1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This implements routines for translating from LLVM IR into SelectionDAG IR. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "isel" 15#include "SDNodeDbgValue.h" 16#include "SelectionDAGBuilder.h" 17#include "llvm/ADT/BitVector.h" 18#include "llvm/ADT/PostOrderIterator.h" 19#include "llvm/ADT/SmallSet.h" 20#include "llvm/Analysis/AliasAnalysis.h" 21#include "llvm/Analysis/ConstantFolding.h" 22#include "llvm/Analysis/ValueTracking.h" 23#include "llvm/Constants.h" 24#include "llvm/CallingConv.h" 25#include "llvm/DebugInfo.h" 26#include "llvm/DerivedTypes.h" 27#include "llvm/Function.h" 28#include "llvm/GlobalVariable.h" 29#include "llvm/InlineAsm.h" 30#include "llvm/Instructions.h" 31#include "llvm/Intrinsics.h" 32#include "llvm/IntrinsicInst.h" 33#include "llvm/LLVMContext.h" 34#include "llvm/Module.h" 35#include "llvm/CodeGen/Analysis.h" 36#include "llvm/CodeGen/FastISel.h" 37#include "llvm/CodeGen/FunctionLoweringInfo.h" 38#include "llvm/CodeGen/GCStrategy.h" 39#include "llvm/CodeGen/GCMetadata.h" 40#include "llvm/CodeGen/MachineFunction.h" 41#include "llvm/CodeGen/MachineFrameInfo.h" 42#include "llvm/CodeGen/MachineInstrBuilder.h" 43#include "llvm/CodeGen/MachineJumpTableInfo.h" 44#include "llvm/CodeGen/MachineModuleInfo.h" 45#include "llvm/CodeGen/MachineRegisterInfo.h" 46#include "llvm/CodeGen/SelectionDAG.h" 47#include "llvm/Target/TargetData.h" 48#include "llvm/Target/TargetFrameLowering.h" 49#include "llvm/Target/TargetInstrInfo.h" 50#include "llvm/Target/TargetIntrinsicInfo.h" 51#include "llvm/Target/TargetLibraryInfo.h" 52#include "llvm/Target/TargetLowering.h" 53#include "llvm/Target/TargetOptions.h" 54#include "llvm/Support/CommandLine.h" 55#include "llvm/Support/IntegersSubsetMapping.h" 56#include "llvm/Support/Debug.h" 57#include "llvm/Support/ErrorHandling.h" 58#include "llvm/Support/MathExtras.h" 59#include "llvm/Support/raw_ostream.h" 60#include <algorithm> 61using namespace llvm; 62 63/// LimitFloatPrecision - Generate low-precision inline sequences for 64/// some float libcalls (6, 8 or 12 bits). 65static unsigned LimitFloatPrecision; 66 67static cl::opt<unsigned, true> 68LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74// Limit the width of DAG chains. This is important in general to prevent 75// prevent DAG-based analysis from blowing up. For example, alias analysis and 76// load clustering may not complete in reasonable time. It is difficult to 77// recognize and avoid this situation within each individual analysis, and 78// future analyses are likely to have the same behavior. Limiting DAG width is 79// the safe approach, and will be especially important with global DAGs. 80// 81// MaxParallelChains default is arbitrarily high to avoid affecting 82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83// sequence over this should have been converted to llvm.memcpy by the 84// frontend. It easy to induce this behavior with .ll code such as: 85// %buffer = alloca [4096 x i8] 86// %data = load [4096 x i8]* %argPtr 87// store [4096 x i8] %data, [4096 x i8]* %buffer 88static const unsigned MaxParallelChains = 64; 89 90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 91 const SDValue *Parts, unsigned NumParts, 92 EVT PartVT, EVT ValueVT); 93 94/// getCopyFromParts - Create a value that contains the specified legal parts 95/// combined into the value they represent. If the parts combine to a type 96/// larger then ValueVT then AssertOp can be used to specify whether the extra 97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 98/// (ISD::AssertSext). 99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 100 const SDValue *Parts, 101 unsigned NumParts, EVT PartVT, EVT ValueVT, 102 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 103 if (ValueVT.isVector()) 104 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 105 106 assert(NumParts > 0 && "No parts to assemble!"); 107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 108 SDValue Val = Parts[0]; 109 110 if (NumParts > 1) { 111 // Assemble the value from multiple parts. 112 if (ValueVT.isInteger()) { 113 unsigned PartBits = PartVT.getSizeInBits(); 114 unsigned ValueBits = ValueVT.getSizeInBits(); 115 116 // Assemble the power of 2 part. 117 unsigned RoundParts = NumParts & (NumParts - 1) ? 118 1 << Log2_32(NumParts) : NumParts; 119 unsigned RoundBits = PartBits * RoundParts; 120 EVT RoundVT = RoundBits == ValueBits ? 121 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 122 SDValue Lo, Hi; 123 124 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 125 126 if (RoundParts > 2) { 127 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 128 PartVT, HalfVT); 129 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 130 RoundParts / 2, PartVT, HalfVT); 131 } else { 132 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 133 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 134 } 135 136 if (TLI.isBigEndian()) 137 std::swap(Lo, Hi); 138 139 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 140 141 if (RoundParts < NumParts) { 142 // Assemble the trailing non-power-of-2 part. 143 unsigned OddParts = NumParts - RoundParts; 144 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 145 Hi = getCopyFromParts(DAG, DL, 146 Parts + RoundParts, OddParts, PartVT, OddVT); 147 148 // Combine the round and odd parts. 149 Lo = Val; 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 153 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 154 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 155 DAG.getConstant(Lo.getValueType().getSizeInBits(), 156 TLI.getPointerTy())); 157 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 158 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 159 } 160 } else if (PartVT.isFloatingPoint()) { 161 // FP split into multiple FP parts (for ppcf128) 162 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 163 "Unexpected split"); 164 SDValue Lo, Hi; 165 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 166 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 167 if (TLI.isBigEndian()) 168 std::swap(Lo, Hi); 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 170 } else { 171 // FP split into integer parts (soft fp) 172 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 173 !PartVT.isVector() && "Unexpected split"); 174 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 175 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 176 } 177 } 178 179 // There is now one part, held in Val. Correct it to match ValueVT. 180 PartVT = Val.getValueType(); 181 182 if (PartVT == ValueVT) 183 return Val; 184 185 if (PartVT.isInteger() && ValueVT.isInteger()) { 186 if (ValueVT.bitsLT(PartVT)) { 187 // For a truncate, see if we have any information to 188 // indicate whether the truncated bits will always be 189 // zero or sign-extension. 190 if (AssertOp != ISD::DELETED_NODE) 191 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 192 DAG.getValueType(ValueVT)); 193 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 194 } 195 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 196 } 197 198 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 199 // FP_ROUND's are always exact here. 200 if (ValueVT.bitsLT(Val.getValueType())) 201 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 202 DAG.getTargetConstant(1, TLI.getPointerTy())); 203 204 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 208 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 209 210 llvm_unreachable("Unknown mismatch!"); 211} 212 213/// getCopyFromParts - Create a value that contains the specified legal parts 214/// combined into the value they represent. If the parts combine to a type 215/// larger then ValueVT then AssertOp can be used to specify whether the extra 216/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 217/// (ISD::AssertSext). 218static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 219 const SDValue *Parts, unsigned NumParts, 220 EVT PartVT, EVT ValueVT) { 221 assert(ValueVT.isVector() && "Not a vector value"); 222 assert(NumParts > 0 && "No parts to assemble!"); 223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 224 SDValue Val = Parts[0]; 225 226 // Handle a multi-element vector. 227 if (NumParts > 1) { 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate 249 // operands from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 259 // intermediate operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 262 ValueVT, &Ops[0], NumIntermediates); 263 } 264 265 // There is now one part, held in Val. Correct it to match ValueVT. 266 PartVT = Val.getValueType(); 267 268 if (PartVT == ValueVT) 269 return Val; 270 271 if (PartVT.isVector()) { 272 // If the element type of the source/dest vectors are the same, but the 273 // parts vector has more elements than the value vector, then we have a 274 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 275 // elements we want. 276 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 277 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 278 "Cannot narrow, it would be a lossy transformation"); 279 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 280 DAG.getIntPtrConstant(0)); 281 } 282 283 // Vector/Vector bitcast. 284 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 285 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 286 287 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 288 "Cannot handle this kind of promotion"); 289 // Promoted vector extract 290 bool Smaller = ValueVT.bitsLE(PartVT); 291 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 292 DL, ValueVT, Val); 293 294 } 295 296 // Trivial bitcast if the types are the same size and the destination 297 // vector type is legal. 298 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 299 TLI.isTypeLegal(ValueVT)) 300 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 301 302 // Handle cases such as i8 -> <1 x i1> 303 assert(ValueVT.getVectorNumElements() == 1 && 304 "Only trivial scalar-to-vector conversions should get here!"); 305 306 if (ValueVT.getVectorNumElements() == 1 && 307 ValueVT.getVectorElementType() != PartVT) { 308 bool Smaller = ValueVT.bitsLE(PartVT); 309 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 310 DL, ValueVT.getScalarType(), Val); 311 } 312 313 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 314} 315 316 317 318 319static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 320 SDValue Val, SDValue *Parts, unsigned NumParts, 321 EVT PartVT); 322 323/// getCopyToParts - Create a series of nodes that contain the specified value 324/// split into legal parts. If the parts contain more bits than Val, then, for 325/// integers, ExtendKind can be used to specify how to generate the extra bits. 326static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 327 SDValue Val, SDValue *Parts, unsigned NumParts, 328 EVT PartVT, 329 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 330 EVT ValueVT = Val.getValueType(); 331 332 // Handle the vector case separately. 333 if (ValueVT.isVector()) 334 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 335 336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 337 unsigned PartBits = PartVT.getSizeInBits(); 338 unsigned OrigNumParts = NumParts; 339 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 340 341 if (NumParts == 0) 342 return; 343 344 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 345 if (PartVT == ValueVT) { 346 assert(NumParts == 1 && "No-op copy with multiple parts!"); 347 Parts[0] = Val; 348 return; 349 } 350 351 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 352 // If the parts cover more bits than the value has, promote the value. 353 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 354 assert(NumParts == 1 && "Do not know what to promote to!"); 355 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 356 } else { 357 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 358 ValueVT.isInteger() && 359 "Unknown mismatch!"); 360 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 361 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 362 if (PartVT == MVT::x86mmx) 363 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 364 } 365 } else if (PartBits == ValueVT.getSizeInBits()) { 366 // Different types of the same size. 367 assert(NumParts == 1 && PartVT != ValueVT); 368 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 369 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 370 // If the parts cover less bits than value has, truncate the value. 371 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 372 ValueVT.isInteger() && 373 "Unknown mismatch!"); 374 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 375 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 376 if (PartVT == MVT::x86mmx) 377 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 378 } 379 380 // The value may have changed - recompute ValueVT. 381 ValueVT = Val.getValueType(); 382 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 383 "Failed to tile the value with PartVT!"); 384 385 if (NumParts == 1) { 386 assert(PartVT == ValueVT && "Type conversion failed!"); 387 Parts[0] = Val; 388 return; 389 } 390 391 // Expand the value into multiple parts. 392 if (NumParts & (NumParts - 1)) { 393 // The number of parts is not a power of 2. Split off and copy the tail. 394 assert(PartVT.isInteger() && ValueVT.isInteger() && 395 "Do not know what to expand to!"); 396 unsigned RoundParts = 1 << Log2_32(NumParts); 397 unsigned RoundBits = RoundParts * PartBits; 398 unsigned OddParts = NumParts - RoundParts; 399 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 400 DAG.getIntPtrConstant(RoundBits)); 401 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 402 403 if (TLI.isBigEndian()) 404 // The odd parts were reversed by getCopyToParts - unreverse them. 405 std::reverse(Parts + RoundParts, Parts + NumParts); 406 407 NumParts = RoundParts; 408 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 409 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 410 } 411 412 // The number of parts is a power of 2. Repeatedly bisect the value using 413 // EXTRACT_ELEMENT. 414 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 415 EVT::getIntegerVT(*DAG.getContext(), 416 ValueVT.getSizeInBits()), 417 Val); 418 419 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 420 for (unsigned i = 0; i < NumParts; i += StepSize) { 421 unsigned ThisBits = StepSize * PartBits / 2; 422 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 423 SDValue &Part0 = Parts[i]; 424 SDValue &Part1 = Parts[i+StepSize/2]; 425 426 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 427 ThisVT, Part0, DAG.getIntPtrConstant(1)); 428 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 429 ThisVT, Part0, DAG.getIntPtrConstant(0)); 430 431 if (ThisBits == PartBits && ThisVT != PartVT) { 432 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 433 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 434 } 435 } 436 } 437 438 if (TLI.isBigEndian()) 439 std::reverse(Parts, Parts + OrigNumParts); 440} 441 442 443/// getCopyToPartsVector - Create a series of nodes that contain the specified 444/// value split into legal parts. 445static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 446 SDValue Val, SDValue *Parts, unsigned NumParts, 447 EVT PartVT) { 448 EVT ValueVT = Val.getValueType(); 449 assert(ValueVT.isVector() && "Not a vector"); 450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 451 452 if (NumParts == 1) { 453 if (PartVT == ValueVT) { 454 // Nothing to do. 455 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 456 // Bitconvert vector->vector case. 457 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 458 } else if (PartVT.isVector() && 459 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 460 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 461 EVT ElementVT = PartVT.getVectorElementType(); 462 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 463 // undef elements. 464 SmallVector<SDValue, 16> Ops; 465 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 466 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 467 ElementVT, Val, DAG.getIntPtrConstant(i))); 468 469 for (unsigned i = ValueVT.getVectorNumElements(), 470 e = PartVT.getVectorNumElements(); i != e; ++i) 471 Ops.push_back(DAG.getUNDEF(ElementVT)); 472 473 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 474 475 // FIXME: Use CONCAT for 2x -> 4x. 476 477 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 478 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 479 } else if (PartVT.isVector() && 480 PartVT.getVectorElementType().bitsGE( 481 ValueVT.getVectorElementType()) && 482 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 483 484 // Promoted vector extract 485 bool Smaller = PartVT.bitsLE(ValueVT); 486 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 487 DL, PartVT, Val); 488 } else{ 489 // Vector -> scalar conversion. 490 assert(ValueVT.getVectorNumElements() == 1 && 491 "Only trivial vector-to-scalar conversions should get here!"); 492 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 PartVT, Val, DAG.getIntPtrConstant(0)); 494 495 bool Smaller = ValueVT.bitsLE(PartVT); 496 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 497 DL, PartVT, Val); 498 } 499 500 Parts[0] = Val; 501 return; 502 } 503 504 // Handle a multi-element vector. 505 EVT IntermediateVT, RegisterVT; 506 unsigned NumIntermediates; 507 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 508 IntermediateVT, 509 NumIntermediates, RegisterVT); 510 unsigned NumElements = ValueVT.getVectorNumElements(); 511 512 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 513 NumParts = NumRegs; // Silence a compiler warning. 514 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 515 516 // Split the vector into intermediate operands. 517 SmallVector<SDValue, 8> Ops(NumIntermediates); 518 for (unsigned i = 0; i != NumIntermediates; ++i) { 519 if (IntermediateVT.isVector()) 520 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 521 IntermediateVT, Val, 522 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 523 else 524 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 525 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 526 } 527 528 // Split the intermediate operands into legal parts. 529 if (NumParts == NumIntermediates) { 530 // If the register was not expanded, promote or copy the value, 531 // as appropriate. 532 for (unsigned i = 0; i != NumParts; ++i) 533 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 534 } else if (NumParts > 0) { 535 // If the intermediate type was expanded, split each the value into 536 // legal parts. 537 assert(NumParts % NumIntermediates == 0 && 538 "Must expand into a divisible number of parts!"); 539 unsigned Factor = NumParts / NumIntermediates; 540 for (unsigned i = 0; i != NumIntermediates; ++i) 541 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 542 } 543} 544 545 546 547 548namespace { 549 /// RegsForValue - This struct represents the registers (physical or virtual) 550 /// that a particular set of values is assigned, and the type information 551 /// about the value. The most common situation is to represent one value at a 552 /// time, but struct or array values are handled element-wise as multiple 553 /// values. The splitting of aggregates is performed recursively, so that we 554 /// never have aggregate-typed registers. The values at this point do not 555 /// necessarily have legal types, so each value may require one or more 556 /// registers of some legal type. 557 /// 558 struct RegsForValue { 559 /// ValueVTs - The value types of the values, which may not be legal, and 560 /// may need be promoted or synthesized from one or more registers. 561 /// 562 SmallVector<EVT, 4> ValueVTs; 563 564 /// RegVTs - The value types of the registers. This is the same size as 565 /// ValueVTs and it records, for each value, what the type of the assigned 566 /// register or registers are. (Individual values are never synthesized 567 /// from more than one type of register.) 568 /// 569 /// With virtual registers, the contents of RegVTs is redundant with TLI's 570 /// getRegisterType member function, however when with physical registers 571 /// it is necessary to have a separate record of the types. 572 /// 573 SmallVector<EVT, 4> RegVTs; 574 575 /// Regs - This list holds the registers assigned to the values. 576 /// Each legal or promoted value requires one register, and each 577 /// expanded value requires multiple registers. 578 /// 579 SmallVector<unsigned, 4> Regs; 580 581 RegsForValue() {} 582 583 RegsForValue(const SmallVector<unsigned, 4> ®s, 584 EVT regvt, EVT valuevt) 585 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 586 587 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 588 unsigned Reg, Type *Ty) { 589 ComputeValueVTs(tli, Ty, ValueVTs); 590 591 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 592 EVT ValueVT = ValueVTs[Value]; 593 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 594 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 595 for (unsigned i = 0; i != NumRegs; ++i) 596 Regs.push_back(Reg + i); 597 RegVTs.push_back(RegisterVT); 598 Reg += NumRegs; 599 } 600 } 601 602 /// areValueTypesLegal - Return true if types of all the values are legal. 603 bool areValueTypesLegal(const TargetLowering &TLI) { 604 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 605 EVT RegisterVT = RegVTs[Value]; 606 if (!TLI.isTypeLegal(RegisterVT)) 607 return false; 608 } 609 return true; 610 } 611 612 /// append - Add the specified values to this one. 613 void append(const RegsForValue &RHS) { 614 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 615 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 616 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 617 } 618 619 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 620 /// this value and returns the result as a ValueVTs value. This uses 621 /// Chain/Flag as the input and updates them for the output Chain/Flag. 622 /// If the Flag pointer is NULL, no flag is used. 623 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 624 DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 628 /// specified value into the registers specified by this object. This uses 629 /// Chain/Flag as the input and updates them for the output Chain/Flag. 630 /// If the Flag pointer is NULL, no flag is used. 631 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 632 SDValue &Chain, SDValue *Flag) const; 633 634 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 635 /// operand list. This adds the code marker, matching input operand index 636 /// (if applicable), and includes the number of values added into it. 637 void AddInlineAsmOperands(unsigned Kind, 638 bool HasMatching, unsigned MatchingIdx, 639 SelectionDAG &DAG, 640 std::vector<SDValue> &Ops) const; 641 }; 642} 643 644/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 645/// this value and returns the result as a ValueVT value. This uses 646/// Chain/Flag as the input and updates them for the output Chain/Flag. 647/// If the Flag pointer is NULL, no flag is used. 648SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 649 FunctionLoweringInfo &FuncInfo, 650 DebugLoc dl, 651 SDValue &Chain, SDValue *Flag) const { 652 // A Value with type {} or [0 x %t] needs no registers. 653 if (ValueVTs.empty()) 654 return SDValue(); 655 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 658 // Assemble the legal parts into the final values. 659 SmallVector<SDValue, 4> Values(ValueVTs.size()); 660 SmallVector<SDValue, 8> Parts; 661 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 662 // Copy the legal parts from the registers. 663 EVT ValueVT = ValueVTs[Value]; 664 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 665 EVT RegisterVT = RegVTs[Value]; 666 667 Parts.resize(NumRegs); 668 for (unsigned i = 0; i != NumRegs; ++i) { 669 SDValue P; 670 if (Flag == 0) { 671 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 672 } else { 673 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 674 *Flag = P.getValue(2); 675 } 676 677 Chain = P.getValue(1); 678 Parts[i] = P; 679 680 // If the source register was virtual and if we know something about it, 681 // add an assert node. 682 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 683 !RegisterVT.isInteger() || RegisterVT.isVector()) 684 continue; 685 686 const FunctionLoweringInfo::LiveOutInfo *LOI = 687 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 688 if (!LOI) 689 continue; 690 691 unsigned RegSize = RegisterVT.getSizeInBits(); 692 unsigned NumSignBits = LOI->NumSignBits; 693 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 694 695 // FIXME: We capture more information than the dag can represent. For 696 // now, just use the tightest assertzext/assertsext possible. 697 bool isSExt = true; 698 EVT FromVT(MVT::Other); 699 if (NumSignBits == RegSize) 700 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 701 else if (NumZeroBits >= RegSize-1) 702 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 703 else if (NumSignBits > RegSize-8) 704 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 705 else if (NumZeroBits >= RegSize-8) 706 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 707 else if (NumSignBits > RegSize-16) 708 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 709 else if (NumZeroBits >= RegSize-16) 710 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 711 else if (NumSignBits > RegSize-32) 712 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 713 else if (NumZeroBits >= RegSize-32) 714 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 715 else 716 continue; 717 718 // Add an assertion node. 719 assert(FromVT != MVT::Other); 720 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 721 RegisterVT, P, DAG.getValueType(FromVT)); 722 } 723 724 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 725 NumRegs, RegisterVT, ValueVT); 726 Part += NumRegs; 727 Parts.clear(); 728 } 729 730 return DAG.getNode(ISD::MERGE_VALUES, dl, 731 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 732 &Values[0], ValueVTs.size()); 733} 734 735/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 736/// specified value into the registers specified by this object. This uses 737/// Chain/Flag as the input and updates them for the output Chain/Flag. 738/// If the Flag pointer is NULL, no flag is used. 739void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 740 SDValue &Chain, SDValue *Flag) const { 741 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 742 743 // Get the list of the values's legal parts. 744 unsigned NumRegs = Regs.size(); 745 SmallVector<SDValue, 8> Parts(NumRegs); 746 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 747 EVT ValueVT = ValueVTs[Value]; 748 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 749 EVT RegisterVT = RegVTs[Value]; 750 751 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 752 &Parts[Part], NumParts, RegisterVT); 753 Part += NumParts; 754 } 755 756 // Copy the parts into the registers. 757 SmallVector<SDValue, 8> Chains(NumRegs); 758 for (unsigned i = 0; i != NumRegs; ++i) { 759 SDValue Part; 760 if (Flag == 0) { 761 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 762 } else { 763 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 764 *Flag = Part.getValue(1); 765 } 766 767 Chains[i] = Part.getValue(0); 768 } 769 770 if (NumRegs == 1 || Flag) 771 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 772 // flagged to it. That is the CopyToReg nodes and the user are considered 773 // a single scheduling unit. If we create a TokenFactor and return it as 774 // chain, then the TokenFactor is both a predecessor (operand) of the 775 // user as well as a successor (the TF operands are flagged to the user). 776 // c1, f1 = CopyToReg 777 // c2, f2 = CopyToReg 778 // c3 = TokenFactor c1, c2 779 // ... 780 // = op c3, ..., f2 781 Chain = Chains[NumRegs-1]; 782 else 783 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 784} 785 786/// AddInlineAsmOperands - Add this value to the specified inlineasm node 787/// operand list. This adds the code marker and includes the number of 788/// values added into it. 789void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 790 unsigned MatchingIdx, 791 SelectionDAG &DAG, 792 std::vector<SDValue> &Ops) const { 793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 794 795 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 796 if (HasMatching) 797 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 798 else if (!Regs.empty() && 799 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 800 // Put the register class of the virtual registers in the flag word. That 801 // way, later passes can recompute register class constraints for inline 802 // assembly as well as normal instructions. 803 // Don't do this for tied operands that can use the regclass information 804 // from the def. 805 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 806 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 807 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 808 } 809 810 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 811 Ops.push_back(Res); 812 813 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 814 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 815 EVT RegisterVT = RegVTs[Value]; 816 for (unsigned i = 0; i != NumRegs; ++i) { 817 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 818 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 819 } 820 } 821} 822 823void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 824 const TargetLibraryInfo *li) { 825 AA = &aa; 826 GFI = gfi; 827 LibInfo = li; 828 TD = DAG.getTarget().getTargetData(); 829 Context = DAG.getContext(); 830 LPadToCallSiteMap.clear(); 831} 832 833/// clear - Clear out the current SelectionDAG and the associated 834/// state and prepare this SelectionDAGBuilder object to be used 835/// for a new block. This doesn't clear out information about 836/// additional blocks that are needed to complete switch lowering 837/// or PHI node updating; that information is cleared out as it is 838/// consumed. 839void SelectionDAGBuilder::clear() { 840 NodeMap.clear(); 841 UnusedArgNodeMap.clear(); 842 PendingLoads.clear(); 843 PendingExports.clear(); 844 CurDebugLoc = DebugLoc(); 845 HasTailCall = false; 846} 847 848/// clearDanglingDebugInfo - Clear the dangling debug information 849/// map. This function is separated from the clear so that debug 850/// information that is dangling in a basic block can be properly 851/// resolved in a different basic block. This allows the 852/// SelectionDAG to resolve dangling debug information attached 853/// to PHI nodes. 854void SelectionDAGBuilder::clearDanglingDebugInfo() { 855 DanglingDebugInfoMap.clear(); 856} 857 858/// getRoot - Return the current virtual root of the Selection DAG, 859/// flushing any PendingLoad items. This must be done before emitting 860/// a store or any other node that may need to be ordered after any 861/// prior load instructions. 