SelectionDAGISel.cpp revision 3e697cfa979538c77459a3e4237e9bc1ac638761
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This implements the SelectionDAGISel class. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "isel" 15#include "llvm/CodeGen/SelectionDAGISel.h" 16#include "SimpleBBISel.h" 17#include "llvm/ADT/BitVector.h" 18#include "llvm/Analysis/AliasAnalysis.h" 19#include "llvm/Constants.h" 20#include "llvm/CallingConv.h" 21#include "llvm/DerivedTypes.h" 22#include "llvm/Function.h" 23#include "llvm/GlobalVariable.h" 24#include "llvm/InlineAsm.h" 25#include "llvm/Instructions.h" 26#include "llvm/Intrinsics.h" 27#include "llvm/IntrinsicInst.h" 28#include "llvm/ParameterAttributes.h" 29#include "llvm/CodeGen/FastISel.h" 30#include "llvm/CodeGen/GCStrategy.h" 31#include "llvm/CodeGen/GCMetadata.h" 32#include "llvm/CodeGen/MachineFunction.h" 33#include "llvm/CodeGen/MachineFrameInfo.h" 34#include "llvm/CodeGen/MachineInstrBuilder.h" 35#include "llvm/CodeGen/MachineJumpTableInfo.h" 36#include "llvm/CodeGen/MachineModuleInfo.h" 37#include "llvm/CodeGen/MachineRegisterInfo.h" 38#include "llvm/CodeGen/ScheduleDAG.h" 39#include "llvm/CodeGen/SchedulerRegistry.h" 40#include "llvm/CodeGen/SelectionDAG.h" 41#include "llvm/Target/TargetRegisterInfo.h" 42#include "llvm/Target/TargetData.h" 43#include "llvm/Target/TargetFrameInfo.h" 44#include "llvm/Target/TargetInstrInfo.h" 45#include "llvm/Target/TargetLowering.h" 46#include "llvm/Target/TargetMachine.h" 47#include "llvm/Target/TargetOptions.h" 48#include "llvm/Support/Compiler.h" 49#include "llvm/Support/Debug.h" 50#include "llvm/Support/MathExtras.h" 51#include "llvm/Support/Timer.h" 52#include <algorithm> 53using namespace llvm; 54 55static cl::opt<bool> 56EnableValueProp("enable-value-prop", cl::Hidden); 57static cl::opt<bool> 58EnableLegalizeTypes("enable-legalize-types", cl::Hidden); 59static cl::opt<bool> 60EnableFastISel("fast-isel", cl::Hidden, 61 cl::desc("Enable the experimental \"fast\" instruction selector")); 62static cl::opt<bool> 63DisableFastISelAbort("fast-isel-no-abort", cl::Hidden, 64 cl::desc("Use the SelectionDAGISel when \"fast\" instruction " 65 "selection fails")); 66 67#ifndef NDEBUG 68static cl::opt<bool> 69ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 70 cl::desc("Pop up a window to show dags before the first " 71 "dag combine pass")); 72static cl::opt<bool> 73ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 74 cl::desc("Pop up a window to show dags before legalize types")); 75static cl::opt<bool> 76ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 77 cl::desc("Pop up a window to show dags before legalize")); 78static cl::opt<bool> 79ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 80 cl::desc("Pop up a window to show dags before the second " 81 "dag combine pass")); 82static cl::opt<bool> 83ViewISelDAGs("view-isel-dags", cl::Hidden, 84 cl::desc("Pop up a window to show isel dags as they are selected")); 85static cl::opt<bool> 86ViewSchedDAGs("view-sched-dags", cl::Hidden, 87 cl::desc("Pop up a window to show sched dags as they are processed")); 88static cl::opt<bool> 89ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 90 cl::desc("Pop up a window to show SUnit dags after they are processed")); 91#else 92static const bool ViewDAGCombine1 = false, 93 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 94 ViewDAGCombine2 = false, 95 ViewISelDAGs = false, ViewSchedDAGs = false, 96 ViewSUnitDAGs = false; 97#endif 98 99//===---------------------------------------------------------------------===// 100/// 101/// RegisterScheduler class - Track the registration of instruction schedulers. 102/// 103//===---------------------------------------------------------------------===// 104MachinePassRegistry RegisterScheduler::Registry; 105 106//===---------------------------------------------------------------------===// 107/// 108/// ISHeuristic command line option for instruction schedulers. 109/// 110//===---------------------------------------------------------------------===// 111static cl::opt<RegisterScheduler::FunctionPassCtor, false, 112 RegisterPassParser<RegisterScheduler> > 113ISHeuristic("pre-RA-sched", 114 cl::init(&createDefaultScheduler), 115 cl::desc("Instruction schedulers available (before register" 116 " allocation):")); 117 118static RegisterScheduler 119defaultListDAGScheduler("default", " Best scheduler for the target", 120 createDefaultScheduler); 121 122namespace { struct SDISelAsmOperandInfo; } 123 124/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 125/// insertvalue or extractvalue indices that identify a member, return 126/// the linearized index of the start of the member. 127/// 128static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, 129 const unsigned *Indices, 130 const unsigned *IndicesEnd, 131 unsigned CurIndex = 0) { 132 // Base case: We're done. 133 if (Indices && Indices == IndicesEnd) 134 return CurIndex; 135 136 // Given a struct type, recursively traverse the elements. 137 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 138 for (StructType::element_iterator EB = STy->element_begin(), 139 EI = EB, 140 EE = STy->element_end(); 141 EI != EE; ++EI) { 142 if (Indices && *Indices == unsigned(EI - EB)) 143 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); 144 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); 145 } 146 } 147 // Given an array type, recursively traverse the elements. 148 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 149 const Type *EltTy = ATy->getElementType(); 150 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 151 if (Indices && *Indices == i) 152 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); 153 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); 154 } 155 } 156 // We haven't found the type we're looking for, so keep searching. 157 return CurIndex + 1; 158} 159 160/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 161/// MVTs that represent all the individual underlying 162/// non-aggregate types that comprise it. 163/// 164/// If Offsets is non-null, it points to a vector to be filled in 165/// with the in-memory offsets of each of the individual values. 166/// 167static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, 168 SmallVectorImpl<MVT> &ValueVTs, 169 SmallVectorImpl<uint64_t> *Offsets = 0, 170 uint64_t StartingOffset = 0) { 171 // Given a struct type, recursively traverse the elements. 172 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 173 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); 174 for (StructType::element_iterator EB = STy->element_begin(), 175 EI = EB, 176 EE = STy->element_end(); 177 EI != EE; ++EI) 178 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 179 StartingOffset + SL->getElementOffset(EI - EB)); 180 return; 181 } 182 // Given an array type, recursively traverse the elements. 183 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 184 const Type *EltTy = ATy->getElementType(); 185 uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy); 186 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 187 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 188 StartingOffset + i * EltSize); 189 return; 190 } 191 // Base case: we can get an MVT for this LLVM IR type. 192 ValueVTs.push_back(TLI.getValueType(Ty)); 193 if (Offsets) 194 Offsets->push_back(StartingOffset); 195} 196 197namespace { 198 /// RegsForValue - This struct represents the registers (physical or virtual) 199 /// that a particular set of values is assigned, and the type information about 200 /// the value. The most common situation is to represent one value at a time, 201 /// but struct or array values are handled element-wise as multiple values. 202 /// The splitting of aggregates is performed recursively, so that we never 203 /// have aggregate-typed registers. The values at this point do not necessarily 204 /// have legal types, so each value may require one or more registers of some 205 /// legal type. 206 /// 207 struct VISIBILITY_HIDDEN RegsForValue { 208 /// TLI - The TargetLowering object. 209 /// 210 const TargetLowering *TLI; 211 212 /// ValueVTs - The value types of the values, which may not be legal, and 213 /// may need be promoted or synthesized from one or more registers. 214 /// 215 SmallVector<MVT, 4> ValueVTs; 216 217 /// RegVTs - The value types of the registers. This is the same size as 218 /// ValueVTs and it records, for each value, what the type of the assigned 219 /// register or registers are. (Individual values are never synthesized 220 /// from more than one type of register.) 221 /// 222 /// With virtual registers, the contents of RegVTs is redundant with TLI's 223 /// getRegisterType member function, however when with physical registers 224 /// it is necessary to have a separate record of the types. 225 /// 226 SmallVector<MVT, 4> RegVTs; 227 228 /// Regs - This list holds the registers assigned to the values. 229 /// Each legal or promoted value requires one register, and each 230 /// expanded value requires multiple registers. 231 /// 232 SmallVector<unsigned, 4> Regs; 233 234 RegsForValue() : TLI(0) {} 235 236 RegsForValue(const TargetLowering &tli, 237 const SmallVector<unsigned, 4> ®s, 238 MVT regvt, MVT valuevt) 239 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 240 RegsForValue(const TargetLowering &tli, 241 const SmallVector<unsigned, 4> ®s, 242 const SmallVector<MVT, 4> ®vts, 243 const SmallVector<MVT, 4> &valuevts) 244 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 245 RegsForValue(const TargetLowering &tli, 246 unsigned Reg, const Type *Ty) : TLI(&tli) { 247 ComputeValueVTs(tli, Ty, ValueVTs); 248 249 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 250 MVT ValueVT = ValueVTs[Value]; 251 unsigned NumRegs = TLI->getNumRegisters(ValueVT); 252 MVT RegisterVT = TLI->getRegisterType(ValueVT); 253 for (unsigned i = 0; i != NumRegs; ++i) 254 Regs.push_back(Reg + i); 255 RegVTs.push_back(RegisterVT); 256 Reg += NumRegs; 257 } 258 } 259 260 /// append - Add the specified values to this one. 261 void append(const RegsForValue &RHS) { 262 TLI = RHS.TLI; 263 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 264 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 265 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 266 } 267 268 269 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 270 /// this value and returns the result as a ValueVTs value. This uses 271 /// Chain/Flag as the input and updates them for the output Chain/Flag. 272 /// If the Flag pointer is NULL, no flag is used. 273 SDValue getCopyFromRegs(SelectionDAG &DAG, 274 SDValue &Chain, SDValue *Flag) const; 275 276 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 277 /// specified value into the registers specified by this object. This uses 278 /// Chain/Flag as the input and updates them for the output Chain/Flag. 279 /// If the Flag pointer is NULL, no flag is used. 280 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, 281 SDValue &Chain, SDValue *Flag) const; 282 283 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 284 /// operand list. This adds the code marker and includes the number of 285 /// values added into it. 286 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, 287 std::vector<SDValue> &Ops) const; 288 }; 289} 290 291namespace llvm { 292 //===--------------------------------------------------------------------===// 293 /// createDefaultScheduler - This creates an instruction scheduler appropriate 294 /// for the target. 295 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, 296 SelectionDAG *DAG, 297 MachineBasicBlock *BB, 298 bool Fast) { 299 TargetLowering &TLI = IS->getTargetLowering(); 300 301 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) { 302 return createTDListDAGScheduler(IS, DAG, BB, Fast); 303 } else { 304 assert(TLI.getSchedulingPreference() == 305 TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); 306 return createBURRListDAGScheduler(IS, DAG, BB, Fast); 307 } 308 } 309 310 311 //===--------------------------------------------------------------------===// 312 /// FunctionLoweringInfo - This contains information that is global to a 313 /// function that is used when lowering a region of the function. 314 class FunctionLoweringInfo { 315 public: 316 TargetLowering &TLI; 317 Function &Fn; 318 MachineFunction &MF; 319 MachineRegisterInfo &RegInfo; 320 321 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); 322 323 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. 324 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap; 325 326 /// ValueMap - Since we emit code for the function a basic block at a time, 327 /// we must remember which virtual registers hold the values for 328 /// cross-basic-block values. 329 DenseMap<const Value*, unsigned> ValueMap; 330 331 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in 332 /// the entry block. This allows the allocas to be efficiently referenced 333 /// anywhere in the function. 334 std::map<const AllocaInst*, int> StaticAllocaMap; 335 336#ifndef NDEBUG 337 SmallSet<Instruction*, 8> CatchInfoLost; 338 SmallSet<Instruction*, 8> CatchInfoFound; 339#endif 340 341 unsigned MakeReg(MVT VT) { 342 return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT)); 343 } 344 345 /// isExportedInst - Return true if the specified value is an instruction 346 /// exported from its block. 347 bool isExportedInst(const Value *V) { 348 return ValueMap.count(V); 349 } 350 351 unsigned CreateRegForValue(const Value *V); 352 353 unsigned InitializeRegForValue(const Value *V) { 354 unsigned &R = ValueMap[V]; 355 assert(R == 0 && "Already initialized this value register!"); 356 return R = CreateRegForValue(V); 357 } 358 359 struct LiveOutInfo { 360 unsigned NumSignBits; 361 APInt KnownOne, KnownZero; 362 LiveOutInfo() : NumSignBits(0) {} 363 }; 364 365 /// LiveOutRegInfo - Information about live out vregs, indexed by their 366 /// register number offset by 'FirstVirtualRegister'. 367 std::vector<LiveOutInfo> LiveOutRegInfo; 368 }; 369} 370 371/// isSelector - Return true if this instruction is a call to the 372/// eh.selector intrinsic. 373static bool isSelector(Instruction *I) { 374 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 375 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 || 376 II->getIntrinsicID() == Intrinsic::eh_selector_i64); 377 return false; 378} 379 380/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 381/// PHI nodes or outside of the basic block that defines it, or used by a 382/// switch or atomic instruction, which may expand to multiple basic blocks. 383static bool isUsedOutsideOfDefiningBlock(Instruction *I) { 384 if (isa<PHINode>(I)) return true; 385 BasicBlock *BB = I->getParent(); 386 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) 387 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) || 388 // FIXME: Remove switchinst special case. 389 isa<SwitchInst>(*UI)) 390 return true; 391 return false; 392} 393 394/// isOnlyUsedInEntryBlock - If the specified argument is only used in the 395/// entry block, return true. This includes arguments used by switches, since 396/// the switch may expand into multiple basic blocks. 397static bool isOnlyUsedInEntryBlock(Argument *A) { 398 BasicBlock *Entry = A->getParent()->begin(); 399 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) 400 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) 401 return false; // Use not in entry block. 402 return true; 403} 404 405FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, 406 Function &fn, MachineFunction &mf) 407 : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) { 408 409 // Create a vreg for each argument register that is not dead and is used 410 // outside of the entry block for the function. 411 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); 412 AI != E; ++AI) 413 if (!isOnlyUsedInEntryBlock(AI)) 414 InitializeRegForValue(AI); 415 416 // Initialize the mapping of values to registers. This is only set up for 417 // instruction values that are used outside of the block that defines 418 // them. 419 Function::iterator BB = Fn.begin(), EB = Fn.end(); 420 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 421 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 422 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 423 const Type *Ty = AI->getAllocatedType(); 424 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); 425 unsigned Align = 426 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 427 AI->getAlignment()); 428 429 TySize *= CUI->getZExtValue(); // Get total allocated size. 430 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 431 StaticAllocaMap[AI] = 432 MF.getFrameInfo()->CreateStackObject(TySize, Align); 433 } 434 435 for (; BB != EB; ++BB) 436 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 437 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) 438 if (!isa<AllocaInst>(I) || 439 !StaticAllocaMap.count(cast<AllocaInst>(I))) 440 InitializeRegForValue(I); 441 442 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 443 // also creates the initial PHI MachineInstrs, though none of the input 444 // operands are populated. 445 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { 446 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 447 MBBMap[BB] = MBB; 448 MF.push_back(MBB); 449 450 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 451 // appropriate. 452 PHINode *PN; 453 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){ 454 if (PN->use_empty()) continue; 455 456 unsigned PHIReg = ValueMap[PN]; 457 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 458 459 SmallVector<MVT, 4> ValueVTs; 460 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 461 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 462 MVT VT = ValueVTs[vti]; 463 unsigned NumRegisters = TLI.getNumRegisters(VT); 464 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo(); 465 for (unsigned i = 0; i != NumRegisters; ++i) 466 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); 467 PHIReg += NumRegisters; 468 } 469 } 470 } 471} 472 473/// CreateRegForValue - Allocate the appropriate number of virtual registers of 474/// the correctly promoted or expanded types. Assign these registers 475/// consecutive vreg numbers and return the first assigned number. 476/// 477/// In the case that the given value has struct or array type, this function 478/// will assign registers for each member or element. 479/// 480unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { 481 SmallVector<MVT, 4> ValueVTs; 482 ComputeValueVTs(TLI, V->getType(), ValueVTs); 483 484 unsigned FirstReg = 0; 485 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 486 MVT ValueVT = ValueVTs[Value]; 487 MVT RegisterVT = TLI.getRegisterType(ValueVT); 488 489 unsigned NumRegs = TLI.getNumRegisters(ValueVT); 490 for (unsigned i = 0; i != NumRegs; ++i) { 491 unsigned R = MakeReg(RegisterVT); 492 if (!FirstReg) FirstReg = R; 493 } 494 } 495 return FirstReg; 496} 497 498//===----------------------------------------------------------------------===// 499/// SelectionDAGLowering - This is the common target-independent lowering 500/// implementation that is parameterized by a TargetLowering object. 501/// Also, targets can overload any lowering method. 502/// 503namespace llvm { 504class SelectionDAGLowering { 505 MachineBasicBlock *CurMBB; 506 507 DenseMap<const Value*, SDValue> NodeMap; 508 509 /// PendingLoads - Loads are not emitted to the program immediately. We bunch 510 /// them up and then emit token factor nodes when possible. This allows us to 511 /// get simple disambiguation between loads without worrying about alias 512 /// analysis. 513 SmallVector<SDValue, 8> PendingLoads; 514 515 /// PendingExports - CopyToReg nodes that copy values to virtual registers 516 /// for export to other blocks need to be emitted before any terminator 517 /// instruction, but they have no other ordering requirements. We bunch them 518 /// up and the emit a single tokenfactor for them just before terminator 519 /// instructions. 520 std::vector<SDValue> PendingExports; 521 522 /// Case - A struct to record the Value for a switch case, and the 523 /// case's target basic block. 524 struct Case { 525 Constant* Low; 526 Constant* High; 527 MachineBasicBlock* BB; 528 529 Case() : Low(0), High(0), BB(0) { } 530 Case(Constant* low, Constant* high, MachineBasicBlock* bb) : 531 Low(low), High(high), BB(bb) { } 532 uint64_t size() const { 533 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue(); 534 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue(); 535 return (rHigh - rLow + 1ULL); 536 } 537 }; 538 539 struct CaseBits { 540 uint64_t Mask; 541 MachineBasicBlock* BB; 542 unsigned Bits; 543 544 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): 545 Mask(mask), BB(bb), Bits(bits) { } 546 }; 547 548 typedef std::vector<Case> CaseVector; 549 typedef std::vector<CaseBits> CaseBitsVector; 550 typedef CaseVector::iterator CaseItr; 551 typedef std::pair<CaseItr, CaseItr> CaseRange; 552 553 /// CaseRec - A struct with ctor used in lowering switches to a binary tree 554 /// of conditional branches. 555 struct CaseRec { 556 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : 557 CaseBB(bb), LT(lt), GE(ge), Range(r) {} 558 559 /// CaseBB - The MBB in which to emit the compare and branch 560 MachineBasicBlock *CaseBB; 561 /// LT, GE - If nonzero, we know the current case value must be less-than or 562 /// greater-than-or-equal-to these Constants. 563 Constant *LT; 564 Constant *GE; 565 /// Range - A pair of iterators representing the range of case values to be 566 /// processed at this point in the binary search tree. 567 CaseRange Range; 568 }; 569 570 typedef std::vector<CaseRec> CaseRecVector; 571 572 /// The comparison function for sorting the switch case values in the vector. 573 /// WARNING: Case ranges should be disjoint! 574 struct CaseCmp { 575 bool operator () (const Case& C1, const Case& C2) { 576 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High)); 577 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 578 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 579 return CI1->getValue().slt(CI2->getValue()); 580 } 581 }; 582 583 struct CaseBitsCmp { 584 bool operator () (const CaseBits& C1, const CaseBits& C2) { 585 return C1.Bits > C2.Bits; 586 } 587 }; 588 589 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI); 590 591public: 592 // TLI - This is information that describes the available target features we 593 // need for lowering. This indicates when operations are unavailable, 594 // implemented with a libcall, etc. 595 TargetLowering &TLI; 596 SelectionDAG &DAG; 597 const TargetData *TD; 598 AliasAnalysis &AA; 599 600 /// SwitchCases - Vector of CaseBlock structures used to communicate 601 /// SwitchInst code generation information. 602 std::vector<SelectionDAGISel::CaseBlock> SwitchCases; 603 /// JTCases - Vector of JumpTable structures used to communicate 604 /// SwitchInst code generation information. 605 std::vector<SelectionDAGISel::JumpTableBlock> JTCases; 606 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases; 607 608 /// FuncInfo - Information about the function as a whole. 609 /// 610 FunctionLoweringInfo &FuncInfo; 611 612 /// GFI - Garbage collection metadata for the function. 613 GCFunctionInfo *GFI; 614 615 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, 616 AliasAnalysis &aa, 617 FunctionLoweringInfo &funcinfo, 618 GCFunctionInfo *gfi) 619 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa), 620 FuncInfo(funcinfo), GFI(gfi) { 621 } 622 623 /// getRoot - Return the current virtual root of the Selection DAG, 624 /// flushing any PendingLoad items. This must be done before emitting 625 /// a store or any other node that may need to be ordered after any 626 /// prior load instructions. 627 /// 628 SDValue getRoot() { 629 if (PendingLoads.empty()) 630 return DAG.getRoot(); 631 632 if (PendingLoads.size() == 1) { 633 SDValue Root = PendingLoads[0]; 634 DAG.setRoot(Root); 635 PendingLoads.clear(); 636 return Root; 637 } 638 639 // Otherwise, we have to make a token factor node. 640 SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 641 &PendingLoads[0], PendingLoads.size()); 642 PendingLoads.clear(); 643 DAG.setRoot(Root); 644 return Root; 645 } 646 647 /// getControlRoot - Similar to getRoot, but instead of flushing all the 648 /// PendingLoad items, flush all the PendingExports items. It is necessary 649 /// to do this before emitting a terminator instruction. 650 /// 651 SDValue getControlRoot() { 652 SDValue Root = DAG.getRoot(); 653 654 if (PendingExports.empty()) 655 return Root; 656 657 // Turn all of the CopyToReg chains into one factored node. 658 if (Root.getOpcode() != ISD::EntryToken) { 659 unsigned i = 0, e = PendingExports.size(); 660 for (; i != e; ++i) { 661 assert(PendingExports[i].Val->getNumOperands() > 1); 662 if (PendingExports[i].Val->getOperand(0) == Root) 663 break; // Don't add the root if we already indirectly depend on it. 664 } 665 666 if (i == e) 667 PendingExports.push_back(Root); 668 } 669 670 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 671 &PendingExports[0], 672 PendingExports.size()); 673 PendingExports.clear(); 674 DAG.setRoot(Root); 675 return Root; 676 } 677 678 void CopyValueToVirtualRegister(Value *V, unsigned Reg); 679 680 void visit(Instruction &I) { visit(I.getOpcode(), I); } 681 682 void visit(unsigned Opcode, User &I) { 683 // Note: this doesn't use InstVisitor, because it has to work with 684 // ConstantExpr's in addition to instructions. 685 switch (Opcode) { 686 default: assert(0 && "Unknown instruction type encountered!"); 687 abort(); 688 // Build the switch statement using the Instruction.def file. 689#define HANDLE_INST(NUM, OPCODE, CLASS) \ 690 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); 691#include "llvm/Instruction.def" 692 } 693 } 694 695 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } 696 697 SDValue getValue(const Value *V); 698 699 void setValue(const Value *V, SDValue NewN) { 700 SDValue &N = NodeMap[V]; 701 assert(N.Val == 0 && "Already set a value for this node!"); 702 N = NewN; 703 } 704 705 void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber, 706 std::set<unsigned> &OutputRegs, 707 std::set<unsigned> &InputRegs); 708 709 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, 710 MachineBasicBlock *FBB, MachineBasicBlock *CurBB, 711 unsigned Opc); 712 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); 713 void ExportFromCurrentBlock(Value *V); 714 void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall, 715 MachineBasicBlock *LandingPad = NULL); 716 717 // Terminator instructions. 