1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/Constants.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/Function.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/Module.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/BranchProbabilityInfo.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/FunctionLoweringInfo.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/CodeGen/SelectionDAGISel.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/ADT/PostOrderIterator.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65#ifndef NDEBUG
66static cl::opt<bool>
67EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68          cl::desc("Enable extra verbose messages in the \"fast\" "
69                   "instruction selector"));
70  // Terminators
71STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
78
79  // Standard binary operators...
80STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
81STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
82STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
83STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
84STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
85STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
86STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
87STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
88STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
89STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
90STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
91STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
92
93  // Logical operators...
94STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
95STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
96STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
97
98  // Memory instructions...
99STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
100STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
101STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
102STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
103STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
104STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
105STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
106
107  // Convert instructions...
108STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
109STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
110STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
111STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
112STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
113STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
114STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
115STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
116STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
117STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
118STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
119STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
120
121  // Other instructions...
122STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
123STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
124STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
125STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
126STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
127STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
128STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
129STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
130STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
131STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
132STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
133STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
134STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
135STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
136STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
137#endif
138
139static cl::opt<bool>
140EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
141          cl::desc("Enable verbose messages in the \"fast\" "
142                   "instruction selector"));
143static cl::opt<bool>
144EnableFastISelAbort("fast-isel-abort", cl::Hidden,
145          cl::desc("Enable abort calls when \"fast\" instruction fails"));
146
147static cl::opt<bool>
148UseMBPI("use-mbpi",
149        cl::desc("use Machine Branch Probability Info"),
150        cl::init(true), cl::Hidden);
151
152#ifndef NDEBUG
153static cl::opt<bool>
154ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155          cl::desc("Pop up a window to show dags before the first "
156                   "dag combine pass"));
157static cl::opt<bool>
158ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159          cl::desc("Pop up a window to show dags before legalize types"));
160static cl::opt<bool>
161ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before legalize"));
163static cl::opt<bool>
164ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
165          cl::desc("Pop up a window to show dags before the second "
166                   "dag combine pass"));
167static cl::opt<bool>
168ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
169          cl::desc("Pop up a window to show dags before the post legalize types"
170                   " dag combine pass"));
171static cl::opt<bool>
172ViewISelDAGs("view-isel-dags", cl::Hidden,
173          cl::desc("Pop up a window to show isel dags as they are selected"));
174static cl::opt<bool>
175ViewSchedDAGs("view-sched-dags", cl::Hidden,
176          cl::desc("Pop up a window to show sched dags as they are processed"));
177static cl::opt<bool>
178ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179      cl::desc("Pop up a window to show SUnit dags after they are processed"));
180#else
181static const bool ViewDAGCombine1 = false,
182                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
183                  ViewDAGCombine2 = false,
184                  ViewDAGCombineLT = false,
185                  ViewISelDAGs = false, ViewSchedDAGs = false,
186                  ViewSUnitDAGs = false;
187#endif
188
189//===---------------------------------------------------------------------===//
190///
191/// RegisterScheduler class - Track the registration of instruction schedulers.
192///
193//===---------------------------------------------------------------------===//
194MachinePassRegistry RegisterScheduler::Registry;
195
196//===---------------------------------------------------------------------===//
197///
198/// ISHeuristic command line option for instruction schedulers.
199///
200//===---------------------------------------------------------------------===//
201static cl::opt<RegisterScheduler::FunctionPassCtor, false,
202               RegisterPassParser<RegisterScheduler> >
203ISHeuristic("pre-RA-sched",
204            cl::init(&createDefaultScheduler),
205            cl::desc("Instruction schedulers available (before register"
206                     " allocation):"));
207
208static RegisterScheduler
209defaultListDAGScheduler("default", "Best scheduler for the target",
210                        createDefaultScheduler);
211
212namespace llvm {
213  //===--------------------------------------------------------------------===//
214  /// createDefaultScheduler - This creates an instruction scheduler appropriate
215  /// for the target.
216  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
217                                             CodeGenOpt::Level OptLevel) {
218    const TargetLowering &TLI = IS->getTargetLowering();
219
220    if (OptLevel == CodeGenOpt::None ||
221        TLI.getSchedulingPreference() == Sched::Source)
222      return createSourceListDAGScheduler(IS, OptLevel);
223    if (TLI.getSchedulingPreference() == Sched::RegPressure)
224      return createBURRListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::Hybrid)
226      return createHybridListDAGScheduler(IS, OptLevel);
227    if (TLI.getSchedulingPreference() == Sched::VLIW)
228      return createVLIWDAGScheduler(IS, OptLevel);
229    assert(TLI.getSchedulingPreference() == Sched::ILP &&
230           "Unknown sched type!");
231    return createILPListDAGScheduler(IS, OptLevel);
232  }
233}
234
235// EmitInstrWithCustomInserter - This method should be implemented by targets
236// that mark instructions with the 'usesCustomInserter' flag.  These
237// instructions are special in various ways, which require special support to
238// insert.  The specified MachineInstr is created but not inserted into any
239// basic blocks, and this method is called to expand it into a sequence of
240// instructions, potentially also creating new basic blocks and control flow.
241// When new basic blocks are inserted and the edges from MBB to its successors
242// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
243// DenseMap.
244MachineBasicBlock *
245TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
246                                            MachineBasicBlock *MBB) const {
247#ifndef NDEBUG
248  dbgs() << "If a target marks an instruction with "
249          "'usesCustomInserter', it must implement "
250          "TargetLowering::EmitInstrWithCustomInserter!";
251#endif
252  llvm_unreachable(0);
253}
254
255void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
256                                                   SDNode *Node) const {
257  assert(!MI->hasPostISelHook() &&
258         "If a target marks an instruction with 'hasPostISelHook', "
259         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
260}
261
262//===----------------------------------------------------------------------===//
263// SelectionDAGISel code
264//===----------------------------------------------------------------------===//
265
266SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
267                                   CodeGenOpt::Level OL) :
268  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
269  FuncInfo(new FunctionLoweringInfo(TLI)),
270  CurDAG(new SelectionDAG(tm, OL)),
271  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
272  GFI(),
273  OptLevel(OL),
274  DAGSize(0) {
275    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
276    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
277    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
278    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
279  }
280
281SelectionDAGISel::~SelectionDAGISel() {
282  delete SDB;
283  delete CurDAG;
284  delete FuncInfo;
285}
286
287void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
288  AU.addRequired<AliasAnalysis>();
289  AU.addPreserved<AliasAnalysis>();
290  AU.addRequired<GCModuleInfo>();
291  AU.addPreserved<GCModuleInfo>();
292  AU.addRequired<TargetLibraryInfo>();
293  if (UseMBPI && OptLevel != CodeGenOpt::None)
294    AU.addRequired<BranchProbabilityInfo>();
295  MachineFunctionPass::getAnalysisUsage(AU);
296}
297
298/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
299/// may trap on it.  In this case we have to split the edge so that the path
300/// through the predecessor block that doesn't go to the phi block doesn't
301/// execute the possibly trapping instruction.
302///
303/// This is required for correctness, so it must be done at -O0.
304///
305static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
306  // Loop for blocks with phi nodes.
307  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
308    PHINode *PN = dyn_cast<PHINode>(BB->begin());
309    if (PN == 0) continue;
310
311  ReprocessBlock:
312    // For each block with a PHI node, check to see if any of the input values
313    // are potentially trapping constant expressions.  Constant expressions are
314    // the only potentially trapping value that can occur as the argument to a
315    // PHI.
316    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
317      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
318        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
319        if (CE == 0 || !CE->canTrap()) continue;
320
321        // The only case we have to worry about is when the edge is critical.
322        // Since this block has a PHI Node, we assume it has multiple input
323        // edges: check to see if the pred has multiple successors.
324        BasicBlock *Pred = PN->getIncomingBlock(i);
325        if (Pred->getTerminator()->getNumSuccessors() == 1)
326          continue;
327
328        // Okay, we have to split this edge.
329        SplitCriticalEdge(Pred->getTerminator(),
330                          GetSuccessorNumber(Pred, BB), SDISel, true);
331        goto ReprocessBlock;
332      }
333  }
334}
335
336bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
337  // Do some sanity-checking on the command-line options.
338  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
339         "-fast-isel-verbose requires -fast-isel");
340  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
341         "-fast-isel-abort requires -fast-isel");
342
343  const Function &Fn = *mf.getFunction();
344  const TargetInstrInfo &TII = *TM.getInstrInfo();
345  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
346
347  MF = &mf;
348  RegInfo = &MF->getRegInfo();
349  AA = &getAnalysis<AliasAnalysis>();
350  LibInfo = &getAnalysis<TargetLibraryInfo>();
351  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
352
353  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
354
355  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
356
357  CurDAG->init(*MF);
358  FuncInfo->set(Fn, *MF);
359
360  if (UseMBPI && OptLevel != CodeGenOpt::None)
361    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
362  else
363    FuncInfo->BPI = 0;
364
365  SDB->init(GFI, *AA, LibInfo);
366
367  SelectAllBasicBlocks(Fn);
368
369  // If the first basic block in the function has live ins that need to be
370  // copied into vregs, emit the copies into the top of the block before
371  // emitting the code for the block.
372  MachineBasicBlock *EntryMBB = MF->begin();
373  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
374
375  DenseMap<unsigned, unsigned> LiveInMap;
376  if (!FuncInfo->ArgDbgValues.empty())
377    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
378           E = RegInfo->livein_end(); LI != E; ++LI)
379      if (LI->second)
380        LiveInMap.insert(std::make_pair(LI->first, LI->second));
381
382  // Insert DBG_VALUE instructions for function arguments to the entry block.
383  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
384    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
385    unsigned Reg = MI->getOperand(0).getReg();
386    if (TargetRegisterInfo::isPhysicalRegister(Reg))
387      EntryMBB->insert(EntryMBB->begin(), MI);
388    else {
389      MachineInstr *Def = RegInfo->getVRegDef(Reg);
390      MachineBasicBlock::iterator InsertPos = Def;
391      // FIXME: VR def may not be in entry block.
392      Def->getParent()->insert(llvm::next(InsertPos), MI);
393    }
394
395    // If Reg is live-in then update debug info to track its copy in a vreg.
396    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
397    if (LDI != LiveInMap.end()) {
398      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
399      MachineBasicBlock::iterator InsertPos = Def;
400      const MDNode *Variable =
401        MI->getOperand(MI->getNumOperands()-1).getMetadata();
402      unsigned Offset = MI->getOperand(1).getImm();
403      // Def is never a terminator here, so it is ok to increment InsertPos.
404      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
405              TII.get(TargetOpcode::DBG_VALUE))
406        .addReg(LDI->second, RegState::Debug)
407        .addImm(Offset).addMetadata(Variable);
408
409      // If this vreg is directly copied into an exported register then
410      // that COPY instructions also need DBG_VALUE, if it is the only
411      // user of LDI->second.
412      MachineInstr *CopyUseMI = NULL;
413      for (MachineRegisterInfo::use_iterator
414             UI = RegInfo->use_begin(LDI->second);
415           MachineInstr *UseMI = UI.skipInstruction();) {
416        if (UseMI->isDebugValue()) continue;
417        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
418          CopyUseMI = UseMI; continue;
419        }
420        // Otherwise this is another use or second copy use.
421        CopyUseMI = NULL; break;
422      }
423      if (CopyUseMI) {
424        MachineInstr *NewMI =
425          BuildMI(*MF, CopyUseMI->getDebugLoc(),
426                  TII.get(TargetOpcode::DBG_VALUE))
427          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
428          .addImm(Offset).addMetadata(Variable);
429        MachineBasicBlock::iterator Pos = CopyUseMI;
430        EntryMBB->insertAfter(Pos, NewMI);
431      }
432    }
433  }
434
435  // Determine if there are any calls in this machine function.