862/// 863SDValue SelectionDAGBuilder::getRoot() { 864 if (PendingLoads.empty()) 865 return DAG.getRoot(); 866 867 if (PendingLoads.size() == 1) { 868 SDValue Root = PendingLoads[0]; 869 DAG.setRoot(Root); 870 PendingLoads.clear(); 871 return Root; 872 } 873 874 // Otherwise, we have to make a token factor node. 875 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 876 &PendingLoads[0], PendingLoads.size()); 877 PendingLoads.clear(); 878 DAG.setRoot(Root); 879 return Root; 880} 881 882/// getControlRoot - Similar to getRoot, but instead of flushing all the 883/// PendingLoad items, flush all the PendingExports items. It is necessary 884/// to do this before emitting a terminator instruction. 885/// 886SDValue SelectionDAGBuilder::getControlRoot() { 887 SDValue Root = DAG.getRoot(); 888 889 if (PendingExports.empty()) 890 return Root; 891 892 // Turn all of the CopyToReg chains into one factored node. 893 if (Root.getOpcode() != ISD::EntryToken) { 894 unsigned i = 0, e = PendingExports.size(); 895 for (; i != e; ++i) { 896 assert(PendingExports[i].getNode()->getNumOperands() > 1); 897 if (PendingExports[i].getNode()->getOperand(0) == Root) 898 break; // Don't add the root if we already indirectly depend on it. 899 } 900 901 if (i == e) 902 PendingExports.push_back(Root); 903 } 904 905 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 906 &PendingExports[0], 907 PendingExports.size()); 908 PendingExports.clear(); 909 DAG.setRoot(Root); 910 return Root; 911} 912 913void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 914 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 915 DAG.AssignOrdering(Node, SDNodeOrder); 916 917 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 918 AssignOrderingToNode(Node->getOperand(I).getNode()); 919} 920 921void SelectionDAGBuilder::visit(const Instruction &I) { 922 // Set up outgoing PHI node register values before emitting the terminator. 923 if (isa<TerminatorInst>(&I)) 924 HandlePHINodesInSuccessorBlocks(I.getParent()); 925 926 CurDebugLoc = I.getDebugLoc(); 927 928 visit(I.getOpcode(), I); 929 930 if (!isa<TerminatorInst>(&I) && !HasTailCall) 931 CopyToExportRegsIfNeeded(&I); 932 933 CurDebugLoc = DebugLoc(); 934} 935 936void SelectionDAGBuilder::visitPHI(const PHINode &) { 937 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 938} 939 940void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 941 // Note: this doesn't use InstVisitor, because it has to work with 942 // ConstantExpr's in addition to instructions. 943 switch (Opcode) { 944 default: llvm_unreachable("Unknown instruction type encountered!"); 945 // Build the switch statement using the Instruction.def file. 946#define HANDLE_INST(NUM, OPCODE, CLASS) \ 947 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 948#include "llvm/Instruction.def" 949 } 950 951 // Assign the ordering to the freshly created DAG nodes. 952 if (NodeMap.count(&I)) { 953 ++SDNodeOrder; 954 AssignOrderingToNode(getValue(&I).getNode()); 955 } 956} 957 958// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 959// generate the debug data structures now that we've seen its definition. 960void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 961 SDValue Val) { 962 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 963 if (DDI.getDI()) { 964 const DbgValueInst *DI = DDI.getDI(); 965 DebugLoc dl = DDI.getdl(); 966 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 967 MDNode *Variable = DI->getVariable(); 968 uint64_t Offset = DI->getOffset(); 969 SDDbgValue *SDV; 970 if (Val.getNode()) { 971 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 972 SDV = DAG.getDbgValue(Variable, Val.getNode(), 973 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 974 DAG.AddDbgValue(SDV, Val.getNode(), false); 975 } 976 } else 977 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 978 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 979 } 980} 981 982/// getValue - Return an SDValue for the given Value. 983SDValue SelectionDAGBuilder::getValue(const Value *V) { 984 // If we already have an SDValue for this value, use it. It's important 985 // to do this first, so that we don't create a CopyFromReg if we already 986 // have a regular SDValue. 987 SDValue &N = NodeMap[V]; 988 if (N.getNode()) return N; 989 990 // If there's a virtual register allocated and initialized for this 991 // value, use it. 992 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 993 if (It != FuncInfo.ValueMap.end()) { 994 unsigned InReg = It->second; 995 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 996 SDValue Chain = DAG.getEntryNode(); 997 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 998 resolveDanglingDebugInfo(V, N); 999 return N; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007} 1008 1009/// getNonRegisterValue - Return an SDValue for the given Value, but 1010/// don't look in FuncInfo.ValueMap for a virtual register. 1011SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1012 // If we already have an SDValue for this value, use it. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // Otherwise create a new SDValue and remember it. 1017 SDValue Val = getValueImpl(V); 1018 NodeMap[V] = Val; 1019 resolveDanglingDebugInfo(V, Val); 1020 return Val; 1021} 1022 1023/// getValueImpl - Helper function for getValue and getNonRegisterValue. 1024/// Create an SDValue for the given value. 1025SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) 1036 return DAG.getConstant(0, TLI.getPointerTy()); 1037 1038 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1039 return DAG.getConstantFP(*CFP, VT); 1040 1041 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1042 return DAG.getUNDEF(VT); 1043 1044 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1045 visit(CE->getOpcode(), *CE); 1046 SDValue N1 = NodeMap[V]; 1047 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1048 return N1; 1049 } 1050 1051 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1052 SmallVector<SDValue, 4> Constants; 1053 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1054 OI != OE; ++OI) { 1055 SDNode *Val = getValue(*OI).getNode(); 1056 // If the operand is an empty aggregate, there are no values. 1057 if (!Val) continue; 1058 // Add each leaf value from the operand to the Constants list 1059 // to form a flattened list of all the values. 1060 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1061 Constants.push_back(SDValue(Val, i)); 1062 } 1063 1064 return DAG.getMergeValues(&Constants[0], Constants.size(), 1065 getCurDebugLoc()); 1066 } 1067 1068 if (const ConstantDataSequential *CDS = 1069 dyn_cast<ConstantDataSequential>(C)) { 1070 SmallVector<SDValue, 4> Ops; 1071 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1072 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1073 // Add each leaf value from the operand to the Constants list 1074 // to form a flattened list of all the values. 1075 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1076 Ops.push_back(SDValue(Val, i)); 1077 } 1078 1079 if (isa<ArrayType>(CDS->getType())) 1080 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1081 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1082 VT, &Ops[0], Ops.size()); 1083 } 1084 1085 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1086 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1087 "Unknown struct or array constant!"); 1088 1089 SmallVector<EVT, 4> ValueVTs; 1090 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1091 unsigned NumElts = ValueVTs.size(); 1092 if (NumElts == 0) 1093 return SDValue(); // empty struct 1094 SmallVector<SDValue, 4> Constants(NumElts); 1095 for (unsigned i = 0; i != NumElts; ++i) { 1096 EVT EltVT = ValueVTs[i]; 1097 if (isa<UndefValue>(C)) 1098 Constants[i] = DAG.getUNDEF(EltVT); 1099 else if (EltVT.isFloatingPoint()) 1100 Constants[i] = DAG.getConstantFP(0, EltVT); 1101 else 1102 Constants[i] = DAG.getConstant(0, EltVT); 1103 } 1104 1105 return DAG.getMergeValues(&Constants[0], NumElts, 1106 getCurDebugLoc()); 1107 } 1108 1109 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1110 return DAG.getBlockAddress(BA, VT); 1111 1112 VectorType *VecTy = cast<VectorType>(V->getType()); 1113 unsigned NumElements = VecTy->getNumElements(); 1114 1115 // Now that we know the number and type of the elements, get that number of 1116 // elements into the Ops array based on what kind of constant it is. 1117 SmallVector<SDValue, 16> Ops; 1118 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1119 for (unsigned i = 0; i != NumElements; ++i) 1120 Ops.push_back(getValue(CV->getOperand(i))); 1121 } else { 1122 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1123 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1124 1125 SDValue Op; 1126 if (EltVT.isFloatingPoint()) 1127 Op = DAG.getConstantFP(0, EltVT); 1128 else 1129 Op = DAG.getConstant(0, EltVT); 1130 Ops.assign(NumElements, Op); 1131 } 1132 1133 // Create a BUILD_VECTOR node. 1134 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1135 VT, &Ops[0], Ops.size()); 1136 } 1137 1138 // If this is a static alloca, generate it as the frameindex instead of 1139 // computation. 1140 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1141 DenseMap<const AllocaInst*, int>::iterator SI = 1142 FuncInfo.StaticAllocaMap.find(AI); 1143 if (SI != FuncInfo.StaticAllocaMap.end()) 1144 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1145 } 1146 1147 // If this is an instruction which fast-isel has deferred, select it now. 1148 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1149 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1150 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1151 SDValue Chain = DAG.getEntryNode(); 1152 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1153 } 1154 1155 llvm_unreachable("Can't get register for value!"); 1156} 1157 1158void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1159 SDValue Chain = getControlRoot(); 1160 SmallVector<ISD::OutputArg, 8> Outs; 1161 SmallVector<SDValue, 8> OutVals; 1162 1163 if (!FuncInfo.CanLowerReturn) { 1164 unsigned DemoteReg = FuncInfo.DemoteRegister; 1165 const Function *F = I.getParent()->getParent(); 1166 1167 // Emit a store of the return value through the virtual register. 1168 // Leave Outs empty so that LowerReturn won't try to load return 1169 // registers the usual way. 1170 SmallVector<EVT, 1> PtrValueVTs; 1171 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1172 PtrValueVTs); 1173 1174 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1175 SDValue RetOp = getValue(I.getOperand(0)); 1176 1177 SmallVector<EVT, 4> ValueVTs; 1178 SmallVector<uint64_t, 4> Offsets; 1179 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1180 unsigned NumValues = ValueVTs.size(); 1181 1182 SmallVector<SDValue, 4> Chains(NumValues); 1183 for (unsigned i = 0; i != NumValues; ++i) { 1184 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1185 RetPtr.getValueType(), RetPtr, 1186 DAG.getIntPtrConstant(Offsets[i])); 1187 Chains[i] = 1188 DAG.getStore(Chain, getCurDebugLoc(), 1189 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1190 // FIXME: better loc info would be nice. 1191 Add, MachinePointerInfo(), false, false, 0); 1192 } 1193 1194 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1195 MVT::Other, &Chains[0], NumValues); 1196 } else if (I.getNumOperands() != 0) { 1197 SmallVector<EVT, 4> ValueVTs; 1198 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1199 unsigned NumValues = ValueVTs.size(); 1200 if (NumValues) { 1201 SDValue RetOp = getValue(I.getOperand(0)); 1202 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1203 EVT VT = ValueVTs[j]; 1204 1205 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1206 1207 const Function *F = I.getParent()->getParent(); 1208 if (F->paramHasAttr(0, Attribute::SExt)) 1209 ExtendKind = ISD::SIGN_EXTEND; 1210 else if (F->paramHasAttr(0, Attribute::ZExt)) 1211 ExtendKind = ISD::ZERO_EXTEND; 1212 1213 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1214 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1215 1216 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1217 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1218 SmallVector<SDValue, 4> Parts(NumParts); 1219 getCopyToParts(DAG, getCurDebugLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1221 &Parts[0], NumParts, PartVT, ExtendKind); 1222 1223 // 'inreg' on function refers to return value 1224 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1225 if (F->paramHasAttr(0, Attribute::InReg)) 1226 Flags.setInReg(); 1227 1228 // Propagate extension type if any 1229 if (ExtendKind == ISD::SIGN_EXTEND) 1230 Flags.setSExt(); 1231 else if (ExtendKind == ISD::ZERO_EXTEND) 1232 Flags.setZExt(); 1233 1234 for (unsigned i = 0; i < NumParts; ++i) { 1235 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1236 /*isfixed=*/true)); 1237 OutVals.push_back(Parts[i]); 1238 } 1239 } 1240 } 1241 } 1242 1243 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1244 CallingConv::ID CallConv = 1245 DAG.getMachineFunction().getFunction()->getCallingConv(); 1246 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1247 Outs, OutVals, getCurDebugLoc(), DAG); 1248 1249 // Verify that the target's LowerReturn behaved as expected. 1250 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1251 "LowerReturn didn't return a valid chain!"); 1252 1253 // Update the DAG with the new chain value resulting from return lowering. 1254 DAG.setRoot(Chain); 1255} 1256 1257/// CopyToExportRegsIfNeeded - If the given value has virtual registers 1258/// created for it, emit nodes to copy the value into the virtual 1259/// registers. 1260void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1261 // Skip empty types 1262 if (V->getType()->isEmptyTy()) 1263 return; 1264 1265 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1266 if (VMI != FuncInfo.ValueMap.end()) { 1267 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1268 CopyValueToVirtualRegister(V, VMI->second); 1269 } 1270} 1271 1272/// ExportFromCurrentBlock - If this condition isn't known to be exported from 1273/// the current basic block, add it to ValueMap now so that we'll get a 1274/// CopyTo/FromReg. 1275void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1276 // No need to export constants. 1277 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1278 1279 // Already exported? 1280 if (FuncInfo.isExportedInst(V)) return; 1281 1282 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1283 CopyValueToVirtualRegister(V, Reg); 1284} 1285 1286bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1287 const BasicBlock *FromBB) { 1288 // The operands of the setcc have to be in this block. We don't know 1289 // how to export them from some other block. 1290 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1291 // Can export from current BB. 1292 if (VI->getParent() == FromBB) 1293 return true; 1294 1295 // Is already exported, noop. 1296 return FuncInfo.isExportedInst(V); 1297 } 1298 1299 // If this is an argument, we can export it if the BB is the entry block or 1300 // if it is already exported. 1301 if (isa<Argument>(V)) { 1302 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1303 return true; 1304 1305 // Otherwise, can only export this if it is already exported. 1306 return FuncInfo.isExportedInst(V); 1307 } 1308 1309 // Otherwise, constants can always be exported. 1310 return true; 1311} 1312 1313/// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1314uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1315 const MachineBasicBlock *Dst) const { 1316 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1317 if (!BPI) 1318 return 0; 1319 const BasicBlock *SrcBB = Src->getBasicBlock(); 1320 const BasicBlock *DstBB = Dst->getBasicBlock(); 1321 return BPI->getEdgeWeight(SrcBB, DstBB); 1322} 1323 1324void SelectionDAGBuilder:: 1325addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1326 uint32_t Weight /* = 0 */) { 1327 if (!Weight) 1328 Weight = getEdgeWeight(Src, Dst); 1329 Src->addSuccessor(Dst, Weight); 1330} 1331 1332 1333static bool InBlock(const Value *V, const BasicBlock *BB) { 1334 if (const Instruction *I = dyn_cast<Instruction>(V)) 1335 return I->getParent() == BB; 1336 return true; 1337} 1338 1339/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1340/// This function emits a branch and is used at the leaves of an OR or an 1341/// AND operator tree. 1342/// 1343void 1344SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1345 MachineBasicBlock *TBB, 1346 MachineBasicBlock *FBB, 1347 MachineBasicBlock *CurBB, 1348 MachineBasicBlock *SwitchBB) { 1349 const BasicBlock *BB = CurBB->getBasicBlock(); 1350 1351 // If the leaf of the tree is a comparison, merge the condition into 1352 // the caseblock. 1353 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1354 // The operands of the cmp have to be in this block. We don't know 1355 // how to export them from some other block. If this is the first block 1356 // of the sequence, no exporting is needed. 1357 if (CurBB == SwitchBB || 1358 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1359 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1360 ISD::CondCode Condition; 1361 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1362 Condition = getICmpCondCode(IC->getPredicate()); 1363 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1364 Condition = getFCmpCondCode(FC->getPredicate()); 1365 if (TM.Options.NoNaNsFPMath) 1366 Condition = getFCmpCodeWithoutNaN(Condition); 1367 } else { 1368 Condition = ISD::SETEQ; // silence warning. 1369 llvm_unreachable("Unknown compare instruction"); 1370 } 1371 1372 CaseBlock CB(Condition, BOp->getOperand(0), 1373 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1374 SwitchCases.push_back(CB); 1375 return; 1376 } 1377 } 1378 1379 // Create a CaseBlock record representing this branch. 1380 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1381 NULL, TBB, FBB, CurBB); 1382 SwitchCases.push_back(CB); 1383} 1384 1385/// FindMergedConditions - If Cond is an expression like 1386void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1387 MachineBasicBlock *TBB, 1388 MachineBasicBlock *FBB, 1389 MachineBasicBlock *CurBB, 1390 MachineBasicBlock *SwitchBB, 1391 unsigned Opc) { 1392 // If this node is not part of the or/and tree, emit it as a branch. 1393 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1394 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1395 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1396 BOp->getParent() != CurBB->getBasicBlock() || 1397 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1398 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1399 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1400 return; 1401 } 1402 1403 // Create TmpBB after CurBB. 1404 MachineFunction::iterator BBI = CurBB; 1405 MachineFunction &MF = DAG.getMachineFunction(); 1406 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1407 CurBB->getParent()->insert(++BBI, TmpBB); 1408 1409 if (Opc == Instruction::Or) { 1410 // Codegen X | Y as: 1411 // jmp_if_X TBB 1412 // jmp TmpBB 1413 // TmpBB: 1414 // jmp_if_Y TBB 1415 // jmp FBB 1416 // 1417 1418 // Emit the LHS condition. 1419 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1420 1421 // Emit the RHS condition into TmpBB. 1422 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1423 } else { 1424 assert(Opc == Instruction::And && "Unknown merge op!"); 1425 // Codegen X & Y as: 1426 // jmp_if_X TmpBB 1427 // jmp FBB 1428 // TmpBB: 1429 // jmp_if_Y TBB 1430 // jmp FBB 1431 // 1432 // This requires creation of TmpBB after CurBB. 1433 1434 // Emit the LHS condition. 1435 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1436 1437 // Emit the RHS condition into TmpBB. 1438 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1439 } 1440} 1441 1442/// If the set of cases should be emitted as a series of branches, return true. 1443/// If we should emit this as a bunch of and/or'd together conditions, return 1444/// false. 1445bool 1446SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1447 if (Cases.size() != 2) return true; 1448 1449 // If this is two comparisons of the same values or'd or and'd together, they 1450 // will get folded into a single comparison, so don't emit two blocks. 1451 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1452 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1453 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1454 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1455 return false; 1456 } 1457 1458 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1459 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1460 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1461 Cases[0].CC == Cases[1].CC && 1462 isa<Constant>(Cases[0].CmpRHS) && 1463 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1464 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1465 return false; 1466 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1467 return false; 1468 } 1469 1470 return true; 1471} 1472 1473void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1474 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1475 1476 // Update machine-CFG edges. 1477 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1478 1479 // Figure out which block is immediately after the current one. 1480 MachineBasicBlock *NextBlock = 0; 1481 MachineFunction::iterator BBI = BrMBB; 1482 if (++BBI != FuncInfo.MF->end()) 1483 NextBlock = BBI; 1484 1485 if (I.isUnconditional()) { 1486 // Update machine-CFG edges. 1487 BrMBB->addSuccessor(Succ0MBB); 1488 1489 // If this is not a fall-through branch, emit the branch. 1490 if (Succ0MBB != NextBlock) 1491 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1492 MVT::Other, getControlRoot(), 1493 DAG.getBasicBlock(Succ0MBB))); 1494 1495 return; 1496 } 1497 1498 // If this condition is one of the special cases we handle, do special stuff 1499 // now. 1500 const Value *CondVal = I.getCondition(); 1501 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1502 1503 // If this is a series of conditions that are or'd or and'd together, emit 1504 // this as a sequence of branches instead of setcc's with and/or operations. 1505 // As long as jumps are not expensive, this should improve performance. 1506 // For example, instead of something like: 1507 // cmp A, B 1508 // C = seteq 1509 // cmp D, E 1510 // F = setle 1511 // or C, F 1512 // jnz foo 1513 // Emit: 1514 // cmp A, B 1515 // je foo 1516 // cmp D, E 1517 // jle foo 1518 // 1519 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1520 if (!TLI.isJumpExpensive() && 1521 BOp->hasOneUse() && 1522 (BOp->getOpcode() == Instruction::And || 1523 BOp->getOpcode() == Instruction::Or)) { 1524 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1525 BOp->getOpcode()); 1526 // If the compares in later blocks need to use values not currently 1527 // exported from this block, export them now. This block should always 1528 // be the first entry. 1529 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1530 1531 // Allow some cases to be rejected. 1532 if (ShouldEmitAsBranches(SwitchCases)) { 1533 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1534 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1535 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1536 } 1537 1538 // Emit the branch for this block. 1539 visitSwitchCase(SwitchCases[0], BrMBB); 1540 SwitchCases.erase(SwitchCases.begin()); 1541 return; 1542 } 1543 1544 // Okay, we decided not to do this, remove any inserted MBB's and clear 1545 // SwitchCases. 1546 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1547 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1548 1549 SwitchCases.clear(); 1550 } 1551 } 1552 1553 // Create a CaseBlock record representing this branch. 1554 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1555 NULL, Succ0MBB, Succ1MBB, BrMBB); 1556 1557 // Use visitSwitchCase to actually insert the fast branch sequence for this 1558 // cond branch. 1559 visitSwitchCase(CB, BrMBB); 1560} 1561 1562/// visitSwitchCase - Emits the necessary code to represent a single node in 1563/// the binary search tree resulting from lowering a switch instruction. 1564void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1565 MachineBasicBlock *SwitchBB) { 1566 SDValue Cond; 1567 SDValue CondLHS = getValue(CB.CmpLHS); 1568 DebugLoc dl = getCurDebugLoc(); 1569 1570 // Build the setcc now. 1571 if (CB.CmpMHS == NULL) { 1572 // Fold "(X == true)" to X and "(X == false)" to !X to 1573 // handle common cases produced by branch lowering. 1574 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1575 CB.CC == ISD::SETEQ) 1576 Cond = CondLHS; 1577 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1578 CB.CC == ISD::SETEQ) { 1579 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1580 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1581 } else 1582 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1583 } else { 1584 assert(CB.CC == ISD::SETCC_INVALID && 1585 "Condition is undefined for to-the-range belonging check."); 1586 1587 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1588 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1589 1590 SDValue CmpOp = getValue(CB.CmpMHS); 1591 EVT VT = CmpOp.getValueType(); 1592 1593 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1594 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1595 ISD::SETULE); 1596 } else { 1597 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1598 VT, CmpOp, DAG.getConstant(Low, VT)); 1599 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1600 DAG.getConstant(High-Low, VT), ISD::SETULE); 1601 } 1602 } 1603 1604 // Update successor info 1605 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1606 // TrueBB and FalseBB are always different unless the incoming IR is 1607 // degenerate. This only happens when running llc on weird IR. 1608 if (CB.TrueBB != CB.FalseBB) 1609 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1610 1611 // Set NextBlock to be the MBB immediately after the current one, if any. 1612 // This is used to avoid emitting unnecessary branches to the next block. 1613 MachineBasicBlock *NextBlock = 0; 1614 MachineFunction::iterator BBI = SwitchBB; 1615 if (++BBI != FuncInfo.MF->end()) 1616 NextBlock = BBI; 1617 1618 // If the lhs block is the next block, invert the condition so that we can 1619 // fall through to the lhs instead of the rhs block. 1620 if (CB.TrueBB == NextBlock) { 1621 std::swap(CB.TrueBB, CB.FalseBB); 1622 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1623 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1624 } 1625 1626 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1627 MVT::Other, getControlRoot(), Cond, 1628 DAG.getBasicBlock(CB.TrueBB)); 1629 1630 // Insert the false branch. Do this even if it's a fall through branch, 1631 // this makes it easier to do DAG optimizations which require inverting 1632 // the branch condition. 1633 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1634 DAG.getBasicBlock(CB.FalseBB)); 1635 1636 DAG.setRoot(BrCond); 1637} 1638 1639/// visitJumpTable - Emit JumpTable node in the current MBB 1640void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1641 // Emit the code for the jump table 1642 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1643 EVT PTy = TLI.getPointerTy(); 1644 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1645 JT.Reg, PTy); 1646 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1647 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1648 MVT::Other, Index.getValue(1), 1649 Table, Index); 1650 DAG.setRoot(BrJumpTable); 1651} 1652 1653/// visitJumpTableHeader - This function emits necessary code to produce index 1654/// in the JumpTable from switch case. 1655void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1656 JumpTableHeader &JTH, 1657 MachineBasicBlock *SwitchBB) { 1658 // Subtract the lowest switch case value from the value being switched on and 1659 // conditional branch to default mbb if the result is greater than the 1660 // difference between smallest and largest cases. 1661 SDValue SwitchOp = getValue(JTH.SValue); 1662 EVT VT = SwitchOp.getValueType(); 1663 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1664 DAG.getConstant(JTH.First, VT)); 1665 1666 // The SDNode we just created, which holds the value being switched on minus 1667 // the smallest case value, needs to be copied to a virtual register so it 1668 // can be used as an index into the jump table in a subsequent basic block. 1669 // This value may be smaller or larger than the target's pointer type, and 1670 // therefore require extension or truncating. 1671 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1672 1673 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1674 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1675 JumpTableReg, SwitchOp); 1676 JT.Reg = JumpTableReg; 1677 1678 // Emit the range check for the jump table, and branch to the default block 1679 // for the switch statement if the value being switched on exceeds the largest 1680 // case in the switch. 1681 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1682 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1683 DAG.getConstant(JTH.Last-JTH.First,VT), 1684 ISD::SETUGT); 1685 1686 // Set NextBlock to be the MBB immediately after the current one, if any. 1687 // This is used to avoid emitting unnecessary branches to the next block. 1688 MachineBasicBlock *NextBlock = 0; 1689 MachineFunction::iterator BBI = SwitchBB; 1690 1691 if (++BBI != FuncInfo.MF->end()) 1692 NextBlock = BBI; 1693 1694 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1695 MVT::Other, CopyTo, CMP, 1696 DAG.getBasicBlock(JT.Default)); 1697 1698 if (JT.MBB != NextBlock) 1699 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1700 DAG.getBasicBlock(JT.MBB)); 1701 1702 DAG.setRoot(BrCond); 1703} 1704 1705/// visitBitTestHeader - This function emits necessary code to produce value 1706/// suitable for "bit tests" 1707void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1708 MachineBasicBlock *SwitchBB) { 1709 // Subtract the minimum value 1710 SDValue SwitchOp = getValue(B.SValue); 1711 EVT VT = SwitchOp.getValueType(); 1712 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1713 DAG.getConstant(B.First, VT)); 1714 1715 // Check range 1716 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1717 TLI.getSetCCResultType(Sub.getValueType()), 1718 Sub, DAG.getConstant(B.Range, VT), 1719 ISD::SETUGT); 1720 1721 // Determine the type of the test operands. 1722 bool UsePtrType = false; 1723 if (!TLI.isTypeLegal(VT)) 1724 UsePtrType = true; 1725 else { 1726 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1727 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1728 // Switch table case range are encoded into series of masks. 1729 // Just use pointer type, it's guaranteed to fit. 1730 UsePtrType = true; 1731 break; 1732 } 1733 } 1734 if (UsePtrType) { 1735 VT = TLI.getPointerTy(); 1736 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1737 } 1738 1739 B.RegVT = VT; 1740 B.Reg = FuncInfo.CreateReg(VT); 1741 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1742 B.Reg, Sub); 1743 1744 // Set NextBlock to be the MBB immediately after the current one, if any. 1745 // This is used to avoid emitting unnecessary branches to the next block. 