718 void visitRet(ReturnInst &I); 719 void visitBr(BranchInst &I); 720 void visitSwitch(SwitchInst &I); 721 void visitUnreachable(UnreachableInst &I) { /* noop */ } 722 723 // Helpers for visitSwitch 724 bool handleSmallSwitchRange(CaseRec& CR, 725 CaseRecVector& WorkList, 726 Value* SV, 727 MachineBasicBlock* Default); 728 bool handleJTSwitchCase(CaseRec& CR, 729 CaseRecVector& WorkList, 730 Value* SV, 731 MachineBasicBlock* Default); 732 bool handleBTSplitSwitchCase(CaseRec& CR, 733 CaseRecVector& WorkList, 734 Value* SV, 735 MachineBasicBlock* Default); 736 bool handleBitTestsSwitchCase(CaseRec& CR, 737 CaseRecVector& WorkList, 738 Value* SV, 739 MachineBasicBlock* Default); 740 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB); 741 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B); 742 void visitBitTestCase(MachineBasicBlock* NextMBB, 743 unsigned Reg, 744 SelectionDAGISel::BitTestCase &B); 745 void visitJumpTable(SelectionDAGISel::JumpTable &JT); 746 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, 747 SelectionDAGISel::JumpTableHeader &JTH); 748 749 // These all get lowered before this pass. 750 void visitInvoke(InvokeInst &I); 751 void visitUnwind(UnwindInst &I); 752 753 void visitBinary(User &I, unsigned OpCode); 754 void visitShift(User &I, unsigned Opcode); 755 void visitAdd(User &I) { 756 if (I.getType()->isFPOrFPVector()) 757 visitBinary(I, ISD::FADD); 758 else 759 visitBinary(I, ISD::ADD); 760 } 761 void visitSub(User &I); 762 void visitMul(User &I) { 763 if (I.getType()->isFPOrFPVector()) 764 visitBinary(I, ISD::FMUL); 765 else 766 visitBinary(I, ISD::MUL); 767 } 768 void visitURem(User &I) { visitBinary(I, ISD::UREM); } 769 void visitSRem(User &I) { visitBinary(I, ISD::SREM); } 770 void visitFRem(User &I) { visitBinary(I, ISD::FREM); } 771 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); } 772 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); } 773 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); } 774 void visitAnd (User &I) { visitBinary(I, ISD::AND); } 775 void visitOr (User &I) { visitBinary(I, ISD::OR); } 776 void visitXor (User &I) { visitBinary(I, ISD::XOR); } 777 void visitShl (User &I) { visitShift(I, ISD::SHL); } 778 void visitLShr(User &I) { visitShift(I, ISD::SRL); } 779 void visitAShr(User &I) { visitShift(I, ISD::SRA); } 780 void visitICmp(User &I); 781 void visitFCmp(User &I); 782 void visitVICmp(User &I); 783 void visitVFCmp(User &I); 784 // Visit the conversion instructions 785 void visitTrunc(User &I); 786 void visitZExt(User &I); 787 void visitSExt(User &I); 788 void visitFPTrunc(User &I); 789 void visitFPExt(User &I); 790 void visitFPToUI(User &I); 791 void visitFPToSI(User &I); 792 void visitUIToFP(User &I); 793 void visitSIToFP(User &I); 794 void visitPtrToInt(User &I); 795 void visitIntToPtr(User &I); 796 void visitBitCast(User &I); 797 798 void visitExtractElement(User &I); 799 void visitInsertElement(User &I); 800 void visitShuffleVector(User &I); 801 802 void visitExtractValue(ExtractValueInst &I); 803 void visitInsertValue(InsertValueInst &I); 804 805 void visitGetElementPtr(User &I); 806 void visitSelect(User &I); 807 808 void visitMalloc(MallocInst &I); 809 void visitFree(FreeInst &I); 810 void visitAlloca(AllocaInst &I); 811 void visitLoad(LoadInst &I); 812 void visitStore(StoreInst &I); 813 void visitPHI(PHINode &I) { } // PHI nodes are handled specially. 814 void visitCall(CallInst &I); 815 void visitInlineAsm(CallSite CS); 816 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); 817 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); 818 819 void visitVAStart(CallInst &I); 820 void visitVAArg(VAArgInst &I); 821 void visitVAEnd(CallInst &I); 822 void visitVACopy(CallInst &I); 823 824 void visitUserOp1(Instruction &I) { 825 assert(0 && "UserOp1 should not exist at instruction selection time!"); 826 abort(); 827 } 828 void visitUserOp2(Instruction &I) { 829 assert(0 && "UserOp2 should not exist at instruction selection time!"); 830 abort(); 831 } 832 833private: 834 inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op); 835 836}; 837} // end namespace llvm 838 839 840/// getCopyFromParts - Create a value that contains the specified legal parts 841/// combined into the value they represent. If the parts combine to a type 842/// larger then ValueVT then AssertOp can be used to specify whether the extra 843/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 844/// (ISD::AssertSext). 845static SDValue getCopyFromParts(SelectionDAG &DAG, 846 const SDValue *Parts, 847 unsigned NumParts, 848 MVT PartVT, 849 MVT ValueVT, 850 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 851 assert(NumParts > 0 && "No parts to assemble!"); 852 TargetLowering &TLI = DAG.getTargetLoweringInfo(); 853 SDValue Val = Parts[0]; 854 855 if (NumParts > 1) { 856 // Assemble the value from multiple parts. 857 if (!ValueVT.isVector()) { 858 unsigned PartBits = PartVT.getSizeInBits(); 859 unsigned ValueBits = ValueVT.getSizeInBits(); 860 861 // Assemble the power of 2 part. 862 unsigned RoundParts = NumParts & (NumParts - 1) ? 863 1 << Log2_32(NumParts) : NumParts; 864 unsigned RoundBits = PartBits * RoundParts; 865 MVT RoundVT = RoundBits == ValueBits ? 866 ValueVT : MVT::getIntegerVT(RoundBits); 867 SDValue Lo, Hi; 868 869 if (RoundParts > 2) { 870 MVT HalfVT = MVT::getIntegerVT(RoundBits/2); 871 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT); 872 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2, 873 PartVT, HalfVT); 874 } else { 875 Lo = Parts[0]; 876 Hi = Parts[1]; 877 } 878 if (TLI.isBigEndian()) 879 std::swap(Lo, Hi); 880 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi); 881 882 if (RoundParts < NumParts) { 883 // Assemble the trailing non-power-of-2 part. 884 unsigned OddParts = NumParts - RoundParts; 885 MVT OddVT = MVT::getIntegerVT(OddParts * PartBits); 886 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT); 887 888 // Combine the round and odd parts. 889 Lo = Val; 890 if (TLI.isBigEndian()) 891 std::swap(Lo, Hi); 892 MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits); 893 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi); 894 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi, 895 DAG.getConstant(Lo.getValueType().getSizeInBits(), 896 TLI.getShiftAmountTy())); 897 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo); 898 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi); 899 } 900 } else { 901 // Handle a multi-element vector. 902 MVT IntermediateVT, RegisterVT; 903 unsigned NumIntermediates; 904 unsigned NumRegs = 905 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, 906 RegisterVT); 907 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 908 NumParts = NumRegs; // Silence a compiler warning. 909 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 910 assert(RegisterVT == Parts[0].getValueType() && 911 "Part type doesn't match part!"); 912 913 // Assemble the parts into intermediate operands. 914 SmallVector<SDValue, 8> Ops(NumIntermediates); 915 if (NumIntermediates == NumParts) { 916 // If the register was not expanded, truncate or copy the value, 917 // as appropriate. 918 for (unsigned i = 0; i != NumParts; ++i) 919 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, 920 PartVT, IntermediateVT); 921 } else if (NumParts > 0) { 922 // If the intermediate type was expanded, build the intermediate operands 923 // from the parts. 924 assert(NumParts % NumIntermediates == 0 && 925 "Must expand into a divisible number of parts!"); 926 unsigned Factor = NumParts / NumIntermediates; 927 for (unsigned i = 0; i != NumIntermediates; ++i) 928 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor, 929 PartVT, IntermediateVT); 930 } 931 932 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate 933 // operands. 934 Val = DAG.getNode(IntermediateVT.isVector() ? 935 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 936 ValueVT, &Ops[0], NumIntermediates); 937 } 938 } 939 940 // There is now one part, held in Val. Correct it to match ValueVT. 941 PartVT = Val.getValueType(); 942 943 if (PartVT == ValueVT) 944 return Val; 945 946 if (PartVT.isVector()) { 947 assert(ValueVT.isVector() && "Unknown vector conversion!"); 948 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); 949 } 950 951 if (ValueVT.isVector()) { 952 assert(ValueVT.getVectorElementType() == PartVT && 953 ValueVT.getVectorNumElements() == 1 && 954 "Only trivial scalar-to-vector conversions should get here!"); 955 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val); 956 } 957 958 if (PartVT.isInteger() && 959 ValueVT.isInteger()) { 960 if (ValueVT.bitsLT(PartVT)) { 961 // For a truncate, see if we have any information to 962 // indicate whether the truncated bits will always be 963 // zero or sign-extension. 964 if (AssertOp != ISD::DELETED_NODE) 965 Val = DAG.getNode(AssertOp, PartVT, Val, 966 DAG.getValueType(ValueVT)); 967 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); 968 } else { 969 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); 970 } 971 } 972 973 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 974 if (ValueVT.bitsLT(Val.getValueType())) 975 // FP_ROUND's are always exact here. 976 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val, 977 DAG.getIntPtrConstant(1)); 978 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val); 979 } 980 981 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 982 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val); 983 984 assert(0 && "Unknown mismatch!"); 985 return SDValue(); 986} 987 988/// getCopyToParts - Create a series of nodes that contain the specified value 989/// split into legal parts. If the parts contain more bits than Val, then, for 990/// integers, ExtendKind can be used to specify how to generate the extra bits. 991static void getCopyToParts(SelectionDAG &DAG, 992 SDValue Val, 993 SDValue *Parts, 994 unsigned NumParts, 995 MVT PartVT, 996 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 997 TargetLowering &TLI = DAG.getTargetLoweringInfo(); 998 MVT PtrVT = TLI.getPointerTy(); 999 MVT ValueVT = Val.getValueType(); 1000 unsigned PartBits = PartVT.getSizeInBits(); 1001 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 1002 1003 if (!NumParts) 1004 return; 1005 1006 if (!ValueVT.isVector()) { 1007 if (PartVT == ValueVT) { 1008 assert(NumParts == 1 && "No-op copy with multiple parts!"); 1009 Parts[0] = Val; 1010 return; 1011 } 1012 1013 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 1014 // If the parts cover more bits than the value has, promote the value. 1015 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 1016 assert(NumParts == 1 && "Do not know what to promote to!"); 1017 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val); 1018 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 1019 ValueVT = MVT::getIntegerVT(NumParts * PartBits); 1020 Val = DAG.getNode(ExtendKind, ValueVT, Val); 1021 } else { 1022 assert(0 && "Unknown mismatch!"); 1023 } 1024 } else if (PartBits == ValueVT.getSizeInBits()) { 1025 // Different types of the same size. 1026 assert(NumParts == 1 && PartVT != ValueVT); 1027 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); 1028 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 1029 // If the parts cover less bits than value has, truncate the value. 1030 if (PartVT.isInteger() && ValueVT.isInteger()) { 1031 ValueVT = MVT::getIntegerVT(NumParts * PartBits); 1032 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); 1033 } else { 1034 assert(0 && "Unknown mismatch!"); 1035 } 1036 } 1037 1038 // The value may have changed - recompute ValueVT. 1039 ValueVT = Val.getValueType(); 1040 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 1041 "Failed to tile the value with PartVT!"); 1042 1043 if (NumParts == 1) { 1044 assert(PartVT == ValueVT && "Type conversion failed!"); 1045 Parts[0] = Val; 1046 return; 1047 } 1048 1049 // Expand the value into multiple parts. 1050 if (NumParts & (NumParts - 1)) { 1051 // The number of parts is not a power of 2. Split off and copy the tail. 1052 assert(PartVT.isInteger() && ValueVT.isInteger() && 1053 "Do not know what to expand to!"); 1054 unsigned RoundParts = 1 << Log2_32(NumParts); 1055 unsigned RoundBits = RoundParts * PartBits; 1056 unsigned OddParts = NumParts - RoundParts; 1057 SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val, 1058 DAG.getConstant(RoundBits, 1059 TLI.getShiftAmountTy())); 1060 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT); 1061 if (TLI.isBigEndian()) 1062 // The odd parts were reversed by getCopyToParts - unreverse them. 1063 std::reverse(Parts + RoundParts, Parts + NumParts); 1064 NumParts = RoundParts; 1065 ValueVT = MVT::getIntegerVT(NumParts * PartBits); 1066 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val); 1067 } 1068 1069 // The number of parts is a power of 2. Repeatedly bisect the value using 1070 // EXTRACT_ELEMENT. 1071 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, 1072 MVT::getIntegerVT(ValueVT.getSizeInBits()), 1073 Val); 1074 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 1075 for (unsigned i = 0; i < NumParts; i += StepSize) { 1076 unsigned ThisBits = StepSize * PartBits / 2; 1077 MVT ThisVT = MVT::getIntegerVT (ThisBits); 1078 SDValue &Part0 = Parts[i]; 1079 SDValue &Part1 = Parts[i+StepSize/2]; 1080 1081 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, 1082 DAG.getConstant(1, PtrVT)); 1083 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0, 1084 DAG.getConstant(0, PtrVT)); 1085 1086 if (ThisBits == PartBits && ThisVT != PartVT) { 1087 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0); 1088 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1); 1089 } 1090 } 1091 } 1092 1093 if (TLI.isBigEndian()) 1094 std::reverse(Parts, Parts + NumParts); 1095 1096 return; 1097 } 1098 1099 // Vector ValueVT. 1100 if (NumParts == 1) { 1101 if (PartVT != ValueVT) { 1102 if (PartVT.isVector()) { 1103 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val); 1104 } else { 1105 assert(ValueVT.getVectorElementType() == PartVT && 1106 ValueVT.getVectorNumElements() == 1 && 1107 "Only trivial vector-to-scalar conversions should get here!"); 1108 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val, 1109 DAG.getConstant(0, PtrVT)); 1110 } 1111 } 1112 1113 Parts[0] = Val; 1114 return; 1115 } 1116 1117 // Handle a multi-element vector. 1118 MVT IntermediateVT, RegisterVT; 1119 unsigned NumIntermediates; 1120 unsigned NumRegs = 1121 DAG.getTargetLoweringInfo() 1122 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates, 1123 RegisterVT); 1124 unsigned NumElements = ValueVT.getVectorNumElements(); 1125 1126 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 1127 NumParts = NumRegs; // Silence a compiler warning. 1128 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 1129 1130 // Split the vector into intermediate operands. 1131 SmallVector<SDValue, 8> Ops(NumIntermediates); 1132 for (unsigned i = 0; i != NumIntermediates; ++i) 1133 if (IntermediateVT.isVector()) 1134 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, 1135 IntermediateVT, Val, 1136 DAG.getConstant(i * (NumElements / NumIntermediates), 1137 PtrVT)); 1138 else 1139 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 1140 IntermediateVT, Val, 1141 DAG.getConstant(i, PtrVT)); 1142 1143 // Split the intermediate operands into legal parts. 1144 if (NumParts == NumIntermediates) { 1145 // If the register was not expanded, promote or copy the value, 1146 // as appropriate. 1147 for (unsigned i = 0; i != NumParts; ++i) 1148 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT); 1149 } else if (NumParts > 0) { 1150 // If the intermediate type was expanded, split each the value into 1151 // legal parts. 1152 assert(NumParts % NumIntermediates == 0 && 1153 "Must expand into a divisible number of parts!"); 1154 unsigned Factor = NumParts / NumIntermediates; 1155 for (unsigned i = 0; i != NumIntermediates; ++i) 1156 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT); 1157 } 1158} 1159 1160 1161SDValue SelectionDAGLowering::getValue(const Value *V) { 1162 SDValue &N = NodeMap[V]; 1163 if (N.Val) return N; 1164 1165 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 1166 MVT VT = TLI.getValueType(V->getType(), true); 1167 1168 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1169 return N = DAG.getConstant(CI->getValue(), VT); 1170 1171 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1172 return N = DAG.getGlobalAddress(GV, VT); 1173 1174 if (isa<ConstantPointerNull>(C)) 1175 return N = DAG.getConstant(0, TLI.getPointerTy()); 1176 1177 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1178 return N = DAG.getConstantFP(CFP->getValueAPF(), VT); 1179 1180 if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) && 1181 !V->getType()->isAggregateType()) 1182 return N = DAG.getNode(ISD::UNDEF, VT); 1183 1184 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1185 visit(CE->getOpcode(), *CE); 1186 SDValue N1 = NodeMap[V]; 1187 assert(N1.Val && "visit didn't populate the ValueMap!"); 1188 return N1; 1189 } 1190 1191 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1192 SmallVector<SDValue, 4> Constants; 1193 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1194 OI != OE; ++OI) { 1195 SDNode *Val = getValue(*OI).Val; 1196 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1197 Constants.push_back(SDValue(Val, i)); 1198 } 1199 return DAG.getMergeValues(&Constants[0], Constants.size()); 1200 } 1201 1202 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 1203 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1204 "Unknown struct or array constant!"); 1205 1206 SmallVector<MVT, 4> ValueVTs; 1207 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1208 unsigned NumElts = ValueVTs.size(); 1209 if (NumElts == 0) 1210 return SDValue(); // empty struct 1211 SmallVector<SDValue, 4> Constants(NumElts); 1212 for (unsigned i = 0; i != NumElts; ++i) { 1213 MVT EltVT = ValueVTs[i]; 1214 if (isa<UndefValue>(C)) 1215 Constants[i] = DAG.getNode(ISD::UNDEF, EltVT); 1216 else if (EltVT.isFloatingPoint()) 1217 Constants[i] = DAG.getConstantFP(0, EltVT); 1218 else 1219 Constants[i] = DAG.getConstant(0, EltVT); 1220 } 1221 return DAG.getMergeValues(&Constants[0], NumElts); 1222 } 1223 1224 const VectorType *VecTy = cast<VectorType>(V->getType()); 1225 unsigned NumElements = VecTy->getNumElements(); 1226 1227 // Now that we know the number and type of the elements, get that number of 1228 // elements into the Ops array based on what kind of constant it is. 1229 SmallVector<SDValue, 16> Ops; 1230 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1231 for (unsigned i = 0; i != NumElements; ++i) 1232 Ops.push_back(getValue(CP->getOperand(i))); 1233 } else { 1234 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1235 "Unknown vector constant!"); 1236 MVT EltVT = TLI.getValueType(VecTy->getElementType()); 1237 1238 SDValue Op; 1239 if (isa<UndefValue>(C)) 1240 Op = DAG.getNode(ISD::UNDEF, EltVT); 1241 else if (EltVT.isFloatingPoint()) 1242 Op = DAG.getConstantFP(0, EltVT); 1243 else 1244 Op = DAG.getConstant(0, EltVT); 1245 Ops.assign(NumElements, Op); 1246 } 1247 1248 // Create a BUILD_VECTOR node. 1249 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1250 } 1251 1252 // If this is a static alloca, generate it as the frameindex instead of 1253 // computation. 1254 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1255 std::map<const AllocaInst*, int>::iterator SI = 1256 FuncInfo.StaticAllocaMap.find(AI); 1257 if (SI != FuncInfo.StaticAllocaMap.end()) 1258 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1259 } 1260 1261 unsigned InReg = FuncInfo.ValueMap[V]; 1262 assert(InReg && "Value not in map!"); 1263 1264 RegsForValue RFV(TLI, InReg, V->getType()); 1265 SDValue Chain = DAG.getEntryNode(); 1266 return RFV.getCopyFromRegs(DAG, Chain, NULL); 1267} 1268 1269 1270void SelectionDAGLowering::visitRet(ReturnInst &I) { 1271 if (I.getNumOperands() == 0) { 1272 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot())); 1273 return; 1274 } 1275 1276 SmallVector<SDValue, 8> NewValues; 1277 NewValues.push_back(getControlRoot()); 1278 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1279 SDValue RetOp = getValue(I.getOperand(i)); 1280 1281 SmallVector<MVT, 4> ValueVTs; 1282 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 1283 for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) { 1284 MVT VT = ValueVTs[j]; 1285 1286 // FIXME: C calling convention requires the return type to be promoted to 1287 // at least 32-bit. But this is not necessary for non-C calling conventions. 1288 if (VT.isInteger()) { 1289 MVT MinVT = TLI.getRegisterType(MVT::i32); 1290 if (VT.bitsLT(MinVT)) 1291 VT = MinVT; 1292 } 1293 1294 unsigned NumParts = TLI.getNumRegisters(VT); 1295 MVT PartVT = TLI.getRegisterType(VT); 1296 SmallVector<SDValue, 4> Parts(NumParts); 1297 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1298 1299 const Function *F = I.getParent()->getParent(); 1300 if (F->paramHasAttr(0, ParamAttr::SExt)) 1301 ExtendKind = ISD::SIGN_EXTEND; 1302 else if (F->paramHasAttr(0, ParamAttr::ZExt)) 1303 ExtendKind = ISD::ZERO_EXTEND; 1304 1305 getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j), 1306 &Parts[0], NumParts, PartVT, ExtendKind); 1307 1308 for (unsigned i = 0; i < NumParts; ++i) { 1309 NewValues.push_back(Parts[i]); 1310 NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy())); 1311 } 1312 } 1313 } 1314 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, 1315 &NewValues[0], NewValues.size())); 1316} 1317 1318/// ExportFromCurrentBlock - If this condition isn't known to be exported from 1319/// the current basic block, add it to ValueMap now so that we'll get a 1320/// CopyTo/FromReg. 1321void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { 1322 // No need to export constants. 1323 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1324 1325 // Already exported? 1326 if (FuncInfo.isExportedInst(V)) return; 1327 1328 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1329 CopyValueToVirtualRegister(V, Reg); 1330} 1331 1332bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, 1333 const BasicBlock *FromBB) { 1334 // The operands of the setcc have to be in this block. We don't know 1335 // how to export them from some other block. 1336 if (Instruction *VI = dyn_cast<Instruction>(V)) { 1337 // Can export from current BB. 1338 if (VI->getParent() == FromBB) 1339 return true; 1340 1341 // Is already exported, noop. 1342 return FuncInfo.isExportedInst(V); 1343 } 1344 1345 // If this is an argument, we can export it if the BB is the entry block or 1346 // if it is already exported. 1347 if (isa<Argument>(V)) { 1348 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1349 return true; 1350 1351 // Otherwise, can only export this if it is already exported. 1352 return FuncInfo.isExportedInst(V); 1353 } 1354 1355 // Otherwise, constants can always be exported. 1356 return true; 1357} 1358 1359static bool InBlock(const Value *V, const BasicBlock *BB) { 1360 if (const Instruction *I = dyn_cast<Instruction>(V)) 1361 return I->getParent() == BB; 1362 return true; 1363} 1364 1365/// FindMergedConditions - If Cond is an expression like 1366void SelectionDAGLowering::FindMergedConditions(Value *Cond, 1367 MachineBasicBlock *TBB, 1368 MachineBasicBlock *FBB, 1369 MachineBasicBlock *CurBB, 1370 unsigned Opc) { 1371 // If this node is not part of the or/and tree, emit it as a branch. 1372 Instruction *BOp = dyn_cast<Instruction>(Cond); 1373 1374 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1375 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1376 BOp->getParent() != CurBB->getBasicBlock() || 1377 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1378 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1379 const BasicBlock *BB = CurBB->getBasicBlock(); 1380 1381 // If the leaf of the tree is a comparison, merge the condition into 1382 // the caseblock. 1383 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) && 1384 // The operands of the cmp have to be in this block. We don't know 1385 // how to export them from some other block. If this is the first block 1386 // of the sequence, no exporting is needed. 1387 (CurBB == CurMBB || 1388 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1389 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) { 1390 BOp = cast<Instruction>(Cond); 1391 ISD::CondCode Condition; 1392 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1393 switch (IC->getPredicate()) { 1394 default: assert(0 && "Unknown icmp predicate opcode!"); 1395 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break; 1396 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break; 1397 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break; 1398 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break; 1399 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break; 1400 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break; 1401 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break; 1402 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break; 1403 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break; 1404 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break; 1405 } 1406 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1407 ISD::CondCode FPC, FOC; 1408 switch (FC->getPredicate()) { 1409 default: assert(0 && "Unknown fcmp predicate opcode!"); 1410 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 1411 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 1412 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 1413 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 1414 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 1415 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 1416 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 1417 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 1418 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 1419 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 1420 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 1421 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 1422 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 1423 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 1424 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 1425 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 1426 } 1427 if (FiniteOnlyFPMath()) 1428 Condition = FOC; 1429 else 1430 Condition = FPC; 1431 } else { 1432 Condition = ISD::SETEQ; // silence warning. 1433 assert(0 && "Unknown compare instruction"); 1434 } 1435 1436 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0), 1437 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 1442 // Create a CaseBlock record representing this branch. 1443 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), 1444 NULL, TBB, FBB, CurBB); 1445 SwitchCases.push_back(CB); 1446 return; 1447 } 1448 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // Emit the LHS condition. 1466 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1467 1468 // Emit the RHS condition into TmpBB. 