1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMHazardRecognizer.h"
19#include "ARMMachineFunctionInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  uint16_t MLxOpc;     // MLA / MLS opcode
55  uint16_t MulOpc;     // Expanded multiplication opcode
56  uint16_t AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default: llvm_unreachable("Unknown indexed op!");
160  case ARMII::AddrMode2: {
161    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163    if (OffReg == 0) {
164      if (ARM_AM::getSOImmVal(Amt) == -1)
165        // Can't encode it in a so_imm operand. This transformation will
166        // add more than 1 instruction. Abandon!
167        return NULL;
168      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170        .addReg(BaseReg).addImm(Amt)
171        .addImm(Pred).addReg(0).addReg(0);
172    } else if (Amt != 0) {
173      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178        .addImm(Pred).addReg(0).addReg(0);
179    } else
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182        .addReg(BaseReg).addReg(OffReg)
183        .addImm(Pred).addReg(0).addReg(0);
184    break;
185  }
186  case ARMII::AddrMode3 : {
187    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189    if (OffReg == 0)
190      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193        .addReg(BaseReg).addImm(Amt)
194        .addImm(Pred).addReg(0).addReg(0);
195    else
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198        .addReg(BaseReg).addReg(OffReg)
199        .addImm(Pred).addReg(0).addReg(0);
200    break;
201  }
202  }
203
204  std::vector<MachineInstr*> NewMIs;
205  if (isPre) {
206    if (isLoad)
207      MemMI = BuildMI(MF, MI->getDebugLoc(),
208                      get(MemOpc), MI->getOperand(0).getReg())
209        .addReg(WBReg).addImm(0).addImm(Pred);
210    else
211      MemMI = BuildMI(MF, MI->getDebugLoc(),
212                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
213        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214    NewMIs.push_back(MemMI);
215    NewMIs.push_back(UpdateMI);
216  } else {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(BaseReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225    if (WB.isDead())
226      UpdateMI->getOperand(0).setIsDead();
227    NewMIs.push_back(UpdateMI);
228    NewMIs.push_back(MemMI);
229  }
230
231  // Transfer LiveVariables states, kill / dead info.
232  if (LV) {
233    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234      MachineOperand &MO = MI->getOperand(i);
235      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236        unsigned Reg = MO.getReg();
237
238        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239        if (MO.isDef()) {
240          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241          if (MO.isDead())
242            LV->addVirtualRegisterDead(Reg, NewMI);
243        }
244        if (MO.isUse() && MO.isKill()) {
245          for (unsigned j = 0; j < 2; ++j) {
246            // Look at the two new MI's in reverse order.
247            MachineInstr *NewMI = NewMIs[j];
248            if (!NewMI->readsRegister(Reg))
249              continue;
250            LV->addVirtualRegisterKilled(Reg, NewMI);
251            if (VI.removeKill(MI))
252              VI.Kills.push_back(NewMI);
253            break;
254          }
255        }
256      }
257    }
258  }
259
260  MFI->insert(MBBI, NewMIs[1]);
261  MFI->insert(MBBI, NewMIs[0]);
262  return NewMIs[0];
263}
264
265// Branch analysis.
266bool
267ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268                                MachineBasicBlock *&FBB,
269                                SmallVectorImpl<MachineOperand> &Cond,
270                                bool AllowModify) const {
271  // If the block has no terminators, it just falls into the block after it.
272  MachineBasicBlock::iterator I = MBB.end();
273  if (I == MBB.begin())
274    return false;
275  --I;
276  while (I->isDebugValue()) {
277    if (I == MBB.begin())
278      return false;
279    --I;
280  }
281  if (!isUnpredicatedTerminator(I))
282    return false;
283
284  // Get the last instruction in the block.
285  MachineInstr *LastInst = I;
286
287  // If there is only one terminator instruction, process it.
288  unsigned LastOpc = LastInst->getOpcode();
289  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290    if (isUncondBranchOpcode(LastOpc)) {
291      TBB = LastInst->getOperand(0).getMBB();
292      return false;
293    }
294    if (isCondBranchOpcode(LastOpc)) {
295      // Block ends with fall-through condbranch.
296      TBB = LastInst->getOperand(0).getMBB();
297      Cond.push_back(LastInst->getOperand(1));
298      Cond.push_back(LastInst->getOperand(2));
299      return false;
300    }
301    return true;  // Can't handle indirect branch.
302  }
303
304  // Get the instruction before it if it is a terminator.
305  MachineInstr *SecondLastInst = I;
306  unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308  // If AllowModify is true and the block ends with two or more unconditional
309  // branches, delete all but the first unconditional branch.
310  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311    while (isUncondBranchOpcode(SecondLastOpc)) {
312      LastInst->eraseFromParent();
313      LastInst = SecondLastInst;
314      LastOpc = LastInst->getOpcode();
315      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316        // Return now the only terminator is an unconditional branch.
317        TBB = LastInst->getOperand(0).getMBB();
318        return false;
319      } else {
320        SecondLastInst = I;
321        SecondLastOpc = SecondLastInst->getOpcode();
322      }
323    }
324  }
325
326  // If there are three terminators, we don't know what sort of block this is.
327  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328    return true;
329
330  // If the block ends with a B and a Bcc, handle it.
331  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332    TBB =  SecondLastInst->getOperand(0).getMBB();
333    Cond.push_back(SecondLastInst->getOperand(1));
334    Cond.push_back(SecondLastInst->getOperand(2));
335    FBB = LastInst->getOperand(0).getMBB();
336    return false;
337  }
338
339  // If the block ends with two unconditional branches, handle it.  The second
340  // one is not executed, so remove it.
341  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342    TBB = SecondLastInst->getOperand(0).getMBB();
343    I = LastInst;
344    if (AllowModify)
345      I->eraseFromParent();
346    return false;
347  }
348
349  // ...likewise if it ends with a branch table followed by an unconditional
350  // branch. The branch folder can create these, and we must get rid of them for
351  // correctness of Thumb constant islands.
352  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353       isIndirectBranchOpcode(SecondLastOpc)) &&
354      isUncondBranchOpcode(LastOpc)) {
355    I = LastInst;
356    if (AllowModify)
357      I->eraseFromParent();
358    return true;
359  }
360
361  // Otherwise, can't handle this.
362  return true;
363}
364
365
366unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367  MachineBasicBlock::iterator I = MBB.end();
368  if (I == MBB.begin()) return 0;
369  --I;
370  while (I->isDebugValue()) {
371    if (I == MBB.begin())
372      return 0;
373    --I;
374  }
375  if (!isUncondBranchOpcode(I->getOpcode()) &&
376      !isCondBranchOpcode(I->getOpcode()))
377    return 0;
378
379  // Remove the branch.
380  I->eraseFromParent();
381
382  I = MBB.end();
383
384  if (I == MBB.begin()) return 1;
385  --I;
386  if (!isCondBranchOpcode(I->getOpcode()))
387    return 1;
388
389  // Remove the branch.
390  I->eraseFromParent();
391  return 2;
392}
393
394unsigned
395ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396                               MachineBasicBlock *FBB,
397                               const SmallVectorImpl<MachineOperand> &Cond,
398                               DebugLoc DL) const {
399  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400  int BOpc   = !AFI->isThumbFunction()
401    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402  int BccOpc = !AFI->isThumbFunction()
403    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406  // Shouldn't be a fall through.
407  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408  assert((Cond.size() == 2 || Cond.size() == 0) &&
409         "ARM branch conditions have two components!");
410
411  if (FBB == 0) {
412    if (Cond.empty()) { // Unconditional branch?
413      if (isThumb)
414        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415      else
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417    } else
418      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420    return 1;
421  }
422
423  // Two-way conditional branch.
424  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426  if (isThumb)
427    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428  else
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430  return 2;
431}
432
433bool ARMBaseInstrInfo::
434ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437  return false;
438}
439
440bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441  if (MI->isBundle()) {
442    MachineBasicBlock::const_instr_iterator I = MI;
443    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444    while (++I != E && I->isInsideBundle()) {
445      int PIdx = I->findFirstPredOperandIdx();
446      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447        return true;
448    }
449    return false;
450  }
451
452  int PIdx = MI->findFirstPredOperandIdx();
453  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454}
455
456bool ARMBaseInstrInfo::
457PredicateInstruction(MachineInstr *MI,
458                     const SmallVectorImpl<MachineOperand> &Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464    return true;
465  }
466
467  int PIdx = MI->findFirstPredOperandIdx();
468  if (PIdx != -1) {
469    MachineOperand &PMO = MI->getOperand(PIdx);
470    PMO.setImm(Pred[0].getImm());
471    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472    return true;
473  }
474  return false;
475}
476
477bool ARMBaseInstrInfo::
478SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479                  const SmallVectorImpl<MachineOperand> &Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  bool Found = false;
507  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508    const MachineOperand &MO = MI->getOperand(i);
509    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511      Pred.push_back(MO);
512      Found = true;
513    }
514  }
515
516  return Found;
517}
518
519/// isPredicable - Return true if the specified instruction can be predicated.
520/// By default, this returns true for every instruction with a
521/// PredicateOperand.
522bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
523  if (!MI->isPredicable())
524    return false;
525
526  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
527    ARMFunctionInfo *AFI =
528      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
529    return AFI->isThumb2Function();
530  }
531  return true;
532}
533
534/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
535LLVM_ATTRIBUTE_NOINLINE
536static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
537                                unsigned JTI);
538static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
539                                unsigned JTI) {
540  assert(JTI < JT.size());
541  return JT[JTI].MBBs.size();
542}
543
544/// GetInstSize - Return the size of the specified MachineInstr.
545///
546unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
547  const MachineBasicBlock &MBB = *MI->getParent();
548  const MachineFunction *MF = MBB.getParent();
549  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
550
551  const MCInstrDesc &MCID = MI->getDesc();
552  if (MCID.getSize())
553    return MCID.getSize();
554
555  // If this machine instr is an inline asm, measure it.
556  if (MI->getOpcode() == ARM::INLINEASM)
557    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
558  if (MI->isLabel())
559    return 0;
560  unsigned Opc = MI->getOpcode();
561  switch (Opc) {
562  case TargetOpcode::IMPLICIT_DEF:
563  case TargetOpcode::KILL:
564  case TargetOpcode::PROLOG_LABEL:
565  case TargetOpcode::EH_LABEL:
566  case TargetOpcode::DBG_VALUE:
567    return 0;
568  case TargetOpcode::BUNDLE:
569    return getInstBundleLength(MI);
570  case ARM::MOVi16_ga_pcrel:
571  case ARM::MOVTi16_ga_pcrel:
572  case ARM::t2MOVi16_ga_pcrel:
573  case ARM::t2MOVTi16_ga_pcrel:
574    return 4;
575  case ARM::MOVi32imm:
576  case ARM::t2MOVi32imm:
577    return 8;
578  case ARM::CONSTPOOL_ENTRY:
579    // If this machine instr is a constant pool entry, its size is recorded as
580    // operand #2.