1746 MachineBasicBlock *NextBlock = 0; 1747 MachineFunction::iterator BBI = SwitchBB; 1748 if (++BBI != FuncInfo.MF->end()) 1749 NextBlock = BBI; 1750 1751 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1752 1753 addSuccessorWithWeight(SwitchBB, B.Default); 1754 addSuccessorWithWeight(SwitchBB, MBB); 1755 1756 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1757 MVT::Other, CopyTo, RangeCmp, 1758 DAG.getBasicBlock(B.Default)); 1759 1760 if (MBB != NextBlock) 1761 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1762 DAG.getBasicBlock(MBB)); 1763 1764 DAG.setRoot(BrRange); 1765} 1766 1767/// visitBitTestCase - this function produces one "bit test" 1768void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1769 MachineBasicBlock* NextMBB, 1770 uint32_t BranchWeightToNext, 1771 unsigned Reg, 1772 BitTestCase &B, 1773 MachineBasicBlock *SwitchBB) { 1774 EVT VT = BB.RegVT; 1775 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1776 Reg, VT); 1777 SDValue Cmp; 1778 unsigned PopCount = CountPopulation_64(B.Mask); 1779 if (PopCount == 1) { 1780 // Testing for a single bit; just compare the shift count with what it 1781 // would need to be to shift a 1 bit in that position. 1782 Cmp = DAG.getSetCC(getCurDebugLoc(), 1783 TLI.getSetCCResultType(VT), 1784 ShiftOp, 1785 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1786 ISD::SETEQ); 1787 } else if (PopCount == BB.Range) { 1788 // There is only one zero bit in the range, test for it directly. 1789 Cmp = DAG.getSetCC(getCurDebugLoc(), 1790 TLI.getSetCCResultType(VT), 1791 ShiftOp, 1792 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1793 ISD::SETNE); 1794 } else { 1795 // Make desired shift 1796 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1797 DAG.getConstant(1, VT), ShiftOp); 1798 1799 // Emit bit tests and jumps 1800 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1801 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1802 Cmp = DAG.getSetCC(getCurDebugLoc(), 1803 TLI.getSetCCResultType(VT), 1804 AndOp, DAG.getConstant(0, VT), 1805 ISD::SETNE); 1806 } 1807 1808 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1809 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1810 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1811 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1812 1813 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1814 MVT::Other, getControlRoot(), 1815 Cmp, DAG.getBasicBlock(B.TargetBB)); 1816 1817 // Set NextBlock to be the MBB immediately after the current one, if any. 1818 // This is used to avoid emitting unnecessary branches to the next block. 1819 MachineBasicBlock *NextBlock = 0; 1820 MachineFunction::iterator BBI = SwitchBB; 1821 if (++BBI != FuncInfo.MF->end()) 1822 NextBlock = BBI; 1823 1824 if (NextMBB != NextBlock) 1825 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1826 DAG.getBasicBlock(NextMBB)); 1827 1828 DAG.setRoot(BrAnd); 1829} 1830 1831void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1832 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1833 1834 // Retrieve successors. 1835 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1836 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1837 1838 const Value *Callee(I.getCalledValue()); 1839 const Function *Fn = dyn_cast<Function>(Callee); 1840 if (isa<InlineAsm>(Callee)) 1841 visitInlineAsm(&I); 1842 else if (Fn && Fn->isIntrinsic()) { 1843 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1844 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1845 } else 1846 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1847 1848 // If the value of the invoke is used outside of its defining block, make it 1849 // available as a virtual register. 1850 CopyToExportRegsIfNeeded(&I); 1851 1852 // Update successor info 1853 addSuccessorWithWeight(InvokeMBB, Return); 1854 addSuccessorWithWeight(InvokeMBB, LandingPad); 1855 1856 // Drop into normal successor. 1857 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1858 MVT::Other, getControlRoot(), 1859 DAG.getBasicBlock(Return))); 1860} 1861 1862void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1863 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1864} 1865 1866void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1867 assert(FuncInfo.MBB->isLandingPad() && 1868 "Call to landingpad not in landing pad!"); 1869 1870 MachineBasicBlock *MBB = FuncInfo.MBB; 1871 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1872 AddLandingPadInfo(LP, MMI, MBB); 1873 1874 // If there aren't registers to copy the values into (e.g., during SjLj 1875 // exceptions), then don't bother to create these DAG nodes. 1876 if (TLI.getExceptionPointerRegister() == 0 && 1877 TLI.getExceptionSelectorRegister() == 0) 1878 return; 1879 1880 SmallVector<EVT, 2> ValueVTs; 1881 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1882 1883 // Insert the EXCEPTIONADDR instruction. 1884 assert(FuncInfo.MBB->isLandingPad() && 1885 "Call to eh.exception not in landing pad!"); 1886 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1887 SDValue Ops[2]; 1888 Ops[0] = DAG.getRoot(); 1889 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1890 SDValue Chain = Op1.getValue(1); 1891 1892 // Insert the EHSELECTION instruction. 1893 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1894 Ops[0] = Op1; 1895 Ops[1] = Chain; 1896 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1897 Chain = Op2.getValue(1); 1898 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1899 1900 Ops[0] = Op1; 1901 Ops[1] = Op2; 1902 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1903 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1904 &Ops[0], 2); 1905 1906 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1907 setValue(&LP, RetPair.first); 1908 DAG.setRoot(RetPair.second); 1909} 1910 1911/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1912/// small case ranges). 1913bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1914 CaseRecVector& WorkList, 1915 const Value* SV, 1916 MachineBasicBlock *Default, 1917 MachineBasicBlock *SwitchBB) { 1918 // Size is the number of Cases represented by this range. 1919 size_t Size = CR.Range.second - CR.Range.first; 1920 if (Size > 3) 1921 return false; 1922 1923 // Get the MachineFunction which holds the current MBB. This is used when 1924 // inserting any additional MBBs necessary to represent the switch. 1925 MachineFunction *CurMF = FuncInfo.MF; 1926 1927 // Figure out which block is immediately after the current one. 1928 MachineBasicBlock *NextBlock = 0; 1929 MachineFunction::iterator BBI = CR.CaseBB; 1930 1931 if (++BBI != FuncInfo.MF->end()) 1932 NextBlock = BBI; 1933 1934 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1935 // If any two of the cases has the same destination, and if one value 1936 // is the same as the other, but has one bit unset that the other has set, 1937 // use bit manipulation to do two compares at once. For example: 1938 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1939 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1940 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1941 if (Size == 2 && CR.CaseBB == SwitchBB) { 1942 Case &Small = *CR.Range.first; 1943 Case &Big = *(CR.Range.second-1); 1944 1945 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1946 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1947 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1948 1949 // Check that there is only one bit different. 1950 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1951 (SmallValue | BigValue) == BigValue) { 1952 // Isolate the common bit. 1953 APInt CommonBit = BigValue & ~SmallValue; 1954 assert((SmallValue | CommonBit) == BigValue && 1955 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1956 1957 SDValue CondLHS = getValue(SV); 1958 EVT VT = CondLHS.getValueType(); 1959 DebugLoc DL = getCurDebugLoc(); 1960 1961 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1962 DAG.getConstant(CommonBit, VT)); 1963 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1964 Or, DAG.getConstant(BigValue, VT), 1965 ISD::SETEQ); 1966 1967 // Update successor info. 1968 // Both Small and Big will jump to Small.BB, so we sum up the weights. 1969 addSuccessorWithWeight(SwitchBB, Small.BB, 1970 Small.ExtraWeight + Big.ExtraWeight); 1971 addSuccessorWithWeight(SwitchBB, Default, 1972 // The default destination is the first successor in IR. 1973 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 1974 1975 // Insert the true branch. 1976 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1977 getControlRoot(), Cond, 1978 DAG.getBasicBlock(Small.BB)); 1979 1980 // Insert the false branch. 1981 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1982 DAG.getBasicBlock(Default)); 1983 1984 DAG.setRoot(BrCond); 1985 return true; 1986 } 1987 } 1988 } 1989 1990 // Order cases by weight so the most likely case will be checked first. 1991 uint32_t UnhandledWeights = 0; 1992 if (BPI) { 1993 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 1994 uint32_t IWeight = I->ExtraWeight; 1995 UnhandledWeights += IWeight; 1996 for (CaseItr J = CR.Range.first; J < I; ++J) { 1997 uint32_t JWeight = J->ExtraWeight; 1998 if (IWeight > JWeight) 1999 std::swap(*I, *J); 2000 } 2001 } 2002 } 2003 // Rearrange the case blocks so that the last one falls through if possible. 2004 Case &BackCase = *(CR.Range.second-1); 2005 if (Size > 1 && 2006 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2007 // The last case block won't fall through into 'NextBlock' if we emit the 2008 // branches in this order. See if rearranging a case value would help. 2009 // We start at the bottom as it's the case with the least weight. 2010 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2011 if (I->BB == NextBlock) { 2012 std::swap(*I, BackCase); 2013 break; 2014 } 2015 } 2016 } 2017 2018 // Create a CaseBlock record representing a conditional branch to 2019 // the Case's target mbb if the value being switched on SV is equal 2020 // to C. 2021 MachineBasicBlock *CurBlock = CR.CaseBB; 2022 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2023 MachineBasicBlock *FallThrough; 2024 if (I != E-1) { 2025 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2026 CurMF->insert(BBI, FallThrough); 2027 2028 // Put SV in a virtual register to make it available from the new blocks. 2029 ExportFromCurrentBlock(SV); 2030 } else { 2031 // If the last case doesn't match, go to the default block. 2032 FallThrough = Default; 2033 } 2034 2035 const Value *RHS, *LHS, *MHS; 2036 ISD::CondCode CC; 2037 if (I->High == I->Low) { 2038 // This is just small small case range :) containing exactly 1 case 2039 CC = ISD::SETEQ; 2040 LHS = SV; RHS = I->High; MHS = NULL; 2041 } else { 2042 CC = ISD::SETCC_INVALID; 2043 LHS = I->Low; MHS = SV; RHS = I->High; 2044 } 2045 2046 // The false weight should be sum of all un-handled cases. 2047 UnhandledWeights -= I->ExtraWeight; 2048 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2049 /* me */ CurBlock, 2050 /* trueweight */ I->ExtraWeight, 2051 /* falseweight */ UnhandledWeights); 2052 2053 // If emitting the first comparison, just call visitSwitchCase to emit the 2054 // code into the current block. Otherwise, push the CaseBlock onto the 2055 // vector to be later processed by SDISel, and insert the node's MBB 2056 // before the next MBB. 2057 if (CurBlock == SwitchBB) 2058 visitSwitchCase(CB, SwitchBB); 2059 else 2060 SwitchCases.push_back(CB); 2061 2062 CurBlock = FallThrough; 2063 } 2064 2065 return true; 2066} 2067 2068static inline bool areJTsAllowed(const TargetLowering &TLI) { 2069 return TLI.supportJumpTables() && 2070 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2071 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2072} 2073 2074static APInt ComputeRange(const APInt &First, const APInt &Last) { 2075 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2076 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2077 return (LastExt - FirstExt + 1ULL); 2078} 2079 2080/// handleJTSwitchCase - Emit jumptable for current switch case range 2081bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2082 CaseRecVector &WorkList, 2083 const Value *SV, 2084 MachineBasicBlock *Default, 2085 MachineBasicBlock *SwitchBB) { 2086 Case& FrontCase = *CR.Range.first; 2087 Case& BackCase = *(CR.Range.second-1); 2088 2089 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2090 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2091 2092 APInt TSize(First.getBitWidth(), 0); 2093 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2094 TSize += I->size(); 2095 2096 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2097 return false; 2098 2099 APInt Range = ComputeRange(First, Last); 2100 // The density is TSize / Range. Require at least 40%. 2101 // It should not be possible for IntTSize to saturate for sane code, but make 2102 // sure we handle Range saturation correctly. 2103 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2104 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2105 if (IntTSize * 10 < IntRange * 4) 2106 return false; 2107 2108 DEBUG(dbgs() << "Lowering jump table\n" 2109 << "First entry: " << First << ". Last entry: " << Last << '\n' 2110 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2111 2112 // Get the MachineFunction which holds the current MBB. This is used when 2113 // inserting any additional MBBs necessary to represent the switch. 2114 MachineFunction *CurMF = FuncInfo.MF; 2115 2116 // Figure out which block is immediately after the current one. 2117 MachineFunction::iterator BBI = CR.CaseBB; 2118 ++BBI; 2119 2120 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2121 2122 // Create a new basic block to hold the code for loading the address 2123 // of the jump table, and jumping to it. Update successor information; 2124 // we will either branch to the default case for the switch, or the jump 2125 // table. 2126 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2127 CurMF->insert(BBI, JumpTableBB); 2128 2129 addSuccessorWithWeight(CR.CaseBB, Default); 2130 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2131 2132 // Build a vector of destination BBs, corresponding to each target 2133 // of the jump table. If the value of the jump table slot corresponds to 2134 // a case statement, push the case's BB onto the vector, otherwise, push 2135 // the default BB. 2136 std::vector<MachineBasicBlock*> DestBBs; 2137 APInt TEI = First; 2138 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2139 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2140 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2141 2142 if (Low.ule(TEI) && TEI.ule(High)) { 2143 DestBBs.push_back(I->BB); 2144 if (TEI==High) 2145 ++I; 2146 } else { 2147 DestBBs.push_back(Default); 2148 } 2149 } 2150 2151 // Calculate weight for each unique destination in CR. 2152 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2153 if (FuncInfo.BPI) 2154 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2155 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2156 DestWeights.find(I->BB); 2157 if (Itr != DestWeights.end()) 2158 Itr->second += I->ExtraWeight; 2159 else 2160 DestWeights[I->BB] = I->ExtraWeight; 2161 } 2162 2163 // Update successor info. Add one edge to each unique successor. 2164 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2165 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2166 E = DestBBs.end(); I != E; ++I) { 2167 if (!SuccsHandled[(*I)->getNumber()]) { 2168 SuccsHandled[(*I)->getNumber()] = true; 2169 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2170 DestWeights.find(*I); 2171 addSuccessorWithWeight(JumpTableBB, *I, 2172 Itr != DestWeights.end() ? Itr->second : 0); 2173 } 2174 } 2175 2176 // Create a jump table index for this jump table. 2177 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2178 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2179 ->createJumpTableIndex(DestBBs); 2180 2181 // Set the jump table information so that we can codegen it as a second 2182 // MachineBasicBlock 2183 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2184 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2185 if (CR.CaseBB == SwitchBB) 2186 visitJumpTableHeader(JT, JTH, SwitchBB); 2187 2188 JTCases.push_back(JumpTableBlock(JTH, JT)); 2189 return true; 2190} 2191 2192/// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2193/// 2 subtrees. 2194bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2195 CaseRecVector& WorkList, 2196 const Value* SV, 2197 MachineBasicBlock *Default, 2198 MachineBasicBlock *SwitchBB) { 2199 // Get the MachineFunction which holds the current MBB. This is used when 2200 // inserting any additional MBBs necessary to represent the switch. 2201 MachineFunction *CurMF = FuncInfo.MF; 2202 2203 // Figure out which block is immediately after the current one. 2204 MachineFunction::iterator BBI = CR.CaseBB; 2205 ++BBI; 2206 2207 Case& FrontCase = *CR.Range.first; 2208 Case& BackCase = *(CR.Range.second-1); 2209 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2210 2211 // Size is the number of Cases represented by this range. 2212 unsigned Size = CR.Range.second - CR.Range.first; 2213 2214 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2215 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2216 double FMetric = 0; 2217 CaseItr Pivot = CR.Range.first + Size/2; 2218 2219 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2220 // (heuristically) allow us to emit JumpTable's later. 2221 APInt TSize(First.getBitWidth(), 0); 2222 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2223 I!=E; ++I) 2224 TSize += I->size(); 2225 2226 APInt LSize = FrontCase.size(); 2227 APInt RSize = TSize-LSize; 2228 DEBUG(dbgs() << "Selecting best pivot: \n" 2229 << "First: " << First << ", Last: " << Last <<'\n' 2230 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2231 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2232 J!=E; ++I, ++J) { 2233 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2234 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2235 APInt Range = ComputeRange(LEnd, RBegin); 2236 assert((Range - 2ULL).isNonNegative() && 2237 "Invalid case distance"); 2238 // Use volatile double here to avoid excess precision issues on some hosts, 2239 // e.g. that use 80-bit X87 registers. 2240 volatile double LDensity = 2241 (double)LSize.roundToDouble() / 2242 (LEnd - First + 1ULL).roundToDouble(); 2243 volatile double RDensity = 2244 (double)RSize.roundToDouble() / 2245 (Last - RBegin + 1ULL).roundToDouble(); 2246 double Metric = Range.logBase2()*(LDensity+RDensity); 2247 // Should always split in some non-trivial place 2248 DEBUG(dbgs() <<"=>Step\n" 2249 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2250 << "LDensity: " << LDensity 2251 << ", RDensity: " << RDensity << '\n' 2252 << "Metric: " << Metric << '\n'); 2253 if (FMetric < Metric) { 2254 Pivot = J; 2255 FMetric = Metric; 2256 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2257 } 2258 2259 LSize += J->size(); 2260 RSize -= J->size(); 2261 } 2262 if (areJTsAllowed(TLI)) { 2263 // If our case is dense we *really* should handle it earlier! 2264 assert((FMetric > 0) && "Should handle dense range earlier!"); 2265 } else { 2266 Pivot = CR.Range.first + Size/2; 2267 } 2268 2269 CaseRange LHSR(CR.Range.first, Pivot); 2270 CaseRange RHSR(Pivot, CR.Range.second); 2271 const Constant *C = Pivot->Low; 2272 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2273 2274 // We know that we branch to the LHS if the Value being switched on is 2275 // less than the Pivot value, C. We use this to optimize our binary 2276 // tree a bit, by recognizing that if SV is greater than or equal to the 2277 // LHS's Case Value, and that Case Value is exactly one less than the 2278 // Pivot's Value, then we can branch directly to the LHS's Target, 2279 // rather than creating a leaf node for it. 2280 if ((LHSR.second - LHSR.first) == 1 && 2281 LHSR.first->High == CR.GE && 2282 cast<ConstantInt>(C)->getValue() == 2283 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2284 TrueBB = LHSR.first->BB; 2285 } else { 2286 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2287 CurMF->insert(BBI, TrueBB); 2288 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2289 2290 // Put SV in a virtual register to make it available from the new blocks. 2291 ExportFromCurrentBlock(SV); 2292 } 2293 2294 // Similar to the optimization above, if the Value being switched on is 2295 // known to be less than the Constant CR.LT, and the current Case Value 2296 // is CR.LT - 1, then we can branch directly to the target block for 2297 // the current Case Value, rather than emitting a RHS leaf node for it. 2298 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2299 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2300 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2301 FalseBB = RHSR.first->BB; 2302 } else { 2303 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2304 CurMF->insert(BBI, FalseBB); 2305 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2306 2307 // Put SV in a virtual register to make it available from the new blocks. 2308 ExportFromCurrentBlock(SV); 2309 } 2310 2311 // Create a CaseBlock record representing a conditional branch to 2312 // the LHS node if the value being switched on SV is less than C. 2313 // Otherwise, branch to LHS. 2314 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2315 2316 if (CR.CaseBB == SwitchBB) 2317 visitSwitchCase(CB, SwitchBB); 2318 else 2319 SwitchCases.push_back(CB); 2320 2321 return true; 2322} 2323 2324/// handleBitTestsSwitchCase - if current case range has few destination and 2325/// range span less, than machine word bitwidth, encode case range into series 2326/// of masks and emit bit tests with these masks. 2327bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2328 CaseRecVector& WorkList, 2329 const Value* SV, 2330 MachineBasicBlock* Default, 2331 MachineBasicBlock *SwitchBB){ 2332 EVT PTy = TLI.getPointerTy(); 2333 unsigned IntPtrBits = PTy.getSizeInBits(); 2334 2335 Case& FrontCase = *CR.Range.first; 2336 Case& BackCase = *(CR.Range.second-1); 2337 2338 // Get the MachineFunction which holds the current MBB. This is used when 2339 // inserting any additional MBBs necessary to represent the switch. 2340 MachineFunction *CurMF = FuncInfo.MF; 2341 2342 // If target does not have legal shift left, do not emit bit tests at all. 2343 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2344 return false; 2345 2346 size_t numCmps = 0; 2347 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2348 I!=E; ++I) { 2349 // Single case counts one, case range - two. 2350 numCmps += (I->Low == I->High ? 1 : 2); 2351 } 2352 2353 // Count unique destinations 2354 SmallSet<MachineBasicBlock*, 4> Dests; 2355 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2356 Dests.insert(I->BB); 2357 if (Dests.size() > 3) 2358 // Don't bother the code below, if there are too much unique destinations 2359 return false; 2360 } 2361 DEBUG(dbgs() << "Total number of unique destinations: " 2362 << Dests.size() << '\n' 2363 << "Total number of comparisons: " << numCmps << '\n'); 2364 2365 // Compute span of values. 2366 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2367 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2368 APInt cmpRange = maxValue - minValue; 2369 2370 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2371 << "Low bound: " << minValue << '\n' 2372 << "High bound: " << maxValue << '\n'); 2373 2374 if (cmpRange.uge(IntPtrBits) || 2375 (!(Dests.size() == 1 && numCmps >= 3) && 2376 !(Dests.size() == 2 && numCmps >= 5) && 2377 !(Dests.size() >= 3 && numCmps >= 6))) 2378 return false; 2379 2380 DEBUG(dbgs() << "Emitting bit tests\n"); 2381 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2382 2383 // Optimize the case where all the case values fit in a 2384 // word without having to subtract minValue. In this case, 2385 // we can optimize away the subtraction. 2386 if (maxValue.ult(IntPtrBits)) { 2387 cmpRange = maxValue; 2388 } else { 2389 lowBound = minValue; 2390 } 2391 2392 CaseBitsVector CasesBits; 2393 unsigned i, count = 0; 2394 2395 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2396 MachineBasicBlock* Dest = I->BB; 2397 for (i = 0; i < count; ++i) 2398 if (Dest == CasesBits[i].BB) 2399 break; 2400 2401 if (i == count) { 2402 assert((count < 3) && "Too much destinations to test!"); 2403 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2404 count++; 2405 } 2406 2407 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2408 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2409 2410 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2411 uint64_t hi = (highValue - lowBound).getZExtValue(); 2412 CasesBits[i].ExtraWeight += I->ExtraWeight; 2413 2414 for (uint64_t j = lo; j <= hi; j++) { 2415 CasesBits[i].Mask |= 1ULL << j; 2416 CasesBits[i].Bits++; 2417 } 2418 2419 } 2420 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2421 2422 BitTestInfo BTC; 2423 2424 // Figure out which block is immediately after the current one. 2425 MachineFunction::iterator BBI = CR.CaseBB; 2426 ++BBI; 2427 2428 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2429 2430 DEBUG(dbgs() << "Cases:\n"); 2431 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2432 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2433 << ", Bits: " << CasesBits[i].Bits 2434 << ", BB: " << CasesBits[i].BB << '\n'); 2435 2436 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2437 CurMF->insert(BBI, CaseBB); 2438 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2439 CaseBB, 2440 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2441 2442 // Put SV in a virtual register to make it available from the new blocks. 2443 ExportFromCurrentBlock(SV); 2444 } 2445 2446 BitTestBlock BTB(lowBound, cmpRange, SV, 2447 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2448 CR.CaseBB, Default, BTC); 2449 2450 if (CR.CaseBB == SwitchBB) 2451 visitBitTestHeader(BTB, SwitchBB); 2452 2453 BitTestCases.push_back(BTB); 2454 2455 return true; 2456} 2457 2458/// Clusterify - Transform simple list of Cases into list of CaseRange's 2459size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2460 const SwitchInst& SI) { 2461 2462 /// Use a shorter form of declaration, and also 2463 /// show the we want to use CRSBuilder as Clusterifier. 2464 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2465 2466 Clusterifier TheClusterifier; 2467 2468 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2469 // Start with "simple" cases 2470 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2471 i != e; ++i) { 2472 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2473 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2474 2475 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2476 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2477 } 2478 2479 TheClusterifier.optimize(); 2480 2481 size_t numCmps = 0; 2482 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2483 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2484 Clusterifier::Cluster &C = *i; 2485 // Update edge weight for the cluster. 2486 unsigned W = C.first.Weight; 2487 2488 // FIXME: Currently work with ConstantInt based numbers. 2489 // Changing it to APInt based is a pretty heavy for this commit. 2490 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2491 C.first.getHigh().toConstantInt(), C.second, W)); 2492 2493 if (C.first.getLow() != C.first.getHigh()) 2494 // A range counts double, since it requires two compares. 2495 ++numCmps; 2496 } 2497 2498 return numCmps; 2499} 2500 2501void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2502 MachineBasicBlock *Last) { 2503 // Update JTCases. 2504 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2505 if (JTCases[i].first.HeaderBB == First) 2506 JTCases[i].first.HeaderBB = Last; 2507 2508 // Update BitTestCases. 2509 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2510 if (BitTestCases[i].Parent == First) 2511 BitTestCases[i].Parent = Last; 2512} 2513 2514void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2515 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2516 2517 // Figure out which block is immediately after the current one. 2518 MachineBasicBlock *NextBlock = 0; 2519 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2520 2521 // If there is only the default destination, branch to it if it is not the 2522 // next basic block. Otherwise, just fall through. 2523 if (!SI.getNumCases()) { 2524 // Update machine-CFG edges. 2525 2526 // If this is not a fall-through branch, emit the branch. 2527 SwitchMBB->addSuccessor(Default); 2528 if (Default != NextBlock) 2529 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2530 MVT::Other, getControlRoot(), 2531 DAG.getBasicBlock(Default))); 2532 2533 return; 2534 } 2535 2536 // If there are any non-default case statements, create a vector of Cases 2537 // representing each one, and sort the vector so that we can efficiently 2538 // create a binary search tree from them. 2539 CaseVector Cases; 2540 size_t numCmps = Clusterify(Cases, SI); 2541 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2542 << ". Total compares: " << numCmps << '\n'); 2543 (void)numCmps; 2544 2545 // Get the Value to be switched on and default basic blocks, which will be 2546 // inserted into CaseBlock records, representing basic blocks in the binary 2547 // search tree. 2548 const Value *SV = SI.getCondition(); 2549 2550 // Push the initial CaseRec onto the worklist 2551 CaseRecVector WorkList; 2552 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2553 CaseRange(Cases.begin(),Cases.end()))); 2554 2555 while (!WorkList.empty()) { 2556 // Grab a record representing a case range to process off the worklist 2557 CaseRec CR = WorkList.back(); 2558 WorkList.pop_back(); 2559 2560 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2561 continue; 2562 2563 // If the range has few cases (two or less) emit a series of specific 2564 // tests. 2565 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2566 continue; 2567 2568 // If the switch has more than 5 blocks, and at least 40% dense, and the 2569 // target supports indirect branches, then emit a jump table rather than 2570 // lowering the switch to a binary tree of conditional branches. 2571 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2572 continue; 2573 2574 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2575 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2576 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2577 } 2578} 2579 2580void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2581 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2582 2583 // Update machine-CFG edges with unique successors. 