1469 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1470 } else { 1471 assert(Opc == Instruction::And && "Unknown merge op!"); 1472 // Codegen X & Y as: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1483 1484 // Emit the RHS condition into TmpBB. 1485 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1486 } 1487} 1488 1489/// If the set of cases should be emitted as a series of branches, return true. 1490/// If we should emit this as a bunch of and/or'd together conditions, return 1491/// false. 1492static bool 1493ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) { 1494 if (Cases.size() != 2) return true; 1495 1496 // If this is two comparisons of the same values or'd or and'd together, they 1497 // will get folded into a single comparison, so don't emit two blocks. 1498 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1499 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1500 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1501 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1502 return false; 1503 } 1504 1505 return true; 1506} 1507 1508void SelectionDAGLowering::visitBr(BranchInst &I) { 1509 // Update machine-CFG edges. 1510 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1511 1512 // Figure out which block is immediately after the current one. 1513 MachineBasicBlock *NextBlock = 0; 1514 MachineFunction::iterator BBI = CurMBB; 1515 if (++BBI != CurMBB->getParent()->end()) 1516 NextBlock = BBI; 1517 1518 if (I.isUnconditional()) { 1519 // Update machine-CFG edges. 1520 CurMBB->addSuccessor(Succ0MBB); 1521 1522 // If this is not a fall-through branch, emit the branch. 1523 if (Succ0MBB != NextBlock) 1524 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), 1525 DAG.getBasicBlock(Succ0MBB))); 1526 return; 1527 } 1528 1529 // If this condition is one of the special cases we handle, do special stuff 1530 // now. 1531 Value *CondVal = I.getCondition(); 1532 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1533 1534 // If this is a series of conditions that are or'd or and'd together, emit 1535 // this as a sequence of branches instead of setcc's with and/or operations. 1536 // For example, instead of something like: 1537 // cmp A, B 1538 // C = seteq 1539 // cmp D, E 1540 // F = setle 1541 // or C, F 1542 // jnz foo 1543 // Emit: 1544 // cmp A, B 1545 // je foo 1546 // cmp D, E 1547 // jle foo 1548 // 1549 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1550 if (BOp->hasOneUse() && 1551 (BOp->getOpcode() == Instruction::And || 1552 BOp->getOpcode() == Instruction::Or)) { 1553 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1554 // If the compares in later blocks need to use values not currently 1555 // exported from this block, export them now. This block should always 1556 // be the first entry. 1557 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1558 1559 // Allow some cases to be rejected. 1560 if (ShouldEmitAsBranches(SwitchCases)) { 1561 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1562 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1563 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1564 } 1565 1566 // Emit the branch for this block. 1567 visitSwitchCase(SwitchCases[0]); 1568 SwitchCases.erase(SwitchCases.begin()); 1569 return; 1570 } 1571 1572 // Okay, we decided not to do this, remove any inserted MBB's and clear 1573 // SwitchCases. 1574 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1575 CurMBB->getParent()->erase(SwitchCases[i].ThisBB); 1576 1577 SwitchCases.clear(); 1578 } 1579 } 1580 1581 // Create a CaseBlock record representing this branch. 1582 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), 1583 NULL, Succ0MBB, Succ1MBB, CurMBB); 1584 // Use visitSwitchCase to actually insert the fast branch sequence for this 1585 // cond branch. 1586 visitSwitchCase(CB); 1587} 1588 1589/// visitSwitchCase - Emits the necessary code to represent a single node in 1590/// the binary search tree resulting from lowering a switch instruction. 1591void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) { 1592 SDValue Cond; 1593 SDValue CondLHS = getValue(CB.CmpLHS); 1594 1595 // Build the setcc now. 1596 if (CB.CmpMHS == NULL) { 1597 // Fold "(X == true)" to X and "(X == false)" to !X to 1598 // handle common cases produced by branch lowering. 1599 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) 1600 Cond = CondLHS; 1601 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { 1602 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1603 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); 1604 } else 1605 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1606 } else { 1607 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1608 1609 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue(); 1610 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue(); 1611 1612 SDValue CmpOp = getValue(CB.CmpMHS); 1613 MVT VT = CmpOp.getValueType(); 1614 1615 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1616 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE); 1617 } else { 1618 SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT)); 1619 Cond = DAG.getSetCC(MVT::i1, SUB, 1620 DAG.getConstant(High-Low, VT), ISD::SETULE); 1621 } 1622 } 1623 1624 // Update successor info 1625 CurMBB->addSuccessor(CB.TrueBB); 1626 CurMBB->addSuccessor(CB.FalseBB); 1627 1628 // Set NextBlock to be the MBB immediately after the current one, if any. 1629 // This is used to avoid emitting unnecessary branches to the next block. 1630 MachineBasicBlock *NextBlock = 0; 1631 MachineFunction::iterator BBI = CurMBB; 1632 if (++BBI != CurMBB->getParent()->end()) 1633 NextBlock = BBI; 1634 1635 // If the lhs block is the next block, invert the condition so that we can 1636 // fall through to the lhs instead of the rhs block. 1637 if (CB.TrueBB == NextBlock) { 1638 std::swap(CB.TrueBB, CB.FalseBB); 1639 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1640 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); 1641 } 1642 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond, 1643 DAG.getBasicBlock(CB.TrueBB)); 1644 1645 // If the branch was constant folded, fix up the CFG. 1646 if (BrCond.getOpcode() == ISD::BR) { 1647 CurMBB->removeSuccessor(CB.FalseBB); 1648 DAG.setRoot(BrCond); 1649 } else { 1650 // Otherwise, go ahead and insert the false branch. 1651 if (BrCond == getControlRoot()) 1652 CurMBB->removeSuccessor(CB.TrueBB); 1653 1654 if (CB.FalseBB == NextBlock) 1655 DAG.setRoot(BrCond); 1656 else 1657 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 1658 DAG.getBasicBlock(CB.FalseBB))); 1659 } 1660} 1661 1662/// visitJumpTable - Emit JumpTable node in the current MBB 1663void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) { 1664 // Emit the code for the jump table 1665 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1666 MVT PTy = TLI.getPointerTy(); 1667 SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy); 1668 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1669 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), 1670 Table, Index)); 1671 return; 1672} 1673 1674/// visitJumpTableHeader - This function emits necessary code to produce index 1675/// in the JumpTable from switch case. 1676void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, 1677 SelectionDAGISel::JumpTableHeader &JTH) { 1678 // Subtract the lowest switch case value from the value being switched on 1679 // and conditional branch to default mbb if the result is greater than the 1680 // difference between smallest and largest cases. 1681 SDValue SwitchOp = getValue(JTH.SValue); 1682 MVT VT = SwitchOp.getValueType(); 1683 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, 1684 DAG.getConstant(JTH.First, VT)); 1685 1686 // The SDNode we just created, which holds the value being switched on 1687 // minus the the smallest case value, needs to be copied to a virtual 1688 // register so it can be used as an index into the jump table in a 1689 // subsequent basic block. This value may be smaller or larger than the 1690 // target's pointer type, and therefore require extension or truncating. 1691 if (VT.bitsGT(TLI.getPointerTy())) 1692 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); 1693 else 1694 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); 1695 1696 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1697 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp); 1698 JT.Reg = JumpTableReg; 1699 1700 // Emit the range check for the jump table, and branch to the default 1701 // block for the switch statement if the value being switched on exceeds 1702 // the largest case in the switch. 1703 SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, 1704 DAG.getConstant(JTH.Last-JTH.First,VT), 1705 ISD::SETUGT); 1706 1707 // Set NextBlock to be the MBB immediately after the current one, if any. 1708 // This is used to avoid emitting unnecessary branches to the next block. 1709 MachineBasicBlock *NextBlock = 0; 1710 MachineFunction::iterator BBI = CurMBB; 1711 if (++BBI != CurMBB->getParent()->end()) 1712 NextBlock = BBI; 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, 1715 DAG.getBasicBlock(JT.Default)); 1716 1717 if (JT.MBB == NextBlock) 1718 DAG.setRoot(BrCond); 1719 else 1720 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 1721 DAG.getBasicBlock(JT.MBB))); 1722 1723 return; 1724} 1725 1726/// visitBitTestHeader - This function emits necessary code to produce value 1727/// suitable for "bit tests" 1728void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) { 1729 // Subtract the minimum value 1730 SDValue SwitchOp = getValue(B.SValue); 1731 MVT VT = SwitchOp.getValueType(); 1732 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, 1733 DAG.getConstant(B.First, VT)); 1734 1735 // Check range 1736 SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB, 1737 DAG.getConstant(B.Range, VT), 1738 ISD::SETUGT); 1739 1740 SDValue ShiftOp; 1741 if (VT.bitsGT(TLI.getShiftAmountTy())) 1742 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB); 1743 else 1744 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB); 1745 1746 // Make desired shift 1747 SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(), 1748 DAG.getConstant(1, TLI.getPointerTy()), 1749 ShiftOp); 1750 1751 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1752 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal); 1753 B.Reg = SwitchReg; 1754 1755 // Set NextBlock to be the MBB immediately after the current one, if any. 1756 // This is used to avoid emitting unnecessary branches to the next block. 1757 MachineBasicBlock *NextBlock = 0; 1758 MachineFunction::iterator BBI = CurMBB; 1759 if (++BBI != CurMBB->getParent()->end()) 1760 NextBlock = BBI; 1761 1762 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1763 1764 CurMBB->addSuccessor(B.Default); 1765 CurMBB->addSuccessor(MBB); 1766 1767 SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp, 1768 DAG.getBasicBlock(B.Default)); 1769 1770 if (MBB == NextBlock) 1771 DAG.setRoot(BrRange); 1772 else 1773 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo, 1774 DAG.getBasicBlock(MBB))); 1775 1776 return; 1777} 1778 1779/// visitBitTestCase - this function produces one "bit test" 1780void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, 1781 unsigned Reg, 1782 SelectionDAGISel::BitTestCase &B) { 1783 // Emit bit tests and jumps 1784 SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, 1785 TLI.getPointerTy()); 1786 1787 SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal, 1788 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1789 SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp, 1790 DAG.getConstant(0, TLI.getPointerTy()), 1791 ISD::SETNE); 1792 1793 CurMBB->addSuccessor(B.TargetBB); 1794 CurMBB->addSuccessor(NextMBB); 1795 1796 SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), 1797 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1798 1799 // Set NextBlock to be the MBB immediately after the current one, if any. 1800 // This is used to avoid emitting unnecessary branches to the next block. 1801 MachineBasicBlock *NextBlock = 0; 1802 MachineFunction::iterator BBI = CurMBB; 1803 if (++BBI != CurMBB->getParent()->end()) 1804 NextBlock = BBI; 1805 1806 if (NextMBB == NextBlock) 1807 DAG.setRoot(BrAnd); 1808 else 1809 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd, 1810 DAG.getBasicBlock(NextMBB))); 1811 1812 return; 1813} 1814 1815void SelectionDAGLowering::visitInvoke(InvokeInst &I) { 1816 // Retrieve successors. 1817 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1818 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1819 1820 if (isa<InlineAsm>(I.getCalledValue())) 1821 visitInlineAsm(&I); 1822 else 1823 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad); 1824 1825 // If the value of the invoke is used outside of its defining block, make it 1826 // available as a virtual register. 1827 if (!I.use_empty()) { 1828 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I); 1829 if (VMI != FuncInfo.ValueMap.end()) 1830 CopyValueToVirtualRegister(&I, VMI->second); 1831 } 1832 1833 // Update successor info 1834 CurMBB->addSuccessor(Return); 1835 CurMBB->addSuccessor(LandingPad); 1836 1837 // Drop into normal successor. 1838 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), 1839 DAG.getBasicBlock(Return))); 1840} 1841 1842void SelectionDAGLowering::visitUnwind(UnwindInst &I) { 1843} 1844 1845/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1846/// small case ranges). 1847bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, 1848 CaseRecVector& WorkList, 1849 Value* SV, 1850 MachineBasicBlock* Default) { 1851 Case& BackCase = *(CR.Range.second-1); 1852 1853 // Size is the number of Cases represented by this range. 1854 unsigned Size = CR.Range.second - CR.Range.first; 1855 if (Size > 3) 1856 return false; 1857 1858 // Get the MachineFunction which holds the current MBB. This is used when 1859 // inserting any additional MBBs necessary to represent the switch. 1860 MachineFunction *CurMF = CurMBB->getParent(); 1861 1862 // Figure out which block is immediately after the current one. 1863 MachineBasicBlock *NextBlock = 0; 1864 MachineFunction::iterator BBI = CR.CaseBB; 1865 1866 if (++BBI != CurMBB->getParent()->end()) 1867 NextBlock = BBI; 1868 1869 // TODO: If any two of the cases has the same destination, and if one value 1870 // is the same as the other, but has one bit unset that the other has set, 1871 // use bit manipulation to do two compares at once. For example: 1872 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1873 1874 // Rearrange the case blocks so that the last one falls through if possible. 1875 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1876 // The last case block won't fall through into 'NextBlock' if we emit the 1877 // branches in this order. See if rearranging a case value would help. 1878 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1879 if (I->BB == NextBlock) { 1880 std::swap(*I, BackCase); 1881 break; 1882 } 1883 } 1884 } 1885 1886 // Create a CaseBlock record representing a conditional branch to 1887 // the Case's target mbb if the value being switched on SV is equal 1888 // to C. 1889 MachineBasicBlock *CurBlock = CR.CaseBB; 1890 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1891 MachineBasicBlock *FallThrough; 1892 if (I != E-1) { 1893 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1894 CurMF->insert(BBI, FallThrough); 1895 } else { 1896 // If the last case doesn't match, go to the default block. 1897 FallThrough = Default; 1898 } 1899 1900 Value *RHS, *LHS, *MHS; 1901 ISD::CondCode CC; 1902 if (I->High == I->Low) { 1903 // This is just small small case range :) containing exactly 1 case 1904 CC = ISD::SETEQ; 1905 LHS = SV; RHS = I->High; MHS = NULL; 1906 } else { 1907 CC = ISD::SETLE; 1908 LHS = I->Low; MHS = SV; RHS = I->High; 1909 } 1910 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS, 1911 I->BB, FallThrough, CurBlock); 1912 1913 // If emitting the first comparison, just call visitSwitchCase to emit the 1914 // code into the current block. Otherwise, push the CaseBlock onto the 1915 // vector to be later processed by SDISel, and insert the node's MBB 1916 // before the next MBB. 1917 if (CurBlock == CurMBB) 1918 visitSwitchCase(CB); 1919 else 1920 SwitchCases.push_back(CB); 1921 1922 CurBlock = FallThrough; 1923 } 1924 1925 return true; 1926} 1927 1928static inline bool areJTsAllowed(const TargetLowering &TLI) { 1929 return !DisableJumpTables && 1930 (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) || 1931 TLI.isOperationLegal(ISD::BRIND, MVT::Other)); 1932} 1933 1934/// handleJTSwitchCase - Emit jumptable for current switch case range 1935bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, 1936 CaseRecVector& WorkList, 1937 Value* SV, 1938 MachineBasicBlock* Default) { 1939 Case& FrontCase = *CR.Range.first; 1940 Case& BackCase = *(CR.Range.second-1); 1941 1942 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); 1943 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue(); 1944 1945 uint64_t TSize = 0; 1946 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1947 I!=E; ++I) 1948 TSize += I->size(); 1949 1950 if (!areJTsAllowed(TLI) || TSize <= 3) 1951 return false; 1952 1953 double Density = (double)TSize / (double)((Last - First) + 1ULL); 1954 if (Density < 0.4) 1955 return false; 1956 1957 DOUT << "Lowering jump table\n" 1958 << "First entry: " << First << ". Last entry: " << Last << "\n" 1959 << "Size: " << TSize << ". Density: " << Density << "\n\n"; 1960 1961 // Get the MachineFunction which holds the current MBB. This is used when 1962 // inserting any additional MBBs necessary to represent the switch. 1963 MachineFunction *CurMF = CurMBB->getParent(); 1964 1965 // Figure out which block is immediately after the current one. 1966 MachineBasicBlock *NextBlock = 0; 1967 MachineFunction::iterator BBI = CR.CaseBB; 1968 1969 if (++BBI != CurMBB->getParent()->end()) 1970 NextBlock = BBI; 1971 1972 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1973 1974 // Create a new basic block to hold the code for loading the address 1975 // of the jump table, and jumping to it. Update successor information; 1976 // we will either branch to the default case for the switch, or the jump 1977 // table. 1978 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1979 CurMF->insert(BBI, JumpTableBB); 1980 CR.CaseBB->addSuccessor(Default); 1981 CR.CaseBB->addSuccessor(JumpTableBB); 1982 1983 // Build a vector of destination BBs, corresponding to each target 1984 // of the jump table. If the value of the jump table slot corresponds to 1985 // a case statement, push the case's BB onto the vector, otherwise, push 1986 // the default BB. 1987 std::vector<MachineBasicBlock*> DestBBs; 1988 int64_t TEI = First; 1989 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1990 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue(); 1991 int64_t High = cast<ConstantInt>(I->High)->getSExtValue(); 1992 1993 if ((Low <= TEI) && (TEI <= High)) { 1994 DestBBs.push_back(I->BB); 1995 if (TEI==High) 1996 ++I; 1997 } else { 1998 DestBBs.push_back(Default); 1999 } 2000 } 2001 2002 // Update successor info. Add one edge to each unique successor. 2003 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2004 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2005 E = DestBBs.end(); I != E; ++I) { 2006 if (!SuccsHandled[(*I)->getNumber()]) { 2007 SuccsHandled[(*I)->getNumber()] = true; 2008 JumpTableBB->addSuccessor(*I); 2009 } 2010 } 2011 2012 // Create a jump table index for this jump table, or return an existing 2013 // one. 2014 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 2015 2016 // Set the jump table information so that we can codegen it as a second 2017 // MachineBasicBlock 2018 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default); 2019 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB, 2020 (CR.CaseBB == CurMBB)); 2021 if (CR.CaseBB == CurMBB) 2022 visitJumpTableHeader(JT, JTH); 2023 2024 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT)); 2025 2026 return true; 2027} 2028 2029/// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2030/// 2 subtrees. 2031bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, 2032 CaseRecVector& WorkList, 2033 Value* SV, 2034 MachineBasicBlock* Default) { 2035 // Get the MachineFunction which holds the current MBB. This is used when 2036 // inserting any additional MBBs necessary to represent the switch. 2037 MachineFunction *CurMF = CurMBB->getParent(); 2038 2039 // Figure out which block is immediately after the current one. 2040 MachineBasicBlock *NextBlock = 0; 2041 MachineFunction::iterator BBI = CR.CaseBB; 2042 2043 if (++BBI != CurMBB->getParent()->end()) 2044 NextBlock = BBI; 2045 2046 Case& FrontCase = *CR.Range.first; 2047 Case& BackCase = *(CR.Range.second-1); 2048 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2049 2050 // Size is the number of Cases represented by this range. 2051 unsigned Size = CR.Range.second - CR.Range.first; 2052 2053 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue(); 2054 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue(); 2055 double FMetric = 0; 2056 CaseItr Pivot = CR.Range.first + Size/2; 2057 2058 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2059 // (heuristically) allow us to emit JumpTable's later. 2060 uint64_t TSize = 0; 2061 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2062 I!=E; ++I) 2063 TSize += I->size(); 2064 2065 uint64_t LSize = FrontCase.size(); 2066 uint64_t RSize = TSize-LSize; 2067 DOUT << "Selecting best pivot: \n" 2068 << "First: " << First << ", Last: " << Last <<"\n" 2069 << "LSize: " << LSize << ", RSize: " << RSize << "\n"; 2070 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2071 J!=E; ++I, ++J) { 2072 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue(); 2073 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue(); 2074 assert((RBegin-LEnd>=1) && "Invalid case distance"); 2075 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); 2076 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); 2077 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity); 2078 // Should always split in some non-trivial place 2079 DOUT <<"=>Step\n" 2080 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n" 2081 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n" 2082 << "Metric: " << Metric << "\n"; 2083 if (FMetric < Metric) { 2084 Pivot = J; 2085 FMetric = Metric; 2086 DOUT << "Current metric set to: " << FMetric << "\n"; 2087 } 2088 2089 LSize += J->size(); 2090 RSize -= J->size(); 2091 } 2092 if (areJTsAllowed(TLI)) { 2093 // If our case is dense we *really* should handle it earlier! 2094 assert((FMetric > 0) && "Should handle dense range earlier!"); 2095 } else { 2096 Pivot = CR.Range.first + Size/2; 2097 } 2098 2099 CaseRange LHSR(CR.Range.first, Pivot); 2100 CaseRange RHSR(Pivot, CR.Range.second); 2101 Constant *C = Pivot->Low; 2102 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2103 2104 // We know that we branch to the LHS if the Value being switched on is 2105 // less than the Pivot value, C. We use this to optimize our binary 2106 // tree a bit, by recognizing that if SV is greater than or equal to the 2107 // LHS's Case Value, and that Case Value is exactly one less than the 2108 // Pivot's Value, then we can branch directly to the LHS's Target, 2109 // rather than creating a leaf node for it. 2110 if ((LHSR.second - LHSR.first) == 1 && 2111 LHSR.first->High == CR.GE && 2112 cast<ConstantInt>(C)->getSExtValue() == 2113 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) { 2114 TrueBB = LHSR.first->BB; 2115 } else { 2116 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2117 CurMF->insert(BBI, TrueBB); 2118 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2119 } 2120 2121 // Similar to the optimization above, if the Value being switched on is 2122 // known to be less than the Constant CR.LT, and the current Case Value 2123 // is CR.LT - 1, then we can branch directly to the target block for 2124 // the current Case Value, rather than emitting a RHS leaf node for it. 2125 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2126 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() == 2127 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) { 2128 FalseBB = RHSR.first->BB; 2129 } else { 2130 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2131 CurMF->insert(BBI, FalseBB); 2132 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2133 } 2134 2135 // Create a CaseBlock record representing a conditional branch to 2136 // the LHS node if the value being switched on SV is less than C. 2137 // Otherwise, branch to LHS. 2138 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL, 2139 TrueBB, FalseBB, CR.CaseBB); 2140 2141 if (CR.CaseBB == CurMBB) 2142 visitSwitchCase(CB); 2143 else 2144 SwitchCases.push_back(CB); 2145 2146 return true; 2147} 2148 2149/// handleBitTestsSwitchCase - if current case range has few destination and 2150/// range span less, than machine word bitwidth, encode case range into series 2151/// of masks and emit bit tests with these masks. 2152bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, 2153 CaseRecVector& WorkList, 2154 Value* SV, 2155 MachineBasicBlock* Default){ 2156 unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits(); 2157 2158 Case& FrontCase = *CR.Range.first; 2159 Case& BackCase = *(CR.Range.second-1); 2160 2161 // Get the MachineFunction which holds the current MBB. This is used when 2162 // inserting any additional MBBs necessary to represent the switch. 2163 MachineFunction *CurMF = CurMBB->getParent(); 2164 2165 unsigned numCmps = 0; 2166 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2167 I!=E; ++I) { 2168 // Single case counts one, case range - two. 2169 if (I->Low == I->High) 2170 numCmps +=1; 2171 else 2172 numCmps +=2; 2173 } 2174 2175 // Count unique destinations 2176 SmallSet<MachineBasicBlock*, 4> Dests; 2177 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2178 Dests.insert(I->BB); 2179 if (Dests.size() > 3) 2180 // Don't bother the code below, if there are too much unique destinations 2181 return false; 2182 } 2183 DOUT << "Total number of unique destinations: " << Dests.size() << "\n" 2184 << "Total number of comparisons: " << numCmps << "\n"; 2185 2186 // Compute span of values. 2187 Constant* minValue = FrontCase.Low; 2188 Constant* maxValue = BackCase.High; 2189 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() - 2190 cast<ConstantInt>(minValue)->getSExtValue(); 2191 DOUT << "Compare range: " << range << "\n" 2192 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n" 2193 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n"; 2194 2195 if (range>=IntPtrBits || 2196 (!(Dests.size() == 1 && numCmps >= 3) && 2197 !(Dests.size() == 2 && numCmps >= 5) && 2198 !