581    return MI->getOperand(2).getImm();
582  case ARM::Int_eh_sjlj_longjmp:
583    return 16;
584  case ARM::tInt_eh_sjlj_longjmp:
585    return 10;
586  case ARM::Int_eh_sjlj_setjmp:
587  case ARM::Int_eh_sjlj_setjmp_nofp:
588    return 20;
589  case ARM::tInt_eh_sjlj_setjmp:
590  case ARM::t2Int_eh_sjlj_setjmp:
591  case ARM::t2Int_eh_sjlj_setjmp_nofp:
592    return 12;
593  case ARM::BR_JTr:
594  case ARM::BR_JTm:
595  case ARM::BR_JTadd:
596  case ARM::tBR_JTr:
597  case ARM::t2BR_JT:
598  case ARM::t2TBB_JT:
599  case ARM::t2TBH_JT: {
600    // These are jumptable branches, i.e. a branch followed by an inlined
601    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
602    // entry is one byte; TBH two byte each.
603    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
604      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
605    unsigned NumOps = MCID.getNumOperands();
606    MachineOperand JTOP =
607      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
608    unsigned JTI = JTOP.getIndex();
609    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
610    assert(MJTI != 0);
611    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
612    assert(JTI < JT.size());
613    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
614    // 4 aligned. The assembler / linker may add 2 byte padding just before
615    // the JT entries.  The size does not include this padding; the
616    // constant islands pass does separate bookkeeping for it.
617    // FIXME: If we know the size of the function is less than (1 << 16) *2
618    // bytes, we can use 16-bit entries instead. Then there won't be an
619    // alignment issue.
620    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
621    unsigned NumEntries = getNumJTEntries(JT, JTI);
622    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
623      // Make sure the instruction that follows TBB is 2-byte aligned.
624      // FIXME: Constant island pass should insert an "ALIGN" instruction
625      // instead.
626      ++NumEntries;
627    return NumEntries * EntrySize + InstSize;
628  }
629  default:
630    // Otherwise, pseudo-instruction sizes are zero.
631    return 0;
632  }
633}
634
635unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
636  unsigned Size = 0;
637  MachineBasicBlock::const_instr_iterator I = MI;
638  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
639  while (++I != E && I->isInsideBundle()) {
640    assert(!I->isBundle() && "No nested bundle!");
641    Size += GetInstSizeInBytes(&*I);
642  }
643  return Size;
644}
645
646void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
647                                   MachineBasicBlock::iterator I, DebugLoc DL,
648                                   unsigned DestReg, unsigned SrcReg,
649                                   bool KillSrc) const {
650  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
651  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
652
653  if (GPRDest && GPRSrc) {
654    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
655                                  .addReg(SrcReg, getKillRegState(KillSrc))));
656    return;
657  }
658
659  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
660  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
661
662  unsigned Opc = 0;
663  if (SPRDest && SPRSrc)
664    Opc = ARM::VMOVS;
665  else if (GPRDest && SPRSrc)
666    Opc = ARM::VMOVRS;
667  else if (SPRDest && GPRSrc)
668    Opc = ARM::VMOVSR;
669  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
670    Opc = ARM::VMOVD;
671  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
672    Opc = ARM::VORRq;
673
674  if (Opc) {
675    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
676    MIB.addReg(SrcReg, getKillRegState(KillSrc));
677    if (Opc == ARM::VORRq)
678      MIB.addReg(SrcReg, getKillRegState(KillSrc));
679    AddDefaultPred(MIB);
680    return;
681  }
682
683  // Handle register classes that require multiple instructions.
684  unsigned BeginIdx = 0;
685  unsigned SubRegs = 0;
686  int Spacing = 1;
687
688  // Use VORRq when possible.
689  if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
690    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
691  else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
692    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
693  // Fall back to VMOVD.
694  else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
695    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
696  else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
697    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
698  else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
699    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
700
701  else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
702    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
703  else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
704    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
705  else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
706    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
707
708  assert(Opc && "Impossible reg-to-reg copy");
709
710  const TargetRegisterInfo *TRI = &getRegisterInfo();
711  MachineInstrBuilder Mov;
712
713  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
714  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
715    BeginIdx = BeginIdx + ((SubRegs-1)*Spacing);
716    Spacing = -Spacing;
717  }
718#ifndef NDEBUG
719  SmallSet<unsigned, 4> DstRegs;
720#endif
721  for (unsigned i = 0; i != SubRegs; ++i) {
722    unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
723    unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
724    assert(Dst && Src && "Bad sub-register");
725#ifndef NDEBUG
726    assert(!DstRegs.count(Src) && "destructive vector copy");
727    DstRegs.insert(Dst);
728#endif
729    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
730      .addReg(Src);
731    // VORR takes two source operands.
732    if (Opc == ARM::VORRq)
733      Mov.addReg(Src);
734    Mov = AddDefaultPred(Mov);
735  }
736  // Add implicit super-register defs and kills to the last instruction.
737  Mov->addRegisterDefined(DestReg, TRI);
738  if (KillSrc)
739    Mov->addRegisterKilled(SrcReg, TRI);
740}
741
742static const
743MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
744                             unsigned Reg, unsigned SubIdx, unsigned State,
745                             const TargetRegisterInfo *TRI) {
746  if (!SubIdx)
747    return MIB.addReg(Reg, State);
748
749  if (TargetRegisterInfo::isPhysicalRegister(Reg))
750    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
751  return MIB.addReg(Reg, State, SubIdx);
752}
753
754void ARMBaseInstrInfo::
755storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
756                    unsigned SrcReg, bool isKill, int FI,
757                    const TargetRegisterClass *RC,
758                    const TargetRegisterInfo *TRI) const {
759  DebugLoc DL;
760  if (I != MBB.end()) DL = I->getDebugLoc();
761  MachineFunction &MF = *MBB.getParent();
762  MachineFrameInfo &MFI = *MF.getFrameInfo();
763  unsigned Align = MFI.getObjectAlignment(FI);
764
765  MachineMemOperand *MMO =
766    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
767                            MachineMemOperand::MOStore,
768                            MFI.getObjectSize(FI),
769                            Align);
770
771  switch (RC->getSize()) {
772    case 4:
773      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
774        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
775                   .addReg(SrcReg, getKillRegState(isKill))
776                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
777      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
778        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
779                   .addReg(SrcReg, getKillRegState(isKill))
780                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
781      } else
782        llvm_unreachable("Unknown reg class!");
783      break;
784    case 8:
785      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
786        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
787                   .addReg(SrcReg, getKillRegState(isKill))
788                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
789      } else
790        llvm_unreachable("Unknown reg class!");
791      break;
792    case 16:
793      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
794        // Use aligned spills if the stack can be realigned.
795        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
796          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
797                     .addFrameIndex(FI).addImm(16)
798                     .addReg(SrcReg, getKillRegState(isKill))
799                     .addMemOperand(MMO));
800        } else {
801          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
802                     .addReg(SrcReg, getKillRegState(isKill))
803                     .addFrameIndex(FI)
804                     .addMemOperand(MMO));
805        }
806      } else
807        llvm_unreachable("Unknown reg class!");
808      break;
809    case 24:
810      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
811        // Use aligned spills if the stack can be realigned.
812        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
813          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
814                     .addFrameIndex(FI).addImm(16)
815                     .addReg(SrcReg, getKillRegState(isKill))
816                     .addMemOperand(MMO));
817        } else {
818          MachineInstrBuilder MIB =
819          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
820                       .addFrameIndex(FI))
821                       .addMemOperand(MMO);
822          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
823          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
824          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
825        }
826      } else
827        llvm_unreachable("Unknown reg class!");
828      break;
829    case 32:
830      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
831        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
832          // FIXME: It's possible to only store part of the QQ register if the
833          // spilled def has a sub-register index.
834          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
835                     .addFrameIndex(FI).addImm(16)
836                     .addReg(SrcReg, getKillRegState(isKill))
837                     .addMemOperand(MMO));
838        } else {
839          MachineInstrBuilder MIB =
840          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
841                       .addFrameIndex(FI))
842                       .addMemOperand(MMO);
843          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
844          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
845          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
846                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
847        }
848      } else
849        llvm_unreachable("Unknown reg class!");
850      break;
851    case 64:
852      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
853        MachineInstrBuilder MIB =
854          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
855                         .addFrameIndex(FI))
856                         .addMemOperand(MMO);
857        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
858        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
859        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
860        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
861        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
862        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
863        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
864              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
865      } else
866        llvm_unreachable("Unknown reg class!");
867      break;
868    default:
869      llvm_unreachable("Unknown reg class!");
870  }
871}
872
873unsigned
874ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
875                                     int &FrameIndex) const {
876  switch (MI->getOpcode()) {
877  default: break;
878  case ARM::STRrs:
879  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
880    if (MI->getOperand(1).isFI() &&
881        MI->getOperand(2).isReg() &&
882        MI->getOperand(3).isImm() &&
883        MI->getOperand(2).getReg() == 0 &&
884        MI->getOperand(3).getImm() == 0) {
885      FrameIndex = MI->getOperand(1).getIndex();
886      return MI->getOperand(0).getReg();
887    }
888    break;
889  case ARM::STRi12:
890  case ARM::t2STRi12:
891  case ARM::tSTRspi:
892  case ARM::VSTRD:
893  case ARM::VSTRS:
894    if (MI->getOperand(1).isFI() &&
895        MI->getOperand(2).isImm() &&
896        MI->getOperand(2).getImm() == 0) {
897      FrameIndex = MI->getOperand(1).getIndex();
898      return MI->getOperand(0).getReg();
899    }
900    break;
901  case ARM::VST1q64:
902  case ARM::VST1d64TPseudo:
903  case ARM::VST1d64QPseudo:
904    if (MI->getOperand(0).isFI() &&
905        MI->getOperand(2).getSubReg() == 0) {
906      FrameIndex = MI->getOperand(0).getIndex();
907      return MI->getOperand(2).getReg();
908    }
909    break;
910  case ARM::VSTMQIA:
911    if (MI->getOperand(1).isFI() &&
912        MI->getOperand(0).getSubReg() == 0) {
913      FrameIndex = MI->getOperand(1).getIndex();
914      return MI->getOperand(0).getReg();
915    }
916    break;
917  }
918
919  return 0;
920}
921
922unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
923                                                    int &FrameIndex) const {
924  const MachineMemOperand *Dummy;
925  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
926}
927
928void ARMBaseInstrInfo::
929loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
930                     unsigned DestReg, int FI,
931                     const TargetRegisterClass *RC,
932                     const TargetRegisterInfo *TRI) const {
933  DebugLoc DL;
934  if (I != MBB.end()) DL = I->getDebugLoc();
935  MachineFunction &MF = *MBB.getParent();