2584 SmallVector<BasicBlock*, 32> succs; 2585 succs.reserve(I.getNumSuccessors()); 2586 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2587 succs.push_back(I.getSuccessor(i)); 2588 array_pod_sort(succs.begin(), succs.end()); 2589 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2590 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2591 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2592 addSuccessorWithWeight(IndirectBrMBB, Succ); 2593 } 2594 2595 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2596 MVT::Other, getControlRoot(), 2597 getValue(I.getAddress()))); 2598} 2599 2600void SelectionDAGBuilder::visitFSub(const User &I) { 2601 // -0.0 - X --> fneg 2602 Type *Ty = I.getType(); 2603 if (isa<Constant>(I.getOperand(0)) && 2604 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2605 SDValue Op2 = getValue(I.getOperand(1)); 2606 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2607 Op2.getValueType(), Op2)); 2608 return; 2609 } 2610 2611 visitBinary(I, ISD::FSUB); 2612} 2613 2614void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2615 SDValue Op1 = getValue(I.getOperand(0)); 2616 SDValue Op2 = getValue(I.getOperand(1)); 2617 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2618 Op1.getValueType(), Op1, Op2)); 2619} 2620 2621void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2622 SDValue Op1 = getValue(I.getOperand(0)); 2623 SDValue Op2 = getValue(I.getOperand(1)); 2624 2625 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2626 2627 // Coerce the shift amount to the right type if we can. 2628 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2629 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2630 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2631 DebugLoc DL = getCurDebugLoc(); 2632 2633 // If the operand is smaller than the shift count type, promote it. 2634 if (ShiftSize > Op2Size) 2635 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2636 2637 // If the operand is larger than the shift count type but the shift 2638 // count type has enough bits to represent any shift value, truncate 2639 // it now. This is a common case and it exposes the truncate to 2640 // optimization early. 2641 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2642 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2643 // Otherwise we'll need to temporarily settle for some other convenient 2644 // type. Type legalization will make adjustments once the shiftee is split. 2645 else 2646 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2647 } 2648 2649 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2650 Op1.getValueType(), Op1, Op2)); 2651} 2652 2653void SelectionDAGBuilder::visitSDiv(const User &I) { 2654 SDValue Op1 = getValue(I.getOperand(0)); 2655 SDValue Op2 = getValue(I.getOperand(1)); 2656 2657 // Turn exact SDivs into multiplications. 2658 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2659 // exact bit. 2660 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2661 !isa<ConstantSDNode>(Op1) && 2662 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2663 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2664 else 2665 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2666 Op1, Op2)); 2667} 2668 2669void SelectionDAGBuilder::visitICmp(const User &I) { 2670 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2671 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2672 predicate = IC->getPredicate(); 2673 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2674 predicate = ICmpInst::Predicate(IC->getPredicate()); 2675 SDValue Op1 = getValue(I.getOperand(0)); 2676 SDValue Op2 = getValue(I.getOperand(1)); 2677 ISD::CondCode Opcode = getICmpCondCode(predicate); 2678 2679 EVT DestVT = TLI.getValueType(I.getType()); 2680 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2681} 2682 2683void SelectionDAGBuilder::visitFCmp(const User &I) { 2684 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2685 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2686 predicate = FC->getPredicate(); 2687 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2688 predicate = FCmpInst::Predicate(FC->getPredicate()); 2689 SDValue Op1 = getValue(I.getOperand(0)); 2690 SDValue Op2 = getValue(I.getOperand(1)); 2691 ISD::CondCode Condition = getFCmpCondCode(predicate); 2692 if (TM.Options.NoNaNsFPMath) 2693 Condition = getFCmpCodeWithoutNaN(Condition); 2694 EVT DestVT = TLI.getValueType(I.getType()); 2695 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2696} 2697 2698void SelectionDAGBuilder::visitSelect(const User &I) { 2699 SmallVector<EVT, 4> ValueVTs; 2700 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2701 unsigned NumValues = ValueVTs.size(); 2702 if (NumValues == 0) return; 2703 2704 SmallVector<SDValue, 4> Values(NumValues); 2705 SDValue Cond = getValue(I.getOperand(0)); 2706 SDValue TrueVal = getValue(I.getOperand(1)); 2707 SDValue FalseVal = getValue(I.getOperand(2)); 2708 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2709 ISD::VSELECT : ISD::SELECT; 2710 2711 for (unsigned i = 0; i != NumValues; ++i) 2712 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2713 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2714 Cond, 2715 SDValue(TrueVal.getNode(), 2716 TrueVal.getResNo() + i), 2717 SDValue(FalseVal.getNode(), 2718 FalseVal.getResNo() + i)); 2719 2720 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2721 DAG.getVTList(&ValueVTs[0], NumValues), 2722 &Values[0], NumValues)); 2723} 2724 2725void SelectionDAGBuilder::visitTrunc(const User &I) { 2726 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2727 SDValue N = getValue(I.getOperand(0)); 2728 EVT DestVT = TLI.getValueType(I.getType()); 2729 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2730} 2731 2732void SelectionDAGBuilder::visitZExt(const User &I) { 2733 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2734 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2735 SDValue N = getValue(I.getOperand(0)); 2736 EVT DestVT = TLI.getValueType(I.getType()); 2737 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2738} 2739 2740void SelectionDAGBuilder::visitSExt(const User &I) { 2741 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2742 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2743 SDValue N = getValue(I.getOperand(0)); 2744 EVT DestVT = TLI.getValueType(I.getType()); 2745 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2746} 2747 2748void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2749 // FPTrunc is never a no-op cast, no need to check 2750 SDValue N = getValue(I.getOperand(0)); 2751 EVT DestVT = TLI.getValueType(I.getType()); 2752 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2753 DestVT, N, 2754 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2755} 2756 2757void SelectionDAGBuilder::visitFPExt(const User &I){ 2758 // FPExt is never a no-op cast, no need to check 2759 SDValue N = getValue(I.getOperand(0)); 2760 EVT DestVT = TLI.getValueType(I.getType()); 2761 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2762} 2763 2764void SelectionDAGBuilder::visitFPToUI(const User &I) { 2765 // FPToUI is never a no-op cast, no need to check 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = TLI.getValueType(I.getType()); 2768 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2769} 2770 2771void SelectionDAGBuilder::visitFPToSI(const User &I) { 2772 // FPToSI is never a no-op cast, no need to check 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TLI.getValueType(I.getType()); 2775 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2776} 2777 2778void SelectionDAGBuilder::visitUIToFP(const User &I) { 2779 // UIToFP is never a no-op cast, no need to check 2780 SDValue N = getValue(I.getOperand(0)); 2781 EVT DestVT = TLI.getValueType(I.getType()); 2782 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2783} 2784 2785void SelectionDAGBuilder::visitSIToFP(const User &I){ 2786 // SIToFP is never a no-op cast, no need to check 2787 SDValue N = getValue(I.getOperand(0)); 2788 EVT DestVT = TLI.getValueType(I.getType()); 2789 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2790} 2791 2792void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2793 // What to do depends on the size of the integer and the size of the pointer. 2794 // We can either truncate, zero extend, or no-op, accordingly. 2795 SDValue N = getValue(I.getOperand(0)); 2796 EVT DestVT = TLI.getValueType(I.getType()); 2797 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2798} 2799 2800void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2801 // What to do depends on the size of the integer and the size of the pointer. 2802 // We can either truncate, zero extend, or no-op, accordingly. 2803 SDValue N = getValue(I.getOperand(0)); 2804 EVT DestVT = TLI.getValueType(I.getType()); 2805 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2806} 2807 2808void SelectionDAGBuilder::visitBitCast(const User &I) { 2809 SDValue N = getValue(I.getOperand(0)); 2810 EVT DestVT = TLI.getValueType(I.getType()); 2811 2812 // BitCast assures us that source and destination are the same size so this is 2813 // either a BITCAST or a no-op. 2814 if (DestVT != N.getValueType()) 2815 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2816 DestVT, N)); // convert types. 2817 else 2818 setValue(&I, N); // noop cast. 2819} 2820 2821void SelectionDAGBuilder::visitInsertElement(const User &I) { 2822 SDValue InVec = getValue(I.getOperand(0)); 2823 SDValue InVal = getValue(I.getOperand(1)); 2824 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2825 TLI.getPointerTy(), 2826 getValue(I.getOperand(2))); 2827 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2828 TLI.getValueType(I.getType()), 2829 InVec, InVal, InIdx)); 2830} 2831 2832void SelectionDAGBuilder::visitExtractElement(const User &I) { 2833 SDValue InVec = getValue(I.getOperand(0)); 2834 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2835 TLI.getPointerTy(), 2836 getValue(I.getOperand(1))); 2837 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2838 TLI.getValueType(I.getType()), InVec, InIdx)); 2839} 2840 2841// Utility for visitShuffleVector - Return true if every element in Mask, 2842// beginning from position Pos and ending in Pos+Size, falls within the 2843// specified sequential range [L, L+Pos). or is undef. 2844static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2845 unsigned Pos, unsigned Size, int Low) { 2846 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2847 if (Mask[i] >= 0 && Mask[i] != Low) 2848 return false; 2849 return true; 2850} 2851 2852void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2853 SDValue Src1 = getValue(I.getOperand(0)); 2854 SDValue Src2 = getValue(I.getOperand(1)); 2855 2856 SmallVector<int, 8> Mask; 2857 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2858 unsigned MaskNumElts = Mask.size(); 2859 2860 EVT VT = TLI.getValueType(I.getType()); 2861 EVT SrcVT = Src1.getValueType(); 2862 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2863 2864 if (SrcNumElts == MaskNumElts) { 2865 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2866 &Mask[0])); 2867 return; 2868 } 2869 2870 // Normalize the shuffle vector since mask and vector length don't match. 2871 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2872 // Mask is longer than the source vectors and is a multiple of the source 2873 // vectors. We can use concatenate vector to make the mask and vectors 2874 // lengths match. 2875 if (SrcNumElts*2 == MaskNumElts) { 2876 // First check for Src1 in low and Src2 in high 2877 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2878 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2879 // The shuffle is concatenating two vectors together. 2880 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2881 VT, Src1, Src2)); 2882 return; 2883 } 2884 // Then check for Src2 in low and Src1 in high 2885 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2886 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2887 // The shuffle is concatenating two vectors together. 2888 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2889 VT, Src2, Src1)); 2890 return; 2891 } 2892 } 2893 2894 // Pad both vectors with undefs to make them the same length as the mask. 2895 unsigned NumConcat = MaskNumElts / SrcNumElts; 2896 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2897 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2898 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2899 2900 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2901 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2902 MOps1[0] = Src1; 2903 MOps2[0] = Src2; 2904 2905 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2906 getCurDebugLoc(), VT, 2907 &MOps1[0], NumConcat); 2908 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2909 getCurDebugLoc(), VT, 2910 &MOps2[0], NumConcat); 2911 2912 // Readjust mask for new input vector length. 2913 SmallVector<int, 8> MappedOps; 2914 for (unsigned i = 0; i != MaskNumElts; ++i) { 2915 int Idx = Mask[i]; 2916 if (Idx >= (int)SrcNumElts) 2917 Idx -= SrcNumElts - MaskNumElts; 2918 MappedOps.push_back(Idx); 2919 } 2920 2921 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2922 &MappedOps[0])); 2923 return; 2924 } 2925 2926 if (SrcNumElts > MaskNumElts) { 2927 // Analyze the access pattern of the vector to see if we can extract 2928 // two subvectors and do the shuffle. The analysis is done by calculating 2929 // the range of elements the mask access on both vectors. 2930 int MinRange[2] = { static_cast<int>(SrcNumElts), 2931 static_cast<int>(SrcNumElts)}; 2932 int MaxRange[2] = {-1, -1}; 2933 2934 for (unsigned i = 0; i != MaskNumElts; ++i) { 2935 int Idx = Mask[i]; 2936 unsigned Input = 0; 2937 if (Idx < 0) 2938 continue; 2939 2940 if (Idx >= (int)SrcNumElts) { 2941 Input = 1; 2942 Idx -= SrcNumElts; 2943 } 2944 if (Idx > MaxRange[Input]) 2945 MaxRange[Input] = Idx; 2946 if (Idx < MinRange[Input]) 2947 MinRange[Input] = Idx; 2948 } 2949 2950 // Check if the access is smaller than the vector size and can we find 2951 // a reasonable extract index. 2952 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2953 // Extract. 2954 int StartIdx[2]; // StartIdx to extract from 2955 for (unsigned Input = 0; Input < 2; ++Input) { 2956 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2957 RangeUse[Input] = 0; // Unused 2958 StartIdx[Input] = 0; 2959 continue; 2960 } 2961 2962 // Find a good start index that is a multiple of the mask length. Then 2963 // see if the rest of the elements are in range. 2964 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2965 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2966 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2967 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2968 } 2969 2970 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2971 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2972 return; 2973 } 2974 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2975 // Extract appropriate subvector and generate a vector shuffle 2976 for (unsigned Input = 0; Input < 2; ++Input) { 2977 SDValue &Src = Input == 0 ? Src1 : Src2; 2978 if (RangeUse[Input] == 0) 2979 Src = DAG.getUNDEF(VT); 2980 else 2981 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2982 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2983 } 2984 2985 // Calculate new mask. 2986 SmallVector<int, 8> MappedOps; 2987 for (unsigned i = 0; i != MaskNumElts; ++i) { 2988 int Idx = Mask[i]; 2989 if (Idx >= 0) { 2990 if (Idx < (int)SrcNumElts) 2991 Idx -= StartIdx[0]; 2992 else 2993 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2994 } 2995 MappedOps.push_back(Idx); 2996 } 2997 2998 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2999 &MappedOps[0])); 3000 return; 3001 } 3002 } 3003 3004 // We can't use either concat vectors or extract subvectors so fall back to 3005 // replacing the shuffle with extract and build vector. 3006 // to insert and build vector. 3007 EVT EltVT = VT.getVectorElementType(); 3008 EVT PtrVT = TLI.getPointerTy(); 3009 SmallVector<SDValue,8> Ops; 3010 for (unsigned i = 0; i != MaskNumElts; ++i) { 3011 int Idx = Mask[i]; 3012 SDValue Res; 3013 3014 if (Idx < 0) { 3015 Res = DAG.getUNDEF(EltVT); 3016 } else { 3017 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3018 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3019 3020 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3021 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3022 } 3023 3024 Ops.push_back(Res); 3025 } 3026 3027 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3028 VT, &Ops[0], Ops.size())); 3029} 3030 3031void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3032 const Value *Op0 = I.getOperand(0); 3033 const Value *Op1 = I.getOperand(1); 3034 Type *AggTy = I.getType(); 3035 Type *ValTy = Op1->getType(); 3036 bool IntoUndef = isa<UndefValue>(Op0); 3037 bool FromUndef = isa<UndefValue>(Op1); 3038 3039 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3040 3041 SmallVector<EVT, 4> AggValueVTs; 3042 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3043 SmallVector<EVT, 4> ValValueVTs; 3044 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3045 3046 unsigned NumAggValues = AggValueVTs.size(); 3047 unsigned NumValValues = ValValueVTs.size(); 3048 SmallVector<SDValue, 4> Values(NumAggValues); 3049 3050 SDValue Agg = getValue(Op0); 3051 unsigned i = 0; 3052 // Copy the beginning value(s) from the original aggregate. 3053 for (; i != LinearIndex; ++i) 3054 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3055 SDValue(Agg.getNode(), Agg.getResNo() + i); 3056 // Copy values from the inserted value(s). 3057 if (NumValValues) { 3058 SDValue Val = getValue(Op1); 3059 for (; i != LinearIndex + NumValValues; ++i) 3060 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3061 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3062 } 3063 // Copy remaining value(s) from the original aggregate. 3064 for (; i != NumAggValues; ++i) 3065 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3066 SDValue(Agg.getNode(), Agg.getResNo() + i); 3067 3068 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3069 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3070 &Values[0], NumAggValues)); 3071} 3072 3073void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3074 const Value *Op0 = I.getOperand(0); 3075 Type *AggTy = Op0->getType(); 3076 Type *ValTy = I.getType(); 3077 bool OutOfUndef = isa<UndefValue>(Op0); 3078 3079 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3080 3081 SmallVector<EVT, 4> ValValueVTs; 3082 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3083 3084 unsigned NumValValues = ValValueVTs.size(); 3085 3086 // Ignore a extractvalue that produces an empty object 3087 if (!NumValValues) { 3088 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3089 return; 3090 } 3091 3092 SmallVector<SDValue, 4> Values(NumValValues); 3093 3094 SDValue Agg = getValue(Op0); 3095 // Copy out the selected value(s). 3096 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3097 Values[i - LinearIndex] = 3098 OutOfUndef ? 3099 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3100 SDValue(Agg.getNode(), Agg.getResNo() + i); 3101 3102 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3103 DAG.getVTList(&ValValueVTs[0], NumValValues), 3104 &Values[0], NumValValues)); 3105} 3106 3107void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3108 SDValue N = getValue(I.getOperand(0)); 3109 // Note that the pointer operand may be a vector of pointers. Take the scalar 3110 // element which holds a pointer. 3111 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3112 3113 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3114 OI != E; ++OI) { 3115 const Value *Idx = *OI; 3116 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3117 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3118 if (Field) { 3119 // N = N + Offset 3120 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3121 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3122 DAG.getIntPtrConstant(Offset)); 3123 } 3124 3125 Ty = StTy->getElementType(Field); 3126 } else { 3127 Ty = cast<SequentialType>(Ty)->getElementType(); 3128 3129 // If this is a constant subscript, handle it quickly. 3130 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3131 if (CI->isZero()) continue; 3132 uint64_t Offs = 3133 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3134 SDValue OffsVal; 3135 EVT PTy = TLI.getPointerTy(); 3136 unsigned PtrBits = PTy.getSizeInBits(); 3137 if (PtrBits < 64) 3138 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3139 TLI.getPointerTy(), 3140 DAG.getConstant(Offs, MVT::i64)); 3141 else 3142 OffsVal = DAG.getIntPtrConstant(Offs); 3143 3144 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3145 OffsVal); 3146 continue; 3147 } 3148 3149 // N = N + Idx * ElementSize; 3150 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3151 TD->getTypeAllocSize(Ty)); 3152 SDValue IdxN = getValue(Idx); 3153 3154 // If the index is smaller or larger than intptr_t, truncate or extend 3155 // it. 3156 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3157 3158 // If this is a multiply by a power of two, turn it into a shl 3159 // immediately. This is a very common case. 3160 if (ElementSize != 1) { 3161 if (ElementSize.isPowerOf2()) { 3162 unsigned Amt = ElementSize.logBase2(); 3163 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3164 N.getValueType(), IdxN, 3165 DAG.getConstant(Amt, IdxN.getValueType())); 3166 } else { 3167 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3168 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3169 N.getValueType(), IdxN, Scale); 3170 } 3171 } 3172 3173 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3174 N.getValueType(), N, IdxN); 3175 } 3176 } 3177 3178 setValue(&I, N); 3179} 3180 3181void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3182 // If this is a fixed sized alloca in the entry block of the function, 3183 // allocate it statically on the stack. 3184 if (FuncInfo.StaticAllocaMap.count(&I)) 3185 return; // getValue will auto-populate this. 3186 3187 Type *Ty = I.getAllocatedType(); 3188 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3189 unsigned Align = 3190 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3191 I.getAlignment()); 3192 3193 SDValue AllocSize = getValue(I.getArraySize()); 3194 3195 EVT IntPtr = TLI.getPointerTy(); 3196 if (AllocSize.getValueType() != IntPtr) 3197 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3198 3199 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3200 AllocSize, 3201 DAG.getConstant(TySize, IntPtr)); 3202 3203 // Handle alignment. If the requested alignment is less than or equal to 3204 // the stack alignment, ignore it. If the size is greater than or equal to 3205 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3206 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3207 if (Align <= StackAlign) 3208 Align = 0; 3209 3210 // Round the size of the allocation up to the stack alignment size 3211 // by add SA-1 to the size. 3212 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3213 AllocSize.getValueType(), AllocSize, 3214 DAG.getIntPtrConstant(StackAlign-1)); 3215 3216 // Mask out the low bits for alignment purposes. 3217 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3218 AllocSize.getValueType(), AllocSize, 3219 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3220 3221 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3222 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3223 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3224 VTs, Ops, 3); 3225 setValue(&I, DSA); 3226 DAG.setRoot(DSA.getValue(1)); 3227 3228 // Inform the Frame Information that we have just allocated a variable-sized 3229 // object. 3230 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3231} 3232 3233void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3234 if (I.isAtomic()) 3235 return visitAtomicLoad(I); 3236 3237 const Value *SV = I.getOperand(0); 3238 SDValue Ptr = getValue(SV); 3239 3240 Type *Ty = I.getType(); 3241 3242 bool isVolatile = I.isVolatile(); 3243 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3244 bool isInvariant = I.getMetadata("invariant.load") != 0; 3245 unsigned Alignment = I.getAlignment(); 3246 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3247 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3248 3249 SmallVector<EVT, 4> ValueVTs; 3250 SmallVector<uint64_t, 4> Offsets; 3251 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3252 unsigned NumValues = ValueVTs.size(); 3253 if (NumValues == 0) 3254 return; 3255 3256 SDValue Root; 3257 bool ConstantMemory = false; 3258 if (I.isVolatile() || NumValues > MaxParallelChains) 3259 // Serialize volatile loads with other side effects. 3260 Root = getRoot(); 3261 else if (AA->pointsToConstantMemory( 3262 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3263 // Do not serialize (non-volatile) loads of constant memory with anything. 3264 Root = DAG.getEntryNode(); 3265 ConstantMemory = true; 3266 } else { 3267 // Do not serialize non-volatile loads against each other. 3268 Root = DAG.getRoot(); 3269 } 3270 3271 SmallVector<SDValue, 4> Values(NumValues); 3272 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3273 NumValues)); 3274 EVT PtrVT = Ptr.getValueType(); 3275 unsigned ChainI = 0; 3276 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3277 // Serializing loads here may result in excessive register pressure, and 3278 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3279 // could recover a bit by hoisting nodes upward in the chain by recognizing 3280 // they are side-effect free or do not alias. The optimizer should really 3281 // avoid this case by converting large object/array copies to llvm.memcpy 3282 // (MaxParallelChains should always remain as failsafe). 3283 if (ChainI == MaxParallelChains) { 3284 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3285 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3286 MVT::Other, &Chains[0], ChainI); 3287 Root = Chain; 3288 ChainI = 0; 3289 } 3290 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3291 PtrVT, Ptr, 3292 DAG.getConstant(Offsets[i], PtrVT)); 3293 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3294 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3295 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3296 Ranges); 3297 3298 Values[i] = L; 3299 Chains[ChainI] = L.getValue(1); 3300 } 3301 3302 if (!ConstantMemory) { 3303 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3304 MVT::Other, &Chains[0], ChainI); 3305 if (isVolatile) 3306 DAG.setRoot(Chain); 3307 else 3308 PendingLoads.push_back(Chain); 3309 } 3310 3311 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3312 DAG.getVTList(&ValueVTs[0], NumValues), 3313 &Values[0], NumValues)); 3314} 3315 3316void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3317 if (I.isAtomic()) 3318 return visitAtomicStore(I); 3319 3320 const Value *SrcV = I.getOperand(0); 3321 const Value *PtrV = I.getOperand(1); 3322 3323 SmallVector<EVT, 4> ValueVTs; 3324 SmallVector<uint64_t, 4> Offsets; 3325 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3326 unsigned NumValues = ValueVTs.size(); 3327 if (NumValues == 0) 3328 return; 3329 3330 // Get the lowered operands. Note that we do this after 3331 // checking if NumResults is zero, because with zero results 3332 // the operands won't have values in the map. 3333 SDValue Src = getValue(SrcV); 3334 SDValue Ptr = getValue(PtrV); 3335 3336 SDValue Root = getRoot(); 3337 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3338 NumValues)); 3339 EVT PtrVT = Ptr.getValueType(); 3340 bool isVolatile = I.isVolatile(); 3341 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3342 unsigned Alignment = I.getAlignment(); 3343 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3344 3345 unsigned ChainI = 0; 3346 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3347 // See visitLoad comments. 3348 if (ChainI == MaxParallelChains) { 3349 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3350 MVT::Other, &Chains[0], ChainI); 3351 Root = Chain; 3352 ChainI = 0; 3353 } 3354 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3355 DAG.getConstant(Offsets[i], PtrVT)); 3356 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3357 SDValue(Src.getNode(), Src.getResNo() + i), 3358 Add, MachinePointerInfo(PtrV, Offsets[i]), 3359 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3360 Chains[ChainI] = St; 3361 } 3362 3363 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3364 MVT::Other, &Chains[0], ChainI); 3365 ++SDNodeOrder; 3366 AssignOrderingToNode(StoreNode.getNode()); 3367 DAG.setRoot(StoreNode); 3368} 3369 3370static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3371 SynchronizationScope Scope, 3372 bool Before, DebugLoc dl, 3373 SelectionDAG &DAG, 3374 const TargetLowering &TLI) { 3375 // Fence, if necessary 3376 if (Before) { 3377 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3378 Order = Release; 3379 else if (Order == Acquire || Order == Monotonic) 3380 return Chain; 3381 } else { 3382 if (Order == AcquireRelease) 3383 Order = Acquire; 3384 else if (Order == Release || Order == Monotonic) 3385 return Chain; 3386 } 3387 SDValue Ops[3]; 3388 Ops[0] = Chain; 3389 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3390 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3391 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3392} 3393 3394void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3395 DebugLoc dl = getCurDebugLoc(); 3396 AtomicOrdering Order = I.getOrdering(); 3397 SynchronizationScope Scope = I.getSynchScope(); 3398 3399 SDValue InChain = getRoot(); 3400 3401 if (TLI.getInsertFencesForAtomic()) 3402 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3403 DAG, TLI); 3404 3405 SDValue L = 3406 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3407 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3408 InChain, 3409 getValue(I.getPointerOperand()), 3410 getValue(I.getCompareOperand()), 3411 getValue(I.getNewValOperand()), 3412 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3413 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3414 Scope); 3415 3416 SDValue OutChain = L.getValue(1); 3417 3418 if (TLI.getInsertFencesForAtomic()) 3419 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3420 DAG, TLI); 3421 3422 setValue(&I, L); 3423 DAG.setRoot(OutChain); 3424} 3425 3426void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3427 DebugLoc dl = getCurDebugLoc(); 3428 ISD::NodeType NT; 3429 switch (I.getOperation()) { 3430 default: llvm_unreachable("Unknown atomicrmw operation"); 3431 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3432 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3433 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3434 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3435 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3436 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3437 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3438 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3439 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3440 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3441 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3442 } 3443 AtomicOrdering Order = I.getOrdering(); 3444 SynchronizationScope Scope = I.getSynchScope(); 3445 3446 SDValue InChain = getRoot(); 3447 3448 if (TLI.getInsertFencesForAtomic()) 3449 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3450 DAG, TLI); 3451 3452 SDValue L = 3453 DAG.getAtomic(NT, dl, 3454 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3455 InChain, 3456 getValue(I.getPointerOperand()), 3457 getValue(I.getValOperand()), 3458 I.getPointerOperand(), 0 /* Alignment */, 3459 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3460 Scope); 3461 3462 SDValue OutChain = L.getValue(1); 3463 3464 if (TLI.getInsertFencesForAtomic()) 3465 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3466 DAG, TLI); 3467 3468 setValue(&I, L); 3469 DAG.setRoot(OutChain); 3470} 3471 3472void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3473 DebugLoc dl = getCurDebugLoc(); 3474 SDValue Ops[3]; 3475 Ops[0] = getRoot(); 3476 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3477 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3478 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3479} 3480 3481void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3482 DebugLoc dl = getCurDebugLoc(); 3483 AtomicOrdering Order = I.getOrdering(); 3484 SynchronizationScope Scope = I.getSynchScope(); 3485 3486 SDValue InChain = getRoot(); 3487 3488 EVT VT = TLI.getValueType(I.getType()); 3489 3490 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3491 report_fatal_error("Cannot generate unaligned atomic load"); 3492 3493 SDValue L = 3494 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3495 getValue(I.getPointerOperand()), 3496 I.getPointerOperand(), I.getAlignment(), 3497 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3498 Scope); 3499 3500 SDValue OutChain = L.getValue(1); 3501 3502 if (TLI.getInsertFencesForAtomic()) 3503 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3504 DAG, TLI); 3505 3506 setValue(&I, L); 3507 DAG.setRoot(OutChain); 3508} 3509 3510void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3511 DebugLoc dl = getCurDebugLoc(); 3512 3513 AtomicOrdering Order = I.getOrdering(); 3514 SynchronizationScope Scope = I.getSynchScope(); 3515 3516 SDValue InChain = getRoot(); 3517 3518 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3519 3520 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3521 report_fatal_error("Cannot generate unaligned atomic store"); 3522 3523 if (TLI.getInsertFencesForAtomic()) 3524 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3525 DAG, TLI); 3526 3527 SDValue OutChain = 3528 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3529 InChain, 3530 getValue(I.getPointerOperand()), 3531 getValue(I.getValueOperand()), 3532 I.getPointerOperand(), I.getAlignment(), 3533 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3534 Scope); 3535 3536 if (TLI.getInsertFencesForAtomic()) 3537 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3538 DAG, TLI); 3539 3540 DAG.setRoot(OutChain); 3541} 3542 3543/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3544/// node. 3545void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3546 unsigned Intrinsic) { 3547 bool HasChain = !I.doesNotAccessMemory(); 3548 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3549 3550 // Build the operand list. 3551 SmallVector<SDValue, 8> Ops; 3552 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3553 if (OnlyLoad) { 3554 // We don't need to serialize loads against other loads. 