436  MachineFrameInfo *MFI = MF->getFrameInfo();
437  if (!MFI->hasCalls()) {
438    for (MachineFunction::const_iterator
439           I = MF->begin(), E = MF->end(); I != E; ++I) {
440      const MachineBasicBlock *MBB = I;
441      for (MachineBasicBlock::const_iterator
442             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
443        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
444
445        if ((MCID.isCall() && !MCID.isReturn()) ||
446            II->isStackAligningInlineAsm()) {
447          MFI->setHasCalls(true);
448          goto done;
449        }
450      }
451    }
452  }
453
454  done:
455  // Determine if there is a call to setjmp in the machine function.
456  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
457
458  // Replace forward-declared registers with the registers containing
459  // the desired value.
460  MachineRegisterInfo &MRI = MF->getRegInfo();
461  for (DenseMap<unsigned, unsigned>::iterator
462       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
463       I != E; ++I) {
464    unsigned From = I->first;
465    unsigned To = I->second;
466    // If To is also scheduled to be replaced, find what its ultimate
467    // replacement is.
468    for (;;) {
469      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
470      if (J == E) break;
471      To = J->second;
472    }
473    // Replace it.
474    MRI.replaceRegWith(From, To);
475  }
476
477  // Release function-specific state. SDB and CurDAG are already cleared
478  // at this point.
479  FuncInfo->clear();
480
481  return true;
482}
483
484void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
485                                        BasicBlock::const_iterator End,
486                                        bool &HadTailCall) {
487  // Lower all of the non-terminator instructions. If a call is emitted
488  // as a tail call, cease emitting nodes for this block. Terminators
489  // are handled below.
490  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
491    SDB->visit(*I);
492
493  // Make sure the root of the DAG is up-to-date.
494  CurDAG->setRoot(SDB->getControlRoot());
495  HadTailCall = SDB->HasTailCall;
496  SDB->clear();
497
498  // Final step, emit the lowered DAG as machine code.
499  CodeGenAndEmitDAG();
500}
501
502void SelectionDAGISel::ComputeLiveOutVRegInfo() {
503  SmallPtrSet<SDNode*, 128> VisitedNodes;
504  SmallVector<SDNode*, 128> Worklist;
505
506  Worklist.push_back(CurDAG->getRoot().getNode());
507
508  APInt KnownZero;
509  APInt KnownOne;
510
511  do {
512    SDNode *N = Worklist.pop_back_val();
513
514    // If we've already seen this node, ignore it.
515    if (!VisitedNodes.insert(N))
516      continue;
517
518    // Otherwise, add all chain operands to the worklist.
519    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
520      if (N->getOperand(i).getValueType() == MVT::Other)
521        Worklist.push_back(N->getOperand(i).getNode());
522
523    // If this is a CopyToReg with a vreg dest, process it.
524    if (N->getOpcode() != ISD::CopyToReg)
525      continue;
526
527    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
528    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
529      continue;
530
531    // Ignore non-scalar or non-integer values.
532    SDValue Src = N->getOperand(2);
533    EVT SrcVT = Src.getValueType();
534    if (!SrcVT.isInteger() || SrcVT.isVector())
535      continue;
536
537    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
538    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
539    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
540  } while (!Worklist.empty());
541}
542
543void SelectionDAGISel::CodeGenAndEmitDAG() {
544  std::string GroupName;
545  if (TimePassesIsEnabled)
546    GroupName = "Instruction Selection and Scheduling";
547  std::string BlockName;
548  int BlockNumber = -1;
549  (void)BlockNumber;
550#ifdef NDEBUG
551  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
552      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
553      ViewSUnitDAGs)
554#endif
555  {
556    BlockNumber = FuncInfo->MBB->getNumber();
557    BlockName = MF->getName().str() + ":" +
558                FuncInfo->MBB->getBasicBlock()->getName().str();
559  }
560  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
561        << " '" << BlockName << "'\n"; CurDAG->dump());
562
563  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
564
565  // Run the DAG combiner in pre-legalize mode.
566  {
567    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
568    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
569  }
570
571  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
572        << " '" << BlockName << "'\n"; CurDAG->dump());
573
574  // Second step, hack on the DAG until it only uses operations and types that
575  // the target supports.
576  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
577                                               BlockName);
578
579  bool Changed;
580  {
581    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
582    Changed = CurDAG->LegalizeTypes();
583  }
584
585  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
586        << " '" << BlockName << "'\n"; CurDAG->dump());
587
588  if (Changed) {
589    if (ViewDAGCombineLT)
590      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
591
592    // Run the DAG combiner in post-type-legalize mode.
593    {
594      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
595                         TimePassesIsEnabled);
596      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
597    }
598
599    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
600          << " '" << BlockName << "'\n"; CurDAG->dump());
601  }
602
603  {
604    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
605    Changed = CurDAG->LegalizeVectors();
606  }
607
608  if (Changed) {
609    {
610      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
611      CurDAG->LegalizeTypes();
612    }
613
614    if (ViewDAGCombineLT)
615      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
616
617    // Run the DAG combiner in post-type-legalize mode.
618    {
619      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
620                         TimePassesIsEnabled);
621      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
622    }
623
624    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
625          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
626  }
627
628  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
629
630  {
631    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
632    CurDAG->Legalize();
633  }
634
635  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
636        << " '" << BlockName << "'\n"; CurDAG->dump());
637
638  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
639
640  // Run the DAG combiner in post-legalize mode.
641  {
642    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
643    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
644  }
645
646  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
647        << " '" << BlockName << "'\n"; CurDAG->dump());
648
649  if (OptLevel != CodeGenOpt::None)
650    ComputeLiveOutVRegInfo();
651
652  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
653
654  // Third, instruction select all of the operations to machine code, adding the
655  // code to the MachineBasicBlock.
656  {
657    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
658    DoInstructionSelection();
659  }
660
661  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
662        << " '" << BlockName << "'\n"; CurDAG->dump());
663
664  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
665
666  // Schedule machine code.
667  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
668  {
669    NamedRegionTimer T("Instruction Scheduling", GroupName,
670                       TimePassesIsEnabled);
671    Scheduler->Run(CurDAG, FuncInfo->MBB);
672  }
673
674  if (ViewSUnitDAGs) Scheduler->viewGraph();
675
676  // Emit machine code to BB.  This can change 'BB' to the last block being
677  // inserted into.
678  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
679  {
680    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
681
682    // FuncInfo->InsertPt is passed by reference and set to the end of the
683    // scheduled instructions.
684    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
685  }
686
687  // If the block was split, make sure we update any references that are used to
688  // update PHI nodes later on.
689  if (FirstMBB != LastMBB)
690    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
691
692  // Free the scheduler state.
693  {
694    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
695                       TimePassesIsEnabled);
696    delete Scheduler;
697  }
698
699  // Free the SelectionDAG state, now that we're finished with it.
700  CurDAG->clear();
701}
702
703namespace {
704/// ISelUpdater - helper class to handle updates of the instruction selection
705/// graph.
706class ISelUpdater : public SelectionDAG::DAGUpdateListener {
707  SelectionDAG::allnodes_iterator &ISelPosition;
708public:
709  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
710    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
711
712  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
713  /// deleted is the current ISelPosition node, update ISelPosition.
714  ///
715  virtual void NodeDeleted(SDNode *N, SDNode *E) {
716    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
717      ++ISelPosition;
718  }
719};
720} // end anonymous namespace
721
722void SelectionDAGISel::DoInstructionSelection() {
723  DEBUG(errs() << "===== Instruction selection begins: BB#"
724        << FuncInfo->MBB->getNumber()
725        << " '" << FuncInfo->MBB->getName() << "'\n");
726
727  PreprocessISelDAG();
728
729  // Select target instructions for the DAG.
730  {
731    // Number all nodes with a topological order and set DAGSize.
732    DAGSize = CurDAG->AssignTopologicalOrder();
733
734    // Create a dummy node (which is not added to allnodes), that adds
735    // a reference to the root node, preventing it from being deleted,
736    // and tracking any changes of the root.
737    HandleSDNode Dummy(CurDAG->getRoot());
738    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
739    ++ISelPosition;
740
741    // Make sure that ISelPosition gets properly updated when nodes are deleted
742    // in calls made from this function.
743    ISelUpdater ISU(*CurDAG, ISelPosition);
744
745    // The AllNodes list is now topological-sorted. Visit the
746    // nodes by starting at the end of the list (the root of the
747    // graph) and preceding back toward the beginning (the entry
748    // node).
749    while (ISelPosition != CurDAG->allnodes_begin()) {
750      SDNode *Node = --ISelPosition;
751      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
752      // but there are currently some corner cases that it misses. Also, this
753      // makes it theoretically possible to disable the DAGCombiner.
754      if (Node->use_empty())
755        continue;
756
757      SDNode *ResNode = Select(Node);
758
759      // FIXME: This is pretty gross.  'Select' should be changed to not return
760      // anything at all and this code should be nuked with a tactical strike.
761
762      // If node should not be replaced, continue with the next one.
763      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
764        continue;
765      // Replace node.
766      if (ResNode)
767        ReplaceUses(Node, ResNode);
768
769      // If after the replacement this node is not used any more,
770      // remove this dead node.
771      if (Node->use_empty()) // Don't delete EntryToken, etc.
772        CurDAG->RemoveDeadNode(Node);
773    }
774
775    CurDAG->setRoot(Dummy.getValue());
776  }
777
778  DEBUG(errs() << "===== Instruction selection ends:\n");
779
780  PostprocessISelDAG();
781}
782
783/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
784/// do other setup for EH landing-pad blocks.
785void SelectionDAGISel::PrepareEHLandingPad() {
786  MachineBasicBlock *MBB = FuncInfo->MBB;
787
788  // Add a label to mark the beginning of the landing pad.  Deletion of the
789  // landing pad can thus be detected via the MachineModuleInfo.
790  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
791
792  // Assign the call site to the landing pad's begin label.
793  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
794
795  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
796  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
797    .addSym(Label);
798
799  // Mark exception register as live in.
800  unsigned Reg = TLI.getExceptionPointerRegister();
801  if (Reg) MBB->addLiveIn(Reg);
802
803  // Mark exception selector register as live in.
804  Reg = TLI.getExceptionSelectorRegister();
805  if (Reg) MBB->addLiveIn(Reg);
806}
807
808/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
809/// load into the specified FoldInst.  Note that we could have a sequence where
810/// multiple LLVM IR instructions are folded into the same machineinstr.  For
811/// example we could have:
812///   A: x = load i32 *P
813///   B: y = icmp A, 42
814///   C: br y, ...
815///
816/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
817/// any other folded instructions) because it is between A and C.
818///
819/// If we succeed in folding the load into the operation, return true.
820///
821bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
822                                             const Instruction *FoldInst,
823                                             FastISel *FastIS) {
824  // We know that the load has a single use, but don't know what it is.  If it
825  // isn't one of the folded instructions, then we can't succeed here.  Handle
826  // this by scanning the single-use users of the load until we get to FoldInst.
827  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
828
829  const Instruction *TheUser = LI->use_back();
830  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
831         // Stay in the right block.
832         TheUser->getParent() == FoldInst->getParent() &&
833         --MaxUsers) {  // Don't scan too far.
834    // If there are multiple or no uses of this instruction, then bail out.
835    if (!TheUser->hasOneUse())
836      return false;
837
838    TheUser = TheUser->use_back();
839  }
840
841  // If we didn't find the fold instruction, then we failed to collapse the
842  // sequence.