936  MachineFrameInfo &MFI = *MF.getFrameInfo();
937  unsigned Align = MFI.getObjectAlignment(FI);
938  MachineMemOperand *MMO =
939    MF.getMachineMemOperand(
940                    MachinePointerInfo::getFixedStack(FI),
941                            MachineMemOperand::MOLoad,
942                            MFI.getObjectSize(FI),
943                            Align);
944
945  switch (RC->getSize()) {
946  case 4:
947    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
948      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
949                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
950
951    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
952      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
953                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
954    } else
955      llvm_unreachable("Unknown reg class!");
956    break;
957  case 8:
958    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
959      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
960                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
961    } else
962      llvm_unreachable("Unknown reg class!");
963    break;
964  case 16:
965    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
966      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
967        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
968                     .addFrameIndex(FI).addImm(16)
969                     .addMemOperand(MMO));
970      } else {
971        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
972                       .addFrameIndex(FI)
973                       .addMemOperand(MMO));
974      }
975    } else
976      llvm_unreachable("Unknown reg class!");
977    break;
978  case 24:
979    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
980      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
981        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
982                     .addFrameIndex(FI).addImm(16)
983                     .addMemOperand(MMO));
984      } else {
985        MachineInstrBuilder MIB =
986          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
987                         .addFrameIndex(FI)
988                         .addMemOperand(MMO));
989        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
990        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
991        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
992        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
993          MIB.addReg(DestReg, RegState::ImplicitDefine);
994      }
995    } else
996      llvm_unreachable("Unknown reg class!");
997    break;
998   case 32:
999    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1000      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1001        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1002                     .addFrameIndex(FI).addImm(16)
1003                     .addMemOperand(MMO));
1004      } else {
1005        MachineInstrBuilder MIB =
1006        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1007                       .addFrameIndex(FI))
1008                       .addMemOperand(MMO);
1009        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1010        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1011        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1012        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1013        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1014          MIB.addReg(DestReg, RegState::ImplicitDefine);
1015      }
1016    } else
1017      llvm_unreachable("Unknown reg class!");
1018    break;
1019  case 64:
1020    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1021      MachineInstrBuilder MIB =
1022      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1023                     .addFrameIndex(FI))
1024                     .addMemOperand(MMO);
1025      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1026      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1027      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1028      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1029      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1030      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1031      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1032      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1033      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1034        MIB.addReg(DestReg, RegState::ImplicitDefine);
1035    } else
1036      llvm_unreachable("Unknown reg class!");
1037    break;
1038  default:
1039    llvm_unreachable("Unknown regclass!");
1040  }
1041}
1042
1043unsigned
1044ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1045                                      int &FrameIndex) const {
1046  switch (MI->getOpcode()) {
1047  default: break;
1048  case ARM::LDRrs:
1049  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1050    if (MI->getOperand(1).isFI() &&
1051        MI->getOperand(2).isReg() &&
1052        MI->getOperand(3).isImm() &&
1053        MI->getOperand(2).getReg() == 0 &&
1054        MI->getOperand(3).getImm() == 0) {
1055      FrameIndex = MI->getOperand(1).getIndex();
1056      return MI->getOperand(0).getReg();
1057    }
1058    break;
1059  case ARM::LDRi12:
1060  case ARM::t2LDRi12:
1061  case ARM::tLDRspi:
1062  case ARM::VLDRD:
1063  case ARM::VLDRS:
1064    if (MI->getOperand(1).isFI() &&
1065        MI->getOperand(2).isImm() &&
1066        MI->getOperand(2).getImm() == 0) {
1067      FrameIndex = MI->getOperand(1).getIndex();
1068      return MI->getOperand(0).getReg();
1069    }
1070    break;
1071  case ARM::VLD1q64:
1072  case ARM::VLD1d64TPseudo:
1073  case ARM::VLD1d64QPseudo:
1074    if (MI->getOperand(1).isFI() &&
1075        MI->getOperand(0).getSubReg() == 0) {
1076      FrameIndex = MI->getOperand(1).getIndex();
1077      return MI->getOperand(0).getReg();
1078    }
1079    break;
1080  case ARM::VLDMQIA:
1081    if (MI->getOperand(1).isFI() &&
1082        MI->getOperand(0).getSubReg() == 0) {
1083      FrameIndex = MI->getOperand(1).getIndex();
1084      return MI->getOperand(0).getReg();
1085    }
1086    break;
1087  }
1088
1089  return 0;
1090}
1091
1092unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1093                                             int &FrameIndex) const {
1094  const MachineMemOperand *Dummy;
1095  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1096}
1097
1098bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1099  // This hook gets to expand COPY instructions before they become
1100  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1101  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1102  // changed into a VORR that can go down the NEON pipeline.
1103  if (!WidenVMOVS || !MI->isCopy())
1104    return false;
1105
1106  // Look for a copy between even S-registers.  That is where we keep floats
1107  // when using NEON v2f32 instructions for f32 arithmetic.
1108  unsigned DstRegS = MI->getOperand(0).getReg();
1109  unsigned SrcRegS = MI->getOperand(1).getReg();
1110  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1111    return false;
1112
1113  const TargetRegisterInfo *TRI = &getRegisterInfo();
1114  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1115                                              &ARM::DPRRegClass);
1116  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1117                                              &ARM::DPRRegClass);
1118  if (!DstRegD || !SrcRegD)
1119    return false;
1120
1121  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1122  // legal if the COPY already defines the full DstRegD, and it isn't a
1123  // sub-register insertion.
1124  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1125    return false;
1126
1127  // A dead copy shouldn't show up here, but reject it just in case.
1128  if (MI->getOperand(0).isDead())
1129    return false;
1130
1131  // All clear, widen the COPY.
1132  DEBUG(dbgs() << "widening:    " << *MI);
1133
1134  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1135  // or some other super-register.
1136  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1137  if (ImpDefIdx != -1)
1138    MI->RemoveOperand(ImpDefIdx);
1139
1140  // Change the opcode and operands.
1141  MI->setDesc(get(ARM::VMOVD));
1142  MI->getOperand(0).setReg(DstRegD);
1143  MI->getOperand(1).setReg(SrcRegD);
1144  AddDefaultPred(MachineInstrBuilder(MI));
1145
1146  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1147  // register scavenger and machine verifier, so we need to indicate that we
1148  // are reading an undefined value from SrcRegD, but a proper value from
1149  // SrcRegS.
1150  MI->getOperand(1).setIsUndef();
1151  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1152
1153  // SrcRegD may actually contain an unrelated value in the ssub_1
1154  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1155  if (MI->getOperand(1).isKill()) {
1156    MI->getOperand(1).setIsKill(false);
1157    MI->addRegisterKilled(SrcRegS, TRI, true);
1158  }
1159
1160  DEBUG(dbgs() << "replaced by: " << *MI);
1161  return true;
1162}
1163
1164MachineInstr*
1165ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1166                                           int FrameIx, uint64_t Offset,
1167                                           const MDNode *MDPtr,
1168                                           DebugLoc DL) const {
1169  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1170    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1171  return &*MIB;
1172}
1173
1174/// Create a copy of a const pool value. Update CPI to the new index and return
1175/// the label UID.
1176static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1177  MachineConstantPool *MCP = MF.getConstantPool();
1178  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1179
1180  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1181  assert(MCPE.isMachineConstantPoolEntry() &&
1182         "Expecting a machine constantpool entry!");
1183  ARMConstantPoolValue *ACPV =
1184    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1185
1186  unsigned PCLabelId = AFI->createPICLabelUId();
1187  ARMConstantPoolValue *NewCPV = 0;
1188  // FIXME: The below assumes PIC relocation model and that the function
1189  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1190  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1191  // instructions, so that's probably OK, but is PIC always correct when
1192  // we get here?
1193  if (ACPV->isGlobalValue())
1194    NewCPV = ARMConstantPoolConstant::
1195      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1196             ARMCP::CPValue, 4);
1197  else if (ACPV->isExtSymbol())
1198    NewCPV = ARMConstantPoolSymbol::
1199      Create(MF.getFunction()->getContext(),
1200             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1201  else if (ACPV->isBlockAddress())
1202    NewCPV = ARMConstantPoolConstant::
1203      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1204             ARMCP::CPBlockAddress, 4);
1205  else if (ACPV->isLSDA())
1206    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1207                                             ARMCP::CPLSDA, 4);
1208  else if (ACPV->isMachineBasicBlock())
1209    NewCPV = ARMConstantPoolMBB::
1210      Create(MF.getFunction()->getContext(),
1211             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1212  else
1213    llvm_unreachable("Unexpected ARM constantpool value type!!");
1214  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1215  return PCLabelId;
1216}
1217
1218void ARMBaseInstrInfo::
1219reMaterialize(MachineBasicBlock &MBB,
1220              MachineBasicBlock::iterator I,
1221              unsigned DestReg, unsigned SubIdx,
1222              const MachineInstr *Orig,
1223              const TargetRegisterInfo &TRI) const {
1224  unsigned Opcode = Orig->getOpcode();
1225  switch (Opcode) {
1226  default: {
1227    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1228    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1229    MBB.insert(I, MI);
1230    break;
1231  }
1232  case ARM::tLDRpci_pic:
1233  case ARM::t2LDRpci_pic: {
1234    MachineFunction &MF = *MBB.getParent();
1235    unsigned CPI = Orig->getOperand(1).getIndex();
1236    unsigned PCLabelId = duplicateCPV(MF, CPI);
1237    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1238                                      DestReg)
1239      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1240    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1241    break;
1242  }
1243  }
1244}
1245
1246MachineInstr *
1247ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1248  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1249  switch(Orig->getOpcode()) {
1250  case ARM::tLDRpci_pic:
1251  case ARM::t2LDRpci_pic: {
1252    unsigned CPI = Orig->getOperand(1).getIndex();
1253    unsigned PCLabelId = duplicateCPV(MF, CPI);
1254    Orig->getOperand(1).setIndex(CPI);
1255    Orig->getOperand(2).setImm(PCLabelId);
1256    break;
1257  }
1258  }
1259  return MI;
1260}
1261
1262bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1263                                        const MachineInstr *MI1,
1264                                        const MachineRegisterInfo *MRI) const {
1265  int Opcode = MI0->getOpcode();
1266  if (Opcode == ARM::t2LDRpci ||
1267      Opcode == ARM::t2LDRpci_pic ||
1268      Opcode == ARM::tLDRpci ||
1269      Opcode == ARM::tLDRpci_pic ||
1270      Opcode == ARM::MOV_ga_dyn ||
1271      Opcode == ARM::MOV_ga_pcrel ||
1272      Opcode == ARM::MOV_ga_pcrel_ldr ||
1273      Opcode == ARM::t2MOV_ga_dyn ||
1274      Opcode == ARM::t2MOV_ga_pcrel) {
1275    if (MI1->getOpcode() != Opcode)
1276      return false;
1277    if (MI0->getNumOperands() != MI1->getNumOperands())
1278      return false;
1279
1280    const MachineOperand &MO0 = MI0->getOperand(1);
1281    const MachineOperand &MO1 = MI1->getOperand(1);
1282    if (MO0.getOffset() != MO1.getOffset())
1283      return false;
1284
1285    if (Opcode == ARM::MOV_ga_dyn ||
1286        Opcode == ARM::MOV_ga_pcrel ||
1287        Opcode == ARM::MOV_ga_pcrel_ldr ||
1288        Opcode == ARM::t2MOV_ga_dyn ||
1289        Opcode == ARM::t2MOV_ga_pcrel)
1290      // Ignore the PC labels.