(Dests.size() >= 3 && numCmps >= 6))) 2199 return false; 2200 2201 DOUT << "Emitting bit tests\n"; 2202 int64_t lowBound = 0; 2203 2204 // Optimize the case where all the case values fit in a 2205 // word without having to subtract minValue. In this case, 2206 // we can optimize away the subtraction. 2207 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 && 2208 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) { 2209 range = cast<ConstantInt>(maxValue)->getSExtValue(); 2210 } else { 2211 lowBound = cast<ConstantInt>(minValue)->getSExtValue(); 2212 } 2213 2214 CaseBitsVector CasesBits; 2215 unsigned i, count = 0; 2216 2217 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2218 MachineBasicBlock* Dest = I->BB; 2219 for (i = 0; i < count; ++i) 2220 if (Dest == CasesBits[i].BB) 2221 break; 2222 2223 if (i == count) { 2224 assert((count < 3) && "Too much destinations to test!"); 2225 CasesBits.push_back(CaseBits(0, Dest, 0)); 2226 count++; 2227 } 2228 2229 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound; 2230 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound; 2231 2232 for (uint64_t j = lo; j <= hi; j++) { 2233 CasesBits[i].Mask |= 1ULL << j; 2234 CasesBits[i].Bits++; 2235 } 2236 2237 } 2238 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2239 2240 SelectionDAGISel::BitTestInfo BTC; 2241 2242 // Figure out which block is immediately after the current one. 2243 MachineFunction::iterator BBI = CR.CaseBB; 2244 ++BBI; 2245 2246 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2247 2248 DOUT << "Cases:\n"; 2249 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2250 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits 2251 << ", BB: " << CasesBits[i].BB << "\n"; 2252 2253 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2254 CurMF->insert(BBI, CaseBB); 2255 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask, 2256 CaseBB, 2257 CasesBits[i].BB)); 2258 } 2259 2260 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV, 2261 -1U, (CR.CaseBB == CurMBB), 2262 CR.CaseBB, Default, BTC); 2263 2264 if (CR.CaseBB == CurMBB) 2265 visitBitTestHeader(BTB); 2266 2267 BitTestCases.push_back(BTB); 2268 2269 return true; 2270} 2271 2272 2273/// Clusterify - Transform simple list of Cases into list of CaseRange's 2274unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases, 2275 const SwitchInst& SI) { 2276 unsigned numCmps = 0; 2277 2278 // Start with "simple" cases 2279 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) { 2280 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2281 Cases.push_back(Case(SI.getSuccessorValue(i), 2282 SI.getSuccessorValue(i), 2283 SMBB)); 2284 } 2285 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2286 2287 // Merge case into clusters 2288 if (Cases.size()>=2) 2289 // Must recompute end() each iteration because it may be 2290 // invalidated by erase if we hold on to it 2291 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) { 2292 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); 2293 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); 2294 MachineBasicBlock* nextBB = J->BB; 2295 MachineBasicBlock* currentBB = I->BB; 2296 2297 // If the two neighboring cases go to the same destination, merge them 2298 // into a single case. 2299 if ((nextValue-currentValue==1) && (currentBB == nextBB)) { 2300 I->High = J->High; 2301 J = Cases.erase(J); 2302 } else { 2303 I = J++; 2304 } 2305 } 2306 2307 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2308 if (I->Low != I->High) 2309 // A range counts double, since it requires two compares. 2310 ++numCmps; 2311 } 2312 2313 return numCmps; 2314} 2315 2316void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { 2317 // Figure out which block is immediately after the current one. 2318 MachineBasicBlock *NextBlock = 0; 2319 MachineFunction::iterator BBI = CurMBB; 2320 2321 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2322 2323 // If there is only the default destination, branch to it if it is not the 2324 // next basic block. Otherwise, just fall through. 2325 if (SI.getNumOperands() == 2) { 2326 // Update machine-CFG edges. 2327 2328 // If this is not a fall-through branch, emit the branch. 2329 CurMBB->addSuccessor(Default); 2330 if (Default != NextBlock) 2331 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(), 2332 DAG.getBasicBlock(Default))); 2333 2334 return; 2335 } 2336 2337 // If there are any non-default case statements, create a vector of Cases 2338 // representing each one, and sort the vector so that we can efficiently 2339 // create a binary search tree from them. 2340 CaseVector Cases; 2341 unsigned numCmps = Clusterify(Cases, SI); 2342 DOUT << "Clusterify finished. Total clusters: " << Cases.size() 2343 << ". Total compares: " << numCmps << "\n"; 2344 2345 // Get the Value to be switched on and default basic blocks, which will be 2346 // inserted into CaseBlock records, representing basic blocks in the binary 2347 // search tree. 2348 Value *SV = SI.getOperand(0); 2349 2350 // Push the initial CaseRec onto the worklist 2351 CaseRecVector WorkList; 2352 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2353 2354 while (!WorkList.empty()) { 2355 // Grab a record representing a case range to process off the worklist 2356 CaseRec CR = WorkList.back(); 2357 WorkList.pop_back(); 2358 2359 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2360 continue; 2361 2362 // If the range has few cases (two or less) emit a series of specific 2363 // tests. 2364 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2365 continue; 2366 2367 // If the switch has more than 5 blocks, and at least 40% dense, and the 2368 // target supports indirect branches, then emit a jump table rather than 2369 // lowering the switch to a binary tree of conditional branches. 2370 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2371 continue; 2372 2373 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2374 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2375 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2376 } 2377} 2378 2379 2380void SelectionDAGLowering::visitSub(User &I) { 2381 // -0.0 - X --> fneg 2382 const Type *Ty = I.getType(); 2383 if (isa<VectorType>(Ty)) { 2384 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2385 const VectorType *DestTy = cast<VectorType>(I.getType()); 2386 const Type *ElTy = DestTy->getElementType(); 2387 if (ElTy->isFloatingPoint()) { 2388 unsigned VL = DestTy->getNumElements(); 2389 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2390 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2391 if (CV == CNZ) { 2392 SDValue Op2 = getValue(I.getOperand(1)); 2393 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); 2394 return; 2395 } 2396 } 2397 } 2398 } 2399 if (Ty->isFloatingPoint()) { 2400 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2401 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2402 SDValue Op2 = getValue(I.getOperand(1)); 2403 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); 2404 return; 2405 } 2406 } 2407 2408 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB); 2409} 2410 2411void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { 2412 SDValue Op1 = getValue(I.getOperand(0)); 2413 SDValue Op2 = getValue(I.getOperand(1)); 2414 2415 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); 2416} 2417 2418void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { 2419 SDValue Op1 = getValue(I.getOperand(0)); 2420 SDValue Op2 = getValue(I.getOperand(1)); 2421 if (!isa<VectorType>(I.getType())) { 2422 if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType())) 2423 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); 2424 else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType())) 2425 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); 2426 } 2427 2428 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); 2429} 2430 2431void SelectionDAGLowering::visitICmp(User &I) { 2432 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2433 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2434 predicate = IC->getPredicate(); 2435 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2436 predicate = ICmpInst::Predicate(IC->getPredicate()); 2437 SDValue Op1 = getValue(I.getOperand(0)); 2438 SDValue Op2 = getValue(I.getOperand(1)); 2439 ISD::CondCode Opcode; 2440 switch (predicate) { 2441 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; 2442 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; 2443 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; 2444 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; 2445 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; 2446 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; 2447 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; 2448 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; 2449 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; 2450 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; 2451 default: 2452 assert(!"Invalid ICmp predicate value"); 2453 Opcode = ISD::SETEQ; 2454 break; 2455 } 2456 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); 2457} 2458 2459void SelectionDAGLowering::visitFCmp(User &I) { 2460 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2461 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2462 predicate = FC->getPredicate(); 2463 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2464 predicate = FCmpInst::Predicate(FC->getPredicate()); 2465 SDValue Op1 = getValue(I.getOperand(0)); 2466 SDValue Op2 = getValue(I.getOperand(1)); 2467 ISD::CondCode Condition, FOC, FPC; 2468 switch (predicate) { 2469 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 2470 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 2471 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 2472 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 2473 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 2474 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 2475 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 2476 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 2477 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 2478 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 2479 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 2480 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 2481 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 2482 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 2483 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 2484 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 2485 default: 2486 assert(!"Invalid FCmp predicate value"); 2487 FOC = FPC = ISD::SETFALSE; 2488 break; 2489 } 2490 if (FiniteOnlyFPMath()) 2491 Condition = FOC; 2492 else 2493 Condition = FPC; 2494 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); 2495} 2496 2497void SelectionDAGLowering::visitVICmp(User &I) { 2498 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2499 if (VICmpInst *IC = dyn_cast<VICmpInst>(&I)) 2500 predicate = IC->getPredicate(); 2501 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2502 predicate = ICmpInst::Predicate(IC->getPredicate()); 2503 SDValue Op1 = getValue(I.getOperand(0)); 2504 SDValue Op2 = getValue(I.getOperand(1)); 2505 ISD::CondCode Opcode; 2506 switch (predicate) { 2507 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; 2508 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; 2509 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; 2510 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; 2511 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; 2512 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; 2513 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; 2514 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; 2515 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; 2516 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; 2517 default: 2518 assert(!"Invalid ICmp predicate value"); 2519 Opcode = ISD::SETEQ; 2520 break; 2521 } 2522 setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode)); 2523} 2524 2525void SelectionDAGLowering::visitVFCmp(User &I) { 2526 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2527 if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I)) 2528 predicate = FC->getPredicate(); 2529 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2530 predicate = FCmpInst::Predicate(FC->getPredicate()); 2531 SDValue Op1 = getValue(I.getOperand(0)); 2532 SDValue Op2 = getValue(I.getOperand(1)); 2533 ISD::CondCode Condition, FOC, FPC; 2534 switch (predicate) { 2535 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 2536 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 2537 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 2538 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 2539 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 2540 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 2541 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 2542 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 2543 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 2544 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 2545 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 2546 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 2547 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 2548 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 2549 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 2550 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 2551 default: 2552 assert(!"Invalid VFCmp predicate value"); 2553 FOC = FPC = ISD::SETFALSE; 2554 break; 2555 } 2556 if (FiniteOnlyFPMath()) 2557 Condition = FOC; 2558 else 2559 Condition = FPC; 2560 2561 MVT DestVT = TLI.getValueType(I.getType()); 2562 2563 setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition)); 2564} 2565 2566void SelectionDAGLowering::visitSelect(User &I) { 2567 SDValue Cond = getValue(I.getOperand(0)); 2568 SDValue TrueVal = getValue(I.getOperand(1)); 2569 SDValue FalseVal = getValue(I.getOperand(2)); 2570 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, 2571 TrueVal, FalseVal)); 2572} 2573 2574 2575void SelectionDAGLowering::visitTrunc(User &I) { 2576 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2577 SDValue N = getValue(I.getOperand(0)); 2578 MVT DestVT = TLI.getValueType(I.getType()); 2579 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); 2580} 2581 2582void SelectionDAGLowering::visitZExt(User &I) { 2583 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2584 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2585 SDValue N = getValue(I.getOperand(0)); 2586 MVT DestVT = TLI.getValueType(I.getType()); 2587 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); 2588} 2589 2590void SelectionDAGLowering::visitSExt(User &I) { 2591 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2592 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2593 SDValue N = getValue(I.getOperand(0)); 2594 MVT DestVT = TLI.getValueType(I.getType()); 2595 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); 2596} 2597 2598void SelectionDAGLowering::visitFPTrunc(User &I) { 2599 // FPTrunc is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 MVT DestVT = TLI.getValueType(I.getType()); 2602 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0))); 2603} 2604 2605void SelectionDAGLowering::visitFPExt(User &I){ 2606 // FPTrunc is never a no-op cast, no need to check 2607 SDValue N = getValue(I.getOperand(0)); 2608 MVT DestVT = TLI.getValueType(I.getType()); 2609 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); 2610} 2611 2612void SelectionDAGLowering::visitFPToUI(User &I) { 2613 // FPToUI is never a no-op cast, no need to check 2614 SDValue N = getValue(I.getOperand(0)); 2615 MVT DestVT = TLI.getValueType(I.getType()); 2616 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); 2617} 2618 2619void SelectionDAGLowering::visitFPToSI(User &I) { 2620 // FPToSI is never a no-op cast, no need to check 2621 SDValue N = getValue(I.getOperand(0)); 2622 MVT DestVT = TLI.getValueType(I.getType()); 2623 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); 2624} 2625 2626void SelectionDAGLowering::visitUIToFP(User &I) { 2627 // UIToFP is never a no-op cast, no need to check 2628 SDValue N = getValue(I.getOperand(0)); 2629 MVT DestVT = TLI.getValueType(I.getType()); 2630 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); 2631} 2632 2633void SelectionDAGLowering::visitSIToFP(User &I){ 2634 // UIToFP is never a no-op cast, no need to check 2635 SDValue N = getValue(I.getOperand(0)); 2636 MVT DestVT = TLI.getValueType(I.getType()); 2637 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); 2638} 2639 2640void SelectionDAGLowering::visitPtrToInt(User &I) { 2641 // What to do depends on the size of the integer and the size of the pointer. 2642 // We can either truncate, zero extend, or no-op, accordingly. 2643 SDValue N = getValue(I.getOperand(0)); 2644 MVT SrcVT = N.getValueType(); 2645 MVT DestVT = TLI.getValueType(I.getType()); 2646 SDValue Result; 2647 if (DestVT.bitsLT(SrcVT)) 2648 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); 2649 else 2650 // Note: ZERO_EXTEND can handle cases where the sizes are equal too 2651 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); 2652 setValue(&I, Result); 2653} 2654 2655void SelectionDAGLowering::visitIntToPtr(User &I) { 2656 // What to do depends on the size of the integer and the size of the pointer. 2657 // We can either truncate, zero extend, or no-op, accordingly. 2658 SDValue N = getValue(I.getOperand(0)); 2659 MVT SrcVT = N.getValueType(); 2660 MVT DestVT = TLI.getValueType(I.getType()); 2661 if (DestVT.bitsLT(SrcVT)) 2662 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); 2663 else 2664 // Note: ZERO_EXTEND can handle cases where the sizes are equal too 2665 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); 2666} 2667 2668void SelectionDAGLowering::visitBitCast(User &I) { 2669 SDValue N = getValue(I.getOperand(0)); 2670 MVT DestVT = TLI.getValueType(I.getType()); 2671 2672 // BitCast assures us that source and destination are the same size so this 2673 // is either a BIT_CONVERT or a no-op. 2674 if (DestVT != N.getValueType()) 2675 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types 2676 else 2677 setValue(&I, N); // noop cast. 2678} 2679 2680void SelectionDAGLowering::visitInsertElement(User &I) { 2681 SDValue InVec = getValue(I.getOperand(0)); 2682 SDValue InVal = getValue(I.getOperand(1)); 2683 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), 2684 getValue(I.getOperand(2))); 2685 2686 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, 2687 TLI.getValueType(I.getType()), 2688 InVec, InVal, InIdx)); 2689} 2690 2691void SelectionDAGLowering::visitExtractElement(User &I) { 2692 SDValue InVec = getValue(I.getOperand(0)); 2693 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), 2694 getValue(I.getOperand(1))); 2695 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 2696 TLI.getValueType(I.getType()), InVec, InIdx)); 2697} 2698 2699void SelectionDAGLowering::visitShuffleVector(User &I) { 2700 SDValue V1 = getValue(I.getOperand(0)); 2701 SDValue V2 = getValue(I.getOperand(1)); 2702 SDValue Mask = getValue(I.getOperand(2)); 2703 2704 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, 2705 TLI.getValueType(I.getType()), 2706 V1, V2, Mask)); 2707} 2708 2709void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { 2710 const Value *Op0 = I.getOperand(0); 2711 const Value *Op1 = I.getOperand(1); 2712 const Type *AggTy = I.getType(); 2713 const Type *ValTy = Op1->getType(); 2714 bool IntoUndef = isa<UndefValue>(Op0); 2715 bool FromUndef = isa<UndefValue>(Op1); 2716 2717 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2718 I.idx_begin(), I.idx_end()); 2719 2720 SmallVector<MVT, 4> AggValueVTs; 2721 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2722 SmallVector<MVT, 4> ValValueVTs; 2723 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2724 2725 unsigned NumAggValues = AggValueVTs.size(); 2726 unsigned NumValValues = ValValueVTs.size(); 2727 SmallVector<SDValue, 4> Values(NumAggValues); 2728 2729 SDValue Agg = getValue(Op0); 2730 SDValue Val = getValue(Op1); 2731 unsigned i = 0; 2732 // Copy the beginning value(s) from the original aggregate. 2733 for (; i != LinearIndex; ++i) 2734 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : 2735 SDValue(Agg.Val, Agg.ResNo + i); 2736 // Copy values from the inserted value(s). 2737 for (; i != LinearIndex + NumValValues; ++i) 2738 Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : 2739 SDValue(Val.Val, Val.ResNo + i - LinearIndex); 2740 // Copy remaining value(s) from the original aggregate. 2741 for (; i != NumAggValues; ++i) 2742 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) : 2743 SDValue(Agg.Val, Agg.ResNo + i); 2744 2745 setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues), 2746 &Values[0], NumAggValues)); 2747} 2748 2749void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { 2750 const Value *Op0 = I.getOperand(0); 2751 const Type *AggTy = Op0->getType(); 2752 const Type *ValTy = I.getType(); 2753 bool OutOfUndef = isa<UndefValue>(Op0); 2754 2755 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2756 I.idx_begin(), I.idx_end()); 2757 2758 SmallVector<MVT, 4> ValValueVTs; 2759 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2760 2761 unsigned NumValValues = ValValueVTs.size(); 2762 SmallVector<SDValue, 4> Values(NumValValues); 2763 2764 SDValue Agg = getValue(Op0); 2765 // Copy out the selected value(s). 2766 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2767 Values[i - LinearIndex] = 2768 OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) : 2769 SDValue(Agg.Val, Agg.ResNo + i); 2770 2771 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues), 2772 &Values[0], NumValValues)); 2773} 2774 2775 2776void SelectionDAGLowering::visitGetElementPtr(User &I) { 2777 SDValue N = getValue(I.getOperand(0)); 2778 const Type *Ty = I.getOperand(0)->getType(); 2779 2780 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2781 OI != E; ++OI) { 2782 Value *Idx = *OI; 2783 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2784 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2785 if (Field) { 2786 // N = N + Offset 2787 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2788 N = DAG.getNode(ISD::ADD, N.getValueType(), N, 2789 DAG.getIntPtrConstant(Offset)); 2790 } 2791 Ty = StTy->getElementType(Field); 2792 } else { 2793 Ty = cast<SequentialType>(Ty)->getElementType(); 2794 2795 // If this is a constant subscript, handle it quickly. 2796 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2797 if (CI->getZExtValue() == 0) continue; 2798 uint64_t Offs = 2799 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2800 N = DAG.getNode(ISD::ADD, N.getValueType(), N, 2801 DAG.getIntPtrConstant(Offs)); 2802 continue; 2803 } 2804 2805 // N = N + Idx * ElementSize; 2806 uint64_t ElementSize = TD->getABITypeSize(Ty); 2807 SDValue IdxN = getValue(Idx); 2808 2809 // If the index is smaller or larger than intptr_t, truncate or extend 2810 // it. 2811 if (IdxN.getValueType().bitsLT(N.getValueType())) { 2812 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); 2813 } else if (IdxN.getValueType().bitsGT(N.getValueType())) 2814 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); 2815 2816 // If this is a multiply by a power of two, turn it into a shl 2817 // immediately. This is a very common case. 2818 if (isPowerOf2_64(ElementSize)) { 2819 unsigned Amt = Log2_64(ElementSize); 2820 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, 2821 DAG.getConstant(Amt, TLI.getShiftAmountTy())); 2822 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); 2823 continue; 2824 } 2825 2826 SDValue Scale = DAG.getIntPtrConstant(ElementSize); 2827 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); 2828 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); 2829 } 2830 } 2831 setValue(&I, N); 2832} 2833 2834void SelectionDAGLowering::visitAlloca(AllocaInst &I) { 2835 // If this is a fixed sized alloca in the entry block of the function, 2836 // allocate it statically on the stack. 2837 if (FuncInfo.StaticAllocaMap.count(&I)) 2838 return; // getValue will auto-populate this. 2839 2840 const Type *Ty = I.getAllocatedType(); 2841 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); 2842 unsigned Align = 2843 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2844 I.getAlignment()); 2845 2846 SDValue AllocSize = getValue(I.getArraySize()); 2847 MVT IntPtr = TLI.getPointerTy(); 2848 if (IntPtr.bitsLT(AllocSize.getValueType())) 2849 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); 2850 else if (IntPtr.bitsGT(AllocSize.getValueType())) 2851 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); 2852 2853 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, 2854 DAG.getIntPtrConstant(TySize)); 2855 2856 // Handle alignment. If the requested alignment is less than or equal to 2857 // the stack alignment, ignore it. If the size is greater than or equal to 2858 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2859 unsigned StackAlign = 2860 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2861 if (Align <= StackAlign) 2862 Align = 0; 2863 2864 // Round the size of the allocation up to the stack alignment size 2865 // by add SA-1 to the size. 2866 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, 2867 DAG.getIntPtrConstant(StackAlign-1)); 2868 // Mask out the low bits for alignment purposes. 2869 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, 2870 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2871 2872 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2873 const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), 2874 MVT::Other); 2875 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); 2876 setValue(&I, DSA); 2877 DAG.setRoot(DSA.getValue(1)); 2878 2879 // Inform the Frame Information that we have just allocated a variable-sized 2880 // object. 2881 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); 2882} 2883 2884void SelectionDAGLowering::visitLoad(LoadInst &I) { 2885 const Value *SV = I.getOperand(0); 2886 SDValue Ptr = getValue(SV); 2887 2888 const Type *Ty = I.getType(); 2889 bool isVolatile = I.isVolatile(); 2890 unsigned Alignment = I.getAlignment(); 2891 2892 SmallVector<MVT, 4> ValueVTs; 2893 SmallVector<uint64_t, 4> Offsets; 2894 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2895 unsigned NumValues = ValueVTs.size(); 2896 if (NumValues == 0) 2897 return; 2898 2899 SDValue Root; 2900 bool ConstantMemory = false; 2901 if (I.isVolatile()) 2902 // Serialize volatile loads with other side effects. 2903 Root = getRoot(); 2904 else if (AA.pointsToConstantMemory(SV)) { 2905 // Do not serialize (non-volatile) loads of constant memory with anything. 2906 Root = DAG.getEntryNode(); 2907 ConstantMemory = true; 2908 } else { 2909 // Do not serialize non-volatile loads against each other. 