843  if (TheUser != FoldInst)
844    return false;
845
846  // Don't try to fold volatile loads.  Target has to deal with alignment
847  // constraints.
848  if (LI->isVolatile()) return false;
849
850  // Figure out which vreg this is going into.  If there is no assigned vreg yet
851  // then there actually was no reference to it.  Perhaps the load is referenced
852  // by a dead instruction.
853  unsigned LoadReg = FastIS->getRegForValue(LI);
854  if (LoadReg == 0)
855    return false;
856
857  // Check to see what the uses of this vreg are.  If it has no uses, or more
858  // than one use (at the machine instr level) then we can't fold it.
859  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
860  if (RI == RegInfo->reg_end())
861    return false;
862
863  // See if there is exactly one use of the vreg.  If there are multiple uses,
864  // then the instruction got lowered to multiple machine instructions or the
865  // use of the loaded value ended up being multiple operands of the result, in
866  // either case, we can't fold this.
867  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
868  if (PostRI != RegInfo->reg_end())
869    return false;
870
871  assert(RI.getOperand().isUse() &&
872         "The only use of the vreg must be a use, we haven't emitted the def!");
873
874  MachineInstr *User = &*RI;
875
876  // Set the insertion point properly.  Folding the load can cause generation of
877  // other random instructions (like sign extends) for addressing modes, make
878  // sure they get inserted in a logical place before the new instruction.
879  FuncInfo->InsertPt = User;
880  FuncInfo->MBB = User->getParent();
881
882  // Ask the target to try folding the load.
883  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
884}
885
886/// isFoldedOrDeadInstruction - Return true if the specified instruction is
887/// side-effect free and is either dead or folded into a generated instruction.
888/// Return false if it needs to be emitted.
889static bool isFoldedOrDeadInstruction(const Instruction *I,
890                                      FunctionLoweringInfo *FuncInfo) {
891  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
892         !isa<TerminatorInst>(I) && // Terminators aren't folded.
893         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
894         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
895         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
896}
897
898#ifndef NDEBUG
899// Collect per Instruction statistics for fast-isel misses.  Only those
900// instructions that cause the bail are accounted for.  It does not account for
901// instructions higher in the block.  Thus, summing the per instructions stats
902// will not add up to what is reported by NumFastIselFailures.
903static void collectFailStats(const Instruction *I) {
904  switch (I->getOpcode()) {
905  default: assert (0 && "<Invalid operator> ");
906
907  // Terminators
908  case Instruction::Ret:         NumFastIselFailRet++; return;
909  case Instruction::Br:          NumFastIselFailBr++; return;
910  case Instruction::Switch:      NumFastIselFailSwitch++; return;
911  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
912  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
913  case Instruction::Resume:      NumFastIselFailResume++; return;
914  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
915
916  // Standard binary operators...
917  case Instruction::Add:  NumFastIselFailAdd++; return;
918  case Instruction::FAdd: NumFastIselFailFAdd++; return;
919  case Instruction::Sub:  NumFastIselFailSub++; return;
920  case Instruction::FSub: NumFastIselFailFSub++; return;
921  case Instruction::Mul:  NumFastIselFailMul++; return;
922  case Instruction::FMul: NumFastIselFailFMul++; return;
923  case Instruction::UDiv: NumFastIselFailUDiv++; return;
924  case Instruction::SDiv: NumFastIselFailSDiv++; return;
925  case Instruction::FDiv: NumFastIselFailFDiv++; return;
926  case Instruction::URem: NumFastIselFailURem++; return;
927  case Instruction::SRem: NumFastIselFailSRem++; return;
928  case Instruction::FRem: NumFastIselFailFRem++; return;
929
930  // Logical operators...
931  case Instruction::And: NumFastIselFailAnd++; return;
932  case Instruction::Or:  NumFastIselFailOr++; return;
933  case Instruction::Xor: NumFastIselFailXor++; return;
934
935  // Memory instructions...
936  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
937  case Instruction::Load:          NumFastIselFailLoad++; return;
938  case Instruction::Store:         NumFastIselFailStore++; return;
939  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
940  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
941  case Instruction::Fence:         NumFastIselFailFence++; return;
942  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
943
944  // Convert instructions...
945  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
946  case Instruction::ZExt:     NumFastIselFailZExt++; return;
947  case Instruction::SExt:     NumFastIselFailSExt++; return;
948  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
949  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
950  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
951  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
952  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
953  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
954  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
955  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
956  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
957
958  // Other instructions...
959  case Instruction::ICmp:           NumFastIselFailICmp++; return;
960  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
961  case Instruction::PHI:            NumFastIselFailPHI++; return;
962  case Instruction::Select:         NumFastIselFailSelect++; return;
963  case Instruction::Call:           NumFastIselFailCall++; return;
964  case Instruction::Shl:            NumFastIselFailShl++; return;
965  case Instruction::LShr:           NumFastIselFailLShr++; return;
966  case Instruction::AShr:           NumFastIselFailAShr++; return;
967  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
968  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
969  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
970  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
971  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
972  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
973  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
974  }
975}
976#endif
977
978void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
979  // Initialize the Fast-ISel state, if needed.
980  FastISel *FastIS = 0;
981  if (TM.Options.EnableFastISel)
982    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
983
984  // Iterate over all basic blocks in the function.
985  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
986  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
987       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
988    const BasicBlock *LLVMBB = *I;
989
990    if (OptLevel != CodeGenOpt::None) {
991      bool AllPredsVisited = true;
992      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
993           PI != PE; ++PI) {
994        if (!FuncInfo->VisitedBBs.count(*PI)) {
995          AllPredsVisited = false;
996          break;
997        }
998      }
999
1000      if (AllPredsVisited) {
1001        for (BasicBlock::const_iterator I = LLVMBB->begin();
1002             isa<PHINode>(I); ++I)
1003          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
1004      } else {
1005        for (BasicBlock::const_iterator I = LLVMBB->begin();
1006             isa<PHINode>(I); ++I)
1007          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
1008      }
1009
1010      FuncInfo->VisitedBBs.insert(LLVMBB);
1011    }
1012
1013    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1014    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1015
1016    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1017    BasicBlock::const_iterator const End = LLVMBB->end();
1018    BasicBlock::const_iterator BI = End;
1019
1020    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1021
1022    // Setup an EH landing-pad block.
1023    if (FuncInfo->MBB->isLandingPad())
1024      PrepareEHLandingPad();
1025
1026    // Lower any arguments needed in this block if this is the entry block.
1027    if (LLVMBB == &Fn.getEntryBlock())
1028      LowerArguments(LLVMBB);
1029
1030    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1031    if (FastIS) {
1032      FastIS->startNewBlock();
1033
1034      // Emit code for any incoming arguments. This must happen before
1035      // beginning FastISel on the entry block.
1036      if (LLVMBB == &Fn.getEntryBlock()) {
1037        CurDAG->setRoot(SDB->getControlRoot());
1038        SDB->clear();
1039        CodeGenAndEmitDAG();
1040
1041        // If we inserted any instructions at the beginning, make a note of
1042        // where they are, so we can be sure to emit subsequent instructions
1043        // after them.
1044        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1045          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1046        else
1047          FastIS->setLastLocalValue(0);
1048      }
1049
1050      unsigned NumFastIselRemaining = std::distance(Begin, End);
1051      // Do FastISel on as many instructions as possible.
1052      for (; BI != Begin; --BI) {
1053        const Instruction *Inst = llvm::prior(BI);
1054
1055        // If we no longer require this instruction, skip it.
1056        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1057          --NumFastIselRemaining;
1058          continue;
1059        }
1060
1061        // Bottom-up: reset the insert pos at the top, after any local-value
1062        // instructions.
1063        FastIS->recomputeInsertPt();
1064
1065        // Try to select the instruction with FastISel.
1066        if (FastIS->SelectInstruction(Inst)) {
1067          --NumFastIselRemaining;
1068          ++NumFastIselSuccess;
1069          // If fast isel succeeded, skip over all the folded instructions, and
1070          // then see if there is a load right before the selected instructions.
1071          // Try to fold the load if so.
1072          const Instruction *BeforeInst = Inst;
1073          while (BeforeInst != Begin) {
1074            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1075            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1076              break;
1077          }
1078          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1079              BeforeInst->hasOneUse() &&
1080              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1081            // If we succeeded, don't re-select the load.
1082            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1083            --NumFastIselRemaining;
1084            ++NumFastIselSuccess;
1085          }
1086          continue;
1087        }
1088
1089#ifndef NDEBUG
1090        if (EnableFastISelVerbose2)
1091          collectFailStats(Inst);
1092#endif
1093
1094        // Then handle certain instructions as single-LLVM-Instruction blocks.
1095        if (isa<CallInst>(Inst)) {
1096
1097          if (EnableFastISelVerbose || EnableFastISelAbort) {
1098            dbgs() << "FastISel missed call: ";
1099            Inst->dump();
1100          }
1101
1102          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1103            unsigned &R = FuncInfo->ValueMap[Inst];
1104            if (!R)
1105              R = FuncInfo->CreateRegs(Inst->getType());
1106          }
1107
1108          bool HadTailCall = false;
1109          SelectBasicBlock(Inst, BI, HadTailCall);
1110
1111          // Recompute NumFastIselRemaining as Selection DAG instruction
1112          // selection may have handled the call, input args, etc.
1113          unsigned RemainingNow = std::distance(Begin, BI);
1114          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1115
1116          // If the call was emitted as a tail call, we're done with the block.
1117          if (HadTailCall) {
1118            --BI;
1119            break;
1120          }
1121
1122          NumFastIselRemaining = RemainingNow;
1123          continue;
1124        }
1125
1126        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1127          // Don't abort, and use a different message for terminator misses.
1128          NumFastIselFailures += NumFastIselRemaining;
1129          if (EnableFastISelVerbose || EnableFastISelAbort) {
1130            dbgs() << "FastISel missed terminator: ";
1131            Inst->dump();
1132          }
1133        } else {
1134          NumFastIselFailures += NumFastIselRemaining;
1135          if (EnableFastISelVerbose || EnableFastISelAbort) {
1136            dbgs() << "FastISel miss: ";
1137            Inst->dump();
1138          }
1139          if (EnableFastISelAbort)
1140            // The "fast" selector couldn't handle something and bailed.
1141            // For the purpose of debugging, just abort.
1142            llvm_unreachable("FastISel didn't select the entire block");
1143        }
1144        break;
1145      }
1146
1147      FastIS->recomputeInsertPt();
1148    }
1149
1150    if (Begin != BI)
1151      ++NumDAGBlocks;
1152    else
1153      ++NumFastIselBlocks;
1154
1155    if (Begin != BI) {
1156      // Run SelectionDAG instruction selection on the remainder of the block
1157      // not handled by FastISel. If FastISel is not run, this is the entire
1158      // block.
1159      bool HadTailCall;
1160      SelectBasicBlock(Begin, BI, HadTailCall);
1161    }
1162
1163    FinishBasicBlock();
1164    FuncInfo->PHINodesToUpdate.clear();
1165  }
1166
1167  delete FastIS;
1168  SDB->clearDanglingDebugInfo();
1169}
1170
1171void
1172SelectionDAGISel::FinishBasicBlock() {
1173
1174  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1175               << FuncInfo->PHINodesToUpdate.size() << "\n";
1176        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1177          dbgs() << "Node " << i << " : ("
1178                 << FuncInfo->PHINodesToUpdate[i].first
1179                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1180
1181  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1182  // PHI nodes in successors.