1291      return MO0.getGlobal() == MO1.getGlobal();
1292
1293    const MachineFunction *MF = MI0->getParent()->getParent();
1294    const MachineConstantPool *MCP = MF->getConstantPool();
1295    int CPI0 = MO0.getIndex();
1296    int CPI1 = MO1.getIndex();
1297    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1298    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1299    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1300    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1301    if (isARMCP0 && isARMCP1) {
1302      ARMConstantPoolValue *ACPV0 =
1303        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1304      ARMConstantPoolValue *ACPV1 =
1305        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1306      return ACPV0->hasSameValue(ACPV1);
1307    } else if (!isARMCP0 && !isARMCP1) {
1308      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1309    }
1310    return false;
1311  } else if (Opcode == ARM::PICLDR) {
1312    if (MI1->getOpcode() != Opcode)
1313      return false;
1314    if (MI0->getNumOperands() != MI1->getNumOperands())
1315      return false;
1316
1317    unsigned Addr0 = MI0->getOperand(1).getReg();
1318    unsigned Addr1 = MI1->getOperand(1).getReg();
1319    if (Addr0 != Addr1) {
1320      if (!MRI ||
1321          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1322          !TargetRegisterInfo::isVirtualRegister(Addr1))
1323        return false;
1324
1325      // This assumes SSA form.
1326      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1327      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1328      // Check if the loaded value, e.g. a constantpool of a global address, are
1329      // the same.
1330      if (!produceSameValue(Def0, Def1, MRI))
1331        return false;
1332    }
1333
1334    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1335      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1336      const MachineOperand &MO0 = MI0->getOperand(i);
1337      const MachineOperand &MO1 = MI1->getOperand(i);
1338      if (!MO0.isIdenticalTo(MO1))
1339        return false;
1340    }
1341    return true;
1342  }
1343
1344  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1345}
1346
1347/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1348/// determine if two loads are loading from the same base address. It should
1349/// only return true if the base pointers are the same and the only differences
1350/// between the two addresses is the offset. It also returns the offsets by
1351/// reference.
1352bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1353                                               int64_t &Offset1,
1354                                               int64_t &Offset2) const {
1355  // Don't worry about Thumb: just ARM and Thumb2.
1356  if (Subtarget.isThumb1Only()) return false;
1357
1358  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1359    return false;
1360
1361  switch (Load1->getMachineOpcode()) {
1362  default:
1363    return false;
1364  case ARM::LDRi12:
1365  case ARM::LDRBi12:
1366  case ARM::LDRD:
1367  case ARM::LDRH:
1368  case ARM::LDRSB:
1369  case ARM::LDRSH:
1370  case ARM::VLDRD:
1371  case ARM::VLDRS:
1372  case ARM::t2LDRi8:
1373  case ARM::t2LDRDi8:
1374  case ARM::t2LDRSHi8:
1375  case ARM::t2LDRi12:
1376  case ARM::t2LDRSHi12:
1377    break;
1378  }
1379
1380  switch (Load2->getMachineOpcode()) {
1381  default:
1382    return false;
1383  case ARM::LDRi12:
1384  case ARM::LDRBi12:
1385  case ARM::LDRD:
1386  case ARM::LDRH:
1387  case ARM::LDRSB:
1388  case ARM::LDRSH:
1389  case ARM::VLDRD:
1390  case ARM::VLDRS:
1391  case ARM::t2LDRi8:
1392  case ARM::t2LDRDi8:
1393  case ARM::t2LDRSHi8:
1394  case ARM::t2LDRi12:
1395  case ARM::t2LDRSHi12:
1396    break;
1397  }
1398
1399  // Check if base addresses and chain operands match.
1400  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1401      Load1->getOperand(4) != Load2->getOperand(4))
1402    return false;
1403
1404  // Index should be Reg0.
1405  if (Load1->getOperand(3) != Load2->getOperand(3))
1406    return false;
1407
1408  // Determine the offsets.
1409  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1410      isa<ConstantSDNode>(Load2->getOperand(1))) {
1411    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1412    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1413    return true;
1414  }
1415
1416  return false;
1417}
1418
1419/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1420/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1421/// be scheduled togther. On some targets if two loads are loading from
1422/// addresses in the same cache line, it's better if they are scheduled
1423/// together. This function takes two integers that represent the load offsets
1424/// from the common base address. It returns true if it decides it's desirable
1425/// to schedule the two loads together. "NumLoads" is the number of loads that
1426/// have already been scheduled after Load1.
1427bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1428                                               int64_t Offset1, int64_t Offset2,
1429                                               unsigned NumLoads) const {
1430  // Don't worry about Thumb: just ARM and Thumb2.
1431  if (Subtarget.isThumb1Only()) return false;
1432
1433  assert(Offset2 > Offset1);
1434
1435  if ((Offset2 - Offset1) / 8 > 64)
1436    return false;
1437
1438  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1439    return false;  // FIXME: overly conservative?
1440
1441  // Four loads in a row should be sufficient.
1442  if (NumLoads >= 3)
1443    return false;
1444
1445  return true;
1446}
1447
1448bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1449                                            const MachineBasicBlock *MBB,
1450                                            const MachineFunction &MF) const {
1451  // Debug info is never a scheduling boundary. It's necessary to be explicit
1452  // due to the special treatment of IT instructions below, otherwise a
1453  // dbg_value followed by an IT will result in the IT instruction being
1454  // considered a scheduling hazard, which is wrong. It should be the actual
1455  // instruction preceding the dbg_value instruction(s), just like it is
1456  // when debug info is not present.
1457  if (MI->isDebugValue())
1458    return false;
1459
1460  // Terminators and labels can't be scheduled around.
1461  if (MI->isTerminator() || MI->isLabel())
1462    return true;
1463
1464  // Treat the start of the IT block as a scheduling boundary, but schedule
1465  // t2IT along with all instructions following it.
1466  // FIXME: This is a big hammer. But the alternative is to add all potential
1467  // true and anti dependencies to IT block instructions as implicit operands
1468  // to the t2IT instruction. The added compile time and complexity does not
1469  // seem worth it.
1470  MachineBasicBlock::const_iterator I = MI;
1471  // Make sure to skip any dbg_value instructions
1472  while (++I != MBB->end() && I->isDebugValue())
1473    ;
1474  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1475    return true;
1476
1477  // Don't attempt to schedule around any instruction that defines
1478  // a stack-oriented pointer, as it's unlikely to be profitable. This
1479  // saves compile time, because it doesn't require every single
1480  // stack slot reference to depend on the instruction that does the
1481  // modification.
1482  // Calls don't actually change the stack pointer, even if they have imp-defs.
1483  // No ARM calling conventions change the stack pointer. (X86 calling
1484  // conventions sometimes do).
1485  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1486    return true;
1487
1488  return false;
1489}
1490
1491bool ARMBaseInstrInfo::
1492isProfitableToIfCvt(MachineBasicBlock &MBB,
1493                    unsigned NumCycles, unsigned ExtraPredCycles,
1494                    const BranchProbability &Probability) const {
1495  if (!NumCycles)
1496    return false;
1497
1498  // Attempt to estimate the relative costs of predication versus branching.
1499  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1500  UnpredCost /= Probability.getDenominator();
1501  UnpredCost += 1; // The branch itself
1502  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1503
1504  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1505}
1506
1507bool ARMBaseInstrInfo::
1508isProfitableToIfCvt(MachineBasicBlock &TMBB,
1509                    unsigned TCycles, unsigned TExtra,
1510                    MachineBasicBlock &FMBB,
1511                    unsigned FCycles, unsigned FExtra,
1512                    const BranchProbability &Probability) const {
1513  if (!TCycles || !FCycles)
1514    return false;
1515
1516  // Attempt to estimate the relative costs of predication versus branching.
1517  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1518  TUnpredCost /= Probability.getDenominator();
1519
1520  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1521  unsigned FUnpredCost = Comp * FCycles;
1522  FUnpredCost /= Probability.getDenominator();
1523
1524  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1525  UnpredCost += 1; // The branch itself
1526  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1527
1528  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1529}
1530
1531/// getInstrPredicate - If instruction is predicated, returns its predicate
1532/// condition, otherwise returns AL. It also returns the condition code
1533/// register by reference.
1534ARMCC::CondCodes
1535llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1536  int PIdx = MI->findFirstPredOperandIdx();
1537  if (PIdx == -1) {
1538    PredReg = 0;
1539    return ARMCC::AL;
1540  }
1541
1542  PredReg = MI->getOperand(PIdx+1).getReg();
1543  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1544}
1545
1546
1547int llvm::getMatchingCondBranchOpcode(int Opc) {
1548  if (Opc == ARM::B)
1549    return ARM::Bcc;
1550  if (Opc == ARM::tB)
1551    return ARM::tBcc;
1552  if (Opc == ARM::t2B)
1553    return ARM::t2Bcc;
1554
1555  llvm_unreachable("Unknown unconditional branch opcode!");
1556}
1557
1558/// commuteInstruction - Handle commutable instructions.
1559MachineInstr *
1560ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1561  switch (MI->getOpcode()) {
1562  case ARM::MOVCCr:
1563  case ARM::t2MOVCCr: {
1564    // MOVCC can be commuted by inverting the condition.
1565    unsigned PredReg = 0;
1566    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1567    // MOVCC AL can't be inverted. Shouldn't happen.
1568    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1569      return NULL;
1570    MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1571    if (!MI)
1572      return NULL;
1573    // After swapping the MOVCC operands, also invert the condition.
1574    MI->getOperand(MI->findFirstPredOperandIdx())
1575      .setImm(ARMCC::getOppositeCondition(CC));
1576    return MI;
1577  }
1578  }
1579  return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1580}
1581
1582/// Identify instructions that can be folded into a MOVCC instruction, and
1583/// return the defining instruction.
1584static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1585                                      const MachineRegisterInfo &MRI,
1586                                      const TargetInstrInfo *TII) {
1587  if (!TargetRegisterInfo::isVirtualRegister(Reg))
1588    return 0;
1589  if (!MRI.hasOneNonDBGUse(Reg))
1590    return 0;
1591  MachineInstr *MI = MRI.getVRegDef(Reg);
1592  if (!MI)
1593    return 0;
1594  // MI is folded into the MOVCC by predicating it.
1595  if (!MI->isPredicable())
1596    return 0;
1597  // Check if MI has any non-dead defs or physreg uses. This also detects
1598  // predicated instructions which will be reading CPSR.
1599  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1600    const MachineOperand &MO = MI->getOperand(i);
1601    // Reject frame index operands, PEI can't handle the predicated pseudos.
1602    if (MO.isFI() || MO.isCPI() || MO.isJTI())
1603      return 0;
1604    if (!MO.isReg())
1605      continue;
1606    // MI can't have any tied operands, that would conflict with predication.
1607    if (MO.isTied())
1608      return 0;
1609    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1610      return 0;
1611    if (MO.isDef() && !MO.isDead())
1612      return 0;
1613  }
1614  bool DontMoveAcrossStores = true;
1615  if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
1616    return 0;
1617  return MI;
1618}
1619
1620bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1621                                     SmallVectorImpl<MachineOperand> &Cond,
1622                                     unsigned &TrueOp, unsigned &FalseOp,
1623                                     bool &Optimizable) const {
1624  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1625         "Unknown select instruction");
1626  // MOVCC operands:
1627  // 0: Def.
1628  // 1: True use.
1629  // 2: False use.
1630  // 3: Condition code.
1631  // 4: CPSR use.
1632  TrueOp = 1;
1633  FalseOp = 2;
1634  Cond.push_back(MI->getOperand(3));
1635  Cond.push_back(MI->getOperand(4));
1636  // We can always fold a def.
