, SUnit *>::iterator I =
587          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
588        std::map<const Value *, SUnit *>::iterator IE =
589          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
590        if (I != IE) {
591          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
592                                  /*isNormalMemory=*/true));
593          I->second = SU;
594        } else {
595          if (MayAlias)
596            AliasMemDefs[V] = SU;
597          else
598            NonAliasMemDefs[V] = SU;
599        }
600        // Handle the uses in MemUses, if there are any.
601        std::map<const Value *, std::vector<SUnit *> >::iterator J =
602          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
603        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
604          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
605        if (J != JE) {
606          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
607            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
608                                       /*Reg=*/0, /*isNormalMemory=*/true));
609          J->second.clear();
610        }
611        if (MayAlias) {
612          // Add dependencies from all the PendingLoads, i.e. loads
613          // with no underlying object.
614          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
615            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
616          // Add dependence on alias chain, if needed.
617          if (AliasChain)
618            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
619        }
620        // Add dependence on barrier chain, if needed.
621        if (BarrierChain)
622          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
623      } else {
624        // Treat all other stores conservatively.
625        goto new_alias_chain;
626      }
627
628      if (!ExitSU.isPred(SU))
629        // Push store's up a bit to avoid them getting in between cmp
630        // and branches.
631        ExitSU.addPred(SDep(SU, SDep::Order, 0,
632                            /*Reg=*/0, /*isNormalMemory=*/false,
633                            /*isMustAlias=*/false,
634                            /*isArtificial=*/true));
635    } else if (MI->mayLoad()) {
636      bool MayAlias = true;
637      TrueMemOrderLatency = 0;
638      if (MI->isInvariantLoad(AA)) {
639        // Invariant load, no chain dependencies needed!
640      } else {
641        if (const Value *V =
642            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
643          // A load from a specific PseudoSourceValue. Add precise dependencies.
644          std::map<const Value *, SUnit *>::iterator I =
645            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
646          std::map<const Value *, SUnit *>::iterator IE =
647            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
648          if (I != IE)
649            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
650                                    /*isNormalMemory=*/true));
651          if (MayAlias)
652            AliasMemUses[V].push_back(SU);
653          else
654            NonAliasMemUses[V].push_back(SU);
655        } else {
656          // A load with no underlying object. Depend on all
657          // potentially aliasing stores.
658          for (std::map<const Value *, SUnit *>::iterator I =
659                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
660            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
661
662          PendingLoads.push_back(SU);
663          MayAlias = true;
664        }
665
666        // Add dependencies on alias and barrier chains, if needed.
667        if (MayAlias && AliasChain)
668          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
669        if (BarrierChain)
670          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
671      }
672    }
673  }
674  if (PrevMI)
675    FirstDbgValue = PrevMI;
676
677  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
678    Defs[i].clear();
679    Uses[i].clear();
680  }
681  VRegDefs.clear();
682  PendingLoads.clear();
683  MISUnitMap.clear();
684}
685
686void ScheduleDAGInstrs::FinishBlock() {
687  // Nothing to do.
688}
689
690void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
691  // Compute the latency for the node.
692  if (!InstrItins || InstrItins->isEmpty()) {
693    SU->Latency = 1;
694
695    // Simplistic target-independent heuristic: assume that loads take
696    // extra time.
697    if (SU->getInstr()->mayLoad())
698      SU->Latency += 2;
699  } else {
700    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
701  }
702}
703
704void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
705                                              SDep& dep) const {
706  if (!InstrItins || InstrItins->isEmpty())
707    return;
708
709  // For a data dependency with a known register...
710  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
711    return;
712
713  const unsigned Reg = dep.getReg();
714
715  // ... find the definition of the register in the defining
716  // instruction
717  MachineInstr *DefMI = Def->getInstr();
718  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
719  if (DefIdx != -1) {
720    const MachineOperand &MO = DefMI->getOperand(DefIdx);
721    if (MO.isReg() && MO.isImplicit() &&
722        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
723      // This is an implicit def, getOperandLatency() won't return the correct
724      // latency. e.g.
725      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
726      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
727      // What we want is to compute latency between def of %D6/%D7 and use of
728      // %Q3 instead.
729      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
730    }
731    MachineInstr *UseMI = Use->getInstr();
732    // For all uses of the register, calculate the maxmimum latency
733    int Latency = -1;
734    if (UseMI) {
735      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
736        const MachineOperand &MO = UseMI->getOperand(i);
737        if (!MO.isReg() || !MO.isUse())
738          continue;
739        unsigned MOReg = MO.getReg();
740        if (MOReg != Reg)
741          continue;
742
743        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
744                                              UseMI, i);
745        Latency = std::max(Latency, UseCycle);
746      }
747    } else {
748      // UseMI is null, then it must be a scheduling barrier.
749      if (!InstrItins || InstrItins->isEmpty())
750        return;
751      unsigned DefClass = DefMI->getDesc().getSchedClass();
752      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
753    }
754
755    // If we found a latency, then replace the existing dependence latency.
756    if (Latency >= 0)
757      dep.setLatency(Latency);
758  }
759}
760
761void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
762  SU->getInstr()->dump();
763}
764
765std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
766  std::string s;
767  raw_string_ostream oss(s);
768  if (SU == &EntrySU)
769    oss << "<entry>";
770  else if (SU == &ExitSU)
771    oss << "<exit>";
772  else
773    SU->getInstr()->print(oss);
774  return oss.str();
775}
776
777// EmitSchedule - Emit the machine code in scheduled order.
778MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
779  Begin = InsertPos;
780
781  // If first instruction was a DBG_VALUE then put it back.
782  if (FirstDbgValue)
783    BB->splice(InsertPos, BB, FirstDbgValue);
784
785  // Then re-insert them according to the given schedule.
786  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
787    if (SUnit *SU = Sequence[i])
788      BB->splice(InsertPos, BB, SU->getInstr());
789    else
790      // Null SUnit* is a noop.
791      EmitNoop();
792
793    // Update the Begin iterator, as the first instruction in the block
794    // may have been scheduled later.
795    if (i == 0)
796      Begin = prior(InsertPos);
797  }
798
799  // Reinsert any remaining debug_values.
800  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
801         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
802    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
803    MachineInstr *DbgValue = P.first;
804    MachineBasicBlock::iterator OrigPrivMI = P.second;
805    BB->splice(++OrigPrivMI, BB, DbgValue);
806  }
807  DbgValues.clear();
808  FirstDbgValue = NULL;
809  return BB;
810}
811