1183  if (SDB->SwitchCases.empty() &&
1184      SDB->JTCases.empty() &&
1185      SDB->BitTestCases.empty()) {
1186    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1187      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1188      assert(PHI->isPHI() &&
1189             "This is not a machine PHI node that we are updating!");
1190      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1191        continue;
1192      PHI->addOperand(
1193        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1194      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1195    }
1196    return;
1197  }
1198
1199  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1200    // Lower header first, if it wasn't already lowered
1201    if (!SDB->BitTestCases[i].Emitted) {
1202      // Set the current basic block to the mbb we wish to insert the code into
1203      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1204      FuncInfo->InsertPt = FuncInfo->MBB->end();
1205      // Emit the code
1206      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1207      CurDAG->setRoot(SDB->getRoot());
1208      SDB->clear();
1209      CodeGenAndEmitDAG();
1210    }
1211
1212    uint32_t UnhandledWeight = 0;
1213    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1214      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1215
1216    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1217      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1218      // Set the current basic block to the mbb we wish to insert the code into
1219      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1220      FuncInfo->InsertPt = FuncInfo->MBB->end();
1221      // Emit the code
1222      if (j+1 != ej)
1223        SDB->visitBitTestCase(SDB->BitTestCases[i],
1224                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1225                              UnhandledWeight,
1226                              SDB->BitTestCases[i].Reg,
1227                              SDB->BitTestCases[i].Cases[j],
1228                              FuncInfo->MBB);
1229      else
1230        SDB->visitBitTestCase(SDB->BitTestCases[i],
1231                              SDB->BitTestCases[i].Default,
1232                              UnhandledWeight,
1233                              SDB->BitTestCases[i].Reg,
1234                              SDB->BitTestCases[i].Cases[j],
1235                              FuncInfo->MBB);
1236
1237
1238      CurDAG->setRoot(SDB->getRoot());
1239      SDB->clear();
1240      CodeGenAndEmitDAG();
1241    }
1242
1243    // Update PHI Nodes
1244    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1245         pi != pe; ++pi) {
1246      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1247      MachineBasicBlock *PHIBB = PHI->getParent();
1248      assert(PHI->isPHI() &&
1249             "This is not a machine PHI node that we are updating!");
1250      // This is "default" BB. We have two jumps to it. From "header" BB and
1251      // from last "case" BB.
1252      if (PHIBB == SDB->BitTestCases[i].Default) {
1253        PHI->addOperand(MachineOperand::
1254                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1255                                  false));
1256        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1257        PHI->addOperand(MachineOperand::
1258                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1259                                  false));
1260        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1261                                                  back().ThisBB));
1262      }
1263      // One of "cases" BB.
1264      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1265           j != ej; ++j) {
1266        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1267        if (cBB->isSuccessor(PHIBB)) {
1268          PHI->addOperand(MachineOperand::
1269                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1270                                    false));
1271          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1272        }
1273      }
1274    }
1275  }
1276  SDB->BitTestCases.clear();
1277
1278  // If the JumpTable record is filled in, then we need to emit a jump table.
1279  // Updating the PHI nodes is tricky in this case, since we need to determine
1280  // whether the PHI is a successor of the range check MBB or the jump table MBB
1281  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1282    // Lower header first, if it wasn't already lowered
1283    if (!SDB->JTCases[i].first.Emitted) {
1284      // Set the current basic block to the mbb we wish to insert the code into
1285      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1286      FuncInfo->InsertPt = FuncInfo->MBB->end();
1287      // Emit the code
1288      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1289                                FuncInfo->MBB);
1290      CurDAG->setRoot(SDB->getRoot());
1291      SDB->clear();
1292      CodeGenAndEmitDAG();
1293    }
1294
1295    // Set the current basic block to the mbb we wish to insert the code into
1296    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1297    FuncInfo->InsertPt = FuncInfo->MBB->end();
1298    // Emit the code
1299    SDB->visitJumpTable(SDB->JTCases[i].second);
1300    CurDAG->setRoot(SDB->getRoot());
1301    SDB->clear();
1302    CodeGenAndEmitDAG();
1303
1304    // Update PHI Nodes
1305    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1306         pi != pe; ++pi) {
1307      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1308      MachineBasicBlock *PHIBB = PHI->getParent();
1309      assert(PHI->isPHI() &&
1310             "This is not a machine PHI node that we are updating!");
1311      // "default" BB. We can go there only from header BB.
1312      if (PHIBB == SDB->JTCases[i].second.Default) {
1313        PHI->addOperand
1314          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1315                                     false));
1316        PHI->addOperand
1317          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1318      }
1319      // JT BB. Just iterate over successors here
1320      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1321        PHI->addOperand
1322          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1323                                     false));
1324        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1325      }
1326    }
1327  }
1328  SDB->JTCases.clear();
1329
1330  // If the switch block involved a branch to one of the actual successors, we
1331  // need to update PHI nodes in that block.
1332  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1333    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1334    assert(PHI->isPHI() &&
1335           "This is not a machine PHI node that we are updating!");
1336    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1337      PHI->addOperand(
1338        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1339      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1340    }
1341  }
1342
1343  // If we generated any switch lowering information, build and codegen any
1344  // additional DAGs necessary.
1345  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1346    // Set the current basic block to the mbb we wish to insert the code into
1347    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1348    FuncInfo->InsertPt = FuncInfo->MBB->end();
1349
1350    // Determine the unique successors.
1351    SmallVector<MachineBasicBlock *, 2> Succs;
1352    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1353    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1354      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1355
1356    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1357    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1358    CurDAG->setRoot(SDB->getRoot());
1359    SDB->clear();
1360    CodeGenAndEmitDAG();
1361
1362    // Remember the last block, now that any splitting is done, for use in
1363    // populating PHI nodes in successors.
1364    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1365
1366    // Handle any PHI nodes in successors of this chunk, as if we were coming
1367    // from the original BB before switch expansion.  Note that PHI nodes can
1368    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1369    // handle them the right number of times.
1370    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1371      FuncInfo->MBB = Succs[i];
1372      FuncInfo->InsertPt = FuncInfo->MBB->end();
1373      // FuncInfo->MBB may have been removed from the CFG if a branch was
1374      // constant folded.
1375      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1376        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1377             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1378             ++Phi) {
1379          // This value for this PHI node is recorded in PHINodesToUpdate.
1380          for (unsigned pn = 0; ; ++pn) {
1381            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1382                   "Didn't find PHI entry!");
1383            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1384              Phi->addOperand(MachineOperand::
1385                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1386                                        false));
1387              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1388              break;
1389            }
1390          }
1391        }
1392      }
1393    }
1394  }
1395  SDB->SwitchCases.clear();
1396}
1397
1398
1399/// Create the scheduler. If a specific scheduler was specified
1400/// via the SchedulerRegistry, use it, otherwise select the
1401/// one preferred by the target.
1402///
1403ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1404  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1405
1406  if (!Ctor) {
1407    Ctor = ISHeuristic;
1408    RegisterScheduler::setDefault(Ctor);
1409  }
1410
1411  return Ctor(this, OptLevel);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Helper functions used by the generated instruction selector.
1416//===----------------------------------------------------------------------===//
1417// Calls to these methods are generated by tblgen.
1418
1419/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1420/// the dag combiner simplified the 255, we still want to match.  RHS is the
1421/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1422/// specified in the .td file (e.g. 255).
1423bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1424                                    int64_t DesiredMaskS) const {
1425  const APInt &ActualMask = RHS->getAPIntValue();
1426  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1427
1428  // If the actual mask exactly matches, success!
1429  if (ActualMask == DesiredMask)
1430    return true;
1431
1432  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1433  if (ActualMask.intersects(~DesiredMask))
1434    return false;
1435
1436  // Otherwise, the DAG Combiner may have proven that the value coming in is
1437  // either already zero or is not demanded.  Check for known zero input bits.
1438  APInt NeededMask = DesiredMask & ~ActualMask;
1439  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1440    return true;
1441
1442  // TODO: check to see if missing bits are just not demanded.
1443
1444  // Otherwise, this pattern doesn't match.
1445  return false;
1446}
1447
1448/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1449/// the dag combiner simplified the 255, we still want to match.  RHS is the
1450/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1451/// specified in the .td file (e.g. 255).
1452bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1453                                   int64_t DesiredMaskS) const {
1454  const APInt &ActualMask = RHS->getAPIntValue();
1455  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1456
1457  // If the actual mask exactly matches, success!
1458  if (ActualMask == DesiredMask)
1459    return true;
1460
1461  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1462  if (ActualMask.intersects(~DesiredMask))
1463    return false;
1464
1465  // Otherwise, the DAG Combiner may have proven that the value coming in is
1466  // either already zero or is not demanded.  Check for known zero input bits.
1467  APInt NeededMask = DesiredMask & ~ActualMask;
1468
1469  APInt KnownZero, KnownOne;
1470  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1471
1472  // If all the missing bits in the or are already known to be set, match!
1473  if ((NeededMask & KnownOne) == NeededMask)
1474    return true;
1475
1476  // TODO: check to see if missing bits are just not demanded.
1477
1478  // Otherwise, this pattern doesn't match.
1479  return false;
1480}
1481
1482
1483/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1484/// by tblgen.  Others should not call it.
1485void SelectionDAGISel::
1486SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1487  std::vector<SDValue> InOps;
1488  std::swap(InOps, Ops);
1489
1490  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1491  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1492  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1493  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1494
1495  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1496  if (InOps[e-1].getValueType() == MVT::Glue)
1497    --e;  // Don't process a glue operand if it is here.
1498
1499  while (i != e) {
1500    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1501    if (!InlineAsm::isMemKind(Flags)) {
1502      // Just skip over this operand, copying the operands verbatim.
1503      Ops.insert(Ops.end(), InOps.begin()+i,
1504                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1505      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1506    } else {
1507      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1508             "Memory operand with multiple values?");
1509      // Otherwise, this is a memory operand.  Ask the target to select it.
1510      std::vector<SDValue> SelOps;
1511      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1512        report_fatal_error("Could not match memory address.  Inline asm"
1513                           " failure!");
1514
1515      // Add this to the output node.
1516      unsigned NewFlags =
1517        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1518      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1519      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1520      i += 2;
1521    }
1522  }
1523
1524  // Add the glue input back if present.
1525  if (e != InOps.size())
1526    Ops.push_back(InOps.back());
1527}
1528
1529/// findGlueUse - Return use of MVT::Glue value produced by the specified
1530/// SDNode.
1531///
1532static SDNode *findGlueUse(SDNode *N) {
1533  unsigned FlagResNo = N->getNumValues()-1;
1534  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1535    SDUse &Use = I.getUse();
1536    if (Use.getResNo() == FlagResNo)
1537      return Use.getUser();
1538  }
1539  return NULL;
1540}
1541
1542/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1543/// This function recursively traverses up the operand chain, ignoring
1544/// certain nodes.
1545static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1546                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1547                          bool IgnoreChains) {
1548  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1549  // greater than all of its (recursive) operands.  If we scan to a point where
1550  // 'use' is smaller than the node we're scanning for, then we know we will
1551  // never find it.
1552  //
1553  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1554  // happen because we scan down to newly selected nodes in the case of glue
1555  // uses.
1556  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1557    return false;
1558
1559  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1560  // won't fail if we scan it again.
1561  if (!Visited.insert(Use))
1562    return false;
1563
1564  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1565    // Ignore chain uses, they are validated by HandleMergeInputChains.
1566    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1567      continue;
1568
1569    SDNode *N = Use->getOperand(i).getNode();
1570    if (N == Def) {
1571      if (Use == ImmedUse || Use == Root)
1572        continue;  // We are not looking for immediate use.
1573      assert(N != Root);
1574      return true;
1575    }
1576
1577    // Traverse up the operand chain.