2910 Root = DAG.getRoot(); 2911 } 2912 2913 SmallVector<SDValue, 4> Values(NumValues); 2914 SmallVector<SDValue, 4> Chains(NumValues); 2915 MVT PtrVT = Ptr.getValueType(); 2916 for (unsigned i = 0; i != NumValues; ++i) { 2917 SDValue L = DAG.getLoad(ValueVTs[i], Root, 2918 DAG.getNode(ISD::ADD, PtrVT, Ptr, 2919 DAG.getConstant(Offsets[i], PtrVT)), 2920 SV, Offsets[i], 2921 isVolatile, Alignment); 2922 Values[i] = L; 2923 Chains[i] = L.getValue(1); 2924 } 2925 2926 if (!ConstantMemory) { 2927 SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 2928 &Chains[0], NumValues); 2929 if (isVolatile) 2930 DAG.setRoot(Chain); 2931 else 2932 PendingLoads.push_back(Chain); 2933 } 2934 2935 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues), 2936 &Values[0], NumValues)); 2937} 2938 2939 2940void SelectionDAGLowering::visitStore(StoreInst &I) { 2941 Value *SrcV = I.getOperand(0); 2942 Value *PtrV = I.getOperand(1); 2943 2944 SmallVector<MVT, 4> ValueVTs; 2945 SmallVector<uint64_t, 4> Offsets; 2946 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2947 unsigned NumValues = ValueVTs.size(); 2948 if (NumValues == 0) 2949 return; 2950 2951 // Get the lowered operands. Note that we do this after 2952 // checking if NumResults is zero, because with zero results 2953 // the operands won't have values in the map. 2954 SDValue Src = getValue(SrcV); 2955 SDValue Ptr = getValue(PtrV); 2956 2957 SDValue Root = getRoot(); 2958 SmallVector<SDValue, 4> Chains(NumValues); 2959 MVT PtrVT = Ptr.getValueType(); 2960 bool isVolatile = I.isVolatile(); 2961 unsigned Alignment = I.getAlignment(); 2962 for (unsigned i = 0; i != NumValues; ++i) 2963 Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i), 2964 DAG.getNode(ISD::ADD, PtrVT, Ptr, 2965 DAG.getConstant(Offsets[i], PtrVT)), 2966 PtrV, Offsets[i], 2967 isVolatile, Alignment); 2968 2969 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues)); 2970} 2971 2972/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2973/// node. 2974void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, 2975 unsigned Intrinsic) { 2976 bool HasChain = !I.doesNotAccessMemory(); 2977 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2978 2979 // Build the operand list. 2980 SmallVector<SDValue, 8> Ops; 2981 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2982 if (OnlyLoad) { 2983 // We don't need to serialize loads against other loads. 2984 Ops.push_back(DAG.getRoot()); 2985 } else { 2986 Ops.push_back(getRoot()); 2987 } 2988 } 2989 2990 // Add the intrinsic ID as an integer operand. 2991 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2992 2993 // Add all operands of the call to the operand list. 2994 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2995 SDValue Op = getValue(I.getOperand(i)); 2996 assert(TLI.isTypeLegal(Op.getValueType()) && 2997 "Intrinsic uses a non-legal type?"); 2998 Ops.push_back(Op); 2999 } 3000 3001 std::vector<MVT> VTs; 3002 if (I.getType() != Type::VoidTy) { 3003 MVT VT = TLI.getValueType(I.getType()); 3004 if (VT.isVector()) { 3005 const VectorType *DestTy = cast<VectorType>(I.getType()); 3006 MVT EltVT = TLI.getValueType(DestTy->getElementType()); 3007 3008 VT = MVT::getVectorVT(EltVT, DestTy->getNumElements()); 3009 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); 3010 } 3011 3012 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); 3013 VTs.push_back(VT); 3014 } 3015 if (HasChain) 3016 VTs.push_back(MVT::Other); 3017 3018 const MVT *VTList = DAG.getNodeValueTypes(VTs); 3019 3020 // Create the node. 3021 SDValue Result; 3022 if (!HasChain) 3023 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), 3024 &Ops[0], Ops.size()); 3025 else if (I.getType() != Type::VoidTy) 3026 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), 3027 &Ops[0], Ops.size()); 3028 else 3029 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), 3030 &Ops[0], Ops.size()); 3031 3032 if (HasChain) { 3033 SDValue Chain = Result.getValue(Result.Val->getNumValues()-1); 3034 if (OnlyLoad) 3035 PendingLoads.push_back(Chain); 3036 else 3037 DAG.setRoot(Chain); 3038 } 3039 if (I.getType() != Type::VoidTy) { 3040 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3041 MVT VT = TLI.getValueType(PTy); 3042 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result); 3043 } 3044 setValue(&I, Result); 3045 } 3046} 3047 3048/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 3049static GlobalVariable *ExtractTypeInfo (Value *V) { 3050 V = V->stripPointerCasts(); 3051 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3052 assert ((GV || isa<ConstantPointerNull>(V)) && 3053 "TypeInfo must be a global variable or NULL"); 3054 return GV; 3055} 3056 3057/// addCatchInfo - Extract the personality and type infos from an eh.selector 3058/// call, and add them to the specified machine basic block. 3059static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI, 3060 MachineBasicBlock *MBB) { 3061 // Inform the MachineModuleInfo of the personality for this landing pad. 3062 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); 3063 assert(CE->getOpcode() == Instruction::BitCast && 3064 isa<Function>(CE->getOperand(0)) && 3065 "Personality should be a function"); 3066 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 3067 3068 // Gather all the type infos for this landing pad and pass them along to 3069 // MachineModuleInfo. 3070 std::vector<GlobalVariable *> TyInfo; 3071 unsigned N = I.getNumOperands(); 3072 3073 for (unsigned i = N - 1; i > 2; --i) { 3074 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { 3075 unsigned FilterLength = CI->getZExtValue(); 3076 unsigned FirstCatch = i + FilterLength + !FilterLength; 3077 assert (FirstCatch <= N && "Invalid filter length"); 3078 3079 if (FirstCatch < N) { 3080 TyInfo.reserve(N - FirstCatch); 3081 for (unsigned j = FirstCatch; j < N; ++j) 3082 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); 3083 MMI->addCatchTypeInfo(MBB, TyInfo); 3084 TyInfo.clear(); 3085 } 3086 3087 if (!FilterLength) { 3088 // Cleanup. 3089 MMI->addCleanup(MBB); 3090 } else { 3091 // Filter. 3092 TyInfo.reserve(FilterLength - 1); 3093 for (unsigned j = i + 1; j < FirstCatch; ++j) 3094 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); 3095 MMI->addFilterTypeInfo(MBB, TyInfo); 3096 TyInfo.clear(); 3097 } 3098 3099 N = i; 3100 } 3101 } 3102 3103 if (N > 3) { 3104 TyInfo.reserve(N - 3); 3105 for (unsigned j = 3; j < N; ++j) 3106 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); 3107 MMI->addCatchTypeInfo(MBB, TyInfo); 3108 } 3109} 3110 3111 3112/// Inlined utility function to implement binary input atomic intrinsics for 3113// visitIntrinsicCall: I is a call instruction 3114// Op is the associated NodeType for I 3115const char * 3116SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 3117 SDValue Root = getRoot(); 3118 SDValue L = DAG.getAtomic(Op, Root, 3119 getValue(I.getOperand(1)), 3120 getValue(I.getOperand(2)), 3121 I.getOperand(1)); 3122 setValue(&I, L); 3123 DAG.setRoot(L.getValue(1)); 3124 return 0; 3125} 3126 3127/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3128/// we want to emit this as a call to a named external function, return the name 3129/// otherwise lower it and return null. 3130const char * 3131SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3132 switch (Intrinsic) { 3133 default: 3134 // By default, turn this into a target intrinsic node. 3135 visitTargetIntrinsic(I, Intrinsic); 3136 return 0; 3137 case Intrinsic::vastart: visitVAStart(I); return 0; 3138 case Intrinsic::vaend: visitVAEnd(I); return 0; 3139 case Intrinsic::vacopy: visitVACopy(I); return 0; 3140 case Intrinsic::returnaddress: 3141 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), 3142 getValue(I.getOperand(1)))); 3143 return 0; 3144 case Intrinsic::frameaddress: 3145 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), 3146 getValue(I.getOperand(1)))); 3147 return 0; 3148 case Intrinsic::setjmp: 3149 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3150 break; 3151 case Intrinsic::longjmp: 3152 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3153 break; 3154 case Intrinsic::memcpy_i32: 3155 case Intrinsic::memcpy_i64: { 3156 SDValue Op1 = getValue(I.getOperand(1)); 3157 SDValue Op2 = getValue(I.getOperand(2)); 3158 SDValue Op3 = getValue(I.getOperand(3)); 3159 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3160 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, 3161 I.getOperand(1), 0, I.getOperand(2), 0)); 3162 return 0; 3163 } 3164 case Intrinsic::memset_i32: 3165 case Intrinsic::memset_i64: { 3166 SDValue Op1 = getValue(I.getOperand(1)); 3167 SDValue Op2 = getValue(I.getOperand(2)); 3168 SDValue Op3 = getValue(I.getOperand(3)); 3169 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3170 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align, 3171 I.getOperand(1), 0)); 3172 return 0; 3173 } 3174 case Intrinsic::memmove_i32: 3175 case Intrinsic::memmove_i64: { 3176 SDValue Op1 = getValue(I.getOperand(1)); 3177 SDValue Op2 = getValue(I.getOperand(2)); 3178 SDValue Op3 = getValue(I.getOperand(3)); 3179 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3180 3181 // If the source and destination are known to not be aliases, we can 3182 // lower memmove as memcpy. 3183 uint64_t Size = -1ULL; 3184 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3185 Size = C->getValue(); 3186 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3187 AliasAnalysis::NoAlias) { 3188 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false, 3189 I.getOperand(1), 0, I.getOperand(2), 0)); 3190 return 0; 3191 } 3192 3193 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align, 3194 I.getOperand(1), 0, I.getOperand(2), 0)); 3195 return 0; 3196 } 3197 case Intrinsic::dbg_stoppoint: { 3198 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3199 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); 3200 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { 3201 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); 3202 assert(DD && "Not a debug information descriptor"); 3203 DAG.setRoot(DAG.getDbgStopPoint(getRoot(), 3204 SPI.getLine(), 3205 SPI.getColumn(), 3206 cast<CompileUnitDesc>(DD))); 3207 } 3208 3209 return 0; 3210 } 3211 case Intrinsic::dbg_region_start: { 3212 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3213 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); 3214 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { 3215 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); 3216 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); 3217 } 3218 3219 return 0; 3220 } 3221 case Intrinsic::dbg_region_end: { 3222 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3223 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); 3224 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { 3225 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); 3226 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID)); 3227 } 3228 3229 return 0; 3230 } 3231 case Intrinsic::dbg_func_start: { 3232 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3233 if (!MMI) return 0; 3234 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); 3235 Value *SP = FSI.getSubprogram(); 3236 if (SP && MMI->Verify(SP)) { 3237 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is 3238 // what (most?) gdb expects. 3239 DebugInfoDesc *DD = MMI->getDescFor(SP); 3240 assert(DD && "Not a debug information descriptor"); 3241 SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD); 3242 const CompileUnitDesc *CompileUnit = Subprogram->getFile(); 3243 unsigned SrcFile = MMI->RecordSource(CompileUnit); 3244 // Record the source line but does create a label. It will be emitted 3245 // at asm emission time. 3246 MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile); 3247 } 3248 3249 return 0; 3250 } 3251 case Intrinsic::dbg_declare: { 3252 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3253 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3254 Value *Variable = DI.getVariable(); 3255 if (MMI && Variable && MMI->Verify(Variable)) 3256 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(), 3257 getValue(DI.getAddress()), getValue(Variable))); 3258 return 0; 3259 } 3260 3261 case Intrinsic::eh_exception: { 3262 if (!CurMBB->isLandingPad()) { 3263 // FIXME: Mark exception register as live in. Hack for PR1508. 3264 unsigned Reg = TLI.getExceptionAddressRegister(); 3265 if (Reg) CurMBB->addLiveIn(Reg); 3266 } 3267 // Insert the EXCEPTIONADDR instruction. 3268 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3269 SDValue Ops[1]; 3270 Ops[0] = DAG.getRoot(); 3271 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); 3272 setValue(&I, Op); 3273 DAG.setRoot(Op.getValue(1)); 3274 return 0; 3275 } 3276 3277 case Intrinsic::eh_selector_i32: 3278 case Intrinsic::eh_selector_i64: { 3279 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3280 MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ? 3281 MVT::i32 : MVT::i64); 3282 3283 if (MMI) { 3284 if (CurMBB->isLandingPad()) 3285 addCatchInfo(I, MMI, CurMBB); 3286 else { 3287#ifndef NDEBUG 3288 FuncInfo.CatchInfoLost.insert(&I); 3289#endif 3290 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3291 unsigned Reg = TLI.getExceptionSelectorRegister(); 3292 if (Reg) CurMBB->addLiveIn(Reg); 3293 } 3294 3295 // Insert the EHSELECTION instruction. 3296 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3297 SDValue Ops[2]; 3298 Ops[0] = getValue(I.getOperand(1)); 3299 Ops[1] = getRoot(); 3300 SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); 3301 setValue(&I, Op); 3302 DAG.setRoot(Op.getValue(1)); 3303 } else { 3304 setValue(&I, DAG.getConstant(0, VT)); 3305 } 3306 3307 return 0; 3308 } 3309 3310 case Intrinsic::eh_typeid_for_i32: 3311 case Intrinsic::eh_typeid_for_i64: { 3312 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3313 MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ? 3314 MVT::i32 : MVT::i64); 3315 3316 if (MMI) { 3317 // Find the type id for the given typeinfo. 3318 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3319 3320 unsigned TypeID = MMI->getTypeIDFor(GV); 3321 setValue(&I, DAG.getConstant(TypeID, VT)); 3322 } else { 3323 // Return something different to eh_selector. 3324 setValue(&I, DAG.getConstant(1, VT)); 3325 } 3326 3327 return 0; 3328 } 3329 3330 case Intrinsic::eh_return: { 3331 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3332 3333 if (MMI) { 3334 MMI->setCallsEHReturn(true); 3335 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, 3336 MVT::Other, 3337 getControlRoot(), 3338 getValue(I.getOperand(1)), 3339 getValue(I.getOperand(2)))); 3340 } else { 3341 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3342 } 3343 3344 return 0; 3345 } 3346 3347 case Intrinsic::eh_unwind_init: { 3348 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3349 MMI->setCallsUnwindInit(true); 3350 } 3351 3352 return 0; 3353 } 3354 3355 case Intrinsic::eh_dwarf_cfa: { 3356 MVT VT = getValue(I.getOperand(1)).getValueType(); 3357 SDValue CfaArg; 3358 if (VT.bitsGT(TLI.getPointerTy())) 3359 CfaArg = DAG.getNode(ISD::TRUNCATE, 3360 TLI.getPointerTy(), getValue(I.getOperand(1))); 3361 else 3362 CfaArg = DAG.getNode(ISD::SIGN_EXTEND, 3363 TLI.getPointerTy(), getValue(I.getOperand(1))); 3364 3365 SDValue Offset = DAG.getNode(ISD::ADD, 3366 TLI.getPointerTy(), 3367 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, 3368 TLI.getPointerTy()), 3369 CfaArg); 3370 setValue(&I, DAG.getNode(ISD::ADD, 3371 TLI.getPointerTy(), 3372 DAG.getNode(ISD::FRAMEADDR, 3373 TLI.getPointerTy(), 3374 DAG.getConstant(0, 3375 TLI.getPointerTy())), 3376 Offset)); 3377 return 0; 3378 } 3379 3380 case Intrinsic::sqrt: 3381 setValue(&I, DAG.getNode(ISD::FSQRT, 3382 getValue(I.getOperand(1)).getValueType(), 3383 getValue(I.getOperand(1)))); 3384 return 0; 3385 case Intrinsic::powi: 3386 setValue(&I, DAG.getNode(ISD::FPOWI, 3387 getValue(I.getOperand(1)).getValueType(), 3388 getValue(I.getOperand(1)), 3389 getValue(I.getOperand(2)))); 3390 return 0; 3391 case Intrinsic::sin: 3392 setValue(&I, DAG.getNode(ISD::FSIN, 3393 getValue(I.getOperand(1)).getValueType(), 3394 getValue(I.getOperand(1)))); 3395 return 0; 3396 case Intrinsic::cos: 3397 setValue(&I, DAG.getNode(ISD::FCOS, 3398 getValue(I.getOperand(1)).getValueType(), 3399 getValue(I.getOperand(1)))); 3400 return 0; 3401 case Intrinsic::pow: 3402 setValue(&I, DAG.getNode(ISD::FPOW, 3403 getValue(I.getOperand(1)).getValueType(), 3404 getValue(I.getOperand(1)), 3405 getValue(I.getOperand(2)))); 3406 return 0; 3407 case Intrinsic::pcmarker: { 3408 SDValue Tmp = getValue(I.getOperand(1)); 3409 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); 3410 return 0; 3411 } 3412 case Intrinsic::readcyclecounter: { 3413 SDValue Op = getRoot(); 3414 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, 3415 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, 3416 &Op, 1); 3417 setValue(&I, Tmp); 3418 DAG.setRoot(Tmp.getValue(1)); 3419 return 0; 3420 } 3421 case Intrinsic::part_select: { 3422 // Currently not implemented: just abort 3423 assert(0 && "part_select intrinsic not implemented"); 3424 abort(); 3425 } 3426 case Intrinsic::part_set: { 3427 // Currently not implemented: just abort 3428 assert(0 && "part_set intrinsic not implemented"); 3429 abort(); 3430 } 3431 case Intrinsic::bswap: 3432 setValue(&I, DAG.getNode(ISD::BSWAP, 3433 getValue(I.getOperand(1)).getValueType(), 3434 getValue(I.getOperand(1)))); 3435 return 0; 3436 case Intrinsic::cttz: { 3437 SDValue Arg = getValue(I.getOperand(1)); 3438 MVT Ty = Arg.getValueType(); 3439 SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg); 3440 setValue(&I, result); 3441 return 0; 3442 } 3443 case Intrinsic::ctlz: { 3444 SDValue Arg = getValue(I.getOperand(1)); 3445 MVT Ty = Arg.getValueType(); 3446 SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg); 3447 setValue(&I, result); 3448 return 0; 3449 } 3450 case Intrinsic::ctpop: { 3451 SDValue Arg = getValue(I.getOperand(1)); 3452 MVT Ty = Arg.getValueType(); 3453 SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg); 3454 setValue(&I, result); 3455 return 0; 3456 } 3457 case Intrinsic::stacksave: { 3458 SDValue Op = getRoot(); 3459 SDValue Tmp = DAG.getNode(ISD::STACKSAVE, 3460 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); 3461 setValue(&I, Tmp); 3462 DAG.setRoot(Tmp.getValue(1)); 3463 return 0; 3464 } 3465 case Intrinsic::stackrestore: { 3466 SDValue Tmp = getValue(I.getOperand(1)); 3467 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); 3468 return 0; 3469 } 3470 case Intrinsic::var_annotation: 3471 // Discard annotate attributes 3472 return 0; 3473 3474 case Intrinsic::init_trampoline: { 3475 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 3476 3477 SDValue Ops[6]; 3478 Ops[0] = getRoot(); 3479 Ops[1] = getValue(I.getOperand(1)); 3480 Ops[2] = getValue(I.getOperand(2)); 3481 Ops[3] = getValue(I.getOperand(3)); 3482 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 3483 Ops[5] = DAG.getSrcValue(F); 3484 3485 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, 3486 DAG.getNodeValueTypes(TLI.getPointerTy(), 3487 MVT::Other), 2, 3488 Ops, 6); 3489 3490 setValue(&I, Tmp); 3491 DAG.setRoot(Tmp.getValue(1)); 3492 return 0; 3493 } 3494 3495 case Intrinsic::gcroot: 3496 if (GFI) { 3497 Value *Alloca = I.getOperand(1); 3498 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 3499 3500 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val); 3501 GFI->addStackRoot(FI->getIndex(), TypeMap); 3502 } 3503 return 0; 3504 3505 case Intrinsic::gcread: 3506 case Intrinsic::gcwrite: 3507 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!"); 3508 return 0; 3509 3510 case Intrinsic::flt_rounds: { 3511 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32)); 3512 return 0; 3513 } 3514 3515 case Intrinsic::trap: { 3516 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot())); 3517 return 0; 3518 } 3519 case Intrinsic::prefetch: { 3520 SDValue Ops[4]; 3521 Ops[0] = getRoot(); 3522 Ops[1] = getValue(I.getOperand(1)); 3523 Ops[2] = getValue(I.getOperand(2)); 3524 Ops[3] = getValue(I.getOperand(3)); 3525 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4)); 3526 return 0; 3527 } 3528 3529 case Intrinsic::memory_barrier: { 3530 SDValue Ops[6]; 3531 Ops[0] = getRoot(); 3532 for (int x = 1; x < 6; ++x) 3533 Ops[x] = getValue(I.getOperand(x)); 3534 3535 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6)); 3536 return 0; 3537 } 3538 case Intrinsic::atomic_cmp_swap: { 3539 SDValue Root = getRoot(); 3540 SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root, 3541 getValue(I.getOperand(1)), 3542 getValue(I.getOperand(2)), 3543 getValue(I.getOperand(3)), 3544 I.getOperand(1)); 3545 setValue(&I, L); 3546 DAG.setRoot(L.getValue(1)); 3547 return 0; 3548 } 3549 case Intrinsic::atomic_load_add: 3550 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 3551 case Intrinsic::atomic_load_sub: 3552 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 3553 case Intrinsic::atomic_load_and: 3554 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 3555 case Intrinsic::atomic_load_or: 3556 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 3557 case Intrinsic::atomic_load_xor: 3558 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 3559 case Intrinsic::atomic_load_nand: 3560 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 3561 case Intrinsic::atomic_load_min: 3562 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 3563 case Intrinsic::atomic_load_max: 3564 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 3565 case Intrinsic::atomic_load_umin: 3566 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 3567 case Intrinsic::atomic_load_umax: 3568 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 3569 case Intrinsic::atomic_swap: 3570 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 3571 } 3572} 3573 3574 3575void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, 3576 bool IsTailCall, 3577 MachineBasicBlock *LandingPad) { 3578 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 3579 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 3580 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3581 unsigned BeginLabel = 0, EndLabel = 0; 3582 3583 TargetLowering::ArgListTy Args; 3584 TargetLowering::ArgListEntry Entry; 3585 Args.reserve(CS.arg_size()); 3586 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 3587 i != e; ++i) { 3588 SDValue ArgNode = getValue(*i); 3589 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 3590 3591 unsigned attrInd = i - CS.arg_begin() + 1; 3592 Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt); 3593 Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt); 3594 Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg); 3595 Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet); 3596 Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest); 3597 Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal); 3598 Entry.Alignment = CS.getParamAlignment(attrInd); 3599 Args.push_back(Entry); 3600 } 3601 3602 if (LandingPad && MMI) { 3603 // Insert a label before the invoke call to mark the try range. This can be 3604 // used to detect deletion of the invoke via the MachineModuleInfo. 3605 BeginLabel = MMI->NextLabelID(); 3606 // Both PendingLoads and PendingExports must be flushed here; 3607 // this call might not return. 3608 (void)getRoot(); 3609 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel)); 3610 } 3611 3612 std::pair<SDValue,SDValue> Result = 3613 TLI.LowerCallTo(getRoot(), CS.getType(), 3614 CS.paramHasAttr(0, ParamAttr::SExt), 3615 CS.paramHasAttr(0, ParamAttr::ZExt), 3616 FTy->isVarArg(), CS.getCallingConv(), IsTailCall, 3617 Callee, Args, DAG); 3618 if (CS.getType() != Type::VoidTy) 3619 setValue(CS.getInstruction(), Result.first); 3620 DAG.setRoot(Result.second); 3621 3622 if (LandingPad && MMI) { 3623 // Insert a label at the end of the invoke call to mark the try range. This 3624 // can be used to detect deletion of the invoke via the MachineModuleInfo. 3625 EndLabel = MMI->NextLabelID(); 3626 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel)); 3627 3628 // Inform MachineModuleInfo of range. 3629 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 3630 } 3631} 3632 3633 3634void SelectionDAGLowering::visitCall(CallInst &I) { 3635 const char *RenameFn = 0; 3636 if (Function *F = I.getCalledFunction()) { 3637 if (F->isDeclaration()) { 3638 if (unsigned IID = F->getIntrinsicID()) { 3639 RenameFn = visitIntrinsicCall(I, IID); 3640 if (!RenameFn) 3641 return; 3642 } 3643 } 3644 3645 // Check for well-known libc/libm calls. If the function is internal, it 3646 // can't be a library call. 3647 unsigned NameLen = F->getNameLen(); 3648 if (!F->hasInternalLinkage() && NameLen) { 3649 const char *NameStr = F->getNameStart(); 3650 if (NameStr[0] == 'c' && 3651 ((NameLen == 8 && !strcmp(NameStr, "copysign")) || 3652 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) { 3653 if (I.getNumOperands() == 3 && // Basic sanity checks. 3654 I.getOperand(1)->getType()->isFloatingPoint() && 3655 I.getType() == I.getOperand(1)->getType() && 3656 I.getType() == I.getOperand(2)->getType()) { 3657 SDValue LHS = getValue(I.getOperand(1)); 3658 SDValue RHS = getValue(I.getOperand(2)); 3659 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), 3660 LHS, RHS)); 3661 return; 3662 } 3663 } else if (NameStr[0] == 'f' && 3664 ((NameLen == 4 && !strcmp(NameStr, "fabs")) || 3665 (NameLen == 5 && !strcmp(NameStr, "fabsf")) || 3666 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) { 3667 if (I.getNumOperands() == 2 && // Basic sanity checks. 3668 I.getOperand(1)->getType()->isFloatingPoint() && 3669 I.getType() == I.getOperand(1)->getType()) { 3670 SDValue Tmp = getValue(I.getOperand(1)); 3671 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); 3672 return; 3673 } 3674 } else if (NameStr[0] == 's' && 3675 ((NameLen == 3 && !strcmp(NameStr, "sin")) || 3676 (NameLen == 4 && !strcmp(NameStr, "sinf")) || 3677 (NameLen == 4 && !strcmp(NameStr, "sinl")))) { 3678 if (I.getNumOperands() == 2 && // Basic sanity checks. 3679 I.getOperand(1)->getType()->isFloatingPoint() && 3680 I.getType() == I.getOperand(1)->getType()) { 3681 SDValue Tmp = getValue(I.getOperand(1)); 3682 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); 3683 return; 3684 } 3685 } else if (NameStr[0] == 'c' && 3686 ((NameLen == 3 && !strcmp(NameStr, "cos")) || 3687 (NameLen == 4 && !strcmp(NameStr, "cosf")) || 3688 (NameLen == 4 && !strcmp(NameStr, "cosl")))) { 3689 if (I.getNumOperands() == 2 && // Basic sanity checks. 