3555 Ops.push_back(DAG.getRoot()); 3556 } else { 3557 Ops.push_back(getRoot()); 3558 } 3559 } 3560 3561 // Info is set by getTgtMemInstrinsic 3562 TargetLowering::IntrinsicInfo Info; 3563 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3564 3565 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3566 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3567 Info.opc == ISD::INTRINSIC_W_CHAIN) 3568 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3569 3570 // Add all operands of the call to the operand list. 3571 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3572 SDValue Op = getValue(I.getArgOperand(i)); 3573 Ops.push_back(Op); 3574 } 3575 3576 SmallVector<EVT, 4> ValueVTs; 3577 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3578 3579 if (HasChain) 3580 ValueVTs.push_back(MVT::Other); 3581 3582 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3583 3584 // Create the node. 3585 SDValue Result; 3586 if (IsTgtIntrinsic) { 3587 // This is target intrinsic that touches memory 3588 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3589 VTs, &Ops[0], Ops.size(), 3590 Info.memVT, 3591 MachinePointerInfo(Info.ptrVal, Info.offset), 3592 Info.align, Info.vol, 3593 Info.readMem, Info.writeMem); 3594 } else if (!HasChain) { 3595 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3596 VTs, &Ops[0], Ops.size()); 3597 } else if (!I.getType()->isVoidTy()) { 3598 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3599 VTs, &Ops[0], Ops.size()); 3600 } else { 3601 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3602 VTs, &Ops[0], Ops.size()); 3603 } 3604 3605 if (HasChain) { 3606 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3607 if (OnlyLoad) 3608 PendingLoads.push_back(Chain); 3609 else 3610 DAG.setRoot(Chain); 3611 } 3612 3613 if (!I.getType()->isVoidTy()) { 3614 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3615 EVT VT = TLI.getValueType(PTy); 3616 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3617 } 3618 3619 setValue(&I, Result); 3620 } else { 3621 // Assign order to result here. If the intrinsic does not produce a result, 3622 // it won't be mapped to a SDNode and visit() will not assign it an order 3623 // number. 3624 ++SDNodeOrder; 3625 AssignOrderingToNode(Result.getNode()); 3626 } 3627} 3628 3629/// GetSignificand - Get the significand and build it into a floating-point 3630/// number with exponent of 1: 3631/// 3632/// Op = (Op & 0x007fffff) | 0x3f800000; 3633/// 3634/// where Op is the hexidecimal representation of floating point value. 3635static SDValue 3636GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3637 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3638 DAG.getConstant(0x007fffff, MVT::i32)); 3639 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3640 DAG.getConstant(0x3f800000, MVT::i32)); 3641 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3642} 3643 3644/// GetExponent - Get the exponent: 3645/// 3646/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3647/// 3648/// where Op is the hexidecimal representation of floating point value. 3649static SDValue 3650GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3651 DebugLoc dl) { 3652 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3653 DAG.getConstant(0x7f800000, MVT::i32)); 3654 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3655 DAG.getConstant(23, TLI.getPointerTy())); 3656 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3657 DAG.getConstant(127, MVT::i32)); 3658 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3659} 3660 3661/// getF32Constant - Get 32-bit floating point constant. 3662static SDValue 3663getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3664 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3665} 3666 3667/// visitExp - Lower an exp intrinsic. Handles the special sequences for 3668/// limited-precision mode. 3669void 3670SelectionDAGBuilder::visitExp(const CallInst &I) { 3671 SDValue result; 3672 DebugLoc dl = getCurDebugLoc(); 3673 3674 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3675 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3676 SDValue Op = getValue(I.getArgOperand(0)); 3677 3678 // Put the exponent in the right bit position for later addition to the 3679 // final result: 3680 // 3681 // #define LOG2OFe 1.4426950f 3682 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3683 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3684 getF32Constant(DAG, 0x3fb8aa3b)); 3685 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3686 3687 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3688 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3689 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3690 3691 // IntegerPartOfX <<= 23; 3692 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3693 DAG.getConstant(23, TLI.getPointerTy())); 3694 3695 if (LimitFloatPrecision <= 6) { 3696 // For floating-point precision of 6: 3697 // 3698 // TwoToFractionalPartOfX = 3699 // 0.997535578f + 3700 // (0.735607626f + 0.252464424f * x) * x; 3701 // 3702 // error 0.0144103317, which is 6 bits 3703 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3704 getF32Constant(DAG, 0x3e814304)); 3705 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3706 getF32Constant(DAG, 0x3f3c50c8)); 3707 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3708 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3709 getF32Constant(DAG, 0x3f7f5e7e)); 3710 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3711 3712 // Add the exponent into the result in integer domain. 3713 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3714 TwoToFracPartOfX, IntegerPartOfX); 3715 3716 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3717 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3718 // For floating-point precision of 12: 3719 // 3720 // TwoToFractionalPartOfX = 3721 // 0.999892986f + 3722 // (0.696457318f + 3723 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3724 // 3725 // 0.000107046256 error, which is 13 to 14 bits 3726 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3727 getF32Constant(DAG, 0x3da235e3)); 3728 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3729 getF32Constant(DAG, 0x3e65b8f3)); 3730 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3731 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3732 getF32Constant(DAG, 0x3f324b07)); 3733 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3734 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3735 getF32Constant(DAG, 0x3f7ff8fd)); 3736 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3737 3738 // Add the exponent into the result in integer domain. 3739 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3740 TwoToFracPartOfX, IntegerPartOfX); 3741 3742 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3743 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3744 // For floating-point precision of 18: 3745 // 3746 // TwoToFractionalPartOfX = 3747 // 0.999999982f + 3748 // (0.693148872f + 3749 // (0.240227044f + 3750 // (0.554906021e-1f + 3751 // (0.961591928e-2f + 3752 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3753 // 3754 // error 2.47208000*10^(-7), which is better than 18 bits 3755 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3756 getF32Constant(DAG, 0x3924b03e)); 3757 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3758 getF32Constant(DAG, 0x3ab24b87)); 3759 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3760 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3761 getF32Constant(DAG, 0x3c1d8c17)); 3762 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3763 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3764 getF32Constant(DAG, 0x3d634a1d)); 3765 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3766 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3767 getF32Constant(DAG, 0x3e75fe14)); 3768 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3769 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3770 getF32Constant(DAG, 0x3f317234)); 3771 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3772 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3773 getF32Constant(DAG, 0x3f800000)); 3774 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3775 MVT::i32, t13); 3776 3777 // Add the exponent into the result in integer domain. 3778 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3779 TwoToFracPartOfX, IntegerPartOfX); 3780 3781 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3782 } 3783 } else { 3784 // No special expansion. 3785 result = DAG.getNode(ISD::FEXP, dl, 3786 getValue(I.getArgOperand(0)).getValueType(), 3787 getValue(I.getArgOperand(0))); 3788 } 3789 3790 setValue(&I, result); 3791} 3792 3793/// visitLog - Lower a log intrinsic. Handles the special sequences for 3794/// limited-precision mode. 3795void 3796SelectionDAGBuilder::visitLog(const CallInst &I) { 3797 SDValue result; 3798 DebugLoc dl = getCurDebugLoc(); 3799 3800 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3801 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3802 SDValue Op = getValue(I.getArgOperand(0)); 3803 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3804 3805 // Scale the exponent by log(2) [0.69314718f]. 3806 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3807 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3808 getF32Constant(DAG, 0x3f317218)); 3809 3810 // Get the significand and build it into a floating-point number with 3811 // exponent of 1. 3812 SDValue X = GetSignificand(DAG, Op1, dl); 3813 3814 if (LimitFloatPrecision <= 6) { 3815 // For floating-point precision of 6: 3816 // 3817 // LogofMantissa = 3818 // -1.1609546f + 3819 // (1.4034025f - 0.23903021f * x) * x; 3820 // 3821 // error 0.0034276066, which is better than 8 bits 3822 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3823 getF32Constant(DAG, 0xbe74c456)); 3824 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3825 getF32Constant(DAG, 0x3fb3a2b1)); 3826 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3827 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3828 getF32Constant(DAG, 0x3f949a29)); 3829 3830 result = DAG.getNode(ISD::FADD, dl, 3831 MVT::f32, LogOfExponent, LogOfMantissa); 3832 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3833 // For floating-point precision of 12: 3834 // 3835 // LogOfMantissa = 3836 // -1.7417939f + 3837 // (2.8212026f + 3838 // (-1.4699568f + 3839 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3840 // 3841 // error 0.000061011436, which is 14 bits 3842 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3843 getF32Constant(DAG, 0xbd67b6d6)); 3844 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3845 getF32Constant(DAG, 0x3ee4f4b8)); 3846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3847 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3848 getF32Constant(DAG, 0x3fbc278b)); 3849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3850 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3851 getF32Constant(DAG, 0x40348e95)); 3852 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3853 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3854 getF32Constant(DAG, 0x3fdef31a)); 3855 3856 result = DAG.getNode(ISD::FADD, dl, 3857 MVT::f32, LogOfExponent, LogOfMantissa); 3858 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3859 // For floating-point precision of 18: 3860 // 3861 // LogOfMantissa = 3862 // -2.1072184f + 3863 // (4.2372794f + 3864 // (-3.7029485f + 3865 // (2.2781945f + 3866 // (-0.87823314f + 3867 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3868 // 3869 // error 0.0000023660568, which is better than 18 bits 3870 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3871 getF32Constant(DAG, 0xbc91e5ac)); 3872 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3873 getF32Constant(DAG, 0x3e4350aa)); 3874 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3875 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3876 getF32Constant(DAG, 0x3f60d3e3)); 3877 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3878 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3879 getF32Constant(DAG, 0x4011cdf0)); 3880 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3881 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3882 getF32Constant(DAG, 0x406cfd1c)); 3883 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3884 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3885 getF32Constant(DAG, 0x408797cb)); 3886 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3887 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3888 getF32Constant(DAG, 0x4006dcab)); 3889 3890 result = DAG.getNode(ISD::FADD, dl, 3891 MVT::f32, LogOfExponent, LogOfMantissa); 3892 } 3893 } else { 3894 // No special expansion. 3895 result = DAG.getNode(ISD::FLOG, dl, 3896 getValue(I.getArgOperand(0)).getValueType(), 3897 getValue(I.getArgOperand(0))); 3898 } 3899 3900 setValue(&I, result); 3901} 3902 3903/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3904/// limited-precision mode. 3905void 3906SelectionDAGBuilder::visitLog2(const CallInst &I) { 3907 SDValue result; 3908 DebugLoc dl = getCurDebugLoc(); 3909 3910 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3911 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3912 SDValue Op = getValue(I.getArgOperand(0)); 3913 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3914 3915 // Get the exponent. 3916 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3917 3918 // Get the significand and build it into a floating-point number with 3919 // exponent of 1. 3920 SDValue X = GetSignificand(DAG, Op1, dl); 3921 3922 // Different possible minimax approximations of significand in 3923 // floating-point for various degrees of accuracy over [1,2]. 3924 if (LimitFloatPrecision <= 6) { 3925 // For floating-point precision of 6: 3926 // 3927 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3928 // 3929 // error 0.0049451742, which is more than 7 bits 3930 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0xbeb08fe0)); 3932 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3933 getF32Constant(DAG, 0x40019463)); 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3935 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x3fd6633d)); 3937 3938 result = DAG.getNode(ISD::FADD, dl, 3939 MVT::f32, LogOfExponent, Log2ofMantissa); 3940 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3941 // For floating-point precision of 12: 3942 // 3943 // Log2ofMantissa = 3944 // -2.51285454f + 3945 // (4.07009056f + 3946 // (-2.12067489f + 3947 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3948 // 3949 // error 0.0000876136000, which is better than 13 bits 3950 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3951 getF32Constant(DAG, 0xbda7262e)); 3952 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3953 getF32Constant(DAG, 0x3f25280b)); 3954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3955 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3956 getF32Constant(DAG, 0x4007b923)); 3957 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3958 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3959 getF32Constant(DAG, 0x40823e2f)); 3960 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3961 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3962 getF32Constant(DAG, 0x4020d29c)); 3963 3964 result = DAG.getNode(ISD::FADD, dl, 3965 MVT::f32, LogOfExponent, Log2ofMantissa); 3966 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3967 // For floating-point precision of 18: 3968 // 3969 // Log2ofMantissa = 3970 // -3.0400495f + 3971 // (6.1129976f + 3972 // (-5.3420409f + 3973 // (3.2865683f + 3974 // (-1.2669343f + 3975 // (0.27515199f - 3976 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3977 // 3978 // error 0.0000018516, which is better than 18 bits 3979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3980 getF32Constant(DAG, 0xbcd2769e)); 3981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3982 getF32Constant(DAG, 0x3e8ce0b9)); 3983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3985 getF32Constant(DAG, 0x3fa22ae7)); 3986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3988 getF32Constant(DAG, 0x40525723)); 3989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3990 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3991 getF32Constant(DAG, 0x40aaf200)); 3992 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3993 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3994 getF32Constant(DAG, 0x40c39dad)); 3995 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3996 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3997 getF32Constant(DAG, 0x4042902c)); 3998 3999 result = DAG.getNode(ISD::FADD, dl, 4000 MVT::f32, LogOfExponent, Log2ofMantissa); 4001 } 4002 } else { 4003 // No special expansion. 4004 result = DAG.getNode(ISD::FLOG2, dl, 4005 getValue(I.getArgOperand(0)).getValueType(), 4006 getValue(I.getArgOperand(0))); 4007 } 4008 4009 setValue(&I, result); 4010} 4011 4012/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 4013/// limited-precision mode. 4014void 4015SelectionDAGBuilder::visitLog10(const CallInst &I) { 4016 SDValue result; 4017 DebugLoc dl = getCurDebugLoc(); 4018 4019 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4020 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4021 SDValue Op = getValue(I.getArgOperand(0)); 4022 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4023 4024 // Scale the exponent by log10(2) [0.30102999f]. 4025 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4026 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4027 getF32Constant(DAG, 0x3e9a209a)); 4028 4029 // Get the significand and build it into a floating-point number with 4030 // exponent of 1. 4031 SDValue X = GetSignificand(DAG, Op1, dl); 4032 4033 if (LimitFloatPrecision <= 6) { 4034 // For floating-point precision of 6: 4035 // 4036 // Log10ofMantissa = 4037 // -0.50419619f + 4038 // (0.60948995f - 0.10380950f * x) * x; 4039 // 4040 // error 0.0014886165, which is 6 bits 4041 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4042 getF32Constant(DAG, 0xbdd49a13)); 4043 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4044 getF32Constant(DAG, 0x3f1c0789)); 4045 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4046 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4047 getF32Constant(DAG, 0x3f011300)); 4048 4049 result = DAG.getNode(ISD::FADD, dl, 4050 MVT::f32, LogOfExponent, Log10ofMantissa); 4051 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4052 // For floating-point precision of 12: 4053 // 4054 // Log10ofMantissa = 4055 // -0.64831180f + 4056 // (0.91751397f + 4057 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4058 // 4059 // error 0.00019228036, which is better than 12 bits 4060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4061 getF32Constant(DAG, 0x3d431f31)); 4062 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4063 getF32Constant(DAG, 0x3ea21fb2)); 4064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4065 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4066 getF32Constant(DAG, 0x3f6ae232)); 4067 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4068 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4069 getF32Constant(DAG, 0x3f25f7c3)); 4070 4071 result = DAG.getNode(ISD::FADD, dl, 4072 MVT::f32, LogOfExponent, Log10ofMantissa); 4073 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4074 // For floating-point precision of 18: 4075 // 4076 // Log10ofMantissa = 4077 // -0.84299375f + 4078 // (1.5327582f + 4079 // (-1.0688956f + 4080 // (0.49102474f + 4081 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4082 // 4083 // error 0.0000037995730, which is better than 18 bits 4084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4085 getF32Constant(DAG, 0x3c5d51ce)); 4086 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4087 getF32Constant(DAG, 0x3e00685a)); 4088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4089 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4090 getF32Constant(DAG, 0x3efb6798)); 4091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4092 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4093 getF32Constant(DAG, 0x3f88d192)); 4094 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4095 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4096 getF32Constant(DAG, 0x3fc4316c)); 4097 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4098 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4099 getF32Constant(DAG, 0x3f57ce70)); 4100 4101 result = DAG.getNode(ISD::FADD, dl, 4102 MVT::f32, LogOfExponent, Log10ofMantissa); 4103 } 4104 } else { 4105 // No special expansion. 4106 result = DAG.getNode(ISD::FLOG10, dl, 4107 getValue(I.getArgOperand(0)).getValueType(), 4108 getValue(I.getArgOperand(0))); 4109 } 4110 4111 setValue(&I, result); 4112} 4113 4114/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4115/// limited-precision mode. 4116void 4117SelectionDAGBuilder::visitExp2(const CallInst &I) { 4118 SDValue result; 4119 DebugLoc dl = getCurDebugLoc(); 4120 4121 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4122 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4123 SDValue Op = getValue(I.getArgOperand(0)); 4124 4125 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4126 4127 // FractionalPartOfX = x - (float)IntegerPartOfX; 4128 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4129 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4130 4131 // IntegerPartOfX <<= 23; 4132 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4133 DAG.getConstant(23, TLI.getPointerTy())); 4134 4135 if (LimitFloatPrecision <= 6) { 4136 // For floating-point precision of 6: 4137 // 4138 // TwoToFractionalPartOfX = 4139 // 0.997535578f + 4140 // (0.735607626f + 0.252464424f * x) * x; 4141 // 4142 // error 0.0144103317, which is 6 bits 4143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4144 getF32Constant(DAG, 0x3e814304)); 4145 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4146 getF32Constant(DAG, 0x3f3c50c8)); 4147 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4148 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4149 getF32Constant(DAG, 0x3f7f5e7e)); 4150 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4151 SDValue TwoToFractionalPartOfX = 4152 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4153 4154 result = DAG.getNode(ISD::BITCAST, dl, 4155 MVT::f32, TwoToFractionalPartOfX); 4156 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4157 // For floating-point precision of 12: 4158 // 4159 // TwoToFractionalPartOfX = 4160 // 0.999892986f + 4161 // (0.696457318f + 4162 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4163 // 4164 // error 0.000107046256, which is 13 to 14 bits 4165 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4166 getF32Constant(DAG, 0x3da235e3)); 4167 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4168 getF32Constant(DAG, 0x3e65b8f3)); 4169 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4170 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4171 getF32Constant(DAG, 0x3f324b07)); 4172 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4173 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4174 getF32Constant(DAG, 0x3f7ff8fd)); 4175 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4176 SDValue TwoToFractionalPartOfX = 4177 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4178 4179 result = DAG.getNode(ISD::BITCAST, dl, 4180 MVT::f32, TwoToFractionalPartOfX); 4181 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4182 // For floating-point precision of 18: 4183 // 4184 // TwoToFractionalPartOfX = 4185 // 0.999999982f + 4186 // (0.693148872f + 4187 // (0.240227044f + 4188 // (0.554906021e-1f + 4189 // (0.961591928e-2f + 4190 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4191 // error 2.47208000*10^(-7), which is better than 18 bits 4192 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4193 getF32Constant(DAG, 0x3924b03e)); 4194 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4195 getF32Constant(DAG, 0x3ab24b87)); 4196 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4197 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4198 getF32Constant(DAG, 0x3c1d8c17)); 4199 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4200 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4201 getF32Constant(DAG, 0x3d634a1d)); 4202 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4203 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4204 getF32Constant(DAG, 0x3e75fe14)); 4205 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4206 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4207 getF32Constant(DAG, 0x3f317234)); 4208 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4209 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4210 getF32Constant(DAG, 0x3f800000)); 4211 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4212 SDValue TwoToFractionalPartOfX = 4213 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4214 4215 result = DAG.getNode(ISD::BITCAST, dl, 4216 MVT::f32, TwoToFractionalPartOfX); 4217 } 4218 } else { 4219 // No special expansion. 4220 result = DAG.getNode(ISD::FEXP2, dl, 4221 getValue(I.getArgOperand(0)).getValueType(), 4222 getValue(I.getArgOperand(0))); 4223 } 4224 4225 setValue(&I, result); 4226} 4227 4228/// visitPow - Lower a pow intrinsic. Handles the special sequences for 4229/// limited-precision mode with x == 10.0f. 4230void 4231SelectionDAGBuilder::visitPow(const CallInst &I) { 4232 SDValue result; 4233 const Value *Val = I.getArgOperand(0); 4234 DebugLoc dl = getCurDebugLoc(); 4235 bool IsExp10 = false; 4236 4237 if (getValue(Val).getValueType() == MVT::f32 && 4238 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4239 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4240 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4241 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4242 APFloat Ten(10.0f); 4243 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4244 } 4245 } 4246 } 4247 4248 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4249 SDValue Op = getValue(I.getArgOperand(1)); 4250 4251 // Put the exponent in the right bit position for later addition to the 4252 // final result: 4253 // 4254 // #define LOG2OF10 3.3219281f 4255 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4256 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4257 getF32Constant(DAG, 0x40549a78)); 4258 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4259 4260 // FractionalPartOfX = x - (float)IntegerPartOfX; 4261 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4262 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4263 4264 // IntegerPartOfX <<= 23; 4265 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4266 DAG.getConstant(23, TLI.getPointerTy())); 4267 4268 if (LimitFloatPrecision <= 6) { 4269 // For floating-point precision of 6: 4270 // 4271 // twoToFractionalPartOfX = 4272 // 0.997535578f + 4273 // (0.735607626f + 0.252464424f * x) * x; 4274 // 4275 // error 0.0144103317, which is 6 bits 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0x3e814304)); 4278 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4279 getF32Constant(DAG, 0x3f3c50c8)); 4280 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4281 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4282 getF32Constant(DAG, 0x3f7f5e7e)); 4283 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4284 SDValue TwoToFractionalPartOfX = 4285 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4286 4287 result = DAG.getNode(ISD::BITCAST, dl, 4288 MVT::f32, TwoToFractionalPartOfX); 4289 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4290 // For floating-point precision of 12: 4291 // 4292 // TwoToFractionalPartOfX = 4293 // 0.999892986f + 4294 // (0.696457318f + 4295 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4296 // 4297 // error 0.000107046256, which is 13 to 14 bits 4298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4299 getF32Constant(DAG, 0x3da235e3)); 4300 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4301 getF32Constant(DAG, 0x3e65b8f3)); 4302 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4303 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4304 getF32Constant(DAG, 0x3f324b07)); 4305 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4306 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4307 getF32Constant(DAG, 0x3f7ff8fd)); 4308 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4309 SDValue TwoToFractionalPartOfX = 4310 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4311 4312 result = DAG.getNode(ISD::BITCAST, dl, 4313 MVT::f32, TwoToFractionalPartOfX); 4314 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4315 // For floating-point precision of 18: 4316 // 4317 // TwoToFractionalPartOfX = 4318 // 0.999999982f + 4319 // (0.693148872f + 4320 // (0.240227044f + 4321 // (0.554906021e-1f + 4322 // (0.961591928e-2f + 4323 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4324 // error 2.47208000*10^(-7), which is better than 18 bits 4325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4326 getF32Constant(DAG, 0x3924b03e)); 4327 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3ab24b87)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x3c1d8c17)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3d634a1d)); 4335 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4336 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4337 getF32Constant(DAG, 0x3e75fe14)); 4338 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4339 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4340 getF32Constant(DAG, 0x3f317234)); 4341 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4342 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4343 getF32Constant(DAG, 0x3f800000)); 4344 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4345 SDValue TwoToFractionalPartOfX = 4346 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4347 4348 result = DAG.getNode(ISD::BITCAST, dl, 4349 MVT::f32, TwoToFractionalPartOfX); 4350 } 4351 } else { 4352 // No special expansion. 