1578    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1579      return true;
1580  }
1581  return false;
1582}
1583
1584/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1585/// operand node N of U during instruction selection that starts at Root.
1586bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1587                                          SDNode *Root) const {
1588  if (OptLevel == CodeGenOpt::None) return false;
1589  return N.hasOneUse();
1590}
1591
1592/// IsLegalToFold - Returns true if the specific operand node N of
1593/// U can be folded during instruction selection that starts at Root.
1594bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1595                                     CodeGenOpt::Level OptLevel,
1596                                     bool IgnoreChains) {
1597  if (OptLevel == CodeGenOpt::None) return false;
1598
1599  // If Root use can somehow reach N through a path that that doesn't contain
1600  // U then folding N would create a cycle. e.g. In the following
1601  // diagram, Root can reach N through X. If N is folded into into Root, then
1602  // X is both a predecessor and a successor of U.
1603  //
1604  //          [N*]           //
1605  //         ^   ^           //
1606  //        /     \          //
1607  //      [U*]    [X]?       //
1608  //        ^     ^          //
1609  //         \   /           //
1610  //          \ /            //
1611  //         [Root*]         //
1612  //
1613  // * indicates nodes to be folded together.
1614  //
1615  // If Root produces glue, then it gets (even more) interesting. Since it
1616  // will be "glued" together with its glue use in the scheduler, we need to
1617  // check if it might reach N.
1618  //
1619  //          [N*]           //
1620  //         ^   ^           //
1621  //        /     \          //
1622  //      [U*]    [X]?       //
1623  //        ^       ^        //
1624  //         \       \       //
1625  //          \      |       //
1626  //         [Root*] |       //
1627  //          ^      |       //
1628  //          f      |       //
1629  //          |      /       //
1630  //         [Y]    /        //
1631  //           ^   /         //
1632  //           f  /          //
1633  //           | /           //
1634  //          [GU]           //
1635  //
1636  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1637  // (call it Fold), then X is a predecessor of GU and a successor of
1638  // Fold. But since Fold and GU are glued together, this will create
1639  // a cycle in the scheduling graph.
1640
1641  // If the node has glue, walk down the graph to the "lowest" node in the
1642  // glueged set.
1643  EVT VT = Root->getValueType(Root->getNumValues()-1);
1644  while (VT == MVT::Glue) {
1645    SDNode *GU = findGlueUse(Root);
1646    if (GU == NULL)
1647      break;
1648    Root = GU;
1649    VT = Root->getValueType(Root->getNumValues()-1);
1650
1651    // If our query node has a glue result with a use, we've walked up it.  If
1652    // the user (which has already been selected) has a chain or indirectly uses
1653    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1654    // this, we cannot ignore chains in this predicate.
1655    IgnoreChains = false;
1656  }
1657
1658
1659  SmallPtrSet<SDNode*, 16> Visited;
1660  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1661}
1662
1663SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1664  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1665  SelectInlineAsmMemoryOperands(Ops);
1666
1667  std::vector<EVT> VTs;
1668  VTs.push_back(MVT::Other);
1669  VTs.push_back(MVT::Glue);
1670  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1671                                VTs, &Ops[0], Ops.size());
1672  New->setNodeId(-1);
1673  return New.getNode();
1674}
1675
1676SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1677  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1678}
1679
1680/// GetVBR - decode a vbr encoding whose top bit is set.
1681LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1682GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1683  assert(Val >= 128 && "Not a VBR");
1684  Val &= 127;  // Remove first vbr bit.
1685
1686  unsigned Shift = 7;
1687  uint64_t NextBits;
1688  do {
1689    NextBits = MatcherTable[Idx++];
1690    Val |= (NextBits&127) << Shift;
1691    Shift += 7;
1692  } while (NextBits & 128);
1693
1694  return Val;
1695}
1696
1697
1698/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1699/// interior glue and chain results to use the new glue and chain results.
1700void SelectionDAGISel::
1701UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1702                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1703                    SDValue InputGlue,
1704                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1705                    bool isMorphNodeTo) {
1706  SmallVector<SDNode*, 4> NowDeadNodes;
1707
1708  // Now that all the normal results are replaced, we replace the chain and
1709  // glue results if present.
1710  if (!ChainNodesMatched.empty()) {
1711    assert(InputChain.getNode() != 0 &&
1712           "Matched input chains but didn't produce a chain");
1713    // Loop over all of the nodes we matched that produced a chain result.
1714    // Replace all the chain results with the final chain we ended up with.
1715    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1716      SDNode *ChainNode = ChainNodesMatched[i];
1717
1718      // If this node was already deleted, don't look at it.
1719      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1720        continue;
1721
1722      // Don't replace the results of the root node if we're doing a
1723      // MorphNodeTo.
1724      if (ChainNode == NodeToMatch && isMorphNodeTo)
1725        continue;
1726
1727      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1728      if (ChainVal.getValueType() == MVT::Glue)
1729        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1730      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1731      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1732
1733      // If the node became dead and we haven't already seen it, delete it.
1734      if (ChainNode->use_empty() &&
1735          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1736        NowDeadNodes.push_back(ChainNode);
1737    }
1738  }
1739
1740  // If the result produces glue, update any glue results in the matched
1741  // pattern with the glue result.
1742  if (InputGlue.getNode() != 0) {
1743    // Handle any interior nodes explicitly marked.
1744    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1745      SDNode *FRN = GlueResultNodesMatched[i];
1746
1747      // If this node was already deleted, don't look at it.
1748      if (FRN->getOpcode() == ISD::DELETED_NODE)
1749        continue;
1750
1751      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1752             "Doesn't have a glue result");
1753      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1754                                        InputGlue);
1755
1756      // If the node became dead and we haven't already seen it, delete it.
1757      if (FRN->use_empty() &&
1758          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1759        NowDeadNodes.push_back(FRN);
1760    }
1761  }
1762
1763  if (!NowDeadNodes.empty())
1764    CurDAG->RemoveDeadNodes(NowDeadNodes);
1765
1766  DEBUG(errs() << "ISEL: Match complete!\n");
1767}
1768
1769enum ChainResult {
1770  CR_Simple,
1771  CR_InducesCycle,
1772  CR_LeadsToInteriorNode
1773};
1774
1775/// WalkChainUsers - Walk down the users of the specified chained node that is
1776/// part of the pattern we're matching, looking at all of the users we find.
1777/// This determines whether something is an interior node, whether we have a
1778/// non-pattern node in between two pattern nodes (which prevent folding because
1779/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1780/// between pattern nodes (in which case the TF becomes part of the pattern).
1781///
1782/// The walk we do here is guaranteed to be small because we quickly get down to
1783/// already selected nodes "below" us.
1784static ChainResult
1785WalkChainUsers(const SDNode *ChainedNode,
1786               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1787               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1788  ChainResult Result = CR_Simple;
1789
1790  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1791         E = ChainedNode->use_end(); UI != E; ++UI) {
1792    // Make sure the use is of the chain, not some other value we produce.
1793    if (UI.getUse().getValueType() != MVT::Other) continue;
1794
1795    SDNode *User = *UI;
1796
1797    // If we see an already-selected machine node, then we've gone beyond the
1798    // pattern that we're selecting down into the already selected chunk of the
1799    // DAG.
1800    if (User->isMachineOpcode() ||
1801        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1802      continue;
1803
1804    unsigned UserOpcode = User->getOpcode();
1805    if (UserOpcode == ISD::CopyToReg ||
1806        UserOpcode == ISD::CopyFromReg ||
1807        UserOpcode == ISD::INLINEASM ||
1808        UserOpcode == ISD::EH_LABEL ||
1809        UserOpcode == ISD::LIFETIME_START ||
1810        UserOpcode == ISD::LIFETIME_END) {
1811      // If their node ID got reset to -1 then they've already been selected.
1812      // Treat them like a MachineOpcode.
1813      if (User->getNodeId() == -1)
1814        continue;
1815    }
1816
1817    // If we have a TokenFactor, we handle it specially.
1818    if (User->getOpcode() != ISD::TokenFactor) {
1819      // If the node isn't a token factor and isn't part of our pattern, then it
1820      // must be a random chained node in between two nodes we're selecting.
1821      // This happens when we have something like:
1822      //   x = load ptr
1823      //   call
1824      //   y = x+4
1825      //   store y -> ptr
1826      // Because we structurally match the load/store as a read/modify/write,
1827      // but the call is chained between them.  We cannot fold in this case
1828      // because it would induce a cycle in the graph.
1829      if (!std::count(ChainedNodesInPattern.begin(),
1830                      ChainedNodesInPattern.end(), User))
1831        return CR_InducesCycle;
1832
1833      // Otherwise we found a node that is part of our pattern.  For example in:
1834      //   x = load ptr
1835      //   y = x+4
1836      //   store y -> ptr
1837      // This would happen when we're scanning down from the load and see the
1838      // store as a user.  Record that there is a use of ChainedNode that is
1839      // part of the pattern and keep scanning uses.
1840      Result = CR_LeadsToInteriorNode;
1841      InteriorChainedNodes.push_back(User);
1842      continue;
1843    }
1844
1845    // If we found a TokenFactor, there are two cases to consider: first if the
1846    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1847    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1848    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1849    //     [Load chain]
1850    //         ^
1851    //         |
1852    //       [Load]
1853    //       ^    ^
1854    //       |    \                    DAG's like cheese
1855    //      /       \                       do you?
1856    //     /         |
1857    // [TokenFactor] [Op]
1858    //     ^          ^
1859    //     |          |
1860    //      \        /
1861    //       \      /
1862    //       [Store]
1863    //
1864    // In this case, the TokenFactor becomes part of our match and we rewrite it
1865    // as a new TokenFactor.
1866    //
1867    // To distinguish these two cases, do a recursive walk down the uses.
1868    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1869    case CR_Simple:
1870      // If the uses of the TokenFactor are just already-selected nodes, ignore
1871      // it, it is "below" our pattern.
1872      continue;
1873    case CR_InducesCycle:
1874      // If the uses of the TokenFactor lead to nodes that are not part of our
1875      // pattern that are not selected, folding would turn this into a cycle,
1876      // bail out now.
1877      return CR_InducesCycle;
1878    case CR_LeadsToInteriorNode:
1879      break;  // Otherwise, keep processing.
1880    }
1881
1882    // Okay, we know we're in the interesting interior case.  The TokenFactor
1883    // is now going to be considered part of the pattern so that we rewrite its
1884    // uses (it may have uses that are not part of the pattern) with the
1885    // ultimate chain result of the generated code.  We will also add its chain
1886    // inputs as inputs to the ultimate TokenFactor we create.
1887    Result = CR_LeadsToInteriorNode;
1888    ChainedNodesInPattern.push_back(User);
1889    InteriorChainedNodes.push_back(User);
1890    continue;
1891  }
1892
1893  return Result;
1894}
1895
1896/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1897/// operation for when the pattern matched at least one node with a chains.  The
1898/// input vector contains a list of all of the chained nodes that we match.  We
1899/// must determine if this is a valid thing to cover (i.e. matching it won't
1900/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1901/// be used as the input node chain for the generated nodes.
1902static SDValue
1903HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1904                       SelectionDAG *CurDAG) {
1905  // Walk all of the chained nodes we've matched, recursively scanning down the
1906  // users of the chain result. This adds any TokenFactor nodes that are caught
1907  // in between chained nodes to the chained and interior nodes list.
1908  SmallVector<SDNode*, 3> InteriorChainedNodes;
1909  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1910    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1911                       InteriorChainedNodes) == CR_InducesCycle)
1912      return SDValue(); // Would induce a cycle.
1913  }
1914
1915  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1916  // that we are interested in.  Form our input TokenFactor node.