1637  Optimizable = true;
1638  return false;
1639}
1640
1641MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1642                                               bool PreferFalse) const {
1643  assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1644         "Unknown select instruction");
1645  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1646  MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1647  bool Invert = !DefMI;
1648  if (!DefMI)
1649    DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1650  if (!DefMI)
1651    return 0;
1652
1653  // Create a new predicated version of DefMI.
1654  // Rfalse is the first use.
1655  MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1656                                      DefMI->getDesc(),
1657                                      MI->getOperand(0).getReg());
1658
1659  // Copy all the DefMI operands, excluding its (null) predicate.
1660  const MCInstrDesc &DefDesc = DefMI->getDesc();
1661  for (unsigned i = 1, e = DefDesc.getNumOperands();
1662       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1663    NewMI.addOperand(DefMI->getOperand(i));
1664
1665  unsigned CondCode = MI->getOperand(3).getImm();
1666  if (Invert)
1667    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1668  else
1669    NewMI.addImm(CondCode);
1670  NewMI.addOperand(MI->getOperand(4));
1671
1672  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1673  if (NewMI->hasOptionalDef())
1674    AddDefaultCC(NewMI);
1675
1676  // The output register value when the predicate is false is an implicit
1677  // register operand tied to the first def.
1678  // The tie makes the register allocator ensure the FalseReg is allocated the
1679  // same register as operand 0.
1680  MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1681  FalseReg.setImplicit();
1682  NewMI->addOperand(FalseReg);
1683  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1684
1685  // The caller will erase MI, but not DefMI.
1686  DefMI->eraseFromParent();
1687  return NewMI;
1688}
1689
1690/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1691/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1692/// def operand.
1693///
1694/// This will go away once we can teach tblgen how to set the optional CPSR def
1695/// operand itself.
1696struct AddSubFlagsOpcodePair {
1697  uint16_t PseudoOpc;
1698  uint16_t MachineOpc;
1699};
1700
1701static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1702  {ARM::ADDSri, ARM::ADDri},
1703  {ARM::ADDSrr, ARM::ADDrr},
1704  {ARM::ADDSrsi, ARM::ADDrsi},
1705  {ARM::ADDSrsr, ARM::ADDrsr},
1706
1707  {ARM::SUBSri, ARM::SUBri},
1708  {ARM::SUBSrr, ARM::SUBrr},
1709  {ARM::SUBSrsi, ARM::SUBrsi},
1710  {ARM::SUBSrsr, ARM::SUBrsr},
1711
1712  {ARM::RSBSri, ARM::RSBri},
1713  {ARM::RSBSrsi, ARM::RSBrsi},
1714  {ARM::RSBSrsr, ARM::RSBrsr},
1715
1716  {ARM::t2ADDSri, ARM::t2ADDri},
1717  {ARM::t2ADDSrr, ARM::t2ADDrr},
1718  {ARM::t2ADDSrs, ARM::t2ADDrs},
1719
1720  {ARM::t2SUBSri, ARM::t2SUBri},
1721  {ARM::t2SUBSrr, ARM::t2SUBrr},
1722  {ARM::t2SUBSrs, ARM::t2SUBrs},
1723
1724  {ARM::t2RSBSri, ARM::t2RSBri},
1725  {ARM::t2RSBSrs, ARM::t2RSBrs},
1726};
1727
1728unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1729  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1730    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1731      return AddSubFlagsOpcodeMap[i].MachineOpc;
1732  return 0;
1733}
1734
1735void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1736                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1737                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1738                               ARMCC::CondCodes Pred, unsigned PredReg,
1739                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1740  bool isSub = NumBytes < 0;
1741  if (isSub) NumBytes = -NumBytes;
1742
1743  while (NumBytes) {
1744    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1745    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1746    assert(ThisVal && "Didn't extract field correctly");
1747
1748    // We will handle these bits from offset, clear them.
1749    NumBytes &= ~ThisVal;
1750
1751    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1752
1753    // Build the new ADD / SUB.
1754    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1755    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1756      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1757      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1758      .setMIFlags(MIFlags);
1759    BaseReg = DestReg;
1760  }
1761}
1762
1763bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1764                                unsigned FrameReg, int &Offset,
1765                                const ARMBaseInstrInfo &TII) {
1766  unsigned Opcode = MI.getOpcode();
1767  const MCInstrDesc &Desc = MI.getDesc();
1768  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1769  bool isSub = false;
1770
1771  // Memory operands in inline assembly always use AddrMode2.
1772  if (Opcode == ARM::INLINEASM)
1773    AddrMode = ARMII::AddrMode2;
1774
1775  if (Opcode == ARM::ADDri) {
1776    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1777    if (Offset == 0) {
1778      // Turn it into a move.
1779      MI.setDesc(TII.get(ARM::MOVr));
1780      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1781      MI.RemoveOperand(FrameRegIdx+1);
1782      Offset = 0;
1783      return true;
1784    } else if (Offset < 0) {
1785      Offset = -Offset;
1786      isSub = true;
1787      MI.setDesc(TII.get(ARM::SUBri));
1788    }
1789
1790    // Common case: small offset, fits into instruction.
1791    if (ARM_AM::getSOImmVal(Offset) != -1) {
1792      // Replace the FrameIndex with sp / fp
1793      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1794      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1795      Offset = 0;
1796      return true;
1797    }
1798
1799    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1800    // as possible.
1801    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1802    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1803
1804    // We will handle these bits from offset, clear them.
1805    Offset &= ~ThisImmVal;
1806
1807    // Get the properly encoded SOImmVal field.
1808    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1809           "Bit extraction didn't work?");
1810    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1811 } else {
1812    unsigned ImmIdx = 0;
1813    int InstrOffs = 0;
1814    unsigned NumBits = 0;
1815    unsigned Scale = 1;
1816    switch (AddrMode) {
1817    case ARMII::AddrMode_i12: {
1818      ImmIdx = FrameRegIdx + 1;
1819      InstrOffs = MI.getOperand(ImmIdx).getImm();
1820      NumBits = 12;
1821      break;
1822    }
1823    case ARMII::AddrMode2: {
1824      ImmIdx = FrameRegIdx+2;
1825      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1826      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1827        InstrOffs *= -1;
1828      NumBits = 12;
1829      break;
1830    }
1831    case ARMII::AddrMode3: {
1832      ImmIdx = FrameRegIdx+2;
1833      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1834      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1835        InstrOffs *= -1;
1836      NumBits = 8;
1837      break;
1838    }
1839    case ARMII::AddrMode4:
1840    case ARMII::AddrMode6:
1841      // Can't fold any offset even if it's zero.
1842      return false;
1843    case ARMII::AddrMode5: {
1844      ImmIdx = FrameRegIdx+1;
1845      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1846      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1847        InstrOffs *= -1;
1848      NumBits = 8;
1849      Scale = 4;
1850      break;
1851    }
1852    default:
1853      llvm_unreachable("Unsupported addressing mode!");
1854    }
1855
1856    Offset += InstrOffs * Scale;
1857    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1858    if (Offset < 0) {
1859      Offset = -Offset;
1860      isSub = true;
1861    }
1862
1863    // Attempt to fold address comp. if opcode has offset bits
1864    if (NumBits > 0) {
1865      // Common case: small offset, fits into instruction.
1866      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1867      int ImmedOffset = Offset / Scale;
1868      unsigned Mask = (1 << NumBits) - 1;
1869      if ((unsigned)Offset <= Mask * Scale) {
1870        // Replace the FrameIndex with sp
1871        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1872        // FIXME: When addrmode2 goes away, this will simplify (like the
1873        // T2 version), as the LDR.i12 versions don't need the encoding
1874        // tricks for the offset value.
1875        if (isSub) {
1876          if (AddrMode == ARMII::AddrMode_i12)
1877            ImmedOffset = -ImmedOffset;
1878          else
1879            ImmedOffset |= 1 << NumBits;
1880        }
1881        ImmOp.ChangeToImmediate(ImmedOffset);
1882        Offset = 0;
1883        return true;
1884      }
1885
1886      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1887      ImmedOffset = ImmedOffset & Mask;
1888      if (isSub) {
1889        if (AddrMode == ARMII::AddrMode_i12)
1890          ImmedOffset = -ImmedOffset;
1891        else
1892          ImmedOffset |= 1 << NumBits;
1893      }
1894      ImmOp.ChangeToImmediate(ImmedOffset);
1895      Offset &= ~(Mask*Scale);
1896    }
1897  }
1898
1899  Offset = (isSub) ? -Offset : Offset;
1900  return Offset == 0;
1901}
1902
1903/// analyzeCompare - For a comparison instruction, return the source registers
1904/// in SrcReg and SrcReg2 if having two register operands, and the value it
1905/// compares against in CmpValue. Return true if the comparison instruction
1906/// can be analyzed.
1907bool ARMBaseInstrInfo::
1908analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
1909               int &CmpMask, int &CmpValue) const {
1910  switch (MI->getOpcode()) {
1911  default: break;
1912  case ARM::CMPri:
1913  case ARM::t2CMPri:
1914    SrcReg = MI->getOperand(0).getReg();
1915    SrcReg2 = 0;
1916    CmpMask = ~0;
1917    CmpValue = MI->getOperand(1).getImm();
1918    return true;
1919  case ARM::CMPrr:
1920  case ARM::t2CMPrr:
1921    SrcReg = MI->getOperand(0).getReg();
1922    SrcReg2 = MI->getOperand(1).getReg();
1923    CmpMask = ~0;
1924    CmpValue = 0;
1925    return true;
1926  case ARM::TSTri:
1927  case ARM::t2TSTri:
1928    SrcReg = MI->getOperand(0).getReg();
1929    SrcReg2 = 0;
1930    CmpMask = MI->getOperand(1).getImm();
1931    CmpValue = 0;
1932    return true;
1933  }
1934
1935  return false;
1936}
1937
1938/// isSuitableForMask - Identify a suitable 'and' instruction that
1939/// operates on the given source register and applies the same mask
1940/// as a 'tst' instruction. Provide a limited look-through for copies.
1941/// When successful, MI will hold the found instruction.
1942static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1943                              int CmpMask, bool CommonUse) {
1944  switch (MI->getOpcode()) {
1945    case ARM::ANDri:
1946    case ARM::t2ANDri:
1947      if (CmpMask != MI->getOperand(2).getImm())
1948        return false;
1949      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1950        return true;
1951      break;
1952    case ARM::COPY: {
1953      // Walk down one instruction which is potentially an 'and'.
1954      const MachineInstr &Copy = *MI;
1955      MachineBasicBlock::iterator AND(
1956        llvm::next(MachineBasicBlock::iterator(MI)));
1957      if (AND == MI->getParent()->end()) return false;
1958      MI = AND;
1959      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1960                               CmpMask, true);
1961    }
1962  }
1963
1964  return false;
1965}
1966
1967/// getSwappedCondition - assume the flags are set by MI(a,b), return
1968/// the condition code if we modify the instructions such that flags are
1969/// set by MI(b,a).