3690 I.getOperand(1)->getType()->isFloatingPoint() && 3691 I.getType() == I.getOperand(1)->getType()) { 3692 SDValue Tmp = getValue(I.getOperand(1)); 3693 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); 3694 return; 3695 } 3696 } 3697 } 3698 } else if (isa<InlineAsm>(I.getOperand(0))) { 3699 visitInlineAsm(&I); 3700 return; 3701 } 3702 3703 SDValue Callee; 3704 if (!RenameFn) 3705 Callee = getValue(I.getOperand(0)); 3706 else 3707 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 3708 3709 LowerCallTo(&I, Callee, I.isTailCall()); 3710} 3711 3712 3713/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 3714/// this value and returns the result as a ValueVT value. This uses 3715/// Chain/Flag as the input and updates them for the output Chain/Flag. 3716/// If the Flag pointer is NULL, no flag is used. 3717SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 3718 SDValue &Chain, 3719 SDValue *Flag) const { 3720 // Assemble the legal parts into the final values. 3721 SmallVector<SDValue, 4> Values(ValueVTs.size()); 3722 SmallVector<SDValue, 8> Parts; 3723 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 3724 // Copy the legal parts from the registers. 3725 MVT ValueVT = ValueVTs[Value]; 3726 unsigned NumRegs = TLI->getNumRegisters(ValueVT); 3727 MVT RegisterVT = RegVTs[Value]; 3728 3729 Parts.resize(NumRegs); 3730 for (unsigned i = 0; i != NumRegs; ++i) { 3731 SDValue P; 3732 if (Flag == 0) 3733 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT); 3734 else { 3735 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag); 3736 *Flag = P.getValue(2); 3737 } 3738 Chain = P.getValue(1); 3739 3740 // If the source register was virtual and if we know something about it, 3741 // add an assert node. 3742 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 3743 RegisterVT.isInteger() && !RegisterVT.isVector()) { 3744 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 3745 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 3746 if (FLI.LiveOutRegInfo.size() > SlotNo) { 3747 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 3748 3749 unsigned RegSize = RegisterVT.getSizeInBits(); 3750 unsigned NumSignBits = LOI.NumSignBits; 3751 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 3752 3753 // FIXME: We capture more information than the dag can represent. For 3754 // now, just use the tightest assertzext/assertsext possible. 3755 bool isSExt = true; 3756 MVT FromVT(MVT::Other); 3757 if (NumSignBits == RegSize) 3758 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 3759 else if (NumZeroBits >= RegSize-1) 3760 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 3761 else if (NumSignBits > RegSize-8) 3762 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 3763 else if (NumZeroBits >= RegSize-9) 3764 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 3765 else if (NumSignBits > RegSize-16) 3766 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 3767 else if (NumZeroBits >= RegSize-17) 3768 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 3769 else if (NumSignBits > RegSize-32) 3770 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 3771 else if (NumZeroBits >= RegSize-33) 3772 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 3773 3774 if (FromVT != MVT::Other) { 3775 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, 3776 RegisterVT, P, DAG.getValueType(FromVT)); 3777 3778 } 3779 } 3780 } 3781 3782 Parts[Part+i] = P; 3783 } 3784 3785 Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT, 3786 ValueVT); 3787 Part += NumRegs; 3788 } 3789 3790 return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 3791 &Values[0], ValueVTs.size()); 3792} 3793 3794/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 3795/// specified value into the registers specified by this object. This uses 3796/// Chain/Flag as the input and updates them for the output Chain/Flag. 3797/// If the Flag pointer is NULL, no flag is used. 3798void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 3799 SDValue &Chain, SDValue *Flag) const { 3800 // Get the list of the values's legal parts. 3801 unsigned NumRegs = Regs.size(); 3802 SmallVector<SDValue, 8> Parts(NumRegs); 3803 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 3804 MVT ValueVT = ValueVTs[Value]; 3805 unsigned NumParts = TLI->getNumRegisters(ValueVT); 3806 MVT RegisterVT = RegVTs[Value]; 3807 3808 getCopyToParts(DAG, Val.getValue(Val.ResNo + Value), 3809 &Parts[Part], NumParts, RegisterVT); 3810 Part += NumParts; 3811 } 3812 3813 // Copy the parts into the registers. 3814 SmallVector<SDValue, 8> Chains(NumRegs); 3815 for (unsigned i = 0; i != NumRegs; ++i) { 3816 SDValue Part; 3817 if (Flag == 0) 3818 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]); 3819 else { 3820 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag); 3821 *Flag = Part.getValue(1); 3822 } 3823 Chains[i] = Part.getValue(0); 3824 } 3825 3826 if (NumRegs == 1 || Flag) 3827 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 3828 // flagged to it. That is the CopyToReg nodes and the user are considered 3829 // a single scheduling unit. If we create a TokenFactor and return it as 3830 // chain, then the TokenFactor is both a predecessor (operand) of the 3831 // user as well as a successor (the TF operands are flagged to the user). 3832 // c1, f1 = CopyToReg 3833 // c2, f2 = CopyToReg 3834 // c3 = TokenFactor c1, c2 3835 // ... 3836 // = op c3, ..., f2 3837 Chain = Chains[NumRegs-1]; 3838 else 3839 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs); 3840} 3841 3842/// AddInlineAsmOperands - Add this value to the specified inlineasm node 3843/// operand list. This adds the code marker and includes the number of 3844/// values added into it. 3845void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, 3846 std::vector<SDValue> &Ops) const { 3847 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 3848 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy)); 3849 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 3850 unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]); 3851 MVT RegisterVT = RegVTs[Value]; 3852 for (unsigned i = 0; i != NumRegs; ++i) 3853 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 3854 } 3855} 3856 3857/// isAllocatableRegister - If the specified register is safe to allocate, 3858/// i.e. it isn't a stack pointer or some other special register, return the 3859/// register class for the register. Otherwise, return null. 3860static const TargetRegisterClass * 3861isAllocatableRegister(unsigned Reg, MachineFunction &MF, 3862 const TargetLowering &TLI, 3863 const TargetRegisterInfo *TRI) { 3864 MVT FoundVT = MVT::Other; 3865 const TargetRegisterClass *FoundRC = 0; 3866 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 3867 E = TRI->regclass_end(); RCI != E; ++RCI) { 3868 MVT ThisVT = MVT::Other; 3869 3870 const TargetRegisterClass *RC = *RCI; 3871 // If none of the the value types for this register class are valid, we 3872 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3873 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 3874 I != E; ++I) { 3875 if (TLI.isTypeLegal(*I)) { 3876 // If we have already found this register in a different register class, 3877 // choose the one with the largest VT specified. For example, on 3878 // PowerPC, we favor f64 register classes over f32. 3879 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 3880 ThisVT = *I; 3881 break; 3882 } 3883 } 3884 } 3885 3886 if (ThisVT == MVT::Other) continue; 3887 3888 // NOTE: This isn't ideal. In particular, this might allocate the 3889 // frame pointer in functions that need it (due to them not being taken 3890 // out of allocation, because a variable sized allocation hasn't been seen 3891 // yet). This is a slight code pessimization, but should still work. 3892 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 3893 E = RC->allocation_order_end(MF); I != E; ++I) 3894 if (*I == Reg) { 3895 // We found a matching register class. Keep looking at others in case 3896 // we find one with larger registers that this physreg is also in. 3897 FoundRC = RC; 3898 FoundVT = ThisVT; 3899 break; 3900 } 3901 } 3902 return FoundRC; 3903} 3904 3905 3906namespace { 3907/// AsmOperandInfo - This contains information for each constraint that we are 3908/// lowering. 3909struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 3910 /// CallOperand - If this is the result output operand or a clobber 3911 /// this is null, otherwise it is the incoming operand to the CallInst. 3912 /// This gets modified as the asm is processed. 3913 SDValue CallOperand; 3914 3915 /// AssignedRegs - If this is a register or register class operand, this 3916 /// contains the set of register corresponding to the operand. 3917 RegsForValue AssignedRegs; 3918 3919 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 3920 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 3921 } 3922 3923 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 3924 /// busy in OutputRegs/InputRegs. 3925 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 3926 std::set<unsigned> &OutputRegs, 3927 std::set<unsigned> &InputRegs, 3928 const TargetRegisterInfo &TRI) const { 3929 if (isOutReg) { 3930 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 3931 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 3932 } 3933 if (isInReg) { 3934 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 3935 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 3936 } 3937 } 3938 3939private: 3940 /// MarkRegAndAliases - Mark the specified register and all aliases in the 3941 /// specified set. 3942 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 3943 const TargetRegisterInfo &TRI) { 3944 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 3945 Regs.insert(Reg); 3946 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 3947 for (; *Aliases; ++Aliases) 3948 Regs.insert(*Aliases); 3949 } 3950}; 3951} // end anon namespace. 3952 3953 3954/// GetRegistersForValue - Assign registers (virtual or physical) for the 3955/// specified operand. We prefer to assign virtual registers, to allow the 3956/// register allocator handle the assignment process. However, if the asm uses 3957/// features that we can't model on machineinstrs, we have SDISel do the 3958/// allocation. This produces generally horrible, but correct, code. 3959/// 3960/// OpInfo describes the operand. 3961/// HasEarlyClobber is true if there are any early clobber constraints (=&r) 3962/// or any explicitly clobbered registers. 3963/// Input and OutputRegs are the set of already allocated physical registers. 3964/// 3965void SelectionDAGLowering:: 3966GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber, 3967 std::set<unsigned> &OutputRegs, 3968 std::set<unsigned> &InputRegs) { 3969 // Compute whether this value requires an input register, an output register, 3970 // or both. 3971 bool isOutReg = false; 3972 bool isInReg = false; 3973 switch (OpInfo.Type) { 3974 case InlineAsm::isOutput: 3975 isOutReg = true; 3976 3977 // If this is an early-clobber output, or if there is an input 3978 // constraint that matches this, we need to reserve the input register 3979 // so no other inputs allocate to it. 3980 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput; 3981 break; 3982 case InlineAsm::isInput: 3983 isInReg = true; 3984 isOutReg = false; 3985 break; 3986 case InlineAsm::isClobber: 3987 isOutReg = true; 3988 isInReg = true; 3989 break; 3990 } 3991 3992 3993 MachineFunction &MF = DAG.getMachineFunction(); 3994 SmallVector<unsigned, 4> Regs; 3995 3996 // If this is a constraint for a single physreg, or a constraint for a 3997 // register class, find it. 3998 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 3999 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4000 OpInfo.ConstraintVT); 4001 4002 unsigned NumRegs = 1; 4003 if (OpInfo.ConstraintVT != MVT::Other) 4004 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT); 4005 MVT RegVT; 4006 MVT ValueVT = OpInfo.ConstraintVT; 4007 4008 4009 // If this is a constraint for a specific physical register, like {r17}, 4010 // assign it now. 4011 if (PhysReg.first) { 4012 if (OpInfo.ConstraintVT == MVT::Other) 4013 ValueVT = *PhysReg.second->vt_begin(); 4014 4015 // Get the actual register value type. This is important, because the user 4016 // may have asked for (e.g.) the AX register in i32 type. We need to 4017 // remember that AX is actually i16 to get the right extension. 4018 RegVT = *PhysReg.second->vt_begin(); 4019 4020 // This is a explicit reference to a physical register. 4021 Regs.push_back(PhysReg.first); 4022 4023 // If this is an expanded reference, add the rest of the regs to Regs. 4024 if (NumRegs != 1) { 4025 TargetRegisterClass::iterator I = PhysReg.second->begin(); 4026 for (; *I != PhysReg.first; ++I) 4027 assert(I != PhysReg.second->end() && "Didn't find reg!"); 4028 4029 // Already added the first reg. 4030 --NumRegs; ++I; 4031 for (; NumRegs; --NumRegs, ++I) { 4032 assert(I != PhysReg.second->end() && "Ran out of registers to allocate!"); 4033 Regs.push_back(*I); 4034 } 4035 } 4036 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4037 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4038 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4039 return; 4040 } 4041 4042 // Otherwise, if this was a reference to an LLVM register class, create vregs 4043 // for this reference. 4044 std::vector<unsigned> RegClassRegs; 4045 const TargetRegisterClass *RC = PhysReg.second; 4046 if (RC) { 4047 // If this is an early clobber or tied register, our regalloc doesn't know 4048 // how to maintain the constraint. If it isn't, go ahead and create vreg 4049 // and let the regalloc do the right thing. 4050 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber && 4051 // If there is some other early clobber and this is an input register, 4052 // then we are forced to pre-allocate the input reg so it doesn't 4053 // conflict with the earlyclobber. 4054 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) { 4055 RegVT = *PhysReg.second->vt_begin(); 4056 4057 if (OpInfo.ConstraintVT == MVT::Other) 4058 ValueVT = RegVT; 4059 4060 // Create the appropriate number of virtual registers. 4061 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4062 for (; NumRegs; --NumRegs) 4063 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second)); 4064 4065 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4066 return; 4067 } 4068 4069 // Otherwise, we can't allocate it. Let the code below figure out how to 4070 // maintain these constraints. 4071 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); 4072 4073 } else { 4074 // This is a reference to a register class that doesn't directly correspond 4075 // to an LLVM register class. Allocate NumRegs consecutive, available, 4076 // registers from the class. 4077 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 4078 OpInfo.ConstraintVT); 4079 } 4080 4081 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4082 unsigned NumAllocated = 0; 4083 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 4084 unsigned Reg = RegClassRegs[i]; 4085 // See if this register is available. 4086 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 4087 (isInReg && InputRegs.count(Reg))) { // Already used. 4088 // Make sure we find consecutive registers. 4089 NumAllocated = 0; 4090 continue; 4091 } 4092 4093 // Check to see if this register is allocatable (i.e. don't give out the 4094 // stack pointer). 4095 if (RC == 0) { 4096 RC = isAllocatableRegister(Reg, MF, TLI, TRI); 4097 if (!RC) { // Couldn't allocate this register. 4098 // Reset NumAllocated to make sure we return consecutive registers. 4099 NumAllocated = 0; 4100 continue; 4101 } 4102 } 4103 4104 // Okay, this register is good, we can use it. 4105 ++NumAllocated; 4106 4107 // If we allocated enough consecutive registers, succeed. 4108 if (NumAllocated == NumRegs) { 4109 unsigned RegStart = (i-NumAllocated)+1; 4110 unsigned RegEnd = i+1; 4111 // Mark all of the allocated registers used. 4112 for (unsigned i = RegStart; i != RegEnd; ++i) 4113 Regs.push_back(RegClassRegs[i]); 4114 4115 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 4116 OpInfo.ConstraintVT); 4117 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4118 return; 4119 } 4120 } 4121 4122 // Otherwise, we couldn't allocate enough registers for this. 4123} 4124 4125 4126/// visitInlineAsm - Handle a call to an InlineAsm object. 4127/// 4128void SelectionDAGLowering::visitInlineAsm(CallSite CS) { 4129 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4130 4131 /// ConstraintOperands - Information about all of the constraints. 4132 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 4133 4134 SDValue Chain = getRoot(); 4135 SDValue Flag; 4136 4137 std::set<unsigned> OutputRegs, InputRegs; 4138 4139 // Do a prepass over the constraints, canonicalizing them, and building up the 4140 // ConstraintOperands list. 4141 std::vector<InlineAsm::ConstraintInfo> 4142 ConstraintInfos = IA->ParseConstraints(); 4143 4144 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output 4145 // constraint. If so, we can't let the register allocator allocate any input 4146 // registers, because it will not know to avoid the earlyclobbered output reg. 4147 bool SawEarlyClobber = false; 4148 4149 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4150 unsigned ResNo = 0; // ResNo - The result number of the next output. 4151 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 4152 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 4153 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 4154 4155 MVT OpVT = MVT::Other; 4156 4157 // Compute the value type for each operand. 4158 switch (OpInfo.Type) { 4159 case InlineAsm::isOutput: 4160 // Indirect outputs just consume an argument. 4161 if (OpInfo.isIndirect) { 4162 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4163 break; 4164 } 4165 // The return value of the call is this value. As such, there is no 4166 // corresponding argument. 4167 assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); 4168 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 4169 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 4170 } else { 4171 assert(ResNo == 0 && "Asm only has one result!"); 4172 OpVT = TLI.getValueType(CS.getType()); 4173 } 4174 ++ResNo; 4175 break; 4176 case InlineAsm::isInput: 4177 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4178 break; 4179 case InlineAsm::isClobber: 4180 // Nothing to do. 4181 break; 4182 } 4183 4184 // If this is an input or an indirect output, process the call argument. 4185 // BasicBlocks are labels, currently appearing only in asm's. 4186 if (OpInfo.CallOperandVal) { 4187 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) 4188 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 4189 else { 4190 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 4191 const Type *OpTy = OpInfo.CallOperandVal->getType(); 4192 // If this is an indirect operand, the operand is a pointer to the 4193 // accessed type. 4194 if (OpInfo.isIndirect) 4195 OpTy = cast<PointerType>(OpTy)->getElementType(); 4196 4197 // If OpTy is not a single value, it may be a struct/union that we 4198 // can tile with integers. 4199 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4200 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4201 switch (BitSize) { 4202 default: break; 4203 case 1: 4204 case 8: 4205 case 16: 4206 case 32: 4207 case 64: 4208 OpTy = IntegerType::get(BitSize); 4209 break; 4210 } 4211 } 4212 4213 OpVT = TLI.getValueType(OpTy, true); 4214 } 4215 } 4216 4217 OpInfo.ConstraintVT = OpVT; 4218 4219 // Compute the constraint code and ConstraintType to use. 4220 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 4221 4222 // Keep track of whether we see an earlyclobber. 4223 SawEarlyClobber |= OpInfo.isEarlyClobber; 4224 4225 // If we see a clobber of a register, it is an early clobber. 4226 if (!SawEarlyClobber && 4227 OpInfo.Type == InlineAsm::isClobber && 4228 OpInfo.ConstraintType == TargetLowering::C_Register) { 4229 // Note that we want to ignore things that we don't trick here, like 4230 // dirflag, fpsr, flags, etc. 4231 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4232 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4233 OpInfo.ConstraintVT); 4234 if (PhysReg.first || PhysReg.second) { 4235 // This is a register we know of. 4236 SawEarlyClobber = true; 4237 } 4238 } 4239 4240 // If this is a memory input, and if the operand is not indirect, do what we 4241 // need to to provide an address for the memory input. 4242 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4243 !OpInfo.isIndirect) { 4244 assert(OpInfo.Type == InlineAsm::isInput && 4245 "Can only indirectify direct input operands!"); 4246 4247 // Memory operands really want the address of the value. If we don't have 4248 // an indirect input, put it in the constpool if we can, otherwise spill 4249 // it to a stack slot. 4250 4251 // If the operand is a float, integer, or vector constant, spill to a 4252 // constant pool entry to get its address. 4253 Value *OpVal = OpInfo.CallOperandVal; 4254 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 4255 isa<ConstantVector>(OpVal)) { 4256 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 4257 TLI.getPointerTy()); 4258 } else { 4259 // Otherwise, create a stack slot and emit a store to it before the 4260 // asm. 4261 const Type *Ty = OpVal->getType(); 4262 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); 4263 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 4264 MachineFunction &MF = DAG.getMachineFunction(); 4265 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); 4266 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4267 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0); 4268 OpInfo.CallOperand = StackSlot; 4269 } 4270 4271 // There is no longer a Value* corresponding to this operand. 4272 OpInfo.CallOperandVal = 0; 4273 // It is now an indirect operand. 4274 OpInfo.isIndirect = true; 4275 } 4276 4277 // If this constraint is for a specific register, allocate it before 4278 // anything else. 4279 if (OpInfo.ConstraintType == TargetLowering::C_Register) 4280 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); 4281 } 4282 ConstraintInfos.clear(); 4283 4284 4285 // Second pass - Loop over all of the operands, assigning virtual or physregs 4286 // to registerclass operands. 4287 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 4288 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 4289 4290 // C_Register operands have already been allocated, Other/Memory don't need 4291 // to be. 4292 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 4293 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs); 4294 } 4295 4296 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 4297 std::vector<SDValue> AsmNodeOperands; 4298 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 4299 AsmNodeOperands.push_back( 4300 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 4301 4302 4303 // Loop over all of the inputs, copying the operand values into the 4304 // appropriate registers and processing the output regs. 4305 RegsForValue RetValRegs; 4306 4307 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 4308 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 4309 4310 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 4311 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 4312 4313 switch (OpInfo.Type) { 4314 case InlineAsm::isOutput: { 4315 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 4316 OpInfo.ConstraintType != TargetLowering::C_Register) { 4317 // Memory output, or 'other' output (e.g. 'X' constraint). 4318 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 4319 4320 // Add information to the INLINEASM node to know about this output. 4321 unsigned ResOpType = 4/*MEM*/ | (1 << 3); 4322 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 4323 TLI.getPointerTy())); 4324 AsmNodeOperands.push_back(OpInfo.CallOperand); 4325 break; 4326 } 4327 4328 // Otherwise, this is a register or register class output. 4329 4330 // Copy the output from the appropriate register. Find a register that 4331 // we can use. 4332 if (OpInfo.AssignedRegs.Regs.empty()) { 4333 cerr << "Couldn't allocate output reg for constraint '" 4334 << OpInfo.ConstraintCode << "'!\n"; 4335 exit(1); 4336 } 4337 4338 // If this is an indirect operand, store through the pointer after the 4339 // asm. 4340 if (OpInfo.isIndirect) { 4341 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 4342 OpInfo.CallOperandVal)); 4343 } else { 4344 // This is the result value of the call. 4345 assert(CS.getType() != Type::VoidTy && "Bad inline asm!"); 4346 // Concatenate this output onto the outputs list. 4347 RetValRegs.append(OpInfo.AssignedRegs); 4348 } 4349 4350 // Add information to the INLINEASM node to know that this register is 4351 // set. 4352 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, 4353 AsmNodeOperands); 4354 break; 4355 } 4356 case InlineAsm::isInput: { 4357 SDValue InOperandVal = OpInfo.CallOperand; 4358 4359 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint? 4360 // If this is required to match an output register we have already set, 4361 // just use its register. 4362 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str()); 4363 4364 // Scan until we find the definition we already emitted of this operand. 4365 // When we find it, create a RegsForValue operand. 4366 unsigned CurOp = 2; // The first operand. 4367 for (; OperandNo; --OperandNo) { 4368 // Advance to the next operand. 4369 unsigned NumOps = 4370 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); 4371 assert(((NumOps & 7) == 2 /*REGDEF*/ || 4372 (NumOps & 7) == 4 /*MEM*/) && 4373 "Skipped past definitions?"); 4374 CurOp += (NumOps>>3)+1; 4375 } 4376 4377 unsigned NumOps = 4378 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); 4379 if ((NumOps & 7) == 2 /*REGDEF*/) { 4380 // Add NumOps>>3 registers to MatchedRegs. 4381 RegsForValue MatchedRegs; 4382 MatchedRegs.TLI = &TLI; 4383 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 4384 MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType()); 4385 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { 4386 unsigned Reg = 4387 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg(); 4388 MatchedRegs.Regs.push_back(Reg); 4389 } 4390 4391 // Use the produced MatchedRegs object to 4392 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); 4393 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); 4394 break; 4395 } else { 4396 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!"); 4397 assert((NumOps >> 3) == 1 && "Unexpected number of operands"); 4398 // Add information to the INLINEASM node to know about this input. 4399 unsigned ResOpType = 4/*MEM*/ | (1 << 3); 4400 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 4401 TLI.getPointerTy())); 4402 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 4403 break; 4404 } 4405 } 4406 4407 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 4408 assert(!OpInfo.isIndirect && 4409 "Don't know how to handle indirect other inputs yet!"); 4410 4411 std::vector<SDValue> Ops; 4412 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 4413 Ops, DAG); 4414 if (Ops.empty()) { 4415 cerr << "Invalid operand for inline asm constraint '" 4416 << OpInfo.ConstraintCode << "'!