4353 result = DAG.getNode(ISD::FPOW, dl, 4354 getValue(I.getArgOperand(0)).getValueType(), 4355 getValue(I.getArgOperand(0)), 4356 getValue(I.getArgOperand(1))); 4357 } 4358 4359 setValue(&I, result); 4360} 4361 4362 4363/// ExpandPowI - Expand a llvm.powi intrinsic. 4364static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4365 SelectionDAG &DAG) { 4366 // If RHS is a constant, we can expand this out to a multiplication tree, 4367 // otherwise we end up lowering to a call to __powidf2 (for example). When 4368 // optimizing for size, we only want to do this if the expansion would produce 4369 // a small number of multiplies, otherwise we do the full expansion. 4370 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4371 // Get the exponent as a positive value. 4372 unsigned Val = RHSC->getSExtValue(); 4373 if ((int)Val < 0) Val = -Val; 4374 4375 // powi(x, 0) -> 1.0 4376 if (Val == 0) 4377 return DAG.getConstantFP(1.0, LHS.getValueType()); 4378 4379 const Function *F = DAG.getMachineFunction().getFunction(); 4380 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4381 // If optimizing for size, don't insert too many multiplies. This 4382 // inserts up to 5 multiplies. 4383 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4384 // We use the simple binary decomposition method to generate the multiply 4385 // sequence. There are more optimal ways to do this (for example, 4386 // powi(x,15) generates one more multiply than it should), but this has 4387 // the benefit of being both really simple and much better than a libcall. 4388 SDValue Res; // Logically starts equal to 1.0 4389 SDValue CurSquare = LHS; 4390 while (Val) { 4391 if (Val & 1) { 4392 if (Res.getNode()) 4393 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4394 else 4395 Res = CurSquare; // 1.0*CurSquare. 4396 } 4397 4398 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4399 CurSquare, CurSquare); 4400 Val >>= 1; 4401 } 4402 4403 // If the original was negative, invert the result, producing 1/(x*x*x). 4404 if (RHSC->getSExtValue() < 0) 4405 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4406 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4407 return Res; 4408 } 4409 } 4410 4411 // Otherwise, expand to a libcall. 4412 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4413} 4414 4415// getTruncatedArgReg - Find underlying register used for an truncated 4416// argument. 4417static unsigned getTruncatedArgReg(const SDValue &N) { 4418 if (N.getOpcode() != ISD::TRUNCATE) 4419 return 0; 4420 4421 const SDValue &Ext = N.getOperand(0); 4422 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4423 const SDValue &CFR = Ext.getOperand(0); 4424 if (CFR.getOpcode() == ISD::CopyFromReg) 4425 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4426 if (CFR.getOpcode() == ISD::TRUNCATE) 4427 return getTruncatedArgReg(CFR); 4428 } 4429 return 0; 4430} 4431 4432/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4433/// argument, create the corresponding DBG_VALUE machine instruction for it now. 4434/// At the end of instruction selection, they will be inserted to the entry BB. 4435bool 4436SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4437 int64_t Offset, 4438 const SDValue &N) { 4439 const Argument *Arg = dyn_cast<Argument>(V); 4440 if (!Arg) 4441 return false; 4442 4443 MachineFunction &MF = DAG.getMachineFunction(); 4444 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4445 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4446 4447 // Ignore inlined function arguments here. 4448 DIVariable DV(Variable); 4449 if (DV.isInlinedFnArgument(MF.getFunction())) 4450 return false; 4451 4452 unsigned Reg = 0; 4453 // Some arguments' frame index is recorded during argument lowering. 4454 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4455 if (Offset) 4456 Reg = TRI->getFrameRegister(MF); 4457 4458 if (!Reg && N.getNode()) { 4459 if (N.getOpcode() == ISD::CopyFromReg) 4460 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4461 else 4462 Reg = getTruncatedArgReg(N); 4463 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4464 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4465 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4466 if (PR) 4467 Reg = PR; 4468 } 4469 } 4470 4471 if (!Reg) { 4472 // Check if ValueMap has reg number. 4473 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4474 if (VMI != FuncInfo.ValueMap.end()) 4475 Reg = VMI->second; 4476 } 4477 4478 if (!Reg && N.getNode()) { 4479 // Check if frame index is available. 4480 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4481 if (FrameIndexSDNode *FINode = 4482 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4483 Reg = TRI->getFrameRegister(MF); 4484 Offset = FINode->getIndex(); 4485 } 4486 } 4487 4488 if (!Reg) 4489 return false; 4490 4491 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4492 TII->get(TargetOpcode::DBG_VALUE)) 4493 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4494 FuncInfo.ArgDbgValues.push_back(&*MIB); 4495 return true; 4496} 4497 4498// VisualStudio defines setjmp as _setjmp 4499#if defined(_MSC_VER) && defined(setjmp) && \ 4500 !defined(setjmp_undefined_for_msvc) 4501# pragma push_macro("setjmp") 4502# undef setjmp 4503# define setjmp_undefined_for_msvc 4504#endif 4505 4506/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4507/// we want to emit this as a call to a named external function, return the name 4508/// otherwise lower it and return null. 4509const char * 4510SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4511 DebugLoc dl = getCurDebugLoc(); 4512 SDValue Res; 4513 4514 switch (Intrinsic) { 4515 default: 4516 // By default, turn this into a target intrinsic node. 4517 visitTargetIntrinsic(I, Intrinsic); 4518 return 0; 4519 case Intrinsic::vastart: visitVAStart(I); return 0; 4520 case Intrinsic::vaend: visitVAEnd(I); return 0; 4521 case Intrinsic::vacopy: visitVACopy(I); return 0; 4522 case Intrinsic::returnaddress: 4523 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4524 getValue(I.getArgOperand(0)))); 4525 return 0; 4526 case Intrinsic::frameaddress: 4527 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4528 getValue(I.getArgOperand(0)))); 4529 return 0; 4530 case Intrinsic::setjmp: 4531 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4532 case Intrinsic::longjmp: 4533 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4534 case Intrinsic::memcpy: { 4535 // Assert for address < 256 since we support only user defined address 4536 // spaces. 4537 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4538 < 256 && 4539 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4540 < 256 && 4541 "Unknown address space"); 4542 SDValue Op1 = getValue(I.getArgOperand(0)); 4543 SDValue Op2 = getValue(I.getArgOperand(1)); 4544 SDValue Op3 = getValue(I.getArgOperand(2)); 4545 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4546 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4547 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4548 MachinePointerInfo(I.getArgOperand(0)), 4549 MachinePointerInfo(I.getArgOperand(1)))); 4550 return 0; 4551 } 4552 case Intrinsic::memset: { 4553 // Assert for address < 256 since we support only user defined address 4554 // spaces. 4555 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4556 < 256 && 4557 "Unknown address space"); 4558 SDValue Op1 = getValue(I.getArgOperand(0)); 4559 SDValue Op2 = getValue(I.getArgOperand(1)); 4560 SDValue Op3 = getValue(I.getArgOperand(2)); 4561 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4562 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4563 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4564 MachinePointerInfo(I.getArgOperand(0)))); 4565 return 0; 4566 } 4567 case Intrinsic::memmove: { 4568 // Assert for address < 256 since we support only user defined address 4569 // spaces. 4570 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4571 < 256 && 4572 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4573 < 256 && 4574 "Unknown address space"); 4575 SDValue Op1 = getValue(I.getArgOperand(0)); 4576 SDValue Op2 = getValue(I.getArgOperand(1)); 4577 SDValue Op3 = getValue(I.getArgOperand(2)); 4578 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4579 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4580 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4581 MachinePointerInfo(I.getArgOperand(0)), 4582 MachinePointerInfo(I.getArgOperand(1)))); 4583 return 0; 4584 } 4585 case Intrinsic::dbg_declare: { 4586 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4587 MDNode *Variable = DI.getVariable(); 4588 const Value *Address = DI.getAddress(); 4589 if (!Address || !DIVariable(Variable).Verify()) { 4590 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4591 return 0; 4592 } 4593 4594 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4595 // but do not always have a corresponding SDNode built. The SDNodeOrder 4596 // absolute, but not relative, values are different depending on whether 4597 // debug info exists. 4598 ++SDNodeOrder; 4599 4600 // Check if address has undef value. 4601 if (isa<UndefValue>(Address) || 4602 (Address->use_empty() && !isa<Argument>(Address))) { 4603 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4604 return 0; 4605 } 4606 4607 SDValue &N = NodeMap[Address]; 4608 if (!N.getNode() && isa<Argument>(Address)) 4609 // Check unused arguments map. 4610 N = UnusedArgNodeMap[Address]; 4611 SDDbgValue *SDV; 4612 if (N.getNode()) { 4613 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4614 Address = BCI->getOperand(0); 4615 // Parameters are handled specially. 4616 bool isParameter = 4617 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4618 isa<Argument>(Address)); 4619 4620 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4621 4622 if (isParameter && !AI) { 4623 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4624 if (FINode) 4625 // Byval parameter. We have a frame index at this point. 4626 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4627 0, dl, SDNodeOrder); 4628 else { 4629 // Address is an argument, so try to emit its dbg value using 4630 // virtual register info from the FuncInfo.ValueMap. 4631 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4632 return 0; 4633 } 4634 } else if (AI) 4635 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4636 0, dl, SDNodeOrder); 4637 else { 4638 // Can't do anything with other non-AI cases yet. 4639 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4640 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4641 DEBUG(Address->dump()); 4642 return 0; 4643 } 4644 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4645 } else { 4646 // If Address is an argument then try to emit its dbg value using 4647 // virtual register info from the FuncInfo.ValueMap. 4648 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4649 // If variable is pinned by a alloca in dominating bb then 4650 // use StaticAllocaMap. 4651 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4652 if (AI->getParent() != DI.getParent()) { 4653 DenseMap<const AllocaInst*, int>::iterator SI = 4654 FuncInfo.StaticAllocaMap.find(AI); 4655 if (SI != FuncInfo.StaticAllocaMap.end()) { 4656 SDV = DAG.getDbgValue(Variable, SI->second, 4657 0, dl, SDNodeOrder); 4658 DAG.AddDbgValue(SDV, 0, false); 4659 return 0; 4660 } 4661 } 4662 } 4663 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4664 } 4665 } 4666 return 0; 4667 } 4668 case Intrinsic::dbg_value: { 4669 const DbgValueInst &DI = cast<DbgValueInst>(I); 4670 if (!DIVariable(DI.getVariable()).Verify()) 4671 return 0; 4672 4673 MDNode *Variable = DI.getVariable(); 4674 uint64_t Offset = DI.getOffset(); 4675 const Value *V = DI.getValue(); 4676 if (!V) 4677 return 0; 4678 4679 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4680 // but do not always have a corresponding SDNode built. The SDNodeOrder 4681 // absolute, but not relative, values are different depending on whether 4682 // debug info exists. 4683 ++SDNodeOrder; 4684 SDDbgValue *SDV; 4685 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4686 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4687 DAG.AddDbgValue(SDV, 0, false); 4688 } else { 4689 // Do not use getValue() in here; we don't want to generate code at 4690 // this point if it hasn't been done yet. 4691 SDValue N = NodeMap[V]; 4692 if (!N.getNode() && isa<Argument>(V)) 4693 // Check unused arguments map. 4694 N = UnusedArgNodeMap[V]; 4695 if (N.getNode()) { 4696 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4697 SDV = DAG.getDbgValue(Variable, N.getNode(), 4698 N.getResNo(), Offset, dl, SDNodeOrder); 4699 DAG.AddDbgValue(SDV, N.getNode(), false); 4700 } 4701 } else if (!V->use_empty() ) { 4702 // Do not call getValue(V) yet, as we don't want to generate code. 4703 // Remember it for later. 4704 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4705 DanglingDebugInfoMap[V] = DDI; 4706 } else { 4707 // We may expand this to cover more cases. One case where we have no 4708 // data available is an unreferenced parameter. 4709 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4710 } 4711 } 4712 4713 // Build a debug info table entry. 4714 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4715 V = BCI->getOperand(0); 4716 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4717 // Don't handle byval struct arguments or VLAs, for example. 4718 if (!AI) { 4719 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4720 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4721 return 0; 4722 } 4723 DenseMap<const AllocaInst*, int>::iterator SI = 4724 FuncInfo.StaticAllocaMap.find(AI); 4725 if (SI == FuncInfo.StaticAllocaMap.end()) 4726 return 0; // VLAs. 4727 int FI = SI->second; 4728 4729 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4730 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4731 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4732 return 0; 4733 } 4734 4735 case Intrinsic::eh_typeid_for: { 4736 // Find the type id for the given typeinfo. 4737 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4738 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4739 Res = DAG.getConstant(TypeID, MVT::i32); 4740 setValue(&I, Res); 4741 return 0; 4742 } 4743 4744 case Intrinsic::eh_return_i32: 4745 case Intrinsic::eh_return_i64: 4746 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4747 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4748 MVT::Other, 4749 getControlRoot(), 4750 getValue(I.getArgOperand(0)), 4751 getValue(I.getArgOperand(1)))); 4752 return 0; 4753 case Intrinsic::eh_unwind_init: 4754 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4755 return 0; 4756 case Intrinsic::eh_dwarf_cfa: { 4757 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4758 TLI.getPointerTy()); 4759 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4760 TLI.getPointerTy(), 4761 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4762 TLI.getPointerTy()), 4763 CfaArg); 4764 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4765 TLI.getPointerTy(), 4766 DAG.getConstant(0, TLI.getPointerTy())); 4767 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4768 FA, Offset)); 4769 return 0; 4770 } 4771 case Intrinsic::eh_sjlj_callsite: { 4772 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4773 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4774 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4775 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4776 4777 MMI.setCurrentCallSite(CI->getZExtValue()); 4778 return 0; 4779 } 4780 case Intrinsic::eh_sjlj_functioncontext: { 4781 // Get and store the index of the function context. 4782 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4783 AllocaInst *FnCtx = 4784 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4785 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4786 MFI->setFunctionContextIndex(FI); 4787 return 0; 4788 } 4789 case Intrinsic::eh_sjlj_setjmp: { 4790 SDValue Ops[2]; 4791 Ops[0] = getRoot(); 4792 Ops[1] = getValue(I.getArgOperand(0)); 4793 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4794 DAG.getVTList(MVT::i32, MVT::Other), 4795 Ops, 2); 4796 setValue(&I, Op.getValue(0)); 4797 DAG.setRoot(Op.getValue(1)); 4798 return 0; 4799 } 4800 case Intrinsic::eh_sjlj_longjmp: { 4801 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4802 getRoot(), getValue(I.getArgOperand(0)))); 4803 return 0; 4804 } 4805 4806 case Intrinsic::x86_mmx_pslli_w: 4807 case Intrinsic::x86_mmx_pslli_d: 4808 case Intrinsic::x86_mmx_pslli_q: 4809 case Intrinsic::x86_mmx_psrli_w: 4810 case Intrinsic::x86_mmx_psrli_d: 4811 case Intrinsic::x86_mmx_psrli_q: 4812 case Intrinsic::x86_mmx_psrai_w: 4813 case Intrinsic::x86_mmx_psrai_d: { 4814 SDValue ShAmt = getValue(I.getArgOperand(1)); 4815 if (isa<ConstantSDNode>(ShAmt)) { 4816 visitTargetIntrinsic(I, Intrinsic); 4817 return 0; 4818 } 4819 unsigned NewIntrinsic = 0; 4820 EVT ShAmtVT = MVT::v2i32; 4821 switch (Intrinsic) { 4822 case Intrinsic::x86_mmx_pslli_w: 4823 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4824 break; 4825 case Intrinsic::x86_mmx_pslli_d: 4826 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4827 break; 4828 case Intrinsic::x86_mmx_pslli_q: 4829 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4830 break; 4831 case Intrinsic::x86_mmx_psrli_w: 4832 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4833 break; 4834 case Intrinsic::x86_mmx_psrli_d: 4835 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4836 break; 4837 case Intrinsic::x86_mmx_psrli_q: 4838 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4839 break; 4840 case Intrinsic::x86_mmx_psrai_w: 4841 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4842 break; 4843 case Intrinsic::x86_mmx_psrai_d: 4844 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4845 break; 4846 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4847 } 4848 4849 // The vector shift intrinsics with scalars uses 32b shift amounts but 4850 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4851 // to be zero. 4852 // We must do this early because v2i32 is not a legal type. 4853 DebugLoc dl = getCurDebugLoc(); 4854 SDValue ShOps[2]; 4855 ShOps[0] = ShAmt; 4856 ShOps[1] = DAG.getConstant(0, MVT::i32); 4857 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4858 EVT DestVT = TLI.getValueType(I.getType()); 4859 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4860 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4861 DAG.getConstant(NewIntrinsic, MVT::i32), 4862 getValue(I.getArgOperand(0)), ShAmt); 4863 setValue(&I, Res); 4864 return 0; 4865 } 4866 case Intrinsic::x86_avx_vinsertf128_pd_256: 4867 case Intrinsic::x86_avx_vinsertf128_ps_256: 4868 case Intrinsic::x86_avx_vinsertf128_si_256: 4869 case Intrinsic::x86_avx2_vinserti128: { 4870 DebugLoc dl = getCurDebugLoc(); 4871 EVT DestVT = TLI.getValueType(I.getType()); 4872 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4873 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4874 ElVT.getVectorNumElements(); 4875 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4876 getValue(I.getArgOperand(0)), 4877 getValue(I.getArgOperand(1)), 4878 DAG.getIntPtrConstant(Idx)); 4879 setValue(&I, Res); 4880 return 0; 4881 } 4882 case Intrinsic::x86_avx_vextractf128_pd_256: 4883 case Intrinsic::x86_avx_vextractf128_ps_256: 4884 case Intrinsic::x86_avx_vextractf128_si_256: 4885 case Intrinsic::x86_avx2_vextracti128: { 4886 DebugLoc dl = getCurDebugLoc(); 4887 EVT DestVT = TLI.getValueType(I.getType()); 4888 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4889 DestVT.getVectorNumElements(); 4890 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 4891 getValue(I.getArgOperand(0)), 4892 DAG.getIntPtrConstant(Idx)); 4893 setValue(&I, Res); 4894 return 0; 4895 } 4896 case Intrinsic::convertff: 4897 case Intrinsic::convertfsi: 4898 case Intrinsic::convertfui: 4899 case Intrinsic::convertsif: 4900 case Intrinsic::convertuif: 4901 case Intrinsic::convertss: 4902 case Intrinsic::convertsu: 4903 case Intrinsic::convertus: 4904 case Intrinsic::convertuu: { 4905 ISD::CvtCode Code = ISD::CVT_INVALID; 4906 switch (Intrinsic) { 4907 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4908 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4909 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4910 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4911 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4912 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4913 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4914 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4915 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4916 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4917 } 4918 EVT DestVT = TLI.getValueType(I.getType()); 4919 const Value *Op1 = I.getArgOperand(0); 4920 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4921 DAG.getValueType(DestVT), 4922 DAG.getValueType(getValue(Op1).getValueType()), 4923 getValue(I.getArgOperand(1)), 4924 getValue(I.getArgOperand(2)), 4925 Code); 4926 setValue(&I, Res); 4927 return 0; 4928 } 4929 case Intrinsic::sqrt: 4930 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4931 getValue(I.getArgOperand(0)).getValueType(), 4932 getValue(I.getArgOperand(0)))); 4933 return 0; 4934 case Intrinsic::powi: 4935 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4936 getValue(I.getArgOperand(1)), DAG)); 4937 return 0; 4938 case Intrinsic::sin: 4939 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4940 getValue(I.getArgOperand(0)).getValueType(), 4941 getValue(I.getArgOperand(0)))); 4942 return 0; 4943 case Intrinsic::cos: 4944 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4945 getValue(I.getArgOperand(0)).getValueType(), 4946 getValue(I.getArgOperand(0)))); 4947 return 0; 4948 case Intrinsic::log: 4949 visitLog(I); 4950 return 0; 4951 case Intrinsic::log2: 4952 visitLog2(I); 4953 return 0; 4954 case Intrinsic::log10: 4955 visitLog10(I); 4956 return 0; 4957 case Intrinsic::exp: 4958 visitExp(I); 4959 return 0; 4960 case Intrinsic::exp2: 4961 visitExp2(I); 4962 return 0; 4963 case Intrinsic::pow: 4964 visitPow(I); 4965 return 0; 4966 case Intrinsic::fabs: 4967 setValue(&I, DAG.getNode(ISD::FABS, dl, 4968 getValue(I.getArgOperand(0)).getValueType(), 4969 getValue(I.getArgOperand(0)))); 4970 return 0; 4971 case Intrinsic::floor: 4972 setValue(&I, DAG.getNode(ISD::FFLOOR, dl, 4973 getValue(I.getArgOperand(0)).getValueType(), 4974 getValue(I.getArgOperand(0)))); 4975 return 0; 4976 case Intrinsic::fma: 4977 setValue(&I, DAG.getNode(ISD::FMA, dl, 4978 getValue(I.getArgOperand(0)).getValueType(), 4979 getValue(I.getArgOperand(0)), 4980 getValue(I.getArgOperand(1)), 4981 getValue(I.getArgOperand(2)))); 4982 return 0; 4983 case Intrinsic::fmuladd: { 4984 EVT VT = TLI.getValueType(I.getType()); 4985 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4986 TLI.isOperationLegal(ISD::FMA, VT) && 4987 TLI.isFMAFasterThanMulAndAdd(VT)){ 4988 setValue(&I, DAG.getNode(ISD::FMA, dl, 4989 getValue(I.getArgOperand(0)).getValueType(), 4990 getValue(I.getArgOperand(0)), 4991 getValue(I.getArgOperand(1)), 4992 getValue(I.getArgOperand(2)))); 4993 } else { 4994 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4995 getValue(I.getArgOperand(0)).getValueType(), 4996 getValue(I.getArgOperand(0)), 4997 getValue(I.getArgOperand(1))); 4998 SDValue Add = DAG.getNode(ISD::FADD, dl, 4999 getValue(I.getArgOperand(0)).getValueType(), 5000 Mul, 5001 getValue(I.getArgOperand(2))); 5002 setValue(&I, Add); 5003 } 5004 return 0; 5005 } 5006 case Intrinsic::convert_to_fp16: 5007 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 5008 MVT::i16, getValue(I.getArgOperand(0)))); 5009 return 0; 5010 case Intrinsic::convert_from_fp16: 5011 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 5012 MVT::f32, getValue(I.getArgOperand(0)))); 5013 return 0; 5014 case Intrinsic::pcmarker: { 5015 SDValue Tmp = getValue(I.getArgOperand(0)); 5016 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 5017 return 0; 5018 } 5019 case Intrinsic::readcyclecounter: { 5020 SDValue Op = getRoot(); 5021 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 5022 DAG.getVTList(MVT::i64, MVT::Other), 5023 &Op, 1); 5024 setValue(&I, Res); 5025 DAG.setRoot(Res.getValue(1)); 5026 return 0; 5027 } 5028 case Intrinsic::bswap: 5029 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 5030 getValue(I.getArgOperand(0)).getValueType(), 5031 getValue(I.getArgOperand(0)))); 5032 return 0; 5033 case Intrinsic::cttz: { 5034 SDValue Arg = getValue(I.getArgOperand(0)); 5035 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5036 EVT Ty = Arg.getValueType(); 5037 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5038 dl, Ty, Arg)); 5039 return 0; 5040 } 5041 case Intrinsic::ctlz: { 5042 SDValue Arg = getValue(I.getArgOperand(0)); 5043 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5044 EVT Ty = Arg.getValueType(); 5045 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5046 dl, Ty, Arg)); 5047 return 0; 5048 } 5049 case Intrinsic::ctpop: { 5050 SDValue Arg = getValue(I.getArgOperand(0)); 5051 EVT Ty = Arg.getValueType(); 5052 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5053 return 0; 5054 } 5055 case Intrinsic::stacksave: { 5056 SDValue Op = getRoot(); 5057 Res = DAG.getNode(ISD::STACKSAVE, dl, 5058 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5059 setValue(&I, Res); 5060 DAG.setRoot(Res.getValue(1)); 5061 return 0; 5062 } 5063 case Intrinsic::stackrestore: { 5064 Res = getValue(I.getArgOperand(0)); 5065 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5066 return 0; 5067 } 5068 case Intrinsic::stackprotector: { 5069 // Emit code into the DAG to store the stack guard onto the stack. 5070 MachineFunction &MF = DAG.getMachineFunction(); 5071 MachineFrameInfo *MFI = MF.getFrameInfo(); 5072 EVT PtrTy = TLI.getPointerTy(); 5073 5074 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5075 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5076 5077 int FI = FuncInfo.StaticAllocaMap[Slot]; 5078 MFI->setStackProtectorIndex(FI); 5079 5080 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5081 5082 // Store the stack protector onto the stack. 5083 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5084 MachinePointerInfo::getFixedStack(FI), 5085 true, false, 0); 5086 setValue(&I, Res); 5087 DAG.setRoot(Res); 5088 return 0; 5089 } 5090 case Intrinsic::objectsize: { 5091 // If we don't know by now, we're never going to know. 5092 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5093 5094 assert(CI && "Non-constant type in __builtin_object_size?"); 5095 5096 SDValue Arg = getValue(I.getCalledValue()); 5097 EVT Ty = Arg.getValueType(); 5098 5099 if (CI->isZero()) 5100 Res = DAG.getConstant(-1ULL, Ty); 5101 else 5102 Res = DAG.getConstant(0, Ty); 5103 5104 setValue(&I, Res); 5105 return 0; 5106 } 5107 case Intrinsic::var_annotation: 5108 // Discard annotate attributes 5109 return 0; 5110 5111 case Intrinsic::init_trampoline: { 5112 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5113 5114 SDValue Ops[6]; 5115 Ops[0] = getRoot(); 5116 Ops[1] = getValue(I.getArgOperand(0)); 5117 Ops[2] = getValue(I.getArgOperand(1)); 5118 Ops[3] = getValue(I.getArgOperand(2)); 5119 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5120 Ops[5] = DAG.getSrcValue(F); 5121 5122 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5123 5124 DAG.setRoot(Res); 5125 return 0; 5126 } 5127 case Intrinsic::adjust_trampoline: { 5128 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5129 TLI.getPointerTy(), 5130 getValue(I.getArgOperand(0)))); 5131 return 0; 5132 } 5133 case Intrinsic::gcroot: 5134 if (GFI) { 5135 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5136 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5137 5138 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5139 GFI->addStackRoot(FI->getIndex(), TypeMap); 5140 } 5141 return 0; 5142 case Intrinsic::gcread: 5143 case Intrinsic::gcwrite: 5144 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5145 case Intrinsic::flt_rounds: 5146 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5147 return 0; 5148 5149 case Intrinsic::expect: { 5150 // Just replace __builtin_expect(exp, c) with EXP. 5151 setValue(&I, getValue(I.getArgOperand(0))); 5152 return 0; 5153 } 5154 5155 case Intrinsic::trap: { 5156 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5157 if (TrapFuncName.empty()) { 5158 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5159 return 0; 5160 } 5161 TargetLowering::ArgListTy Args; 5162 TargetLowering:: 5163 CallLoweringInfo CLI(getRoot(), I.getType(), 5164 false, false, false, false, 0, CallingConv::C, 5165 /*isTailCall=*/false, 5166 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5167 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5168 Args, DAG, getCurDebugLoc()); 5169 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5170 DAG.setRoot(Result.second); 5171 return 0; 5172 } 5173 case Intrinsic::debugtrap: { 5174 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5175 return 0; 5176 } 5177 case Intrinsic::uadd_with_overflow: 5178 case Intrinsic::sadd_with_overflow: 5179 case Intrinsic::usub_with_overflow: 5180 case Intrinsic::ssub_with_overflow: 5181 case Intrinsic::umul_with_overflow: 5182 case Intrinsic::smul_with_overflow: { 5183 ISD::NodeType Op; 5184 switch (Intrinsic) { 5185 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5186 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5187 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5188 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5189 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5190 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5191 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5192 } 5193 SDValue Op1 = getValue(I.getArgOperand(0)); 5194 SDValue Op2 = getValue(I.getArgOperand(1)); 5195 5196 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5197 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5198 return 0; 5199 } 5200 case Intrinsic::prefetch: { 5201 SDValue Ops[5]; 5202 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5203 Ops[0] = getRoot(); 5204 Ops[1] = getValue(I.getArgOperand(0)); 5205 Ops[2] = getValue(I.getArgOperand(1)); 5206 Ops[3] = getValue(I.getArgOperand(2)); 5207 Ops[4] = getValue(I.getArgOperand(3)); 5208 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5209 DAG.getVTList(MVT::Other), 5210 &Ops[0], 5, 5211 EVT::getIntegerVT(*Context, 8), 5212 MachinePointerInfo(I.getArgOperand(0)), 5213 0, /* align */ 5214 false, /* volatile */ 5215 rw==0, /* read */ 5216 rw==1)); /* write */ 5217 return 0; 5218 } 5219 case Intrinsic::lifetime_start: 5220 case Intrinsic::lifetime_end: { 5221 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5222 // Stack coloring is not enabled in O0, discard region information. 