1917  SmallVector<SDValue, 3> InputChains;
1918  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1919    // Add the input chain of this node to the InputChains list (which will be
1920    // the operands of the generated TokenFactor) if it's not an interior node.
1921    SDNode *N = ChainNodesMatched[i];
1922    if (N->getOpcode() != ISD::TokenFactor) {
1923      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1924        continue;
1925
1926      // Otherwise, add the input chain.
1927      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1928      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1929      InputChains.push_back(InChain);
1930      continue;
1931    }
1932
1933    // If we have a token factor, we want to add all inputs of the token factor
1934    // that are not part of the pattern we're matching.
1935    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1936      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1937                      N->getOperand(op).getNode()))
1938        InputChains.push_back(N->getOperand(op));
1939    }
1940  }
1941
1942  SDValue Res;
1943  if (InputChains.size() == 1)
1944    return InputChains[0];
1945  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1946                         MVT::Other, &InputChains[0], InputChains.size());
1947}
1948
1949/// MorphNode - Handle morphing a node in place for the selector.
1950SDNode *SelectionDAGISel::
1951MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1952          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1953  // It is possible we're using MorphNodeTo to replace a node with no
1954  // normal results with one that has a normal result (or we could be
1955  // adding a chain) and the input could have glue and chains as well.
1956  // In this case we need to shift the operands down.
1957  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1958  // than the old isel though.
1959  int OldGlueResultNo = -1, OldChainResultNo = -1;
1960
1961  unsigned NTMNumResults = Node->getNumValues();
1962  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1963    OldGlueResultNo = NTMNumResults-1;
1964    if (NTMNumResults != 1 &&
1965        Node->getValueType(NTMNumResults-2) == MVT::Other)
1966      OldChainResultNo = NTMNumResults-2;
1967  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1968    OldChainResultNo = NTMNumResults-1;
1969
1970  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1971  // that this deletes operands of the old node that become dead.
1972  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1973
1974  // MorphNodeTo can operate in two ways: if an existing node with the
1975  // specified operands exists, it can just return it.  Otherwise, it
1976  // updates the node in place to have the requested operands.
1977  if (Res == Node) {
1978    // If we updated the node in place, reset the node ID.  To the isel,
1979    // this should be just like a newly allocated machine node.
1980    Res->setNodeId(-1);
1981  }
1982
1983  unsigned ResNumResults = Res->getNumValues();
1984  // Move the glue if needed.
1985  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1986      (unsigned)OldGlueResultNo != ResNumResults-1)
1987    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1988                                      SDValue(Res, ResNumResults-1));
1989
1990  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1991    --ResNumResults;
1992
1993  // Move the chain reference if needed.
1994  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1995      (unsigned)OldChainResultNo != ResNumResults-1)
1996    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1997                                      SDValue(Res, ResNumResults-1));
1998
1999  // Otherwise, no replacement happened because the node already exists. Replace
2000  // Uses of the old node with the new one.
2001  if (Res != Node)
2002    CurDAG->ReplaceAllUsesWith(Node, Res);
2003
2004  return Res;
2005}
2006
2007/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2008LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2009CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2010          SDValue N,
2011          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2012  // Accept if it is exactly the same as a previously recorded node.
2013  unsigned RecNo = MatcherTable[MatcherIndex++];
2014  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2015  return N == RecordedNodes[RecNo].first;
2016}
2017
2018/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2019LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2020CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2021                      const SelectionDAGISel &SDISel) {
2022  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2023}
2024
2025/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2026LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2027CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2028                   const SelectionDAGISel &SDISel, SDNode *N) {
2029  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2030}
2031
2032LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2033CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2034            SDNode *N) {
2035  uint16_t Opc = MatcherTable[MatcherIndex++];
2036  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2037  return N->getOpcode() == Opc;
2038}
2039
2040LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2041CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2042          SDValue N, const TargetLowering &TLI) {
2043  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2044  if (N.getValueType() == VT) return true;
2045
2046  // Handle the case when VT is iPTR.
2047  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2048}
2049
2050LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2051CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2052               SDValue N, const TargetLowering &TLI,
2053               unsigned ChildNo) {
2054  if (ChildNo >= N.getNumOperands())
2055    return false;  // Match fails if out of range child #.
2056  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2057}
2058
2059
2060LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2061CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2062              SDValue N) {
2063  return cast<CondCodeSDNode>(N)->get() ==
2064      (ISD::CondCode)MatcherTable[MatcherIndex++];
2065}
2066
2067LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2068CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2069               SDValue N, const TargetLowering &TLI) {
2070  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2071  if (cast<VTSDNode>(N)->getVT() == VT)
2072    return true;
2073
2074  // Handle the case when VT is iPTR.
2075  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2076}
2077
2078LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2079CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2080             SDValue N) {
2081  int64_t Val = MatcherTable[MatcherIndex++];
2082  if (Val & 128)
2083    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2084
2085  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2086  return C != 0 && C->getSExtValue() == Val;
2087}
2088
2089LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2090CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2091            SDValue N, const SelectionDAGISel &SDISel) {
2092  int64_t Val = MatcherTable[MatcherIndex++];
2093  if (Val & 128)
2094    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2095
2096  if (N->getOpcode() != ISD::AND) return false;
2097
2098  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2099  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2100}
2101
2102LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2103CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2104           SDValue N, const SelectionDAGISel &SDISel) {
2105  int64_t Val = MatcherTable[MatcherIndex++];
2106  if (Val & 128)
2107    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2108
2109  if (N->getOpcode() != ISD::OR) return false;
2110
2111  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2112  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2113}
2114
2115/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2116/// scope, evaluate the current node.  If the current predicate is known to
2117/// fail, set Result=true and return anything.  If the current predicate is
2118/// known to pass, set Result=false and return the MatcherIndex to continue
2119/// with.  If the current predicate is unknown, set Result=false and return the
2120/// MatcherIndex to continue with.
2121static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2122                                       unsigned Index, SDValue N,
2123                                       bool &Result,
2124                                       const SelectionDAGISel &SDISel,
2125                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2126  switch (Table[Index++]) {
2127  default:
2128    Result = false;
2129    return Index-1;  // Could not evaluate this predicate.
2130  case SelectionDAGISel::OPC_CheckSame:
2131    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2132    return Index;
2133  case SelectionDAGISel::OPC_CheckPatternPredicate:
2134    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2135    return Index;
2136  case SelectionDAGISel::OPC_CheckPredicate:
2137    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2138    return Index;
2139  case SelectionDAGISel::OPC_CheckOpcode:
2140    Result = !::CheckOpcode(Table, Index, N.getNode());
2141    return Index;
2142  case SelectionDAGISel::OPC_CheckType:
2143    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2144    return Index;
2145  case SelectionDAGISel::OPC_CheckChild0Type:
2146  case SelectionDAGISel::OPC_CheckChild1Type:
2147  case SelectionDAGISel::OPC_CheckChild2Type:
2148  case SelectionDAGISel::OPC_CheckChild3Type:
2149  case SelectionDAGISel::OPC_CheckChild4Type:
2150  case SelectionDAGISel::OPC_CheckChild5Type:
2151  case SelectionDAGISel::OPC_CheckChild6Type:
2152  case SelectionDAGISel::OPC_CheckChild7Type:
2153    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2154                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2155    return Index;
2156  case SelectionDAGISel::OPC_CheckCondCode:
2157    Result = !::CheckCondCode(Table, Index, N);
2158    return Index;
2159  case SelectionDAGISel::OPC_CheckValueType:
2160    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2161    return Index;
2162  case SelectionDAGISel::OPC_CheckInteger:
2163    Result = !::CheckInteger(Table, Index, N);
2164    return Index;
2165  case SelectionDAGISel::OPC_CheckAndImm:
2166    Result = !::CheckAndImm(Table, Index, N, SDISel);
2167    return Index;
2168  case SelectionDAGISel::OPC_CheckOrImm:
2169    Result = !::CheckOrImm(Table, Index, N, SDISel);
2170    return Index;
2171  }
2172}
2173
2174namespace {
2175
2176struct MatchScope {
2177  /// FailIndex - If this match fails, this is the index to continue with.
2178  unsigned FailIndex;
2179
2180  /// NodeStack - The node stack when the scope was formed.
2181  SmallVector<SDValue, 4> NodeStack;
2182
2183  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2184  unsigned NumRecordedNodes;
2185
2186  /// NumMatchedMemRefs - The number of matched memref entries.
2187  unsigned NumMatchedMemRefs;
2188
2189  /// InputChain/InputGlue - The current chain/glue
2190  SDValue InputChain, InputGlue;
2191
2192  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2193  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2194};
2195
2196}
2197
2198SDNode *SelectionDAGISel::
2199SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2200                 unsigned TableSize) {
2201  // FIXME: Should these even be selected?  Handle these cases in the caller?
2202  switch (NodeToMatch->getOpcode()) {
2203  default:
2204    break;
2205  case ISD::EntryToken:       // These nodes remain the same.
2206  case ISD::BasicBlock:
2207  case ISD::Register:
2208  case ISD::RegisterMask:
2209  //case ISD::VALUETYPE:
2210  //case ISD::CONDCODE:
2211  case ISD::HANDLENODE:
2212  case ISD::MDNODE_SDNODE:
2213  case ISD::TargetConstant:
2214  case ISD::TargetConstantFP:
2215  case ISD::TargetConstantPool:
2216  case ISD::TargetFrameIndex:
2217  case ISD::TargetExternalSymbol:
2218  case ISD::TargetBlockAddress:
2219  case ISD::TargetJumpTable:
2220  case ISD::TargetGlobalTLSAddress:
2221  case ISD::TargetGlobalAddress:
2222  case ISD::TokenFactor:
2223  case ISD::CopyFromReg:
2224  case ISD::CopyToReg:
2225  case ISD::EH_LABEL:
2226  case ISD::LIFETIME_START:
2227  case ISD::LIFETIME_END:
2228    NodeToMatch->setNodeId(-1); // Mark selected.
2229    return 0;
2230  case ISD::AssertSext:
2231  case ISD::AssertZext:
2232    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2233                                      NodeToMatch->getOperand(0));
2234    return 0;
2235  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2236  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2237  }
2238
2239  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2240
2241  // Set up the node stack with NodeToMatch as the only node on the stack.
2242  SmallVector<SDValue, 8> NodeStack;
2243  SDValue N = SDValue(NodeToMatch, 0);
2244  NodeStack.push_back(N);
2245
2246  // MatchScopes - Scopes used when matching, if a match failure happens, this
2247  // indicates where to continue checking.
2248  SmallVector<MatchScope, 8> MatchScopes;
2249
2250  // RecordedNodes - This is the set of nodes that have been recorded by the
2251  // state machine.  The second value is the parent of the node, or null if the
2252  // root is recorded.
2253  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2254
2255  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2256  // pattern.
2257  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2258
2259  // These are the current input chain and glue for use when generating nodes.
2260  // Various Emit operations change these.  For example, emitting a copytoreg
2261  // uses and updates these.
2262  SDValue InputChain, InputGlue;
2263
2264  // ChainNodesMatched - If a pattern matches nodes that have input/output
2265  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2266  // which ones they are.  The result is captured into this list so that we can
2267  // update the chain results when the pattern is complete.
2268  SmallVector<SDNode*, 3> ChainNodesMatched;
2269  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2270
2271  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2272        NodeToMatch->dump(CurDAG);
2273        errs() << '\n');
2274
2275  // Determine where to start the interpreter.  Normally we start at opcode #0,
2276  // but if the state machine starts with an OPC_SwitchOpcode, then we
2277  // accelerate the first lookup (which is guaranteed to be hot) with the
2278  // OpcodeOffset table.