\n"; 4417 exit(1); 4418 } 4419 4420 // Add information to the INLINEASM node to know about this input. 4421 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 4422 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 4423 TLI.getPointerTy())); 4424 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 4425 break; 4426 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 4427 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 4428 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 4429 "Memory operands expect pointer values"); 4430 4431 // Add information to the INLINEASM node to know about this input. 4432 unsigned ResOpType = 4/*MEM*/ | (1 << 3); 4433 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 4434 TLI.getPointerTy())); 4435 AsmNodeOperands.push_back(InOperandVal); 4436 break; 4437 } 4438 4439 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 4440 OpInfo.ConstraintType == TargetLowering::C_Register) && 4441 "Unknown constraint type!"); 4442 assert(!OpInfo.isIndirect && 4443 "Don't know how to handle indirect register inputs yet!"); 4444 4445 // Copy the input into the appropriate registers. 4446 assert(!OpInfo.AssignedRegs.Regs.empty() && 4447 "Couldn't allocate input reg!"); 4448 4449 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag); 4450 4451 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, 4452 AsmNodeOperands); 4453 break; 4454 } 4455 case InlineAsm::isClobber: { 4456 // Add the clobbered value to the operand list, so that the register 4457 // allocator is aware that the physreg got clobbered. 4458 if (!OpInfo.AssignedRegs.Regs.empty()) 4459 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, 4460 AsmNodeOperands); 4461 break; 4462 } 4463 } 4464 } 4465 4466 // Finish up input operands. 4467 AsmNodeOperands[0] = Chain; 4468 if (Flag.Val) AsmNodeOperands.push_back(Flag); 4469 4470 Chain = DAG.getNode(ISD::INLINEASM, 4471 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, 4472 &AsmNodeOperands[0], AsmNodeOperands.size()); 4473 Flag = Chain.getValue(1); 4474 4475 // If this asm returns a register value, copy the result from that register 4476 // and set it as the value of the call. 4477 if (!RetValRegs.Regs.empty()) { 4478 SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag); 4479 4480 // If any of the results of the inline asm is a vector, it may have the 4481 // wrong width/num elts. This can happen for register classes that can 4482 // contain multiple different value types. The preg or vreg allocated may 4483 // not have the same VT as was expected. Convert it to the right type with 4484 // bit_convert. 4485 if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) { 4486 for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) { 4487 if (Val.Val->getValueType(i).isVector()) 4488 Val = DAG.getNode(ISD::BIT_CONVERT, 4489 TLI.getValueType(ResSTy->getElementType(i)), Val); 4490 } 4491 } else { 4492 if (Val.getValueType().isVector()) 4493 Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()), 4494 Val); 4495 } 4496 4497 setValue(CS.getInstruction(), Val); 4498 } 4499 4500 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 4501 4502 // Process indirect outputs, first output all of the flagged copies out of 4503 // physregs. 4504 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 4505 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 4506 Value *Ptr = IndirectStoresToEmit[i].second; 4507 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag); 4508 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 4509 } 4510 4511 // Emit the non-flagged stores from the physregs. 4512 SmallVector<SDValue, 8> OutChains; 4513 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) 4514 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, 4515 getValue(StoresToEmit[i].second), 4516 StoresToEmit[i].second, 0)); 4517 if (!OutChains.empty()) 4518 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4519 &OutChains[0], OutChains.size()); 4520 DAG.setRoot(Chain); 4521} 4522 4523 4524void SelectionDAGLowering::visitMalloc(MallocInst &I) { 4525 SDValue Src = getValue(I.getOperand(0)); 4526 4527 MVT IntPtr = TLI.getPointerTy(); 4528 4529 if (IntPtr.bitsLT(Src.getValueType())) 4530 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); 4531 else if (IntPtr.bitsGT(Src.getValueType())) 4532 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); 4533 4534 // Scale the source by the type size. 4535 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType()); 4536 Src = DAG.getNode(ISD::MUL, Src.getValueType(), 4537 Src, DAG.getIntPtrConstant(ElementSize)); 4538 4539 TargetLowering::ArgListTy Args; 4540 TargetLowering::ArgListEntry Entry; 4541 Entry.Node = Src; 4542 Entry.Ty = TLI.getTargetData()->getIntPtrType(); 4543 Args.push_back(Entry); 4544 4545 std::pair<SDValue,SDValue> Result = 4546 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C, 4547 true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); 4548 setValue(&I, Result.first); // Pointers always fit in registers 4549 DAG.setRoot(Result.second); 4550} 4551 4552void SelectionDAGLowering::visitFree(FreeInst &I) { 4553 TargetLowering::ArgListTy Args; 4554 TargetLowering::ArgListEntry Entry; 4555 Entry.Node = getValue(I.getOperand(0)); 4556 Entry.Ty = TLI.getTargetData()->getIntPtrType(); 4557 Args.push_back(Entry); 4558 MVT IntPtr = TLI.getPointerTy(); 4559 std::pair<SDValue,SDValue> Result = 4560 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, 4561 CallingConv::C, true, 4562 DAG.getExternalSymbol("free", IntPtr), Args, DAG); 4563 DAG.setRoot(Result.second); 4564} 4565 4566// EmitInstrWithCustomInserter - This method should be implemented by targets 4567// that mark instructions with the 'usesCustomDAGSchedInserter' flag. These 4568// instructions are special in various ways, which require special support to 4569// insert. The specified MachineInstr is created but not inserted into any 4570// basic blocks, and the scheduler passes ownership of it to this method. 4571MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4572 MachineBasicBlock *MBB) { 4573 cerr << "If a target marks an instruction with " 4574 << "'usesCustomDAGSchedInserter', it must implement " 4575 << "TargetLowering::EmitInstrWithCustomInserter!\n"; 4576 abort(); 4577 return 0; 4578} 4579 4580void SelectionDAGLowering::visitVAStart(CallInst &I) { 4581 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), 4582 getValue(I.getOperand(1)), 4583 DAG.getSrcValue(I.getOperand(1)))); 4584} 4585 4586void SelectionDAGLowering::visitVAArg(VAArgInst &I) { 4587 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), 4588 getValue(I.getOperand(0)), 4589 DAG.getSrcValue(I.getOperand(0))); 4590 setValue(&I, V); 4591 DAG.setRoot(V.getValue(1)); 4592} 4593 4594void SelectionDAGLowering::visitVAEnd(CallInst &I) { 4595 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), 4596 getValue(I.getOperand(1)), 4597 DAG.getSrcValue(I.getOperand(1)))); 4598} 4599 4600void SelectionDAGLowering::visitVACopy(CallInst &I) { 4601 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), 4602 getValue(I.getOperand(1)), 4603 getValue(I.getOperand(2)), 4604 DAG.getSrcValue(I.getOperand(1)), 4605 DAG.getSrcValue(I.getOperand(2)))); 4606} 4607 4608/// TargetLowering::LowerArguments - This is the default LowerArguments 4609/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all 4610/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be 4611/// integrated into SDISel. 4612void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG, 4613 SmallVectorImpl<SDValue> &ArgValues) { 4614 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. 4615 SmallVector<SDValue, 3+16> Ops; 4616 Ops.push_back(DAG.getRoot()); 4617 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); 4618 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); 4619 4620 // Add one result value for each formal argument. 4621 SmallVector<MVT, 16> RetVals; 4622 unsigned j = 1; 4623 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 4624 I != E; ++I, ++j) { 4625 SmallVector<MVT, 4> ValueVTs; 4626 ComputeValueVTs(*this, I->getType(), ValueVTs); 4627 for (unsigned Value = 0, NumValues = ValueVTs.size(); 4628 Value != NumValues; ++Value) { 4629 MVT VT = ValueVTs[Value]; 4630 const Type *ArgTy = VT.getTypeForMVT(); 4631 ISD::ArgFlagsTy Flags; 4632 unsigned OriginalAlignment = 4633 getTargetData()->getABITypeAlignment(ArgTy); 4634 4635 if (F.paramHasAttr(j, ParamAttr::ZExt)) 4636 Flags.setZExt(); 4637 if (F.paramHasAttr(j, ParamAttr::SExt)) 4638 Flags.setSExt(); 4639 if (F.paramHasAttr(j, ParamAttr::InReg)) 4640 Flags.setInReg(); 4641 if (F.paramHasAttr(j, ParamAttr::StructRet)) 4642 Flags.setSRet(); 4643 if (F.paramHasAttr(j, ParamAttr::ByVal)) { 4644 Flags.setByVal(); 4645 const PointerType *Ty = cast<PointerType>(I->getType()); 4646 const Type *ElementTy = Ty->getElementType(); 4647 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 4648 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); 4649 // For ByVal, alignment should be passed from FE. BE will guess if 4650 // this info is not there but there are cases it cannot get right. 4651 if (F.getParamAlignment(j)) 4652 FrameAlign = F.getParamAlignment(j); 4653 Flags.setByValAlign(FrameAlign); 4654 Flags.setByValSize(FrameSize); 4655 } 4656 if (F.paramHasAttr(j, ParamAttr::Nest)) 4657 Flags.setNest(); 4658 Flags.setOrigAlign(OriginalAlignment); 4659 4660 MVT RegisterVT = getRegisterType(VT); 4661 unsigned NumRegs = getNumRegisters(VT); 4662 for (unsigned i = 0; i != NumRegs; ++i) { 4663 RetVals.push_back(RegisterVT); 4664 ISD::ArgFlagsTy MyFlags = Flags; 4665 if (NumRegs > 1 && i == 0) 4666 MyFlags.setSplit(); 4667 // if it isn't first piece, alignment must be 1 4668 else if (i > 0) 4669 MyFlags.setOrigAlign(1); 4670 Ops.push_back(DAG.getArgFlags(MyFlags)); 4671 } 4672 } 4673 } 4674 4675 RetVals.push_back(MVT::Other); 4676 4677 // Create the node. 4678 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, 4679 DAG.getVTList(&RetVals[0], RetVals.size()), 4680 &Ops[0], Ops.size()).Val; 4681 4682 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but 4683 // allows exposing the loads that may be part of the argument access to the 4684 // first DAGCombiner pass. 4685 SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG); 4686 4687 // The number of results should match up, except that the lowered one may have 4688 // an extra flag result. 4689 assert((Result->getNumValues() == TmpRes.Val->getNumValues() || 4690 (Result->getNumValues()+1 == TmpRes.Val->getNumValues() && 4691 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag)) 4692 && "Lowering produced unexpected number of results!"); 4693 4694 // The FORMAL_ARGUMENTS node itself is likely no longer needed. 4695 if (Result != TmpRes.Val && Result->use_empty()) { 4696 HandleSDNode Dummy(DAG.getRoot()); 4697 DAG.RemoveDeadNode(Result); 4698 } 4699 4700 Result = TmpRes.Val; 4701 4702 unsigned NumArgRegs = Result->getNumValues() - 1; 4703 DAG.setRoot(SDValue(Result, NumArgRegs)); 4704 4705 // Set up the return result vector. 4706 unsigned i = 0; 4707 unsigned Idx = 1; 4708 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 4709 ++I, ++Idx) { 4710 SmallVector<MVT, 4> ValueVTs; 4711 ComputeValueVTs(*this, I->getType(), ValueVTs); 4712 for (unsigned Value = 0, NumValues = ValueVTs.size(); 4713 Value != NumValues; ++Value) { 4714 MVT VT = ValueVTs[Value]; 4715 MVT PartVT = getRegisterType(VT); 4716 4717 unsigned NumParts = getNumRegisters(VT); 4718 SmallVector<SDValue, 4> Parts(NumParts); 4719 for (unsigned j = 0; j != NumParts; ++j) 4720 Parts[j] = SDValue(Result, i++); 4721 4722 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4723 if (F.paramHasAttr(Idx, ParamAttr::SExt)) 4724 AssertOp = ISD::AssertSext; 4725 else if (F.paramHasAttr(Idx, ParamAttr::ZExt)) 4726 AssertOp = ISD::AssertZext; 4727 4728 ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT, 4729 AssertOp)); 4730 } 4731 } 4732 assert(i == NumArgRegs && "Argument register count mismatch!"); 4733} 4734 4735 4736/// TargetLowering::LowerCallTo - This is the default LowerCallTo 4737/// implementation, which just inserts an ISD::CALL node, which is later custom 4738/// lowered by the target to something concrete. FIXME: When all targets are 4739/// migrated to using ISD::CALL, this hook should be integrated into SDISel. 4740std::pair<SDValue, SDValue> 4741TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 4742 bool RetSExt, bool RetZExt, bool isVarArg, 4743 unsigned CallingConv, bool isTailCall, 4744 SDValue Callee, 4745 ArgListTy &Args, SelectionDAG &DAG) { 4746 SmallVector<SDValue, 32> Ops; 4747 Ops.push_back(Chain); // Op#0 - Chain 4748 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC 4749 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg 4750 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail 4751 Ops.push_back(Callee); 4752 4753 // Handle all of the outgoing arguments. 4754 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 4755 SmallVector<MVT, 4> ValueVTs; 4756 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 4757 for (unsigned Value = 0, NumValues = ValueVTs.size(); 4758 Value != NumValues; ++Value) { 4759 MVT VT = ValueVTs[Value]; 4760 const Type *ArgTy = VT.getTypeForMVT(); 4761 SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value); 4762 ISD::ArgFlagsTy Flags; 4763 unsigned OriginalAlignment = 4764 getTargetData()->getABITypeAlignment(ArgTy); 4765 4766 if (Args[i].isZExt) 4767 Flags.setZExt(); 4768 if (Args[i].isSExt) 4769 Flags.setSExt(); 4770 if (Args[i].isInReg) 4771 Flags.setInReg(); 4772 if (Args[i].isSRet) 4773 Flags.setSRet(); 4774 if (Args[i].isByVal) { 4775 Flags.setByVal(); 4776 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 4777 const Type *ElementTy = Ty->getElementType(); 4778 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 4779 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy); 4780 // For ByVal, alignment should come from FE. BE will guess if this 4781 // info is not there but there are cases it cannot get right. 4782 if (Args[i].Alignment) 4783 FrameAlign = Args[i].Alignment; 4784 Flags.setByValAlign(FrameAlign); 4785 Flags.setByValSize(FrameSize); 4786 } 4787 if (Args[i].isNest) 4788 Flags.setNest(); 4789 Flags.setOrigAlign(OriginalAlignment); 4790 4791 MVT PartVT = getRegisterType(VT); 4792 unsigned NumParts = getNumRegisters(VT); 4793 SmallVector<SDValue, 4> Parts(NumParts); 4794 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 4795 4796 if (Args[i].isSExt) 4797 ExtendKind = ISD::SIGN_EXTEND; 4798 else if (Args[i].isZExt) 4799 ExtendKind = ISD::ZERO_EXTEND; 4800 4801 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind); 4802 4803 for (unsigned i = 0; i != NumParts; ++i) { 4804 // if it isn't first piece, alignment must be 1 4805 ISD::ArgFlagsTy MyFlags = Flags; 4806 if (NumParts > 1 && i == 0) 4807 MyFlags.setSplit(); 4808 else if (i != 0) 4809 MyFlags.setOrigAlign(1); 4810 4811 Ops.push_back(Parts[i]); 4812 Ops.push_back(DAG.getArgFlags(MyFlags)); 4813 } 4814 } 4815 } 4816 4817 // Figure out the result value types. We start by making a list of 4818 // the potentially illegal return value types. 4819 SmallVector<MVT, 4> LoweredRetTys; 4820 SmallVector<MVT, 4> RetTys; 4821 ComputeValueVTs(*this, RetTy, RetTys); 4822 4823 // Then we translate that to a list of legal types. 4824 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4825 MVT VT = RetTys[I]; 4826 MVT RegisterVT = getRegisterType(VT); 4827 unsigned NumRegs = getNumRegisters(VT); 4828 for (unsigned i = 0; i != NumRegs; ++i) 4829 LoweredRetTys.push_back(RegisterVT); 4830 } 4831 4832 LoweredRetTys.push_back(MVT::Other); // Always has a chain. 4833 4834 // Create the CALL node. 4835 SDValue Res = DAG.getNode(ISD::CALL, 4836 DAG.getVTList(&LoweredRetTys[0], 4837 LoweredRetTys.size()), 4838 &Ops[0], Ops.size()); 4839 Chain = Res.getValue(LoweredRetTys.size() - 1); 4840 4841 // Gather up the call result into a single value. 4842 if (RetTy != Type::VoidTy) { 4843 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4844 4845 if (RetSExt) 4846 AssertOp = ISD::AssertSext; 4847 else if (RetZExt) 4848 AssertOp = ISD::AssertZext; 4849 4850 SmallVector<SDValue, 4> ReturnValues; 4851 unsigned RegNo = 0; 4852 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4853 MVT VT = RetTys[I]; 4854 MVT RegisterVT = getRegisterType(VT); 4855 unsigned NumRegs = getNumRegisters(VT); 4856 unsigned RegNoEnd = NumRegs + RegNo; 4857 SmallVector<SDValue, 4> Results; 4858 for (; RegNo != RegNoEnd; ++RegNo) 4859 Results.push_back(Res.getValue(RegNo)); 4860 SDValue ReturnValue = 4861 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, 4862 AssertOp); 4863 ReturnValues.push_back(ReturnValue); 4864 } 4865 Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()), 4866 &ReturnValues[0], ReturnValues.size()); 4867 } 4868 4869 return std::make_pair(Res, Chain); 4870} 4871 4872SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 4873 assert(0 && "LowerOperation not implemented for this target!"); 4874 abort(); 4875 return SDValue(); 4876} 4877 4878 4879//===----------------------------------------------------------------------===// 4880// SelectionDAGISel code 4881//===----------------------------------------------------------------------===// 4882 4883unsigned SelectionDAGISel::MakeReg(MVT VT) { 4884 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); 4885} 4886 4887void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 4888 AU.addRequired<AliasAnalysis>(); 4889 AU.addRequired<GCModuleInfo>(); 4890 AU.setPreservesAll(); 4891} 4892 4893bool SelectionDAGISel::runOnFunction(Function &Fn) { 4894 // Get alias analysis for load/store combining. 4895 AA = &getAnalysis<AliasAnalysis>(); 4896 4897 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); 4898 if (MF.getFunction()->hasGC()) 4899 GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction()); 4900 else 4901 GFI = 0; 4902 RegInfo = &MF.getRegInfo(); 4903 DOUT << "\n\n\n=== " << Fn.getName() << "\n"; 4904 4905 FunctionLoweringInfo FuncInfo(TLI, Fn, MF); 4906 4907 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) 4908 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) 4909 // Mark landing pad. 4910 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 4911 4912 SelectAllBasicBlocks(Fn, MF, FuncInfo); 4913 4914 // Add function live-ins to entry block live-in set. 4915 BasicBlock *EntryBB = &Fn.getEntryBlock(); 4916 BB = FuncInfo.MBBMap[EntryBB]; 4917 if (!RegInfo->livein_empty()) 4918 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), 4919 E = RegInfo->livein_end(); I != E; ++I) 4920 BB->addLiveIn(I->first); 4921 4922#ifndef NDEBUG 4923 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() && 4924 "Not all catch info was assigned to a landing pad!"); 4925#endif 4926 4927 return true; 4928} 4929 4930void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 4931 SDValue Op = getValue(V); 4932 assert((Op.getOpcode() != ISD::CopyFromReg || 4933 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 4934 "Copy from a reg to the same reg!"); 4935 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 4936 4937 RegsForValue RFV(TLI, Reg, V->getType()); 4938 SDValue Chain = DAG.getEntryNode(); 4939 RFV.getCopyToRegs(Op, DAG, Chain, 0); 4940 PendingExports.push_back(Chain); 4941} 4942 4943void SelectionDAGISel:: 4944LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) { 4945 // If this is the entry block, emit arguments. 4946 Function &F = *LLVMBB->getParent(); 4947 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; 4948 SDValue OldRoot = SDL.DAG.getRoot(); 4949 SmallVector<SDValue, 16> Args; 4950 TLI.LowerArguments(F, SDL.DAG, Args); 4951 4952 unsigned a = 0; 4953 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 4954 AI != E; ++AI) { 4955 SmallVector<MVT, 4> ValueVTs; 4956 ComputeValueVTs(TLI, AI->getType(), ValueVTs); 4957 unsigned NumValues = ValueVTs.size(); 4958 if (!AI->use_empty()) { 4959 SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues)); 4960 // If this argument is live outside of the entry block, insert a copy from 4961 // whereever we got it to the vreg that other BB's will reference it as. 4962 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI); 4963 if (VMI != FuncInfo.ValueMap.end()) { 4964 SDL.CopyValueToVirtualRegister(AI, VMI->second); 4965 } 4966 } 4967 a += NumValues; 4968 } 4969 4970 // Finally, if the target has anything special to do, allow it to do so. 4971 // FIXME: this should insert code into the DAG! 4972 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); 4973} 4974 4975static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB, 4976 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { 4977 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) 4978 if (isSelector(I)) { 4979 // Apply the catch info to DestBB. 4980 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]); 4981#ifndef NDEBUG 4982 if (!FLI.MBBMap[SrcBB]->isLandingPad()) 4983 FLI.CatchInfoFound.insert(I); 4984#endif 4985 } 4986} 4987 4988/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and 4989/// whether object offset >= 0. 4990static bool 4991IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) { 4992 if (!isa<FrameIndexSDNode>(Op)) return false; 4993 4994 FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op); 4995 int FrameIdx = FrameIdxNode->getIndex(); 4996 return MFI->isFixedObjectIndex(FrameIdx) && 4997 MFI->getObjectOffset(FrameIdx) >= 0; 4998} 4999 5000/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could 5001/// possibly be overwritten when lowering the outgoing arguments in a tail 5002/// call. Currently the implementation of this call is very conservative and 5003/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with 5004/// virtual registers would be overwritten by direct lowering. 5005static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op, 5006 MachineFrameInfo * MFI) { 5007 RegisterSDNode * OpReg = NULL; 5008 if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS || 5009 (Op.getOpcode()== ISD::CopyFromReg && 5010 (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) && 5011 (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) || 5012 (Op.getOpcode() == ISD::LOAD && 5013 IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) || 5014 (Op.getOpcode() == ISD::MERGE_VALUES && 5015 Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD && 5016 IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo). 5017 getOperand(1)))) 5018 return true; 5019 return false; 5020} 5021 5022/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the 5023/// DAG and fixes their tailcall attribute operand. 5024static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG, 5025 TargetLowering& TLI) { 5026 SDNode * Ret = NULL; 5027 SDValue Terminator = DAG.getRoot(); 5028 5029 // Find RET node. 5030 if (Terminator.getOpcode() == ISD::RET) { 5031 Ret = Terminator.Val; 5032 } 5033 5034 // Fix tail call attribute of CALL nodes. 5035 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(), 5036 BI = DAG.allnodes_end(); BI != BE; ) { 5037 --BI; 5038 if (BI->getOpcode() == ISD::CALL) { 5039 SDValue OpRet(Ret, 0); 5040 SDValue OpCall(BI, 0); 5041 bool isMarkedTailCall = 5042 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0; 5043 // If CALL node has tail call attribute set to true and the call is not 5044 // eligible (no RET or the target rejects) the attribute is fixed to 5045 // false. The TargetLowering::IsEligibleForTailCallOptimization function 5046 // must correctly identify tail call optimizable calls. 5047 if (!isMarkedTailCall) continue; 5048 if (Ret==NULL || 5049 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) { 5050 // Not eligible. Mark CALL node as non tail call. 5051 SmallVector<SDValue, 32> Ops; 5052 unsigned idx=0; 5053 for(SDNode::op_iterator I =OpCall.Val->op_begin(), 5054 E = OpCall.Val->op_end(); I != E; I++, idx++) { 5055 if (idx!=3) 5056 Ops.push_back(*I); 5057 else 5058 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy())); 5059 } 5060 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size()); 5061 } else { 5062 // Look for tail call clobbered arguments. Emit a series of 5063 // copyto/copyfrom virtual register nodes to protect them. 5064 SmallVector<SDValue, 32> Ops; 5065 SDValue Chain = OpCall.getOperand(0), InFlag; 5066 unsigned idx=0; 5067 for(SDNode::op_iterator I = OpCall.Val->op_begin(), 5068 E = OpCall.Val->op_end(); I != E; I++, idx++) { 5069 SDValue Arg = *I; 5070 if (idx > 4 && (idx % 2)) { 5071 bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))-> 5072 getArgFlags().isByVal(); 5073 MachineFunction &MF = DAG.getMachineFunction(); 5074 MachineFrameInfo *MFI = MF.getFrameInfo(); 5075 if (!isByVal && 5076 IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) { 5077 MVT VT = Arg.getValueType(); 5078 unsigned VReg = MF.getRegInfo(). 5079 createVirtualRegister(TLI.getRegClassFor(VT)); 5080 Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag); 5081 InFlag = Chain.getValue(1); 5082 Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag); 5083 Chain = Arg.getValue(1); 5084 InFlag = Arg.getValue(2); 5085 } 5086 } 5087 Ops.push_back(Arg); 5088 } 5089 // Link in chain of CopyTo/CopyFromReg. 5090 Ops[0] = Chain; 5091 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size()); 5092 } 5093 } 5094 } 5095} 5096 5097void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, 5098 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, 5099 FunctionLoweringInfo &FuncInfo) { 5100 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GFI); 5101 BB = FuncInfo.MBBMap[LLVMBB]; 5102 5103 // Before doing SelectionDAG ISel, see if FastISel has been requested. 5104 // FastISel doesn't currently support entry blocks, because that 5105 // requires special handling for arguments. And it doesn't support EH 5106 // landing pads, which also require special handling. 5107 // For now, also exclude blocks with terminators that aren't 5108 // unconditional branches. 5109 BasicBlock::iterator Begin = LLVMBB->begin(); 5110 if (EnableFastISel && 5111 LLVMBB != &LLVMBB->getParent()->getEntryBlock() && 5112 !BB->isLandingPad() && 5113 isa<BranchInst>(LLVMBB->getTerminator()) && 5114 cast<BranchInst>(LLVMBB->getTerminator())->isUnconditional()) { 5115 if (FastISel *F = TLI.createFastISel(BB, &FuncInfo.MF, 5116 TLI.getTargetMachine().getInstrInfo())) { 5117 Begin = F->SelectInstructions(Begin, LLVMBB->end(), FuncInfo.ValueMap); 5118 if (Begin == LLVMBB->end()) 5119 // The "fast" selector selected the entire block, so we're done. 5120 return; 5121 5122 if (!DisableFastISelAbort) { 5123 // The "fast" selector couldn't handle something and bailed. 5124 // For the purpose of debugging, just abort. 5125 DEBUG(Begin->dump()); 5126 assert(0 && "FastISel didn't select the entire block"); 5127 abort(); 5128 } 5129 } 5130 } 5131 5132 // Lower any arguments needed in this block if this is the entry block. 