5223 if (TM.getOptLevel() == CodeGenOpt::None) 5224 return 0; 5225 5226 SmallVector<Value *, 4> Allocas; 5227 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5228 5229 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5230 E = Allocas.end(); Object != E; ++Object) { 5231 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5232 5233 // Could not find an Alloca. 5234 if (!LifetimeObject) 5235 continue; 5236 5237 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5238 5239 SDValue Ops[2]; 5240 Ops[0] = getRoot(); 5241 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5242 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5243 5244 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); 5245 DAG.setRoot(Res); 5246 } 5247 } 5248 case Intrinsic::invariant_start: 5249 // Discard region information. 5250 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5251 return 0; 5252 case Intrinsic::invariant_end: 5253 // Discard region information. 5254 return 0; 5255 case Intrinsic::donothing: 5256 // ignore 5257 return 0; 5258 } 5259} 5260 5261void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5262 bool isTailCall, 5263 MachineBasicBlock *LandingPad) { 5264 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5265 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5266 Type *RetTy = FTy->getReturnType(); 5267 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5268 MCSymbol *BeginLabel = 0; 5269 5270 TargetLowering::ArgListTy Args; 5271 TargetLowering::ArgListEntry Entry; 5272 Args.reserve(CS.arg_size()); 5273 5274 // Check whether the function can return without sret-demotion. 5275 SmallVector<ISD::OutputArg, 4> Outs; 5276 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5277 Outs, TLI); 5278 5279 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5280 DAG.getMachineFunction(), 5281 FTy->isVarArg(), Outs, 5282 FTy->getContext()); 5283 5284 SDValue DemoteStackSlot; 5285 int DemoteStackIdx = -100; 5286 5287 if (!CanLowerReturn) { 5288 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5289 FTy->getReturnType()); 5290 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5291 FTy->getReturnType()); 5292 MachineFunction &MF = DAG.getMachineFunction(); 5293 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5294 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5295 5296 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5297 Entry.Node = DemoteStackSlot; 5298 Entry.Ty = StackSlotPtrType; 5299 Entry.isSExt = false; 5300 Entry.isZExt = false; 5301 Entry.isInReg = false; 5302 Entry.isSRet = true; 5303 Entry.isNest = false; 5304 Entry.isByVal = false; 5305 Entry.Alignment = Align; 5306 Args.push_back(Entry); 5307 RetTy = Type::getVoidTy(FTy->getContext()); 5308 } 5309 5310 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5311 i != e; ++i) { 5312 const Value *V = *i; 5313 5314 // Skip empty types 5315 if (V->getType()->isEmptyTy()) 5316 continue; 5317 5318 SDValue ArgNode = getValue(V); 5319 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5320 5321 unsigned attrInd = i - CS.arg_begin() + 1; 5322 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5323 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5324 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5325 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5326 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5327 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5328 Entry.Alignment = CS.getParamAlignment(attrInd); 5329 Args.push_back(Entry); 5330 } 5331 5332 if (LandingPad) { 5333 // Insert a label before the invoke call to mark the try range. This can be 5334 // used to detect deletion of the invoke via the MachineModuleInfo. 5335 BeginLabel = MMI.getContext().CreateTempSymbol(); 5336 5337 // For SjLj, keep track of which landing pads go with which invokes 5338 // so as to maintain the ordering of pads in the LSDA. 5339 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5340 if (CallSiteIndex) { 5341 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5342 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5343 5344 // Now that the call site is handled, stop tracking it. 5345 MMI.setCurrentCallSite(0); 5346 } 5347 5348 // Both PendingLoads and PendingExports must be flushed here; 5349 // this call might not return. 5350 (void)getRoot(); 5351 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5352 } 5353 5354 // Check if target-independent constraints permit a tail call here. 5355 // Target-dependent constraints are checked within TLI.LowerCallTo. 5356 if (isTailCall && 5357 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5358 isTailCall = false; 5359 5360 // If there's a possibility that fast-isel has already selected some amount 5361 // of the current basic block, don't emit a tail call. 5362 if (isTailCall && TM.Options.EnableFastISel) 5363 isTailCall = false; 5364 5365 TargetLowering:: 5366 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5367 getCurDebugLoc(), CS); 5368 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5369 assert((isTailCall || Result.second.getNode()) && 5370 "Non-null chain expected with non-tail call!"); 5371 assert((Result.second.getNode() || !Result.first.getNode()) && 5372 "Null value expected with tail call!"); 5373 if (Result.first.getNode()) { 5374 setValue(CS.getInstruction(), Result.first); 5375 } else if (!CanLowerReturn && Result.second.getNode()) { 5376 // The instruction result is the result of loading from the 5377 // hidden sret parameter. 5378 SmallVector<EVT, 1> PVTs; 5379 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5380 5381 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5382 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5383 EVT PtrVT = PVTs[0]; 5384 5385 SmallVector<EVT, 4> RetTys; 5386 SmallVector<uint64_t, 4> Offsets; 5387 RetTy = FTy->getReturnType(); 5388 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5389 5390 unsigned NumValues = RetTys.size(); 5391 SmallVector<SDValue, 4> Values(NumValues); 5392 SmallVector<SDValue, 4> Chains(NumValues); 5393 5394 for (unsigned i = 0; i < NumValues; ++i) { 5395 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5396 DemoteStackSlot, 5397 DAG.getConstant(Offsets[i], PtrVT)); 5398 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5399 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5400 false, false, false, 1); 5401 Values[i] = L; 5402 Chains[i] = L.getValue(1); 5403 } 5404 5405 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5406 MVT::Other, &Chains[0], NumValues); 5407 PendingLoads.push_back(Chain); 5408 5409 setValue(CS.getInstruction(), 5410 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5411 DAG.getVTList(&RetTys[0], RetTys.size()), 5412 &Values[0], Values.size())); 5413 } 5414 5415 // Assign order to nodes here. If the call does not produce a result, it won't 5416 // be mapped to a SDNode and visit() will not assign it an order number. 5417 if (!Result.second.getNode()) { 5418 // As a special case, a null chain means that a tail call has been emitted and 5419 // the DAG root is already updated. 5420 HasTailCall = true; 5421 ++SDNodeOrder; 5422 AssignOrderingToNode(DAG.getRoot().getNode()); 5423 } else { 5424 DAG.setRoot(Result.second); 5425 ++SDNodeOrder; 5426 AssignOrderingToNode(Result.second.getNode()); 5427 } 5428 5429 if (LandingPad) { 5430 // Insert a label at the end of the invoke call to mark the try range. This 5431 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5432 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5433 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5434 5435 // Inform MachineModuleInfo of range. 5436 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5437 } 5438} 5439 5440/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5441/// value is equal or not-equal to zero. 5442static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5443 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5444 UI != E; ++UI) { 5445 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5446 if (IC->isEquality()) 5447 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5448 if (C->isNullValue()) 5449 continue; 5450 // Unknown instruction. 5451 return false; 5452 } 5453 return true; 5454} 5455 5456static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5457 Type *LoadTy, 5458 SelectionDAGBuilder &Builder) { 5459 5460 // Check to see if this load can be trivially constant folded, e.g. if the 5461 // input is from a string literal. 5462 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5463 // Cast pointer to the type we really want to load. 5464 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5465 PointerType::getUnqual(LoadTy)); 5466 5467 if (const Constant *LoadCst = 5468 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5469 Builder.TD)) 5470 return Builder.getValue(LoadCst); 5471 } 5472 5473 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5474 // still constant memory, the input chain can be the entry node. 5475 SDValue Root; 5476 bool ConstantMemory = false; 5477 5478 // Do not serialize (non-volatile) loads of constant memory with anything. 5479 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5480 Root = Builder.DAG.getEntryNode(); 5481 ConstantMemory = true; 5482 } else { 5483 // Do not serialize non-volatile loads against each other. 5484 Root = Builder.DAG.getRoot(); 5485 } 5486 5487 SDValue Ptr = Builder.getValue(PtrVal); 5488 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5489 Ptr, MachinePointerInfo(PtrVal), 5490 false /*volatile*/, 5491 false /*nontemporal*/, 5492 false /*isinvariant*/, 1 /* align=1 */); 5493 5494 if (!ConstantMemory) 5495 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5496 return LoadVal; 5497} 5498 5499 5500/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5501/// If so, return true and lower it, otherwise return false and it will be 5502/// lowered like a normal call. 5503bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5504 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5505 if (I.getNumArgOperands() != 3) 5506 return false; 5507 5508 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5509 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5510 !I.getArgOperand(2)->getType()->isIntegerTy() || 5511 !I.getType()->isIntegerTy()) 5512 return false; 5513 5514 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5515 5516 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5517 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5518 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5519 bool ActuallyDoIt = true; 5520 MVT LoadVT; 5521 Type *LoadTy; 5522 switch (Size->getZExtValue()) { 5523 default: 5524 LoadVT = MVT::Other; 5525 LoadTy = 0; 5526 ActuallyDoIt = false; 5527 break; 5528 case 2: 5529 LoadVT = MVT::i16; 5530 LoadTy = Type::getInt16Ty(Size->getContext()); 5531 break; 5532 case 4: 5533 LoadVT = MVT::i32; 5534 LoadTy = Type::getInt32Ty(Size->getContext()); 5535 break; 5536 case 8: 5537 LoadVT = MVT::i64; 5538 LoadTy = Type::getInt64Ty(Size->getContext()); 5539 break; 5540 /* 5541 case 16: 5542 LoadVT = MVT::v4i32; 5543 LoadTy = Type::getInt32Ty(Size->getContext()); 5544 LoadTy = VectorType::get(LoadTy, 4); 5545 break; 5546 */ 5547 } 5548 5549 // This turns into unaligned loads. We only do this if the target natively 5550 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5551 // we'll only produce a small number of byte loads. 5552 5553 // Require that we can find a legal MVT, and only do this if the target 5554 // supports unaligned loads of that type. Expanding into byte loads would 5555 // bloat the code. 5556 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5557 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5558 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5559 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5560 ActuallyDoIt = false; 5561 } 5562 5563 if (ActuallyDoIt) { 5564 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5565 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5566 5567 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5568 ISD::SETNE); 5569 EVT CallVT = TLI.getValueType(I.getType(), true); 5570 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5571 return true; 5572 } 5573 } 5574 5575 5576 return false; 5577} 5578 5579/// visitUnaryFloatCall - If a call instruction is a unary floating-point 5580/// operation (as expected), translate it to an SDNode with the specified opcode 5581/// and return true. 5582bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5583 unsigned Opcode) { 5584 // Sanity check that it really is a unary floating-point call. 5585 if (I.getNumArgOperands() != 1 || 5586 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5587 I.getType() != I.getArgOperand(0)->getType() || 5588 !I.onlyReadsMemory()) 5589 return false; 5590 5591 SDValue Tmp = getValue(I.getArgOperand(0)); 5592 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5593 return true; 5594} 5595 5596void SelectionDAGBuilder::visitCall(const CallInst &I) { 5597 // Handle inline assembly differently. 5598 if (isa<InlineAsm>(I.getCalledValue())) { 5599 visitInlineAsm(&I); 5600 return; 5601 } 5602 5603 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5604 ComputeUsesVAFloatArgument(I, &MMI); 5605 5606 const char *RenameFn = 0; 5607 if (Function *F = I.getCalledFunction()) { 5608 if (F->isDeclaration()) { 5609 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5610 if (unsigned IID = II->getIntrinsicID(F)) { 5611 RenameFn = visitIntrinsicCall(I, IID); 5612 if (!RenameFn) 5613 return; 5614 } 5615 } 5616 if (unsigned IID = F->getIntrinsicID()) { 5617 RenameFn = visitIntrinsicCall(I, IID); 5618 if (!RenameFn) 5619 return; 5620 } 5621 } 5622 5623 // Check for well-known libc/libm calls. If the function is internal, it 5624 // can't be a library call. 5625 LibFunc::Func Func; 5626 if (!F->hasLocalLinkage() && F->hasName() && 5627 LibInfo->getLibFunc(F->getName(), Func) && 5628 LibInfo->hasOptimizedCodeGen(Func)) { 5629 switch (Func) { 5630 default: break; 5631 case LibFunc::copysign: 5632 case LibFunc::copysignf: 5633 case LibFunc::copysignl: 5634 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5635 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5636 I.getType() == I.getArgOperand(0)->getType() && 5637 I.getType() == I.getArgOperand(1)->getType() && 5638 I.onlyReadsMemory()) { 5639 SDValue LHS = getValue(I.getArgOperand(0)); 5640 SDValue RHS = getValue(I.getArgOperand(1)); 5641 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5642 LHS.getValueType(), LHS, RHS)); 5643 return; 5644 } 5645 break; 5646 case LibFunc::fabs: 5647 case LibFunc::fabsf: 5648 case LibFunc::fabsl: 5649 if (visitUnaryFloatCall(I, ISD::FABS)) 5650 return; 5651 break; 5652 case LibFunc::sin: 5653 case LibFunc::sinf: 5654 case LibFunc::sinl: 5655 if (visitUnaryFloatCall(I, ISD::FSIN)) 5656 return; 5657 break; 5658 case LibFunc::cos: 5659 case LibFunc::cosf: 5660 case LibFunc::cosl: 5661 if (visitUnaryFloatCall(I, ISD::FCOS)) 5662 return; 5663 break; 5664 case LibFunc::sqrt: 5665 case LibFunc::sqrtf: 5666 case LibFunc::sqrtl: 5667 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5668 return; 5669 break; 5670 case LibFunc::floor: 5671 case LibFunc::floorf: 5672 case LibFunc::floorl: 5673 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5674 return; 5675 break; 5676 case LibFunc::nearbyint: 5677 case LibFunc::nearbyintf: 5678 case LibFunc::nearbyintl: 5679 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5680 return; 5681 break; 5682 case LibFunc::ceil: 5683 case LibFunc::ceilf: 5684 case LibFunc::ceill: 5685 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5686 return; 5687 break; 5688 case LibFunc::rint: 5689 case LibFunc::rintf: 5690 case LibFunc::rintl: 5691 if (visitUnaryFloatCall(I, ISD::FRINT)) 5692 return; 5693 break; 5694 case LibFunc::trunc: 5695 case LibFunc::truncf: 5696 case LibFunc::truncl: 5697 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5698 return; 5699 break; 5700 case LibFunc::log2: 5701 case LibFunc::log2f: 5702 case LibFunc::log2l: 5703 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5704 return; 5705 break; 5706 case LibFunc::exp2: 5707 case LibFunc::exp2f: 5708 case LibFunc::exp2l: 5709 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5710 return; 5711 break; 5712 case LibFunc::memcmp: 5713 if (visitMemCmpCall(I)) 5714 return; 5715 break; 5716 } 5717 } 5718 } 5719 5720 SDValue Callee; 5721 if (!RenameFn) 5722 Callee = getValue(I.getCalledValue()); 5723 else 5724 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5725 5726 // Check if we can potentially perform a tail call. More detailed checking is 5727 // be done within LowerCallTo, after more information about the call is known. 5728 LowerCallTo(&I, Callee, I.isTailCall()); 5729} 5730 5731namespace { 5732 5733/// AsmOperandInfo - This contains information for each constraint that we are 5734/// lowering. 5735class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5736public: 5737 /// CallOperand - If this is the result output operand or a clobber 5738 /// this is null, otherwise it is the incoming operand to the CallInst. 5739 /// This gets modified as the asm is processed. 5740 SDValue CallOperand; 5741 5742 /// AssignedRegs - If this is a register or register class operand, this 5743 /// contains the set of register corresponding to the operand. 5744 RegsForValue AssignedRegs; 5745 5746 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5747 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5748 } 5749 5750 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5751 /// corresponds to. If there is no Value* for this operand, it returns 5752 /// MVT::Other. 5753 EVT getCallOperandValEVT(LLVMContext &Context, 5754 const TargetLowering &TLI, 5755 const TargetData *TD) const { 5756 if (CallOperandVal == 0) return MVT::Other; 5757 5758 if (isa<BasicBlock>(CallOperandVal)) 5759 return TLI.getPointerTy(); 5760 5761 llvm::Type *OpTy = CallOperandVal->getType(); 5762 5763 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5764 // If this is an indirect operand, the operand is a pointer to the 5765 // accessed type. 5766 if (isIndirect) { 5767 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5768 if (!PtrTy) 5769 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5770 OpTy = PtrTy->getElementType(); 5771 } 5772 5773 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5774 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5775 if (STy->getNumElements() == 1) 5776 OpTy = STy->getElementType(0); 5777 5778 // If OpTy is not a single value, it may be a struct/union that we 5779 // can tile with integers. 5780 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5781 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5782 switch (BitSize) { 5783 default: break; 5784 case 1: 5785 case 8: 5786 case 16: 5787 case 32: 5788 case 64: 5789 case 128: 5790 OpTy = IntegerType::get(Context, BitSize); 5791 break; 5792 } 5793 } 5794 5795 return TLI.getValueType(OpTy, true); 5796 } 5797}; 5798 5799typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5800 5801} // end anonymous namespace 5802 5803/// GetRegistersForValue - Assign registers (virtual or physical) for the 5804/// specified operand. We prefer to assign virtual registers, to allow the 5805/// register allocator to handle the assignment process. However, if the asm 5806/// uses features that we can't model on machineinstrs, we have SDISel do the 5807/// allocation. This produces generally horrible, but correct, code. 5808/// 5809/// OpInfo describes the operand. 5810/// 5811static void GetRegistersForValue(SelectionDAG &DAG, 5812 const TargetLowering &TLI, 5813 DebugLoc DL, 5814 SDISelAsmOperandInfo &OpInfo) { 5815 LLVMContext &Context = *DAG.getContext(); 5816 5817 MachineFunction &MF = DAG.getMachineFunction(); 5818 SmallVector<unsigned, 4> Regs; 5819 5820 // If this is a constraint for a single physreg, or a constraint for a 5821 // register class, find it. 5822 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5823 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5824 OpInfo.ConstraintVT); 5825 5826 unsigned NumRegs = 1; 5827 if (OpInfo.ConstraintVT != MVT::Other) { 5828 // If this is a FP input in an integer register (or visa versa) insert a bit 5829 // cast of the input value. More generally, handle any case where the input 5830 // value disagrees with the register class we plan to stick this in. 5831 if (OpInfo.Type == InlineAsm::isInput && 5832 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5833 // Try to convert to the first EVT that the reg class contains. If the 5834 // types are identical size, use a bitcast to convert (e.g. two differing 5835 // vector types). 5836 EVT RegVT = *PhysReg.second->vt_begin(); 5837 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5838 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5839 RegVT, OpInfo.CallOperand); 5840 OpInfo.ConstraintVT = RegVT; 5841 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5842 // If the input is a FP value and we want it in FP registers, do a 5843 // bitcast to the corresponding integer type. This turns an f64 value 5844 // into i64, which can be passed with two i32 values on a 32-bit 5845 // machine. 5846 RegVT = EVT::getIntegerVT(Context, 5847 OpInfo.ConstraintVT.getSizeInBits()); 5848 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5849 RegVT, OpInfo.CallOperand); 5850 OpInfo.ConstraintVT = RegVT; 5851 } 5852 } 5853 5854 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5855 } 5856 5857 EVT RegVT; 5858 EVT ValueVT = OpInfo.ConstraintVT; 5859 5860 // If this is a constraint for a specific physical register, like {r17}, 5861 // assign it now. 5862 if (unsigned AssignedReg = PhysReg.first) { 5863 const TargetRegisterClass *RC = PhysReg.second; 5864 if (OpInfo.ConstraintVT == MVT::Other) 5865 ValueVT = *RC->vt_begin(); 5866 5867 // Get the actual register value type. This is important, because the user 5868 // may have asked for (e.g.) the AX register in i32 type. We need to 5869 // remember that AX is actually i16 to get the right extension. 5870 RegVT = *RC->vt_begin(); 5871 5872 // This is a explicit reference to a physical register. 5873 Regs.push_back(AssignedReg); 5874 5875 // If this is an expanded reference, add the rest of the regs to Regs. 5876 if (NumRegs != 1) { 5877 TargetRegisterClass::iterator I = RC->begin(); 5878 for (; *I != AssignedReg; ++I) 5879 assert(I != RC->end() && "Didn't find reg!"); 5880 5881 // Already added the first reg. 5882 --NumRegs; ++I; 5883 for (; NumRegs; --NumRegs, ++I) { 5884 assert(I != RC->end() && "Ran out of registers to allocate!"); 5885 Regs.push_back(*I); 5886 } 5887 } 5888 5889 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5890 return; 5891 } 5892 5893 // Otherwise, if this was a reference to an LLVM register class, create vregs 5894 // for this reference. 5895 if (const TargetRegisterClass *RC = PhysReg.second) { 5896 RegVT = *RC->vt_begin(); 5897 if (OpInfo.ConstraintVT == MVT::Other) 5898 ValueVT = RegVT; 5899 5900 // Create the appropriate number of virtual registers. 5901 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5902 for (; NumRegs; --NumRegs) 5903 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5904 5905 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5906 return; 5907 } 5908 5909 // Otherwise, we couldn't allocate enough registers for this. 5910} 5911 5912/// visitInlineAsm - Handle a call to an InlineAsm object. 5913/// 5914void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5915 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5916 5917 /// ConstraintOperands - Information about all of the constraints. 5918 SDISelAsmOperandInfoVector ConstraintOperands; 5919 5920 TargetLowering::AsmOperandInfoVector 5921 TargetConstraints = TLI.ParseConstraints(CS); 5922 5923 bool hasMemory = false; 5924 5925 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5926 unsigned ResNo = 0; // ResNo - The result number of the next output. 5927 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5928 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5929 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5930 5931 EVT OpVT = MVT::Other; 5932 5933 // Compute the value type for each operand. 5934 switch (OpInfo.Type) { 5935 case InlineAsm::isOutput: 5936 // Indirect outputs just consume an argument. 5937 if (OpInfo.isIndirect) { 5938 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5939 break; 5940 } 5941 5942 // The return value of the call is this value. As such, there is no 5943 // corresponding argument. 5944 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5945 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5946 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5947 } else { 5948 assert(ResNo == 0 && "Asm only has one result!"); 5949 OpVT = TLI.getValueType(CS.getType()); 5950 } 5951 ++ResNo; 5952 break; 5953 case InlineAsm::isInput: 5954 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5955 break; 5956 case InlineAsm::isClobber: 5957 // Nothing to do. 5958 break; 5959 } 5960 5961 // If this is an input or an indirect output, process the call argument. 5962 // BasicBlocks are labels, currently appearing only in asm's. 5963 if (OpInfo.CallOperandVal) { 5964 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5965 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5966 } else { 5967 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5968 } 5969 5970 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5971 } 5972 5973 OpInfo.ConstraintVT = OpVT; 5974 5975 // Indirect operand accesses access memory. 5976 if (OpInfo.isIndirect) 5977 hasMemory = true; 5978 else { 5979 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5980 TargetLowering::ConstraintType 5981 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5982 if (CType == TargetLowering::C_Memory) { 5983 hasMemory = true; 5984 break; 5985 } 5986 } 5987 } 5988 } 5989 5990 SDValue Chain, Flag; 5991 5992 // We won't need to flush pending loads if this asm doesn't touch 5993 // memory and is nonvolatile. 5994 if (hasMemory || IA->hasSideEffects()) 5995 Chain = getRoot(); 5996 else 5997 Chain = DAG.getRoot(); 5998 5999 // Second pass over the constraints: compute which constraint option to use 6000 // and assign registers to constraints that want a specific physreg. 6001 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6002 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6003 6004 // If this is an output operand with a matching input operand, look up the 6005 // matching input. If their types mismatch, e.g. one is an integer, the 6006 // other is floating point, or their sizes are different, flag it as an 6007 // error. 6008 if (OpInfo.hasMatchingInput()) { 6009 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6010 6011 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6012 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6013 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6014 OpInfo.ConstraintVT); 6015 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6016 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6017 Input.ConstraintVT); 6018 if ((OpInfo.ConstraintVT.isInteger() != 6019 Input.ConstraintVT.isInteger()) || 6020 (MatchRC.second != InputRC.second)) { 6021 report_fatal_error("Unsupported asm: input constraint" 6022 " with a matching output constraint of" 6023 " incompatible type!"); 6024 } 6025 Input.ConstraintVT = OpInfo.ConstraintVT; 6026 } 6027 } 6028 6029 // Compute the constraint code and ConstraintType to use. 6030 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6031 6032 // If this is a memory input, and if the operand is not indirect, do what we 6033 // need to to provide an address for the memory input. 6034 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6035 !OpInfo.isIndirect) { 6036 assert((OpInfo.isMultipleAlternative || 6037 (OpInfo.Type == InlineAsm::isInput)) && 6038 "Can only indirectify direct input operands!"); 6039 6040 // Memory operands really want the address of the value. If we don't have 6041 // an indirect input, put it in the constpool if we can, otherwise spill 6042 // it to a stack slot. 6043 // TODO: This isn't quite right. We need to handle these according to 6044 // the addressing mode that the constraint wants. Also, this may take 6045 // an additional register for the computation and we don't want that 6046 // either. 6047 6048 // If the operand is a float, integer, or vector constant, spill to a 6049 // constant pool entry to get its address. 6050 const Value *OpVal = OpInfo.CallOperandVal; 6051 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6052 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6053 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6054 TLI.getPointerTy()); 6055 } else { 6056 // Otherwise, create a stack slot and emit a store to it before the 6057 // asm. 6058 Type *Ty = OpVal->getType(); 6059 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6060 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6061 MachineFunction &MF = DAG.getMachineFunction(); 6062 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6063 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6064 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6065 OpInfo.CallOperand, StackSlot, 6066 MachinePointerInfo::getFixedStack(SSFI), 6067 false, false, 0); 6068 OpInfo.CallOperand = StackSlot; 6069 } 6070 6071 // There is no longer a Value* corresponding to this operand. 6072 OpInfo.CallOperandVal = 0; 6073 6074 // It is now an indirect operand. 6075 OpInfo.isIndirect = true; 6076 } 6077 6078 // If this constraint is for a specific register, allocate it before 6079 // anything else. 6080 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6081 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6082 } 6083 6084 // Second pass - Loop over all of the operands, assigning virtual or physregs 6085 // to register class operands. 