1970inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
1971  switch (CC) {
1972  default: return ARMCC::AL;
1973  case ARMCC::EQ: return ARMCC::EQ;
1974  case ARMCC::NE: return ARMCC::NE;
1975  case ARMCC::HS: return ARMCC::LS;
1976  case ARMCC::LO: return ARMCC::HI;
1977  case ARMCC::HI: return ARMCC::LO;
1978  case ARMCC::LS: return ARMCC::HS;
1979  case ARMCC::GE: return ARMCC::LE;
1980  case ARMCC::LT: return ARMCC::GT;
1981  case ARMCC::GT: return ARMCC::LT;
1982  case ARMCC::LE: return ARMCC::GE;
1983  }
1984}
1985
1986/// isRedundantFlagInstr - check whether the first instruction, whose only
1987/// purpose is to update flags, can be made redundant.
1988/// CMPrr can be made redundant by SUBrr if the operands are the same.
1989/// CMPri can be made redundant by SUBri if the operands are the same.
1990/// This function can be extended later on.
1991inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
1992                                        unsigned SrcReg2, int ImmValue,
1993                                        MachineInstr *OI) {
1994  if ((CmpI->getOpcode() == ARM::CMPrr ||
1995       CmpI->getOpcode() == ARM::t2CMPrr) &&
1996      (OI->getOpcode() == ARM::SUBrr ||
1997       OI->getOpcode() == ARM::t2SUBrr) &&
1998      ((OI->getOperand(1).getReg() == SrcReg &&
1999        OI->getOperand(2).getReg() == SrcReg2) ||
2000       (OI->getOperand(1).getReg() == SrcReg2 &&
2001        OI->getOperand(2).getReg() == SrcReg)))
2002    return true;
2003
2004  if ((CmpI->getOpcode() == ARM::CMPri ||
2005       CmpI->getOpcode() == ARM::t2CMPri) &&
2006      (OI->getOpcode() == ARM::SUBri ||
2007       OI->getOpcode() == ARM::t2SUBri) &&
2008      OI->getOperand(1).getReg() == SrcReg &&
2009      OI->getOperand(2).getImm() == ImmValue)
2010    return true;
2011  return false;
2012}
2013
2014/// optimizeCompareInstr - Convert the instruction supplying the argument to the
2015/// comparison into one that sets the zero bit in the flags register;
2016/// Remove a redundant Compare instruction if an earlier instruction can set the
2017/// flags in the same way as Compare.
2018/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2019/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2020/// condition code of instructions which use the flags.
2021bool ARMBaseInstrInfo::
2022optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2023                     int CmpMask, int CmpValue,
2024                     const MachineRegisterInfo *MRI) const {
2025  // Get the unique definition of SrcReg.
2026  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2027  if (!MI) return false;
2028
2029  // Masked compares sometimes use the same register as the corresponding 'and'.
2030  if (CmpMask != ~0) {
2031    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2032      MI = 0;
2033      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
2034           UE = MRI->use_end(); UI != UE; ++UI) {
2035        if (UI->getParent() != CmpInstr->getParent()) continue;
2036        MachineInstr *PotentialAND = &*UI;
2037        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2038            isPredicated(PotentialAND))
2039          continue;
2040        MI = PotentialAND;
2041        break;
2042      }
2043      if (!MI) return false;
2044    }
2045  }
2046
2047  // Get ready to iterate backward from CmpInstr.
2048  MachineBasicBlock::iterator I = CmpInstr, E = MI,
2049                              B = CmpInstr->getParent()->begin();
2050
2051  // Early exit if CmpInstr is at the beginning of the BB.
2052  if (I == B) return false;
2053
2054  // There are two possible candidates which can be changed to set CPSR:
2055  // One is MI, the other is a SUB instruction.
2056  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2057  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2058  MachineInstr *Sub = NULL;
2059  if (SrcReg2 != 0)
2060    // MI is not a candidate for CMPrr.
2061    MI = NULL;
2062  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2063    // Conservatively refuse to convert an instruction which isn't in the same
2064    // BB as the comparison.
2065    // For CMPri, we need to check Sub, thus we can't return here.
2066    if (CmpInstr->getOpcode() == ARM::CMPri ||
2067       CmpInstr->getOpcode() == ARM::t2CMPri)
2068      MI = NULL;
2069    else
2070      return false;
2071  }
2072
2073  // Check that CPSR isn't set between the comparison instruction and the one we
2074  // want to change. At the same time, search for Sub.
2075  const TargetRegisterInfo *TRI = &getRegisterInfo();
2076  --I;
2077  for (; I != E; --I) {
2078    const MachineInstr &Instr = *I;
2079
2080    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2081        Instr.readsRegister(ARM::CPSR, TRI))
2082      // This instruction modifies or uses CPSR after the one we want to
2083      // change. We can't do this transformation.
2084      return false;
2085
2086    // Check whether CmpInstr can be made redundant by the current instruction.
2087    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2088      Sub = &*I;
2089      break;
2090    }
2091
2092    if (I == B)
2093      // The 'and' is below the comparison instruction.
2094      return false;
2095  }
2096
2097  // Return false if no candidates exist.
2098  if (!MI && !Sub)
2099    return false;
2100
2101  // The single candidate is called MI.
2102  if (!MI) MI = Sub;
2103
2104  // We can't use a predicated instruction - it doesn't always write the flags.
2105  if (isPredicated(MI))
2106    return false;
2107
2108  switch (MI->getOpcode()) {
2109  default: break;
2110  case ARM::RSBrr:
2111  case ARM::RSBri:
2112  case ARM::RSCrr:
2113  case ARM::RSCri:
2114  case ARM::ADDrr:
2115  case ARM::ADDri:
2116  case ARM::ADCrr:
2117  case ARM::ADCri:
2118  case ARM::SUBrr:
2119  case ARM::SUBri:
2120  case ARM::SBCrr:
2121  case ARM::SBCri:
2122  case ARM::t2RSBri:
2123  case ARM::t2ADDrr:
2124  case ARM::t2ADDri:
2125  case ARM::t2ADCrr:
2126  case ARM::t2ADCri:
2127  case ARM::t2SUBrr:
2128  case ARM::t2SUBri:
2129  case ARM::t2SBCrr:
2130  case ARM::t2SBCri:
2131  case ARM::ANDrr:
2132  case ARM::ANDri:
2133  case ARM::t2ANDrr:
2134  case ARM::t2ANDri:
2135  case ARM::ORRrr:
2136  case ARM::ORRri:
2137  case ARM::t2ORRrr:
2138  case ARM::t2ORRri:
2139  case ARM::EORrr:
2140  case ARM::EORri:
2141  case ARM::t2EORrr:
2142  case ARM::t2EORri: {
2143    // Scan forward for the use of CPSR
2144    // When checking against MI: if it's a conditional code requires
2145    // checking of V bit, then this is not safe to do.
2146    // It is safe to remove CmpInstr if CPSR is redefined or killed.
2147    // If we are done with the basic block, we need to check whether CPSR is
2148    // live-out.
2149    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2150        OperandsToUpdate;
2151    bool isSafe = false;
2152    I = CmpInstr;
2153    E = CmpInstr->getParent()->end();
2154    while (!isSafe && ++I != E) {
2155      const MachineInstr &Instr = *I;
2156      for (unsigned IO = 0, EO = Instr.getNumOperands();
2157           !isSafe && IO != EO; ++IO) {
2158        const MachineOperand &MO = Instr.getOperand(IO);
2159        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2160          isSafe = true;
2161          break;
2162        }
2163        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2164          continue;
2165        if (MO.isDef()) {
2166          isSafe = true;
2167          break;
2168        }
2169        // Condition code is after the operand before CPSR.
2170        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2171        if (Sub) {
2172          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2173          if (NewCC == ARMCC::AL)
2174            return false;
2175          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2176          // on CMP needs to be updated to be based on SUB.
2177          // Push the condition code operands to OperandsToUpdate.
2178          // If it is safe to remove CmpInstr, the condition code of these
2179          // operands will be modified.
2180          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2181              Sub->getOperand(2).getReg() == SrcReg)
2182            OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2183                                                      NewCC));
2184        }
2185        else
2186          switch (CC) {
2187          default:
2188            // CPSR can be used multiple times, we should continue.
2189            break;
2190          case ARMCC::VS:
2191          case ARMCC::VC:
2192          case ARMCC::GE:
2193          case ARMCC::LT:
2194          case ARMCC::GT:
2195          case ARMCC::LE:
2196            return false;
2197          }
2198      }
2199    }
2200
2201    // If CPSR is not killed nor re-defined, we should check whether it is
2202    // live-out. If it is live-out, do not optimize.
2203    if (!isSafe) {
2204      MachineBasicBlock *MBB = CmpInstr->getParent();
2205      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2206               SE = MBB->succ_end(); SI != SE; ++SI)
2207        if ((*SI)->isLiveIn(ARM::CPSR))
2208          return false;
2209    }
2210
2211    // Toggle the optional operand to CPSR.
2212    MI->getOperand(5).setReg(ARM::CPSR);
2213    MI->getOperand(5).setIsDef(true);
2214    assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2215    CmpInstr->eraseFromParent();
2216
2217    // Modify the condition code of operands in OperandsToUpdate.
2218    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2219    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2220    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2221      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2222    return true;
2223  }
2224  }
2225
2226  return false;
2227}
2228
2229bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2230                                     MachineInstr *DefMI, unsigned Reg,
2231                                     MachineRegisterInfo *MRI) const {
2232  // Fold large immediates into add, sub, or, xor.
2233  unsigned DefOpc = DefMI->getOpcode();
2234  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2235    return false;
2236  if (!DefMI->getOperand(1).isImm())
2237    // Could be t2MOVi32imm <ga:xx>
2238    return false;
2239
2240  if (!MRI->hasOneNonDBGUse(Reg))
2241    return false;
2242
2243  const MCInstrDesc &DefMCID = DefMI->getDesc();
2244  if (DefMCID.hasOptionalDef()) {
2245    unsigned NumOps = DefMCID.getNumOperands();
2246    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2247    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2248      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2249      // to delete DefMI.
2250      return false;
2251  }
2252
2253  const MCInstrDesc &UseMCID = UseMI->getDesc();
2254  if (UseMCID.hasOptionalDef()) {
2255    unsigned NumOps = UseMCID.getNumOperands();
2256    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2257      // If the instruction sets the flag, do not attempt this optimization
2258      // since it may change the semantics of the code.