5133 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock()) 5134 LowerArguments(LLVMBB, SDL); 5135 5136 SDL.setCurrentBasicBlock(BB); 5137 5138 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 5139 5140 if (MMI && BB->isLandingPad()) { 5141 // Add a label to mark the beginning of the landing pad. Deletion of the 5142 // landing pad can thus be detected via the MachineModuleInfo. 5143 unsigned LabelID = MMI->addLandingPad(BB); 5144 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID)); 5145 5146 // Mark exception register as live in. 5147 unsigned Reg = TLI.getExceptionAddressRegister(); 5148 if (Reg) BB->addLiveIn(Reg); 5149 5150 // Mark exception selector register as live in. 5151 Reg = TLI.getExceptionSelectorRegister(); 5152 if (Reg) BB->addLiveIn(Reg); 5153 5154 // FIXME: Hack around an exception handling flaw (PR1508): the personality 5155 // function and list of typeids logically belong to the invoke (or, if you 5156 // like, the basic block containing the invoke), and need to be associated 5157 // with it in the dwarf exception handling tables. Currently however the 5158 // information is provided by an intrinsic (eh.selector) that can be moved 5159 // to unexpected places by the optimizers: if the unwind edge is critical, 5160 // then breaking it can result in the intrinsics being in the successor of 5161 // the landing pad, not the landing pad itself. This results in exceptions 5162 // not being caught because no typeids are associated with the invoke. 5163 // This may not be the only way things can go wrong, but it is the only way 5164 // we try to work around for the moment. 5165 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); 5166 5167 if (Br && Br->isUnconditional()) { // Critical edge? 5168 BasicBlock::iterator I, E; 5169 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) 5170 if (isSelector(I)) 5171 break; 5172 5173 if (I == E) 5174 // No catch info found - try to extract some from the successor. 5175 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo); 5176 } 5177 } 5178 5179 // Lower all of the non-terminator instructions. 5180 for (BasicBlock::iterator I = Begin, E = --LLVMBB->end(); 5181 I != E; ++I) 5182 SDL.visit(*I); 5183 5184 // Ensure that all instructions which are used outside of their defining 5185 // blocks are available as virtual registers. Invoke is handled elsewhere. 5186 for (BasicBlock::iterator I = Begin, E = LLVMBB->end(); I != E;++I) 5187 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) { 5188 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I); 5189 if (VMI != FuncInfo.ValueMap.end()) 5190 SDL.CopyValueToVirtualRegister(I, VMI->second); 5191 } 5192 5193 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5194 // ensure constants are generated when needed. Remember the virtual registers 5195 // that need to be added to the Machine PHI nodes as input. We cannot just 5196 // directly add them, because expansion might result in multiple MBB's for one 5197 // BB. As such, the start of the BB might correspond to a different MBB than 5198 // the end. 5199 // 5200 TerminatorInst *TI = LLVMBB->getTerminator(); 5201 5202 // Emit constants only once even if used by multiple PHI nodes. 5203 std::map<Constant*, unsigned> ConstantsOut; 5204 5205 // Vector bool would be better, but vector<bool> is really slow. 5206 std::vector<unsigned char> SuccsHandled; 5207 if (TI->getNumSuccessors()) 5208 SuccsHandled.resize(BB->getParent()->getNumBlockIDs()); 5209 5210 // Check successor nodes' PHI nodes that expect a constant to be available 5211 // from this block. 5212 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5213 BasicBlock *SuccBB = TI->getSuccessor(succ); 5214 if (!isa<PHINode>(SuccBB->begin())) continue; 5215 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 5216 5217 // If this terminator has multiple identical successors (common for 5218 // switches), only handle each succ once. 5219 unsigned SuccMBBNo = SuccMBB->getNumber(); 5220 if (SuccsHandled[SuccMBBNo]) continue; 5221 SuccsHandled[SuccMBBNo] = true; 5222 5223 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5224 PHINode *PN; 5225 5226 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5227 // nodes and Machine PHI nodes, but the incoming operands have not been 5228 // emitted yet. 5229 for (BasicBlock::iterator I = SuccBB->begin(); 5230 (PN = dyn_cast<PHINode>(I)); ++I) { 5231 // Ignore dead phi's. 5232 if (PN->use_empty()) continue; 5233 5234 unsigned Reg; 5235 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5236 5237 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 5238 unsigned &RegOut = ConstantsOut[C]; 5239 if (RegOut == 0) { 5240 RegOut = FuncInfo.CreateRegForValue(C); 5241 SDL.CopyValueToVirtualRegister(C, RegOut); 5242 } 5243 Reg = RegOut; 5244 } else { 5245 Reg = FuncInfo.ValueMap[PHIOp]; 5246 if (Reg == 0) { 5247 assert(isa<AllocaInst>(PHIOp) && 5248 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 5249 "Didn't codegen value into a register!??"); 5250 Reg = FuncInfo.CreateRegForValue(PHIOp); 5251 SDL.CopyValueToVirtualRegister(PHIOp, Reg); 5252 } 5253 } 5254 5255 // Remember that this register needs to added to the machine PHI node as 5256 // the input for this MBB. 5257 SmallVector<MVT, 4> ValueVTs; 5258 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 5259 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 5260 MVT VT = ValueVTs[vti]; 5261 unsigned NumRegisters = TLI.getNumRegisters(VT); 5262 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 5263 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 5264 Reg += NumRegisters; 5265 } 5266 } 5267 } 5268 ConstantsOut.clear(); 5269 5270 // Lower the terminator after the copies are emitted. 5271 SDL.visit(*LLVMBB->getTerminator()); 5272 5273 // Copy over any CaseBlock records that may now exist due to SwitchInst 5274 // lowering, as well as any jump table information. 5275 SwitchCases.clear(); 5276 SwitchCases = SDL.SwitchCases; 5277 JTCases.clear(); 5278 JTCases = SDL.JTCases; 5279 BitTestCases.clear(); 5280 BitTestCases = SDL.BitTestCases; 5281 5282 // Make sure the root of the DAG is up-to-date. 5283 DAG.setRoot(SDL.getControlRoot()); 5284 5285 // Check whether calls in this block are real tail calls. Fix up CALL nodes 5286 // with correct tailcall attribute so that the target can rely on the tailcall 5287 // attribute indicating whether the call is really eligible for tail call 5288 // optimization. 5289 CheckDAGForTailCallsAndFixThem(DAG, TLI); 5290} 5291 5292void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) { 5293 SmallPtrSet<SDNode*, 128> VisitedNodes; 5294 SmallVector<SDNode*, 128> Worklist; 5295 5296 Worklist.push_back(DAG.getRoot().Val); 5297 5298 APInt Mask; 5299 APInt KnownZero; 5300 APInt KnownOne; 5301 5302 while (!Worklist.empty()) { 5303 SDNode *N = Worklist.back(); 5304 Worklist.pop_back(); 5305 5306 // If we've already seen this node, ignore it. 5307 if (!VisitedNodes.insert(N)) 5308 continue; 5309 5310 // Otherwise, add all chain operands to the worklist. 5311 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 5312 if (N->getOperand(i).getValueType() == MVT::Other) 5313 Worklist.push_back(N->getOperand(i).Val); 5314 5315 // If this is a CopyToReg with a vreg dest, process it. 5316 if (N->getOpcode() != ISD::CopyToReg) 5317 continue; 5318 5319 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 5320 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 5321 continue; 5322 5323 // Ignore non-scalar or non-integer values. 5324 SDValue Src = N->getOperand(2); 5325 MVT SrcVT = Src.getValueType(); 5326 if (!SrcVT.isInteger() || SrcVT.isVector()) 5327 continue; 5328 5329 unsigned NumSignBits = DAG.ComputeNumSignBits(Src); 5330 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); 5331 DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); 5332 5333 // Only install this information if it tells us something. 5334 if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) { 5335 DestReg -= TargetRegisterInfo::FirstVirtualRegister; 5336 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5337 if (DestReg >= FLI.LiveOutRegInfo.size()) 5338 FLI.LiveOutRegInfo.resize(DestReg+1); 5339 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg]; 5340 LOI.NumSignBits = NumSignBits; 5341 LOI.KnownOne = NumSignBits; 5342 LOI.KnownZero = NumSignBits; 5343 } 5344 } 5345} 5346 5347void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) { 5348 std::string GroupName; 5349 if (TimePassesIsEnabled) 5350 GroupName = "Instruction Selection and Scheduling"; 5351 std::string BlockName; 5352 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 5353 ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs) 5354 BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' + 5355 BB->getBasicBlock()->getName(); 5356 5357 DOUT << "Initial selection DAG:\n"; 5358 DEBUG(DAG.dump()); 5359 5360 if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName); 5361 5362 // Run the DAG combiner in pre-legalize mode. 5363 if (TimePassesIsEnabled) { 5364 NamedRegionTimer T("DAG Combining 1", GroupName); 5365 DAG.Combine(false, *AA); 5366 } else { 5367 DAG.Combine(false, *AA); 5368 } 5369 5370 DOUT << "Optimized lowered selection DAG:\n"; 5371 DEBUG(DAG.dump()); 5372 5373 // Second step, hack on the DAG until it only uses operations and types that 5374 // the target supports. 5375 if (EnableLegalizeTypes) {// Enable this some day. 5376 if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " + 5377 BlockName); 5378 5379 if (TimePassesIsEnabled) { 5380 NamedRegionTimer T("Type Legalization", GroupName); 5381 DAG.LegalizeTypes(); 5382 } else { 5383 DAG.LegalizeTypes(); 5384 } 5385 5386 DOUT << "Type-legalized selection DAG:\n"; 5387 DEBUG(DAG.dump()); 5388 5389 // TODO: enable a dag combine pass here. 5390 } 5391 5392 if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName); 5393 5394 if (TimePassesIsEnabled) { 5395 NamedRegionTimer T("DAG Legalization", GroupName); 5396 DAG.Legalize(); 5397 } else { 5398 DAG.Legalize(); 5399 } 5400 5401 DOUT << "Legalized selection DAG:\n"; 5402 DEBUG(DAG.dump()); 5403 5404 if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName); 5405 5406 // Run the DAG combiner in post-legalize mode. 5407 if (TimePassesIsEnabled) { 5408 NamedRegionTimer T("DAG Combining 2", GroupName); 5409 DAG.Combine(true, *AA); 5410 } else { 5411 DAG.Combine(true, *AA); 5412 } 5413 5414 DOUT << "Optimized legalized selection DAG:\n"; 5415 DEBUG(DAG.dump()); 5416 5417 if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName); 5418 5419 if (!Fast && EnableValueProp) 5420 ComputeLiveOutVRegInfo(DAG); 5421 5422 // Third, instruction select all of the operations to machine code, adding the 5423 // code to the MachineBasicBlock. 5424 if (TimePassesIsEnabled) { 5425 NamedRegionTimer T("Instruction Selection", GroupName); 5426 InstructionSelect(DAG); 5427 } else { 5428 InstructionSelect(DAG); 5429 } 5430 5431 DOUT << "Selected selection DAG:\n"; 5432 DEBUG(DAG.dump()); 5433 5434 if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName); 5435 5436 // Schedule machine code. 5437 ScheduleDAG *Scheduler; 5438 if (TimePassesIsEnabled) { 5439 NamedRegionTimer T("Instruction Scheduling", GroupName); 5440 Scheduler = Schedule(DAG); 5441 } else { 5442 Scheduler = Schedule(DAG); 5443 } 5444 5445 if (ViewSUnitDAGs) Scheduler->viewGraph(); 5446 5447 // Emit machine code to BB. This can change 'BB' to the last block being 5448 // inserted into. 5449 if (TimePassesIsEnabled) { 5450 NamedRegionTimer T("Instruction Creation", GroupName); 5451 BB = Scheduler->EmitSchedule(); 5452 } else { 5453 BB = Scheduler->EmitSchedule(); 5454 } 5455 5456 // Free the scheduler state. 5457 if (TimePassesIsEnabled) { 5458 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName); 5459 delete Scheduler; 5460 } else { 5461 delete Scheduler; 5462 } 5463 5464 // Perform target specific isel post processing. 5465 if (TimePassesIsEnabled) { 5466 NamedRegionTimer T("Instruction Selection Post Processing", GroupName); 5467 InstructionSelectPostProcessing(); 5468 } else { 5469 InstructionSelectPostProcessing(); 5470 } 5471 5472 DOUT << "Selected machine code:\n"; 5473 DEBUG(BB->dump()); 5474} 5475 5476void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF, 5477 FunctionLoweringInfo &FuncInfo) { 5478 // Define NodeAllocator here so that memory allocation is reused for 5479 // each basic block. 5480 NodeAllocatorType NodeAllocator; 5481 5482 SimpleBBISel SISel(MF, TLI); 5483 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate; 5484 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { 5485 BasicBlock *LLVMBB = &*I; 5486 PHINodesToUpdate.clear(); 5487 5488 if (!Fast || !SISel.SelectBasicBlock(LLVMBB, FuncInfo.MBBMap[LLVMBB])) 5489 SelectBasicBlock(LLVMBB, MF, FuncInfo, PHINodesToUpdate, NodeAllocator); 5490 FinishBasicBlock(LLVMBB, MF, FuncInfo, PHINodesToUpdate, NodeAllocator); 5491 } 5492} 5493 5494void 5495SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, 5496 FunctionLoweringInfo &FuncInfo, 5497 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, 5498 NodeAllocatorType &NodeAllocator) { 5499 SelectionDAG DAG(TLI, MF, FuncInfo, 5500 getAnalysisToUpdate<MachineModuleInfo>(), 5501 NodeAllocator); 5502 CurDAG = &DAG; 5503 5504 // First step, lower LLVM code to some DAG. This DAG may use operations and 5505 // types that are not supported by the target. 5506 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); 5507 5508 // Second step, emit the lowered DAG as machine code. 5509 CodeGenAndEmitDAG(DAG); 5510} 5511 5512void 5513SelectionDAGISel::FinishBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, 5514 FunctionLoweringInfo &FuncInfo, 5515 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, 5516 NodeAllocatorType &NodeAllocator) { 5517 DOUT << "Total amount of phi nodes to update: " 5518 << PHINodesToUpdate.size() << "\n"; 5519 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) 5520 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first 5521 << ", " << PHINodesToUpdate[i].second << ")\n";); 5522 5523 // Next, now that we know what the last MBB the LLVM BB expanded is, update 5524 // PHI nodes in successors. 5525 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) { 5526 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { 5527 MachineInstr *PHI = PHINodesToUpdate[i].first; 5528 assert(PHI->getOpcode() == TargetInstrInfo::PHI && 5529 "This is not a machine PHI node that we are updating!"); 5530 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second, 5531 false)); 5532 PHI->addOperand(MachineOperand::CreateMBB(BB)); 5533 } 5534 return; 5535 } 5536 5537 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) { 5538 // Lower header first, if it wasn't already lowered 5539 if (!BitTestCases[i].Emitted) { 5540 SelectionDAG HSDAG(TLI, MF, FuncInfo, 5541 getAnalysisToUpdate<MachineModuleInfo>(), 5542 NodeAllocator); 5543 CurDAG = &HSDAG; 5544 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GFI); 5545 // Set the current basic block to the mbb we wish to insert the code into 5546 BB = BitTestCases[i].Parent; 5547 HSDL.setCurrentBasicBlock(BB); 5548 // Emit the code 5549 HSDL.visitBitTestHeader(BitTestCases[i]); 5550 HSDAG.setRoot(HSDL.getRoot()); 5551 CodeGenAndEmitDAG(HSDAG); 5552 } 5553 5554 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { 5555 SelectionDAG BSDAG(TLI, MF, FuncInfo, 5556 getAnalysisToUpdate<MachineModuleInfo>(), 5557 NodeAllocator); 5558 CurDAG = &BSDAG; 5559 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GFI); 5560 // Set the current basic block to the mbb we wish to insert the code into 5561 BB = BitTestCases[i].Cases[j].ThisBB; 5562 BSDL.setCurrentBasicBlock(BB); 5563 // Emit the code 5564 if (j+1 != ej) 5565 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB, 5566 BitTestCases[i].Reg, 5567 BitTestCases[i].Cases[j]); 5568 else 5569 BSDL.visitBitTestCase(BitTestCases[i].Default, 5570 BitTestCases[i].Reg, 5571 BitTestCases[i].Cases[j]); 5572 5573 5574 BSDAG.setRoot(BSDL.getRoot()); 5575 CodeGenAndEmitDAG(BSDAG); 5576 } 5577 5578 // Update PHI Nodes 5579 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { 5580 MachineInstr *PHI = PHINodesToUpdate[pi].first; 5581 MachineBasicBlock *PHIBB = PHI->getParent(); 5582 assert(PHI->getOpcode() == TargetInstrInfo::PHI && 5583 "This is not a machine PHI node that we are updating!"); 5584 // This is "default" BB. We have two jumps to it. From "header" BB and 5585 // from last "case" BB. 5586 if (PHIBB == BitTestCases[i].Default) { 5587 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, 5588 false)); 5589 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent)); 5590 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, 5591 false)); 5592 PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases. 5593 back().ThisBB)); 5594 } 5595 // One of "cases" BB. 5596 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) { 5597 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB; 5598 if (cBB->succ_end() != 5599 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) { 5600 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, 5601 false)); 5602 PHI->addOperand(MachineOperand::CreateMBB(cBB)); 5603 } 5604 } 5605 } 5606 } 5607 5608 // If the JumpTable record is filled in, then we need to emit a jump table. 5609 // Updating the PHI nodes is tricky in this case, since we need to determine 5610 // whether the PHI is a successor of the range check MBB or the jump table MBB 5611 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) { 5612 // Lower header first, if it wasn't already lowered 5613 if (!JTCases[i].first.Emitted) { 5614 SelectionDAG HSDAG(TLI, MF, FuncInfo, 5615 getAnalysisToUpdate<MachineModuleInfo>(), 5616 NodeAllocator); 5617 CurDAG = &HSDAG; 5618 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GFI); 5619 // Set the current basic block to the mbb we wish to insert the code into 5620 BB = JTCases[i].first.HeaderBB; 5621 HSDL.setCurrentBasicBlock(BB); 5622 // Emit the code 5623 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first); 5624 HSDAG.setRoot(HSDL.getRoot()); 5625 CodeGenAndEmitDAG(HSDAG); 5626 } 5627 5628 SelectionDAG JSDAG(TLI, MF, FuncInfo, 5629 getAnalysisToUpdate<MachineModuleInfo>(), 5630 NodeAllocator); 5631 CurDAG = &JSDAG; 5632 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GFI); 5633 // Set the current basic block to the mbb we wish to insert the code into 5634 BB = JTCases[i].second.MBB; 5635 JSDL.setCurrentBasicBlock(BB); 5636 // Emit the code 5637 JSDL.visitJumpTable(JTCases[i].second); 5638 JSDAG.setRoot(JSDL.getRoot()); 5639 CodeGenAndEmitDAG(JSDAG); 5640 5641 // Update PHI Nodes 5642 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { 5643 MachineInstr *PHI = PHINodesToUpdate[pi].first; 5644 MachineBasicBlock *PHIBB = PHI->getParent(); 5645 assert(PHI->getOpcode() == TargetInstrInfo::PHI && 5646 "This is not a machine PHI node that we are updating!"); 5647 // "default" BB. We can go there only from header BB. 5648 if (PHIBB == JTCases[i].second.Default) { 5649 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, 5650 false)); 5651 PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB)); 5652 } 5653 // JT BB. Just iterate over successors here 5654 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { 5655 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second, 5656 false)); 5657 PHI->addOperand(MachineOperand::CreateMBB(BB)); 5658 } 5659 } 5660 } 5661 5662 // If the switch block involved a branch to one of the actual successors, we 5663 // need to update PHI nodes in that block. 5664 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { 5665 MachineInstr *PHI = PHINodesToUpdate[i].first; 5666 assert(PHI->getOpcode() == TargetInstrInfo::PHI && 5667 "This is not a machine PHI node that we are updating!"); 5668 if (BB->isSuccessor(PHI->getParent())) { 5669 PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second, 5670 false)); 5671 PHI->addOperand(MachineOperand::CreateMBB(BB)); 5672 } 5673 } 5674 5675 // If we generated any switch lowering information, build and codegen any 5676 // additional DAGs necessary. 5677 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) { 5678 SelectionDAG SDAG(TLI, MF, FuncInfo, 5679 getAnalysisToUpdate<MachineModuleInfo>(), 5680 NodeAllocator); 5681 CurDAG = &SDAG; 5682 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GFI); 5683 5684 // Set the current basic block to the mbb we wish to insert the code into 5685 BB = SwitchCases[i].ThisBB; 5686 SDL.setCurrentBasicBlock(BB); 5687 5688 // Emit the code 5689 SDL.visitSwitchCase(SwitchCases[i]); 5690 SDAG.setRoot(SDL.getRoot()); 5691 CodeGenAndEmitDAG(SDAG); 5692 5693 // Handle any PHI nodes in successors of this chunk, as if we were coming 5694 // from the original BB before switch expansion. Note that PHI nodes can 5695 // occur multiple times in PHINodesToUpdate. We have to be very careful to 5696 // handle them the right number of times. 5697 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS. 5698 for (MachineBasicBlock::iterator Phi = BB->begin(); 5699 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ 5700 // This value for this PHI node is recorded in PHINodesToUpdate, get it. 5701 for (unsigned pn = 0; ; ++pn) { 5702 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!"); 5703 if (PHINodesToUpdate[pn].first == Phi) { 5704 Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn]. 5705 second, false)); 5706 Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB)); 5707 break; 5708 } 5709 } 5710 } 5711 5712 // Don't process RHS if same block as LHS. 5713 if (BB == SwitchCases[i].FalseBB) 5714 SwitchCases[i].FalseBB = 0; 5715 5716 // If we haven't handled the RHS, do so now. Otherwise, we're done. 5717 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB; 5718 SwitchCases[i].FalseBB = 0; 5719 } 5720 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0); 5721 } 5722} 5723 5724 5725/// Schedule - Pick a safe ordering for instructions for each 5726/// target node in the graph. 5727/// 5728ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) { 5729 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); 5730 5731 if (!Ctor) { 5732 Ctor = ISHeuristic; 5733 RegisterScheduler::setDefault(Ctor); 5734 } 5735 5736 ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, Fast); 5737 Scheduler->Run(); 5738 5739 return Scheduler; 5740} 5741 5742 5743HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { 5744 return new HazardRecognizer(); 5745} 5746 5747//===----------------------------------------------------------------------===// 5748// Helper functions used by the generated instruction selector. 5749//===----------------------------------------------------------------------===// 5750// Calls to these methods are generated by tblgen. 5751 5752/// CheckAndMask - The isel is trying to match something like (and X, 255). If 5753/// the dag combiner simplified the 255, we still want to match. RHS is the 5754/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 5755/// specified in the .td file (e.g. 255). 5756bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 5757 int64_t DesiredMaskS) const { 5758 const APInt &ActualMask = RHS->getAPIntValue(); 5759 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 5760 5761 // If the actual mask exactly matches, success! 5762 if (ActualMask == DesiredMask) 5763 return true; 5764 5765 // If the actual AND mask is allowing unallowed bits, this doesn't match. 5766 if (ActualMask.intersects(~DesiredMask)) 5767 return false; 5768 5769 // Otherwise, the DAG Combiner may have proven that the value coming in is 5770 // either already zero or is not demanded. Check for known zero input bits. 5771 APInt NeededMask = DesiredMask & ~ActualMask; 5772 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 5773 return true; 5774 5775 // TODO: check to see if missing bits are just not demanded. 5776 5777 // Otherwise, this pattern doesn't match. 5778 return false; 5779} 5780 5781/// CheckOrMask - The isel is trying to match something like (or X, 255). If 5782/// the dag combiner simplified the 255, we still want to match. RHS is the 5783/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 5784/// specified in the .td file (e.g. 255). 5785bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 5786 int64_t DesiredMaskS) const { 5787 const APInt &ActualMask = RHS->getAPIntValue(); 5788 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 5789 5790 // If the actual mask exactly matches, success! 5791 if (ActualMask == DesiredMask) 5792 return true; 5793 5794 // If the actual AND mask is allowing unallowed bits, this doesn't match. 5795 if (ActualMask.intersects(~DesiredMask)) 5796 return false; 5797 5798 // Otherwise, the DAG Combiner may have proven that the value coming in is 5799 // either already zero or is not demanded. Check for known zero input bits. 5800 APInt NeededMask = DesiredMask & ~ActualMask; 5801 5802 APInt KnownZero, KnownOne; 5803 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); 5804 5805 // If all the missing bits in the or are already known to be set, match! 5806 if ((NeededMask & KnownOne) == NeededMask) 5807 return true; 5808 5809 // TODO: check to see if missing bits are just not demanded. 5810 5811 // Otherwise, this pattern doesn't match. 5812 return false; 5813} 5814 5815 5816/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 5817/// by tblgen. Others should not call it. 5818void SelectionDAGISel:: 5819SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) { 5820 std::vector<SDValue> InOps; 5821 std::swap(InOps, Ops); 5822 5823 Ops.push_back(InOps[0]); // input chain. 5824 Ops.push_back(InOps[1]); // input asm string. 5825 5826 unsigned i = 2, e = InOps.size(); 5827 if (InOps[e-1].getValueType() == MVT::Flag) 5828 --e; // Don't process a flag operand if it is here. 5829 5830 while (i != e) { 5831 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue(); 5832 if ((Flags & 7) != 4 /*MEM*/) { 5833 // Just skip over this operand, copying the operands verbatim. 5834 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); 5835 i += (Flags >> 3) + 1; 5836 } else { 5837 assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); 5838 // Otherwise, this is a memory operand. Ask the target to select it. 5839 std::vector<SDValue> SelOps; 5840 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) { 5841 cerr << "Could not match memory address. Inline asm failure!\n"; 5842 exit(1); 5843 } 5844 5845 // Add this to the output node. 5846 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 5847 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3), 5848 IntPtrTy)); 5849 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 5850 i += 2; 5851 } 5852 } 5853 5854 // Add the flag input back if present. 5855 if (e != InOps.size()) 5856 Ops.push_back(InOps.back()); 5857} 5858 5859char SelectionDAGISel::ID = 0; 5860