6086 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6087 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6088 6089 // C_Register operands have already been allocated, Other/Memory don't need 6090 // to be. 6091 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6092 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6093 } 6094 6095 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6096 std::vector<SDValue> AsmNodeOperands; 6097 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6098 AsmNodeOperands.push_back( 6099 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6100 TLI.getPointerTy())); 6101 6102 // If we have a !srcloc metadata node associated with it, we want to attach 6103 // this to the ultimately generated inline asm machineinstr. To do this, we 6104 // pass in the third operand as this (potentially null) inline asm MDNode. 6105 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6106 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6107 6108 // Remember the HasSideEffect, AlignStack and AsmDialect bits as operand 3. 6109 unsigned ExtraInfo = 0; 6110 if (IA->hasSideEffects()) 6111 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6112 if (IA->isAlignStack()) 6113 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6114 // Set the asm dialect. 6115 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6116 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6117 TLI.getPointerTy())); 6118 6119 // Loop over all of the inputs, copying the operand values into the 6120 // appropriate registers and processing the output regs. 6121 RegsForValue RetValRegs; 6122 6123 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6124 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6125 6126 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6127 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6128 6129 switch (OpInfo.Type) { 6130 case InlineAsm::isOutput: { 6131 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6132 OpInfo.ConstraintType != TargetLowering::C_Register) { 6133 // Memory output, or 'other' output (e.g. 'X' constraint). 6134 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6135 6136 // Add information to the INLINEASM node to know about this output. 6137 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6138 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6139 TLI.getPointerTy())); 6140 AsmNodeOperands.push_back(OpInfo.CallOperand); 6141 break; 6142 } 6143 6144 // Otherwise, this is a register or register class output. 6145 6146 // Copy the output from the appropriate register. Find a register that 6147 // we can use. 6148 if (OpInfo.AssignedRegs.Regs.empty()) { 6149 LLVMContext &Ctx = *DAG.getContext(); 6150 Ctx.emitError(CS.getInstruction(), 6151 "couldn't allocate output register for constraint '" + 6152 Twine(OpInfo.ConstraintCode) + "'"); 6153 break; 6154 } 6155 6156 // If this is an indirect operand, store through the pointer after the 6157 // asm. 6158 if (OpInfo.isIndirect) { 6159 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6160 OpInfo.CallOperandVal)); 6161 } else { 6162 // This is the result value of the call. 6163 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6164 // Concatenate this output onto the outputs list. 6165 RetValRegs.append(OpInfo.AssignedRegs); 6166 } 6167 6168 // Add information to the INLINEASM node to know that this register is 6169 // set. 6170 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6171 InlineAsm::Kind_RegDefEarlyClobber : 6172 InlineAsm::Kind_RegDef, 6173 false, 6174 0, 6175 DAG, 6176 AsmNodeOperands); 6177 break; 6178 } 6179 case InlineAsm::isInput: { 6180 SDValue InOperandVal = OpInfo.CallOperand; 6181 6182 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6183 // If this is required to match an output register we have already set, 6184 // just use its register. 6185 unsigned OperandNo = OpInfo.getMatchedOperand(); 6186 6187 // Scan until we find the definition we already emitted of this operand. 6188 // When we find it, create a RegsForValue operand. 6189 unsigned CurOp = InlineAsm::Op_FirstOperand; 6190 for (; OperandNo; --OperandNo) { 6191 // Advance to the next operand. 6192 unsigned OpFlag = 6193 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6194 assert((InlineAsm::isRegDefKind(OpFlag) || 6195 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6196 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6197 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6198 } 6199 6200 unsigned OpFlag = 6201 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6202 if (InlineAsm::isRegDefKind(OpFlag) || 6203 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6204 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6205 if (OpInfo.isIndirect) { 6206 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6207 LLVMContext &Ctx = *DAG.getContext(); 6208 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6209 " don't know how to handle tied " 6210 "indirect register inputs"); 6211 } 6212 6213 RegsForValue MatchedRegs; 6214 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6215 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6216 MatchedRegs.RegVTs.push_back(RegVT); 6217 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6218 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6219 i != e; ++i) 6220 MatchedRegs.Regs.push_back 6221 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6222 6223 // Use the produced MatchedRegs object to 6224 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6225 Chain, &Flag); 6226 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6227 true, OpInfo.getMatchedOperand(), 6228 DAG, AsmNodeOperands); 6229 break; 6230 } 6231 6232 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6233 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6234 "Unexpected number of operands"); 6235 // Add information to the INLINEASM node to know about this input. 6236 // See InlineAsm.h isUseOperandTiedToDef. 6237 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6238 OpInfo.getMatchedOperand()); 6239 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6240 TLI.getPointerTy())); 6241 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6242 break; 6243 } 6244 6245 // Treat indirect 'X' constraint as memory. 6246 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6247 OpInfo.isIndirect) 6248 OpInfo.ConstraintType = TargetLowering::C_Memory; 6249 6250 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6251 std::vector<SDValue> Ops; 6252 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6253 Ops, DAG); 6254 if (Ops.empty()) { 6255 LLVMContext &Ctx = *DAG.getContext(); 6256 Ctx.emitError(CS.getInstruction(), 6257 "invalid operand for inline asm constraint '" + 6258 Twine(OpInfo.ConstraintCode) + "'"); 6259 break; 6260 } 6261 6262 // Add information to the INLINEASM node to know about this input. 6263 unsigned ResOpType = 6264 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6265 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6266 TLI.getPointerTy())); 6267 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6268 break; 6269 } 6270 6271 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6272 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6273 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6274 "Memory operands expect pointer values"); 6275 6276 // Add information to the INLINEASM node to know about this input. 6277 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6278 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6279 TLI.getPointerTy())); 6280 AsmNodeOperands.push_back(InOperandVal); 6281 break; 6282 } 6283 6284 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6285 OpInfo.ConstraintType == TargetLowering::C_Register) && 6286 "Unknown constraint type!"); 6287 6288 // TODO: Support this. 6289 if (OpInfo.isIndirect) { 6290 LLVMContext &Ctx = *DAG.getContext(); 6291 Ctx.emitError(CS.getInstruction(), 6292 "Don't know how to handle indirect register inputs yet " 6293 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6294 break; 6295 } 6296 6297 // Copy the input into the appropriate registers. 6298 if (OpInfo.AssignedRegs.Regs.empty()) { 6299 LLVMContext &Ctx = *DAG.getContext(); 6300 Ctx.emitError(CS.getInstruction(), 6301 "couldn't allocate input reg for constraint '" + 6302 Twine(OpInfo.ConstraintCode) + "'"); 6303 break; 6304 } 6305 6306 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6307 Chain, &Flag); 6308 6309 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6310 DAG, AsmNodeOperands); 6311 break; 6312 } 6313 case InlineAsm::isClobber: { 6314 // Add the clobbered value to the operand list, so that the register 6315 // allocator is aware that the physreg got clobbered. 6316 if (!OpInfo.AssignedRegs.Regs.empty()) 6317 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6318 false, 0, DAG, 6319 AsmNodeOperands); 6320 break; 6321 } 6322 } 6323 } 6324 6325 // Finish up input operands. Set the input chain and add the flag last. 6326 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6327 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6328 6329 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6330 DAG.getVTList(MVT::Other, MVT::Glue), 6331 &AsmNodeOperands[0], AsmNodeOperands.size()); 6332 Flag = Chain.getValue(1); 6333 6334 // If this asm returns a register value, copy the result from that register 6335 // and set it as the value of the call. 6336 if (!RetValRegs.Regs.empty()) { 6337 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6338 Chain, &Flag); 6339 6340 // FIXME: Why don't we do this for inline asms with MRVs? 6341 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6342 EVT ResultType = TLI.getValueType(CS.getType()); 6343 6344 // If any of the results of the inline asm is a vector, it may have the 6345 // wrong width/num elts. This can happen for register classes that can 6346 // contain multiple different value types. The preg or vreg allocated may 6347 // not have the same VT as was expected. Convert it to the right type 6348 // with bit_convert. 6349 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6350 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6351 ResultType, Val); 6352 6353 } else if (ResultType != Val.getValueType() && 6354 ResultType.isInteger() && Val.getValueType().isInteger()) { 6355 // If a result value was tied to an input value, the computed result may 6356 // have a wider width than the expected result. Extract the relevant 6357 // portion. 6358 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6359 } 6360 6361 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6362 } 6363 6364 setValue(CS.getInstruction(), Val); 6365 // Don't need to use this as a chain in this case. 6366 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6367 return; 6368 } 6369 6370 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6371 6372 // Process indirect outputs, first output all of the flagged copies out of 6373 // physregs. 6374 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6375 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6376 const Value *Ptr = IndirectStoresToEmit[i].second; 6377 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6378 Chain, &Flag); 6379 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6380 } 6381 6382 // Emit the non-flagged stores from the physregs. 6383 SmallVector<SDValue, 8> OutChains; 6384 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6385 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6386 StoresToEmit[i].first, 6387 getValue(StoresToEmit[i].second), 6388 MachinePointerInfo(StoresToEmit[i].second), 6389 false, false, 0); 6390 OutChains.push_back(Val); 6391 } 6392 6393 if (!OutChains.empty()) 6394 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6395 &OutChains[0], OutChains.size()); 6396 6397 DAG.setRoot(Chain); 6398} 6399 6400void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6401 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6402 MVT::Other, getRoot(), 6403 getValue(I.getArgOperand(0)), 6404 DAG.getSrcValue(I.getArgOperand(0)))); 6405} 6406 6407void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6408 const TargetData &TD = *TLI.getTargetData(); 6409 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6410 getRoot(), getValue(I.getOperand(0)), 6411 DAG.getSrcValue(I.getOperand(0)), 6412 TD.getABITypeAlignment(I.getType())); 6413 setValue(&I, V); 6414 DAG.setRoot(V.getValue(1)); 6415} 6416 6417void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6418 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6419 MVT::Other, getRoot(), 6420 getValue(I.getArgOperand(0)), 6421 DAG.getSrcValue(I.getArgOperand(0)))); 6422} 6423 6424void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6425 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6426 MVT::Other, getRoot(), 6427 getValue(I.getArgOperand(0)), 6428 getValue(I.getArgOperand(1)), 6429 DAG.getSrcValue(I.getArgOperand(0)), 6430 DAG.getSrcValue(I.getArgOperand(1)))); 6431} 6432 6433/// TargetLowering::LowerCallTo - This is the default LowerCallTo 6434/// implementation, which just calls LowerCall. 6435/// FIXME: When all targets are 6436/// migrated to using LowerCall, this hook should be integrated into SDISel. 6437std::pair<SDValue, SDValue> 6438TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6439 // Handle all of the outgoing arguments. 6440 CLI.Outs.clear(); 6441 CLI.OutVals.clear(); 6442 ArgListTy &Args = CLI.Args; 6443 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6444 SmallVector<EVT, 4> ValueVTs; 6445 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6446 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6447 Value != NumValues; ++Value) { 6448 EVT VT = ValueVTs[Value]; 6449 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6450 SDValue Op = SDValue(Args[i].Node.getNode(), 6451 Args[i].Node.getResNo() + Value); 6452 ISD::ArgFlagsTy Flags; 6453 unsigned OriginalAlignment = 6454 getTargetData()->getABITypeAlignment(ArgTy); 6455 6456 if (Args[i].isZExt) 6457 Flags.setZExt(); 6458 if (Args[i].isSExt) 6459 Flags.setSExt(); 6460 if (Args[i].isInReg) 6461 Flags.setInReg(); 6462 if (Args[i].isSRet) 6463 Flags.setSRet(); 6464 if (Args[i].isByVal) { 6465 Flags.setByVal(); 6466 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6467 Type *ElementTy = Ty->getElementType(); 6468 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6469 // For ByVal, alignment should come from FE. BE will guess if this 6470 // info is not there but there are cases it cannot get right. 6471 unsigned FrameAlign; 6472 if (Args[i].Alignment) 6473 FrameAlign = Args[i].Alignment; 6474 else 6475 FrameAlign = getByValTypeAlignment(ElementTy); 6476 Flags.setByValAlign(FrameAlign); 6477 } 6478 if (Args[i].isNest) 6479 Flags.setNest(); 6480 Flags.setOrigAlign(OriginalAlignment); 6481 6482 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6483 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6484 SmallVector<SDValue, 4> Parts(NumParts); 6485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6486 6487 if (Args[i].isSExt) 6488 ExtendKind = ISD::SIGN_EXTEND; 6489 else if (Args[i].isZExt) 6490 ExtendKind = ISD::ZERO_EXTEND; 6491 6492 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6493 PartVT, ExtendKind); 6494 6495 for (unsigned j = 0; j != NumParts; ++j) { 6496 // if it isn't first piece, alignment must be 1 6497 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6498 i < CLI.NumFixedArgs); 6499 if (NumParts > 1 && j == 0) 6500 MyFlags.Flags.setSplit(); 6501 else if (j != 0) 6502 MyFlags.Flags.setOrigAlign(1); 6503 6504 CLI.Outs.push_back(MyFlags); 6505 CLI.OutVals.push_back(Parts[j]); 6506 } 6507 } 6508 } 6509 6510 // Handle the incoming return values from the call. 6511 CLI.Ins.clear(); 6512 SmallVector<EVT, 4> RetTys; 6513 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6514 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6515 EVT VT = RetTys[I]; 6516 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6517 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6518 for (unsigned i = 0; i != NumRegs; ++i) { 6519 ISD::InputArg MyFlags; 6520 MyFlags.VT = RegisterVT.getSimpleVT(); 6521 MyFlags.Used = CLI.IsReturnValueUsed; 6522 if (CLI.RetSExt) 6523 MyFlags.Flags.setSExt(); 6524 if (CLI.RetZExt) 6525 MyFlags.Flags.setZExt(); 6526 if (CLI.IsInReg) 6527 MyFlags.Flags.setInReg(); 6528 CLI.Ins.push_back(MyFlags); 6529 } 6530 } 6531 6532 SmallVector<SDValue, 4> InVals; 6533 CLI.Chain = LowerCall(CLI, InVals); 6534 6535 // Verify that the target's LowerCall behaved as expected. 6536 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6537 "LowerCall didn't return a valid chain!"); 6538 assert((!CLI.IsTailCall || InVals.empty()) && 6539 "LowerCall emitted a return value for a tail call!"); 6540 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6541 "LowerCall didn't emit the correct number of values!"); 6542 6543 // For a tail call, the return value is merely live-out and there aren't 6544 // any nodes in the DAG representing it. Return a special value to 6545 // indicate that a tail call has been emitted and no more Instructions 6546 // should be processed in the current block. 6547 if (CLI.IsTailCall) { 6548 CLI.DAG.setRoot(CLI.Chain); 6549 return std::make_pair(SDValue(), SDValue()); 6550 } 6551 6552 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6553 assert(InVals[i].getNode() && 6554 "LowerCall emitted a null value!"); 6555 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6556 "LowerCall emitted a value with the wrong type!"); 6557 }); 6558 6559 // Collect the legal value parts into potentially illegal values 6560 // that correspond to the original function's return values. 6561 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6562 if (CLI.RetSExt) 6563 AssertOp = ISD::AssertSext; 6564 else if (CLI.RetZExt) 6565 AssertOp = ISD::AssertZext; 6566 SmallVector<SDValue, 4> ReturnValues; 6567 unsigned CurReg = 0; 6568 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6569 EVT VT = RetTys[I]; 6570 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6571 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6572 6573 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6574 NumRegs, RegisterVT, VT, 6575 AssertOp)); 6576 CurReg += NumRegs; 6577 } 6578 6579 // For a function returning void, there is no return value. We can't create 6580 // such a node, so we just return a null return value in that case. In 6581 // that case, nothing will actually look at the value. 6582 if (ReturnValues.empty()) 6583 return std::make_pair(SDValue(), CLI.Chain); 6584 6585 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6586 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6587 &ReturnValues[0], ReturnValues.size()); 6588 return std::make_pair(Res, CLI.Chain); 6589} 6590 6591void TargetLowering::LowerOperationWrapper(SDNode *N, 6592 SmallVectorImpl<SDValue> &Results, 6593 SelectionDAG &DAG) const { 6594 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6595 if (Res.getNode()) 6596 Results.push_back(Res); 6597} 6598 6599SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6600 llvm_unreachable("LowerOperation not implemented for this target!"); 6601} 6602 6603void 6604SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6605 SDValue Op = getNonRegisterValue(V); 6606 assert((Op.getOpcode() != ISD::CopyFromReg || 6607 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6608 "Copy from a reg to the same reg!"); 6609 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6610 6611 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6612 SDValue Chain = DAG.getEntryNode(); 6613 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6614 PendingExports.push_back(Chain); 6615} 6616 6617#include "llvm/CodeGen/SelectionDAGISel.h" 6618 6619/// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6620/// entry block, return true. This includes arguments used by switches, since 6621/// the switch may expand into multiple basic blocks. 6622static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6623 // With FastISel active, we may be splitting blocks, so force creation 6624 // of virtual registers for all non-dead arguments. 6625 if (FastISel) 6626 return A->use_empty(); 6627 6628 const BasicBlock *Entry = A->getParent()->begin(); 6629 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6630 UI != E; ++UI) { 6631 const User *U = *UI; 6632 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6633 return false; // Use not in entry block. 6634 } 6635 return true; 6636} 6637 6638void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6639 // If this is the entry block, emit arguments. 6640 const Function &F = *LLVMBB->getParent(); 6641 SelectionDAG &DAG = SDB->DAG; 6642 DebugLoc dl = SDB->getCurDebugLoc(); 6643 const TargetData *TD = TLI.getTargetData(); 6644 SmallVector<ISD::InputArg, 16> Ins; 6645 6646 // Check whether the function can return without sret-demotion. 6647 SmallVector<ISD::OutputArg, 4> Outs; 6648 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6649 Outs, TLI); 6650 6651 if (!FuncInfo->CanLowerReturn) { 6652 // Put in an sret pointer parameter before all the other parameters. 6653 SmallVector<EVT, 1> ValueVTs; 6654 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6655 6656 // NOTE: Assuming that a pointer will never break down to more than one VT 6657 // or one register. 6658 ISD::ArgFlagsTy Flags; 6659 Flags.setSRet(); 6660 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6661 ISD::InputArg RetArg(Flags, RegisterVT, true); 6662 Ins.push_back(RetArg); 6663 } 6664 6665 // Set up the incoming argument description vector. 6666 unsigned Idx = 1; 6667 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6668 I != E; ++I, ++Idx) { 6669 SmallVector<EVT, 4> ValueVTs; 6670 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6671 bool isArgValueUsed = !I->use_empty(); 6672 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6673 Value != NumValues; ++Value) { 6674 EVT VT = ValueVTs[Value]; 6675 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6676 ISD::ArgFlagsTy Flags; 6677 unsigned OriginalAlignment = 6678 TD->getABITypeAlignment(ArgTy); 6679 6680 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6681 Flags.setZExt(); 6682 if (F.paramHasAttr(Idx, Attribute::SExt)) 6683 Flags.setSExt(); 6684 if (F.paramHasAttr(Idx, Attribute::InReg)) 6685 Flags.setInReg(); 6686 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6687 Flags.setSRet(); 6688 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6689 Flags.setByVal(); 6690 PointerType *Ty = cast<PointerType>(I->getType()); 6691 Type *ElementTy = Ty->getElementType(); 6692 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6693 // For ByVal, alignment should be passed from FE. BE will guess if 6694 // this info is not there but there are cases it cannot get right. 6695 unsigned FrameAlign; 6696 if (F.getParamAlignment(Idx)) 6697 FrameAlign = F.getParamAlignment(Idx); 6698 else 6699 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6700 Flags.setByValAlign(FrameAlign); 6701 } 6702 if (F.paramHasAttr(Idx, Attribute::Nest)) 6703 Flags.setNest(); 6704 Flags.setOrigAlign(OriginalAlignment); 6705 6706 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6707 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6708 for (unsigned i = 0; i != NumRegs; ++i) { 6709 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6710 if (NumRegs > 1 && i == 0) 6711 MyFlags.Flags.setSplit(); 6712 // if it isn't first piece, alignment must be 1 6713 else if (i > 0) 6714 MyFlags.Flags.setOrigAlign(1); 6715 Ins.push_back(MyFlags); 6716 } 6717 } 6718 } 6719 6720 // Call the target to set up the argument values. 6721 SmallVector<SDValue, 8> InVals; 6722 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6723 F.isVarArg(), Ins, 6724 dl, DAG, InVals); 6725 6726 // Verify that the target's LowerFormalArguments behaved as expected. 6727 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6728 "LowerFormalArguments didn't return a valid chain!"); 6729 assert(InVals.size() == Ins.size() && 6730 "LowerFormalArguments didn't emit the correct number of values!"); 6731 DEBUG({ 6732 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6733 assert(InVals[i].getNode() && 6734 "LowerFormalArguments emitted a null value!"); 6735 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6736 "LowerFormalArguments emitted a value with the wrong type!"); 6737 } 6738 }); 6739 6740 // Update the DAG with the new chain value resulting from argument lowering. 6741 DAG.setRoot(NewRoot); 6742 6743 // Set up the argument values. 6744 unsigned i = 0; 6745 Idx = 1; 6746 if (!FuncInfo->CanLowerReturn) { 6747 // Create a virtual register for the sret pointer, and put in a copy 6748 // from the sret argument into it. 6749 SmallVector<EVT, 1> ValueVTs; 6750 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6751 EVT VT = ValueVTs[0]; 6752 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6753 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6754 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6755 RegVT, VT, AssertOp); 6756 6757 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6758 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6759 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6760 FuncInfo->DemoteRegister = SRetReg; 6761 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6762 SRetReg, ArgValue); 6763 DAG.setRoot(NewRoot); 6764 6765 // i indexes lowered arguments. Bump it past the hidden sret argument. 6766 // Idx indexes LLVM arguments. Don't touch it. 6767 ++i; 6768 } 6769 6770 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6771 ++I, ++Idx) { 6772 SmallVector<SDValue, 4> ArgValues; 6773 SmallVector<EVT, 4> ValueVTs; 6774 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6775 unsigned NumValues = ValueVTs.size(); 6776 6777 // If this argument is unused then remember its value. It is used to generate 6778 // debugging information. 6779 if (I->use_empty() && NumValues) 6780 SDB->setUnusedArgValue(I, InVals[i]); 6781 6782 for (unsigned Val = 0; Val != NumValues; ++Val) { 6783 EVT VT = ValueVTs[Val]; 6784 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6785 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6786 6787 if (!I->use_empty()) { 6788 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6789 if (F.paramHasAttr(Idx, Attribute::SExt)) 6790 AssertOp = ISD::AssertSext; 6791 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6792 AssertOp = ISD::AssertZext; 6793 6794 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6795 NumParts, PartVT, VT, 6796 AssertOp)); 6797 } 6798 6799 i += NumParts; 6800 } 6801 6802 // We don't need to do anything else for unused arguments. 6803 if (ArgValues.empty()) 6804 continue; 6805 6806 // Note down frame index. 6807 if (FrameIndexSDNode *FI = 6808 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6809 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6810 6811 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6812 SDB->getCurDebugLoc()); 6813 6814 SDB->setValue(I, Res); 6815 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6816 if (LoadSDNode *LNode = 6817 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6818 if (FrameIndexSDNode *FI = 6819 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6820 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6821 } 6822 6823 // If this argument is live outside of the entry block, insert a copy from 6824 // wherever we got it to the vreg that other BB's will reference it as. 6825 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6826 // If we can, though, try to skip creating an unnecessary vreg. 6827 // FIXME: This isn't very clean... it would be nice to make this more 6828 // general. It's also subtly incompatible with the hacks FastISel 6829 // uses with vregs. 6830 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6831 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6832 FuncInfo->ValueMap[I] = Reg; 6833 continue; 6834 } 6835 } 6836 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6837 FuncInfo->InitializeRegForValue(I); 6838 SDB->CopyToExportRegsIfNeeded(I); 6839 } 6840 } 6841 6842 assert(i == InVals.size() && "Argument register count mismatch!"); 6843 6844 // Finally, if the target has anything special to do, allow it to do so. 6845 // FIXME: this should insert code into the DAG! 6846 EmitFunctionEntryCode(); 6847} 6848 6849/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6850/// ensure constants are generated when needed. Remember the virtual registers 6851/// that need to be added to the Machine PHI nodes as input. We cannot just 6852/// directly add them, because expansion might result in multiple MBB's for one 6853/// BB. As such, the start of the BB might correspond to a different MBB than 6854/// the end. 6855/// 6856void 6857SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6858 const TerminatorInst *TI = LLVMBB->getTerminator(); 6859 6860 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6861 6862 // Check successor nodes' PHI nodes that expect a constant to be available 6863 // from this block. 6864 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6865 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6866 if (!isa<PHINode>(SuccBB->begin())) continue; 6867 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6868 6869 // If this terminator has multiple identical successors (common for 6870 // switches), only handle each succ once. 6871 if (!SuccsHandled.insert(SuccMBB)) continue; 6872 6873 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6874 6875 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6876 // nodes and Machine PHI nodes, but the incoming operands have not been 6877 // emitted yet. 6878 for (BasicBlock::const_iterator I = SuccBB->begin(); 6879 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6880 // Ignore dead phi's. 6881 if (PN->use_empty()) continue; 6882 6883 // Skip empty types 6884 if (PN->getType()->isEmptyTy()) 6885 continue; 6886 6887 unsigned Reg; 6888 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6889 6890 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6891 unsigned &RegOut = ConstantsOut[C]; 6892 if (RegOut == 0) { 6893 RegOut = FuncInfo.CreateRegs(C->getType()); 6894 CopyValueToVirtualRegister(C, RegOut); 6895 } 6896 Reg = RegOut; 6897 } else { 6898 DenseMap<const Value *, unsigned>::iterator I = 6899 FuncInfo.ValueMap.find(PHIOp); 6900 if (I != FuncInfo.ValueMap.end()) 6901 Reg = I->second; 6902 else { 6903 assert(isa<AllocaInst>(PHIOp) && 6904 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6905 "Didn't codegen value into a register!??"); 6906 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6907 CopyValueToVirtualRegister(PHIOp, Reg); 6908 } 6909 } 6910 6911 // Remember that this register needs to added to the machine PHI node as 6912 // the input for this MBB. 6913 SmallVector<EVT, 4> ValueVTs; 6914 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6915 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6916 EVT VT = ValueVTs[vti]; 6917 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6918 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6919 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6920 Reg += NumRegisters; 6921 } 6922 } 6923 } 6924 ConstantsOut.clear(); 6925} 6926