2259      return false;
2260  }
2261
2262  unsigned UseOpc = UseMI->getOpcode();
2263  unsigned NewUseOpc = 0;
2264  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2265  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2266  bool Commute = false;
2267  switch (UseOpc) {
2268  default: return false;
2269  case ARM::SUBrr:
2270  case ARM::ADDrr:
2271  case ARM::ORRrr:
2272  case ARM::EORrr:
2273  case ARM::t2SUBrr:
2274  case ARM::t2ADDrr:
2275  case ARM::t2ORRrr:
2276  case ARM::t2EORrr: {
2277    Commute = UseMI->getOperand(2).getReg() != Reg;
2278    switch (UseOpc) {
2279    default: break;
2280    case ARM::SUBrr: {
2281      if (Commute)
2282        return false;
2283      ImmVal = -ImmVal;
2284      NewUseOpc = ARM::SUBri;
2285      // Fallthrough
2286    }
2287    case ARM::ADDrr:
2288    case ARM::ORRrr:
2289    case ARM::EORrr: {
2290      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2291        return false;
2292      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2293      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2294      switch (UseOpc) {
2295      default: break;
2296      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2297      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2298      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2299      }
2300      break;
2301    }
2302    case ARM::t2SUBrr: {
2303      if (Commute)
2304        return false;
2305      ImmVal = -ImmVal;
2306      NewUseOpc = ARM::t2SUBri;
2307      // Fallthrough
2308    }
2309    case ARM::t2ADDrr:
2310    case ARM::t2ORRrr:
2311    case ARM::t2EORrr: {
2312      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2313        return false;
2314      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2315      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2316      switch (UseOpc) {
2317      default: break;
2318      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2319      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2320      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2321      }
2322      break;
2323    }
2324    }
2325  }
2326  }
2327
2328  unsigned OpIdx = Commute ? 2 : 1;
2329  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2330  bool isKill = UseMI->getOperand(OpIdx).isKill();
2331  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2332  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2333                                      UseMI, UseMI->getDebugLoc(),
2334                                      get(NewUseOpc), NewReg)
2335                              .addReg(Reg1, getKillRegState(isKill))
2336                              .addImm(SOImmValV1)));
2337  UseMI->setDesc(get(NewUseOpc));
2338  UseMI->getOperand(1).setReg(NewReg);
2339  UseMI->getOperand(1).setIsKill();
2340  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2341  DefMI->eraseFromParent();
2342  return true;
2343}
2344
2345unsigned
2346ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2347                                 const MachineInstr *MI) const {
2348  if (!ItinData || ItinData->isEmpty())
2349    return 1;
2350
2351  const MCInstrDesc &Desc = MI->getDesc();
2352  unsigned Class = Desc.getSchedClass();
2353  int ItinUOps = ItinData->getNumMicroOps(Class);
2354  if (ItinUOps >= 0)
2355    return ItinUOps;
2356
2357  unsigned Opc = MI->getOpcode();
2358  switch (Opc) {
2359  default:
2360    llvm_unreachable("Unexpected multi-uops instruction!");
2361  case ARM::VLDMQIA:
2362  case ARM::VSTMQIA:
2363    return 2;
2364
2365  // The number of uOps for load / store multiple are determined by the number
2366  // registers.
2367  //
2368  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2369  // same cycle. The scheduling for the first load / store must be done
2370  // separately by assuming the address is not 64-bit aligned.
2371  //
2372  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2373  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2374  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2375  case ARM::VLDMDIA:
2376  case ARM::VLDMDIA_UPD:
2377  case ARM::VLDMDDB_UPD:
2378  case ARM::VLDMSIA:
2379  case ARM::VLDMSIA_UPD:
2380  case ARM::VLDMSDB_UPD:
2381  case ARM::VSTMDIA:
2382  case ARM::VSTMDIA_UPD:
2383  case ARM::VSTMDDB_UPD:
2384  case ARM::VSTMSIA:
2385  case ARM::VSTMSIA_UPD:
2386  case ARM::VSTMSDB_UPD: {
2387    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2388    return (NumRegs / 2) + (NumRegs % 2) + 1;
2389  }
2390
2391  case ARM::LDMIA_RET:
2392  case ARM::LDMIA:
2393  case ARM::LDMDA:
2394  case ARM::LDMDB:
2395  case ARM::LDMIB:
2396  case ARM::LDMIA_UPD:
2397  case ARM::LDMDA_UPD:
2398  case ARM::LDMDB_UPD:
2399  case ARM::LDMIB_UPD:
2400  case ARM::STMIA:
2401  case ARM::STMDA:
2402  case ARM::STMDB:
2403  case ARM::STMIB:
2404  case ARM::STMIA_UPD:
2405  case ARM::STMDA_UPD:
2406  case ARM::STMDB_UPD:
2407  case ARM::STMIB_UPD:
2408  case ARM::tLDMIA:
2409  case ARM::tLDMIA_UPD:
2410  case ARM::tSTMIA_UPD:
2411  case ARM::tPOP_RET:
2412  case ARM::tPOP:
2413  case ARM::tPUSH:
2414  case ARM::t2LDMIA_RET:
2415  case ARM::t2LDMIA:
2416  case ARM::t2LDMDB:
2417  case ARM::t2LDMIA_UPD:
2418  case ARM::t2LDMDB_UPD:
2419  case ARM::t2STMIA:
2420  case ARM::t2STMDB:
2421  case ARM::t2STMIA_UPD:
2422  case ARM::t2STMDB_UPD: {
2423    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2424    if (Subtarget.isCortexA8()) {
2425      if (NumRegs < 4)
2426        return 2;
2427      // 4 registers would be issued: 2, 2.
2428      // 5 registers would be issued: 2, 2, 1.
2429      int A8UOps = (NumRegs / 2);
2430      if (NumRegs % 2)
2431        ++A8UOps;
2432      return A8UOps;
2433    } else if (Subtarget.isCortexA9()) {
2434      int A9UOps = (NumRegs / 2);
2435      // If there are odd number of registers or if it's not 64-bit aligned,
2436      // then it takes an extra AGU (Address Generation Unit) cycle.
2437      if ((NumRegs % 2) ||
2438          !MI->hasOneMemOperand() ||
2439          (*MI->memoperands_begin())->getAlignment() < 8)
2440        ++A9UOps;
2441      return A9UOps;
2442    } else {
2443      // Assume the worst.
2444      return NumRegs;
2445    }
2446  }
2447  }
2448}
2449
2450int
2451ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2452                                  const MCInstrDesc &DefMCID,
2453                                  unsigned DefClass,
2454                                  unsigned DefIdx, unsigned DefAlign) const {
2455  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2456  if (RegNo <= 0)
2457    // Def is the address writeback.
2458    return ItinData->getOperandCycle(DefClass, DefIdx);
2459
2460  int DefCycle;
2461  if (Subtarget.isCortexA8()) {
2462    // (regno / 2) + (regno % 2) + 1
2463    DefCycle = RegNo / 2 + 1;
2464    if (RegNo % 2)
2465      ++DefCycle;
2466  } else if (Subtarget.isCortexA9()) {
2467    DefCycle = RegNo;
2468    bool isSLoad = false;
2469
2470    switch (DefMCID.getOpcode()) {
2471    default: break;
2472    case ARM::VLDMSIA:
2473    case ARM::VLDMSIA_UPD:
2474    case ARM::VLDMSDB_UPD:
2475      isSLoad = true;
2476      break;
2477    }
2478
2479    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2480    // then it takes an extra cycle.
2481    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2482      ++DefCycle;
2483  } else {
2484    // Assume the worst.
2485    DefCycle = RegNo + 2;
2486  }
2487
2488  return DefCycle;
2489}
2490
2491int
2492ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2493                                 const MCInstrDesc &DefMCID,
2494                                 unsigned DefClass,
2495                                 unsigned DefIdx, unsigned DefAlign) const {
2496  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2497  if (RegNo <= 0)
2498    // Def is the address writeback.
2499    return ItinData->getOperandCycle(DefClass, DefIdx);
2500
2501  int DefCycle;
2502  if (Subtarget.isCortexA8()) {
2503    // 4 registers would be issued: 1, 2, 1.
2504    // 5 registers would be issued: 1, 2, 2.
2505    DefCycle = RegNo / 2;
2506    if (DefCycle < 1)
2507      DefCycle = 1;
2508    // Result latency is issue cycle + 2: E2.
2509    DefCycle += 2;
2510  } else if (Subtarget.isCortexA9()) {
2511    DefCycle = (RegNo / 2);
2512    // If there are odd number of registers or if it's not 64-bit aligned,
2513    // then it takes an extra AGU (Address Generation Unit) cycle.
2514    if ((RegNo % 2) || DefAlign < 8)
2515      ++DefCycle;
2516    // Result latency is AGU cycles + 2.
2517    DefCycle += 2;
2518  } else {
2519    // Assume the worst.
2520    DefCycle = RegNo + 2;
2521  }
2522
2523  return DefCycle;
2524}
2525
2526int
2527ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2528                                  const MCInstrDesc &UseMCID,
2529                                  unsigned UseClass,
2530                                  unsigned UseIdx, unsigned UseAlign) const {
2531  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2532  if (RegNo <= 0)
2533    return ItinData->getOperandCycle(UseClass, UseIdx);
2534
2535  int UseCycle;
2536  if (Subtarget.isCortexA8()) {
2537    // (regno / 2) + (regno % 2) + 1
2538    UseCycle = RegNo / 2 + 1;
2539    if (RegNo % 2)
2540      ++UseCycle;
2541  } else if (Subtarget.isCortexA9()) {
2542    UseCycle = RegNo;
2543    bool isSStore = false;
2544
2545    switch (UseMCID.getOpcode()) {
2546    default: break;
2547    case ARM::VSTMSIA:
2548    case ARM::VSTMSIA_UPD:
2549    case ARM::VSTMSDB_UPD:
2550      isSStore = true;
2551      break;
2552    }
2553
2554    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2555    // then it takes an extra cycle.
2556    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2557      ++UseCycle;
2558  } else {
2559    // Assume the worst.
2560    UseCycle = RegNo + 2;
2561  }
2562
2563  return UseCycle;
2564}
2565
2566int
2567ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2568                                 const MCInstrDesc &UseMCID,
2569                                 unsigned UseClass,
2570                                 unsigned UseIdx, unsigned UseAlign) const {
2571  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2572  if (RegNo <= 0)
2573    return ItinData->getOperandCycle(UseClass, UseIdx);
2574
2575  int UseCycle;
2576  if (Subtarget.isCortexA8()) {
2577    UseCycle = RegNo / 2;
2578    if (UseCycle < 2)
2579      UseCycle = 2;
2580    // Read in E3.
2581    UseCycle += 2;
2582  } else if (Subtarget.isCortexA9()) {
2583    UseCycle = (RegNo / 2);
2584    // If there are odd number of registers or if it's not 64-bit aligned,
2585    // then it takes an extra AGU (Address Generation Unit) cycle.
2586    if ((RegNo % 2) || UseAlign < 8)
2587      ++UseCycle;
2588  } else {
2589    // Assume the worst.
2590    UseCycle = 1;
2591  }
2592  return UseCycle;
2593}
2594
2595int
2596ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2597                                    const MCInstrDesc &DefMCID,
2598                                    unsigned DefIdx, unsigned DefAlign,
2599                                    const MCInstrDesc &UseMCID,
2600                                    unsigned UseIdx, unsigned UseAlign) const {
2601  unsigned DefClass = DefMCID.getSchedClass();
2602  unsigned UseClass = UseMCID.getSchedClass();
2603
2604  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2605    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2606
2607  // This may be a def / use of a variable_ops instruction, the operand
2608  // latency might be determinable dynamically. Let the target try to
2609  // figure it out.