2279  unsigned MatcherIndex = 0;
2280
2281  if (!OpcodeOffset.empty()) {
2282    // Already computed the OpcodeOffset table, just index into it.
2283    if (N.getOpcode() < OpcodeOffset.size())
2284      MatcherIndex = OpcodeOffset[N.getOpcode()];
2285    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2286
2287  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2288    // Otherwise, the table isn't computed, but the state machine does start
2289    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2290    // is the first time we're selecting an instruction.
2291    unsigned Idx = 1;
2292    while (1) {
2293      // Get the size of this case.
2294      unsigned CaseSize = MatcherTable[Idx++];
2295      if (CaseSize & 128)
2296        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2297      if (CaseSize == 0) break;
2298
2299      // Get the opcode, add the index to the table.
2300      uint16_t Opc = MatcherTable[Idx++];
2301      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2302      if (Opc >= OpcodeOffset.size())
2303        OpcodeOffset.resize((Opc+1)*2);
2304      OpcodeOffset[Opc] = Idx;
2305      Idx += CaseSize;
2306    }
2307
2308    // Okay, do the lookup for the first opcode.
2309    if (N.getOpcode() < OpcodeOffset.size())
2310      MatcherIndex = OpcodeOffset[N.getOpcode()];
2311  }
2312
2313  while (1) {
2314    assert(MatcherIndex < TableSize && "Invalid index");
2315#ifndef NDEBUG
2316    unsigned CurrentOpcodeIndex = MatcherIndex;
2317#endif
2318    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2319    switch (Opcode) {
2320    case OPC_Scope: {
2321      // Okay, the semantics of this operation are that we should push a scope
2322      // then evaluate the first child.  However, pushing a scope only to have
2323      // the first check fail (which then pops it) is inefficient.  If we can
2324      // determine immediately that the first check (or first several) will
2325      // immediately fail, don't even bother pushing a scope for them.
2326      unsigned FailIndex;
2327
2328      while (1) {
2329        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2330        if (NumToSkip & 128)
2331          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2332        // Found the end of the scope with no match.
2333        if (NumToSkip == 0) {
2334          FailIndex = 0;
2335          break;
2336        }
2337
2338        FailIndex = MatcherIndex+NumToSkip;
2339
2340        unsigned MatcherIndexOfPredicate = MatcherIndex;
2341        (void)MatcherIndexOfPredicate; // silence warning.
2342
2343        // If we can't evaluate this predicate without pushing a scope (e.g. if
2344        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2345        // push the scope and evaluate the full predicate chain.
2346        bool Result;
2347        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2348                                              Result, *this, RecordedNodes);
2349        if (!Result)
2350          break;
2351
2352        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2353                     << "index " << MatcherIndexOfPredicate
2354                     << ", continuing at " << FailIndex << "\n");
2355        ++NumDAGIselRetries;
2356
2357        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2358        // move to the next case.
2359        MatcherIndex = FailIndex;
2360      }
2361
2362      // If the whole scope failed to match, bail.
2363      if (FailIndex == 0) break;
2364
2365      // Push a MatchScope which indicates where to go if the first child fails
2366      // to match.
2367      MatchScope NewEntry;
2368      NewEntry.FailIndex = FailIndex;
2369      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2370      NewEntry.NumRecordedNodes = RecordedNodes.size();
2371      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2372      NewEntry.InputChain = InputChain;
2373      NewEntry.InputGlue = InputGlue;
2374      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2375      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2376      MatchScopes.push_back(NewEntry);
2377      continue;
2378    }
2379    case OPC_RecordNode: {
2380      // Remember this node, it may end up being an operand in the pattern.
2381      SDNode *Parent = 0;
2382      if (NodeStack.size() > 1)
2383        Parent = NodeStack[NodeStack.size()-2].getNode();
2384      RecordedNodes.push_back(std::make_pair(N, Parent));
2385      continue;
2386    }
2387
2388    case OPC_RecordChild0: case OPC_RecordChild1:
2389    case OPC_RecordChild2: case OPC_RecordChild3:
2390    case OPC_RecordChild4: case OPC_RecordChild5:
2391    case OPC_RecordChild6: case OPC_RecordChild7: {
2392      unsigned ChildNo = Opcode-OPC_RecordChild0;
2393      if (ChildNo >= N.getNumOperands())
2394        break;  // Match fails if out of range child #.
2395
2396      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2397                                             N.getNode()));
2398      continue;
2399    }
2400    case OPC_RecordMemRef:
2401      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2402      continue;
2403
2404    case OPC_CaptureGlueInput:
2405      // If the current node has an input glue, capture it in InputGlue.
2406      if (N->getNumOperands() != 0 &&
2407          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2408        InputGlue = N->getOperand(N->getNumOperands()-1);
2409      continue;
2410
2411    case OPC_MoveChild: {
2412      unsigned ChildNo = MatcherTable[MatcherIndex++];
2413      if (ChildNo >= N.getNumOperands())
2414        break;  // Match fails if out of range child #.
2415      N = N.getOperand(ChildNo);
2416      NodeStack.push_back(N);
2417      continue;
2418    }
2419
2420    case OPC_MoveParent:
2421      // Pop the current node off the NodeStack.
2422      NodeStack.pop_back();
2423      assert(!NodeStack.empty() && "Node stack imbalance!");
2424      N = NodeStack.back();
2425      continue;
2426
2427    case OPC_CheckSame:
2428      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2429      continue;
2430    case OPC_CheckPatternPredicate:
2431      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2432      continue;
2433    case OPC_CheckPredicate:
2434      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2435                                N.getNode()))
2436        break;
2437      continue;
2438    case OPC_CheckComplexPat: {
2439      unsigned CPNum = MatcherTable[MatcherIndex++];
2440      unsigned RecNo = MatcherTable[MatcherIndex++];
2441      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2442      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2443                               RecordedNodes[RecNo].first, CPNum,
2444                               RecordedNodes))
2445        break;
2446      continue;
2447    }
2448    case OPC_CheckOpcode:
2449      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2450      continue;
2451
2452    case OPC_CheckType:
2453      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2454      continue;
2455
2456    case OPC_SwitchOpcode: {
2457      unsigned CurNodeOpcode = N.getOpcode();
2458      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2459      unsigned CaseSize;
2460      while (1) {
2461        // Get the size of this case.
2462        CaseSize = MatcherTable[MatcherIndex++];
2463        if (CaseSize & 128)
2464          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2465        if (CaseSize == 0) break;
2466
2467        uint16_t Opc = MatcherTable[MatcherIndex++];
2468        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2469
2470        // If the opcode matches, then we will execute this case.
2471        if (CurNodeOpcode == Opc)
2472          break;
2473
2474        // Otherwise, skip over this case.
2475        MatcherIndex += CaseSize;
2476      }
2477
2478      // If no cases matched, bail out.
2479      if (CaseSize == 0) break;
2480
2481      // Otherwise, execute the case we found.
2482      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2483                   << " to " << MatcherIndex << "\n");
2484      continue;
2485    }
2486
2487    case OPC_SwitchType: {
2488      MVT CurNodeVT = N.getValueType().getSimpleVT();
2489      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2490      unsigned CaseSize;
2491      while (1) {
2492        // Get the size of this case.
2493        CaseSize = MatcherTable[MatcherIndex++];
2494        if (CaseSize & 128)
2495          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2496        if (CaseSize == 0) break;
2497
2498        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2499        if (CaseVT == MVT::iPTR)
2500          CaseVT = TLI.getPointerTy();
2501
2502        // If the VT matches, then we will execute this case.
2503        if (CurNodeVT == CaseVT)
2504          break;
2505
2506        // Otherwise, skip over this case.
2507        MatcherIndex += CaseSize;
2508      }
2509
2510      // If no cases matched, bail out.
2511      if (CaseSize == 0) break;
2512
2513      // Otherwise, execute the case we found.
2514      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2515                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2516      continue;
2517    }
2518    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2519    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2520    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2521    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2522      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2523                            Opcode-OPC_CheckChild0Type))
2524        break;
2525      continue;
2526    case OPC_CheckCondCode:
2527      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2528      continue;
2529    case OPC_CheckValueType:
2530      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2531      continue;
2532    case OPC_CheckInteger:
2533      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2534      continue;
2535    case OPC_CheckAndImm:
2536      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2537      continue;
2538    case OPC_CheckOrImm:
2539      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2540      continue;
2541
2542    case OPC_CheckFoldableChainNode: {
2543      assert(NodeStack.size() != 1 && "No parent node");
2544      // Verify that all intermediate nodes between the root and this one have
2545      // a single use.
2546      bool HasMultipleUses = false;
2547      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2548        if (!NodeStack[i].hasOneUse()) {
2549          HasMultipleUses = true;
2550          break;
2551        }
2552      if (HasMultipleUses) break;
2553
2554      // Check to see that the target thinks this is profitable to fold and that
2555      // we can fold it without inducing cycles in the graph.
2556      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2557                              NodeToMatch) ||
2558          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2559                         NodeToMatch, OptLevel,
2560                         true/*We validate our own chains*/))
2561        break;
2562
2563      continue;
2564    }
2565    case OPC_EmitInteger: {
2566      MVT::SimpleValueType VT =
2567        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2568      int64_t Val = MatcherTable[MatcherIndex++];
2569      if (Val & 128)
2570        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2571      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2572                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2573      continue;
2574    }
2575    case OPC_EmitRegister: {
2576      MVT::SimpleValueType VT =
2577        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2578      unsigned RegNo = MatcherTable[MatcherIndex++];
2579      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2580                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2581      continue;
2582    }
2583    case OPC_EmitRegister2: {
2584      // For targets w/ more than 256 register names, the register enum
2585      // values are stored in two bytes in the matcher table (just like
2586      // opcodes).
2587      MVT::SimpleValueType VT =
2588        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2589      unsigned RegNo = MatcherTable[MatcherIndex++];
2590      RegNo |= MatcherTable[MatcherIndex++] << 8;
2591      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2592                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2593      continue;
2594    }
2595
2596    case OPC_EmitConvertToTarget:  {
2597      // Convert from IMM/FPIMM to target version.
2598      unsigned RecNo = MatcherTable[MatcherIndex++];
2599      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2600      SDValue Imm = RecordedNodes[RecNo].first;
2601
2602      if (Imm->getOpcode() == ISD::Constant) {
2603        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2604        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2605      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2606        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2607        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2608      }
2609
2610      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2611      continue;
2612    }
2613
2614    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2615    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2616      // These are space-optimized forms of OPC_EmitMergeInputChains.
2617      assert(InputChain.getNode() == 0 &&
2618             "EmitMergeInputChains should be the first chain producing node");
2619      assert(ChainNodesMatched.empty() &&
2620             "Should only have one EmitMergeInputChains per match");
2621
2622      // Read all of the chained nodes.
2623      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2624      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2625      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2626
2627      // FIXME: What if other value results of the node have uses not matched
2628      // by this pattern?
2629      if (ChainNodesMatched.back() != NodeToMatch &&
2630          !RecordedNodes[RecNo].first.hasOneUse()) {
2631        ChainNodesMatched.clear();
2632        break;
2633      }
2634
2635      // Merge the input chains if they are not intra-pattern references.
2636      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2637
2638      if (InputChain.getNode() == 0)
2639        break;  // Failed to merge.
2640      continue;
2641    }
2642
2643    case OPC_EmitMergeInputChains: {
2644      assert(InputChain.getNode() == 0 &&
2645             "EmitMergeInputChains should be the first chain producing node");
2646      // This node gets a list of nodes we matched in the input that have
2647      // chains.  We want to token factor all of the input chains to these nodes
2648      // together.  However, if any of the input chains is actually one of the
2649      // nodes matched in this pattern, then we have an intra-match reference.
2650      // Ignore these because the newly token factored chain should not refer to
2651      // the old nodes.
2652      unsigned NumChains = MatcherTable[MatcherIndex++];
2653      assert(NumChains != 0 && "Can't TF zero chains");
2654
2655      assert(ChainNodesMatched.empty() &&
2656             "Should only have one EmitMergeInputChains per match");
2657
2658      // Read all of the chained nodes.
2659      for (unsigned i = 0; i != NumChains; ++i) {
2660        unsigned RecNo = MatcherTable[MatcherIndex++];
2661        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2662        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2663
2664        // FIXME: What if other value results of the node have uses not matched
2665        // by this pattern?
2666        if (ChainNodesMatched.back() != NodeToMatch &&
2667            !RecordedNodes[RecNo].first.hasOneUse()) {
2668          ChainNodesMatched.clear();
2669          break;
2670        }
2671      }
2672
2673      // If the inner loop broke out, the match fails.
2674      if (ChainNodesMatched.empty())
2675        break;
2676
2677      // Merge the input chains if they are not intra-pattern references.
2678      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2679
2680      if (InputChain.getNode() == 0)
2681        break;  // Failed to merge.
2682
2683      continue;
2684    }
2685
2686    case OPC_EmitCopyToReg: {
2687      unsigned RecNo = MatcherTable[MatcherIndex++];
2688      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2689      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2690
2691      if (InputChain.getNode() == 0)
2692        InputChain = CurDAG->getEntryNode();
2693
2694      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2695                                        DestPhysReg, RecordedNodes[RecNo].first,
2696                                        InputGlue);
2697
2698      InputGlue = InputChain.getValue(1);
2699      continue;
2700    }
2701
2702    case OPC_EmitNodeXForm: {
2703      unsigned XFormNo = MatcherTable[MatcherIndex++];
2704      unsigned RecNo = MatcherTable[MatcherIndex++];
2705      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2706      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2707      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2708      continue;
2709    }
2710
2711    case OPC_EmitNode:
2712    case OPC_MorphNodeTo: {
2713      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2714      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2715      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2716      // Get the result VT list.
2717      unsigned NumVTs = MatcherTable[MatcherIndex++];
2718      SmallVector<EVT, 4> VTs;
2719      for (unsigned i = 0; i != NumVTs; ++i) {
2720        MVT::SimpleValueType VT =
2721          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2722        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2723        VTs.push_back(VT);
2724      }
2725
2726      if (EmitNodeInfo & OPFL_Chain)
2727        VTs.push_back(MVT::Other);
2728      if (EmitNodeInfo & OPFL_GlueOutput)
2729        VTs.push_back(MVT::Glue);
2730
2731      // This is hot code, so optimize the two most common cases of 1 and 2
2732      // results.
2733      SDVTList VTList;
2734      if (VTs.size() == 1)
2735        VTList = CurDAG->getVTList(VTs[0]);
2736      else if (VTs.size() == 2)
2737        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2738      else
2739        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2740
2741      // Get the operand list.
2742      unsigned NumOps = MatcherTable[MatcherIndex++];
2743      SmallVector<SDValue, 8> Ops;
2744      for (unsigned i = 0; i != NumOps; ++i) {
2745        unsigned RecNo = MatcherTable[MatcherIndex++];
2746        if (RecNo & 128)
2747          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2748
2749        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2750        Ops.push_back(RecordedNodes[RecNo].first);
2751      }
2752
2753      // If there are variadic operands to add, handle them now.
2754      if (EmitNodeInfo & OPFL_VariadicInfo) {
2755        // Determine the start index to copy from.
2756        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2757        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2758        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2759               "Invalid variadic node");
2760        // Copy all of the variadic operands, not including a potential glue
2761        // input.
2762        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2763             i != e; ++i) {
2764          SDValue V = NodeToMatch->getOperand(i);
2765          if (V.getValueType() == MVT::Glue) break;
2766          Ops.push_back(V);
2767        }
2768      }
2769
2770      // If this has chain/glue inputs, add them.
2771      if (EmitNodeInfo & OPFL_Chain)
2772        Ops.push_back(InputChain);
2773      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2774        Ops.push_back(InputGlue);
2775
2776      // Create the node.
2777      SDNode *Res = 0;
2778      if (Opcode != OPC_MorphNodeTo) {
2779        // If this is a normal EmitNode command, just create the new node and
2780        // add the results to the RecordedNodes list.
2781        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2782                                     VTList, Ops.data(), Ops.size());
2783
2784        // Add all the non-glue/non-chain results to the RecordedNodes list.
2785        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2786          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2787          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2788                                                             (SDNode*) 0));
2789        }
2790
2791      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2792        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2793                        EmitNodeInfo);
2794      } else {
2795        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2796        // We will visit the equivalent node later.
2797        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2798        return 0;
2799      }
2800
2801      // If the node had chain/glue results, update our notion of the current
2802      // chain and glue.
2803      if (EmitNodeInfo & OPFL_GlueOutput) {
2804        InputGlue = SDValue(Res, VTs.size()-1);
2805        if (EmitNodeInfo & OPFL_Chain)
2806          InputChain = SDValue(Res, VTs.size()-2);
2807      } else if (EmitNodeInfo & OPFL_Chain)
2808        InputChain = SDValue(Res, VTs.size()-1);
2809
2810      // If the OPFL_MemRefs glue is set on this node, slap all of the
2811      // accumulated memrefs onto it.
2812      //
2813      // FIXME: This is vastly incorrect for patterns with multiple outputs
2814      // instructions that access memory and for ComplexPatterns that match
2815      // loads.
2816      if (EmitNodeInfo & OPFL_MemRefs) {
2817        // Only attach load or store memory operands if the generated
2818        // instruction may load or store.
2819        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2820        bool mayLoad = MCID.mayLoad();
2821        bool mayStore = MCID.mayStore();
2822
2823        unsigned NumMemRefs = 0;
2824        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2825             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2826          if ((*I)->isLoad()) {
2827            if (mayLoad)
2828              ++NumMemRefs;
2829          } else if ((*I)->isStore()) {
2830            if (mayStore)
2831              ++NumMemRefs;
2832          } else {
2833            ++NumMemRefs;
2834          }
2835        }
2836
2837        MachineSDNode::mmo_iterator MemRefs =
2838          MF->allocateMemRefsArray(NumMemRefs);
2839
2840        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2841        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2842             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2843          if ((*I)->isLoad()) {
2844            if (mayLoad)
2845              *MemRefsPos++ = *I;
2846          } else if ((*I)->isStore()) {
2847            if (mayStore)
2848              *MemRefsPos++ = *I;
2849          } else {
2850            *MemRefsPos++ = *I;
2851          }
2852        }
2853
2854        cast<MachineSDNode>(Res)
2855          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2856      }
2857
2858      DEBUG(errs() << "  "
2859                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2860                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2861
2862      // If this was a MorphNodeTo then we're completely done!
2863      if (Opcode == OPC_MorphNodeTo) {
2864        // Update chain and glue uses.
2865        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2866                            InputGlue, GlueResultNodesMatched, true);
2867        return Res;
2868      }
2869
2870      continue;
2871    }
2872
2873    case OPC_MarkGlueResults: {
2874      unsigned NumNodes = MatcherTable[MatcherIndex++];
2875
2876      // Read and remember all the glue-result nodes.
2877      for (unsigned i = 0; i != NumNodes; ++i) {
2878        unsigned RecNo = MatcherTable[MatcherIndex++];
2879        if (RecNo & 128)
2880          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2881
2882        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2883        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2884      }
2885      continue;
2886    }
2887
2888    case OPC_CompleteMatch: {
2889      // The match has been completed, and any new nodes (if any) have been
2890      // created.  Patch up references to the matched dag to use the newly
2891      // created nodes.
2892      unsigned NumResults = MatcherTable[MatcherIndex++];
2893
2894      for (unsigned i = 0; i != NumResults; ++i) {
2895        unsigned ResSlot = MatcherTable[MatcherIndex++];
2896        if (ResSlot & 128)
2897          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2898
2899        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2900        SDValue Res = RecordedNodes[ResSlot].first;
2901
2902        assert(i < NodeToMatch->getNumValues() &&
2903               NodeToMatch->getValueType(i) != MVT::Other &&
2904               NodeToMatch->getValueType(i) != MVT::Glue &&
2905               "Invalid number of results to complete!");
2906        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2907                NodeToMatch->getValueType(i) == MVT::iPTR ||
2908                Res.getValueType() == MVT::iPTR ||
2909                NodeToMatch->getValueType(i).getSizeInBits() ==
2910                    Res.getValueType().getSizeInBits()) &&
2911               "invalid replacement");
2912        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2913      }
2914
2915      // If the root node defines glue, add it to the glue nodes to update list.
2916      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2917        GlueResultNodesMatched.push_back(NodeToMatch);
2918
2919      // Update chain and glue uses.
2920      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2921                          InputGlue, GlueResultNodesMatched, false);
2922
2923      assert(NodeToMatch->use_empty() &&
2924             "Didn't replace all uses of the node?");
2925
2926      // FIXME: We just return here, which interacts correctly with SelectRoot
2927      // above.  We should fix this to not return an SDNode* anymore.
2928      return 0;
2929    }
2930    }
2931
2932    // If the code reached this point, then the match failed.  See if there is
2933    // another child to try in the current 'Scope', otherwise pop it until we
2934    // find a case to check.
2935    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2936    ++NumDAGIselRetries;
2937    while (1) {
2938      if (MatchScopes.empty()) {
2939        CannotYetSelect(NodeToMatch);
2940        return 0;
2941      }
2942
2943      // Restore the interpreter state back to the point where the scope was
2944      // formed.
2945      MatchScope &LastScope = MatchScopes.back();
2946      RecordedNodes.resize(LastScope.NumRecordedNodes);
2947      NodeStack.clear();
2948      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2949      N = NodeStack.back();
2950
2951      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2952        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2953      MatcherIndex = LastScope.FailIndex;
2954
2955      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2956
2957      InputChain = LastScope.InputChain;
2958      InputGlue = LastScope.InputGlue;
2959      if (!LastScope.HasChainNodesMatched)
2960        ChainNodesMatched.clear();
2961      if (!LastScope.HasGlueResultNodesMatched)
2962        GlueResultNodesMatched.clear();
2963
2964      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2965      // we have reached the end of this scope, otherwise we have another child
2966      // in the current scope to try.
2967      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2968      if (NumToSkip & 128)
2969        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2970
2971      // If we have another child in this scope to match, update FailIndex and
2972      // try it.
2973      if (NumToSkip != 0) {
2974        LastScope.FailIndex = MatcherIndex+NumToSkip;
2975        break;
2976      }
2977
2978      // End of this scope, pop it and try the next child in the containing
2979      // scope.
2980      MatchScopes.pop_back();
2981    }
2982  }
2983}
2984
2985
2986
2987void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2988  std::string msg;
2989  raw_string_ostream Msg(msg);
2990  Msg << "Cannot select: ";
2991
2992  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2993      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2994      N->getOpcode() != ISD::INTRINSIC_VOID) {
2995    N->printrFull(Msg, CurDAG);
2996    Msg << "\nIn function: " << MF->getName();
2997  } else {
2998    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2999    unsigned iid =
3000      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3001    if (iid < Intrinsic::num_intrinsics)
3002      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3003    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3004      Msg << "target intrinsic %" << TII->getName(iid);
3005    else
3006      Msg << "unknown intrinsic #" << iid;
3007  }
3008  report_fatal_error(Msg.str());
3009}
3010
3011char SelectionDAGISel::ID = 0;
3012