2610  int DefCycle = -1;
2611  bool LdmBypass = false;
2612  switch (DefMCID.getOpcode()) {
2613  default:
2614    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2615    break;
2616
2617  case ARM::VLDMDIA:
2618  case ARM::VLDMDIA_UPD:
2619  case ARM::VLDMDDB_UPD:
2620  case ARM::VLDMSIA:
2621  case ARM::VLDMSIA_UPD:
2622  case ARM::VLDMSDB_UPD:
2623    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2624    break;
2625
2626  case ARM::LDMIA_RET:
2627  case ARM::LDMIA:
2628  case ARM::LDMDA:
2629  case ARM::LDMDB:
2630  case ARM::LDMIB:
2631  case ARM::LDMIA_UPD:
2632  case ARM::LDMDA_UPD:
2633  case ARM::LDMDB_UPD:
2634  case ARM::LDMIB_UPD:
2635  case ARM::tLDMIA:
2636  case ARM::tLDMIA_UPD:
2637  case ARM::tPUSH:
2638  case ARM::t2LDMIA_RET:
2639  case ARM::t2LDMIA:
2640  case ARM::t2LDMDB:
2641  case ARM::t2LDMIA_UPD:
2642  case ARM::t2LDMDB_UPD:
2643    LdmBypass = 1;
2644    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2645    break;
2646  }
2647
2648  if (DefCycle == -1)
2649    // We can't seem to determine the result latency of the def, assume it's 2.
2650    DefCycle = 2;
2651
2652  int UseCycle = -1;
2653  switch (UseMCID.getOpcode()) {
2654  default:
2655    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2656    break;
2657
2658  case ARM::VSTMDIA:
2659  case ARM::VSTMDIA_UPD:
2660  case ARM::VSTMDDB_UPD:
2661  case ARM::VSTMSIA:
2662  case ARM::VSTMSIA_UPD:
2663  case ARM::VSTMSDB_UPD:
2664    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2665    break;
2666
2667  case ARM::STMIA:
2668  case ARM::STMDA:
2669  case ARM::STMDB:
2670  case ARM::STMIB:
2671  case ARM::STMIA_UPD:
2672  case ARM::STMDA_UPD:
2673  case ARM::STMDB_UPD:
2674  case ARM::STMIB_UPD:
2675  case ARM::tSTMIA_UPD:
2676  case ARM::tPOP_RET:
2677  case ARM::tPOP:
2678  case ARM::t2STMIA:
2679  case ARM::t2STMDB:
2680  case ARM::t2STMIA_UPD:
2681  case ARM::t2STMDB_UPD:
2682    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2683    break;
2684  }
2685
2686  if (UseCycle == -1)
2687    // Assume it's read in the first stage.
2688    UseCycle = 1;
2689
2690  UseCycle = DefCycle - UseCycle + 1;
2691  if (UseCycle > 0) {
2692    if (LdmBypass) {
2693      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2694      // first def operand.
2695      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2696                                          UseClass, UseIdx))
2697        --UseCycle;
2698    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2699                                               UseClass, UseIdx)) {
2700      --UseCycle;
2701    }
2702  }
2703
2704  return UseCycle;
2705}
2706
2707static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2708                                           const MachineInstr *MI, unsigned Reg,
2709                                           unsigned &DefIdx, unsigned &Dist) {
2710  Dist = 0;
2711
2712  MachineBasicBlock::const_iterator I = MI; ++I;
2713  MachineBasicBlock::const_instr_iterator II =
2714    llvm::prior(I.getInstrIterator());
2715  assert(II->isInsideBundle() && "Empty bundle?");
2716
2717  int Idx = -1;
2718  while (II->isInsideBundle()) {
2719    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2720    if (Idx != -1)
2721      break;
2722    --II;
2723    ++Dist;
2724  }
2725
2726  assert(Idx != -1 && "Cannot find bundled definition!");
2727  DefIdx = Idx;
2728  return II;
2729}
2730
2731static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2732                                           const MachineInstr *MI, unsigned Reg,
2733                                           unsigned &UseIdx, unsigned &Dist) {
2734  Dist = 0;
2735
2736  MachineBasicBlock::const_instr_iterator II = MI; ++II;
2737  assert(II->isInsideBundle() && "Empty bundle?");
2738  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2739
2740  // FIXME: This doesn't properly handle multiple uses.
2741  int Idx = -1;
2742  while (II != E && II->isInsideBundle()) {
2743    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2744    if (Idx != -1)
2745      break;
2746    if (II->getOpcode() != ARM::t2IT)
2747      ++Dist;
2748    ++II;
2749  }
2750
2751  if (Idx == -1) {
2752    Dist = 0;
2753    return 0;
2754  }
2755
2756  UseIdx = Idx;
2757  return II;
2758}
2759
2760/// Return the number of cycles to add to (or subtract from) the static
2761/// itinerary based on the def opcode and alignment. The caller will ensure that
2762/// adjusted latency is at least one cycle.
2763static int adjustDefLatency(const ARMSubtarget &Subtarget,
2764                            const MachineInstr *DefMI,
2765                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
2766  int Adjust = 0;
2767  if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
2768    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2769    // variants are one cycle cheaper.
2770    switch (DefMCID->getOpcode()) {
2771    default: break;
2772    case ARM::LDRrs:
2773    case ARM::LDRBrs: {
2774      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2775      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2776      if (ShImm == 0 ||
2777          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2778        --Adjust;
2779      break;
2780    }
2781    case ARM::t2LDRs:
2782    case ARM::t2LDRBs:
2783    case ARM::t2LDRHs:
2784    case ARM::t2LDRSHs: {
2785      // Thumb2 mode: lsl only.
2786      unsigned ShAmt = DefMI->getOperand(3).getImm();
2787      if (ShAmt == 0 || ShAmt == 2)
2788        --Adjust;
2789      break;
2790    }
2791    }
2792  }
2793
2794  if (DefAlign < 8 && Subtarget.isCortexA9()) {
2795    switch (DefMCID->getOpcode()) {
2796    default: break;
2797    case ARM::VLD1q8:
2798    case ARM::VLD1q16:
2799    case ARM::VLD1q32:
2800    case ARM::VLD1q64:
2801    case ARM::VLD1q8wb_fixed:
2802    case ARM::VLD1q16wb_fixed:
2803    case ARM::VLD1q32wb_fixed:
2804    case ARM::VLD1q64wb_fixed:
2805    case ARM::VLD1q8wb_register:
2806    case ARM::VLD1q16wb_register:
2807    case ARM::VLD1q32wb_register:
2808    case ARM::VLD1q64wb_register:
2809    case ARM::VLD2d8:
2810    case ARM::VLD2d16:
2811    case ARM::VLD2d32:
2812    case ARM::VLD2q8:
2813    case ARM::VLD2q16:
2814    case ARM::VLD2q32:
2815    case ARM::VLD2d8wb_fixed:
2816    case ARM::VLD2d16wb_fixed:
2817    case ARM::VLD2d32wb_fixed:
2818    case ARM::VLD2q8wb_fixed:
2819    case ARM::VLD2q16wb_fixed:
2820    case ARM::VLD2q32wb_fixed:
2821    case ARM::VLD2d8wb_register:
2822    case ARM::VLD2d16wb_register:
2823    case ARM::VLD2d32wb_register:
2824    case ARM::VLD2q8wb_register:
2825    case ARM::VLD2q16wb_register:
2826    case ARM::VLD2q32wb_register:
2827    case ARM::VLD3d8:
2828    case ARM::VLD3d16:
2829    case ARM::VLD3d32:
2830    case ARM::VLD1d64T:
2831    case ARM::VLD3d8_UPD:
2832    case ARM::VLD3d16_UPD:
2833    case ARM::VLD3d32_UPD:
2834    case ARM::VLD1d64Twb_fixed:
2835    case ARM::VLD1d64Twb_register:
2836    case ARM::VLD3q8_UPD:
2837    case ARM::VLD3q16_UPD:
2838    case ARM::VLD3q32_UPD:
2839    case ARM::VLD4d8:
2840    case ARM::VLD4d16:
2841    case ARM::VLD4d32:
2842    case ARM::VLD1d64Q:
2843    case ARM::VLD4d8_UPD:
2844    case ARM::VLD4d16_UPD:
2845    case ARM::VLD4d32_UPD:
2846    case ARM::VLD1d64Qwb_fixed:
2847    case ARM::VLD1d64Qwb_register:
2848    case ARM::VLD4q8_UPD:
2849    case ARM::VLD4q16_UPD:
2850    case ARM::VLD4q32_UPD:
2851    case ARM::VLD1DUPq8:
2852    case ARM::VLD1DUPq16:
2853    case ARM::VLD1DUPq32:
2854    case ARM::VLD1DUPq8wb_fixed:
2855    case ARM::VLD1DUPq16wb_fixed:
2856    case ARM::VLD1DUPq32wb_fixed:
2857    case ARM::VLD1DUPq8wb_register:
2858    case ARM::VLD1DUPq16wb_register:
2859    case ARM::VLD1DUPq32wb_register:
2860    case ARM::VLD2DUPd8:
2861    case ARM::VLD2DUPd16:
2862    case ARM::VLD2DUPd32:
2863    case ARM::VLD2DUPd8wb_fixed:
2864    case ARM::VLD2DUPd16wb_fixed:
2865    case ARM::VLD2DUPd32wb_fixed:
2866    case ARM::VLD2DUPd8wb_register:
2867    case ARM::VLD2DUPd16wb_register:
2868    case ARM::VLD2DUPd32wb_register:
2869    case ARM::VLD4DUPd8:
2870    case ARM::VLD4DUPd16:
2871    case ARM::VLD4DUPd32:
2872    case ARM::VLD4DUPd8_UPD:
2873    case ARM::VLD4DUPd16_UPD:
2874    case ARM::VLD4DUPd32_UPD:
2875    case ARM::VLD1LNd8:
2876    case ARM::VLD1LNd16:
2877    case ARM::VLD1LNd32:
2878    case ARM::VLD1LNd8_UPD:
2879    case ARM::VLD1LNd16_UPD:
2880    case ARM::VLD1LNd32_UPD:
2881    case ARM::VLD2LNd8:
2882    case ARM::VLD2LNd16:
2883    case ARM::VLD2LNd32:
2884    case ARM::VLD2LNq16:
2885    case ARM::VLD2LNq32:
2886    case ARM::VLD2LNd8_UPD:
2887    case ARM::VLD2LNd16_UPD:
2888    case ARM::VLD2LNd32_UPD:
2889    case ARM::VLD2LNq16_UPD:
2890    case ARM::VLD2LNq32_UPD:
2891    case ARM::VLD4LNd8:
2892    case ARM::VLD4LNd16:
2893    case ARM::VLD4LNd32:
2894    case ARM::VLD4LNq16:
2895    case ARM::VLD4LNq32:
2896    case ARM::VLD4LNd8_UPD:
2897    case ARM::VLD4LNd16_UPD:
2898    case ARM::VLD4LNd32_UPD:
2899    case ARM::VLD4LNq16_UPD:
2900    case ARM::VLD4LNq32_UPD:
2901      // If the address is not 64-bit aligned, the latencies of these
2902      // instructions increases by one.
2903      ++Adjust;
2904      break;
2905    }
2906  }
2907  return Adjust;
2908}
2909
2910
2911
2912int
2913ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2914                                    const MachineInstr *DefMI, unsigned DefIdx,
2915                                    const MachineInstr *UseMI,
2916                                    unsigned UseIdx) const {
2917  // No operand latency. The caller may fall back to getInstrLatency.
2918  if (!ItinData || ItinData->isEmpty())
2919    return -1;
2920
2921  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2922  unsigned Reg = DefMO.getReg();
2923  const MCInstrDesc *DefMCID = &DefMI->getDesc();
2924  const MCInstrDesc *UseMCID = &UseMI->getDesc();
2925
2926  unsigned DefAdj = 0;
2927  if (DefMI->isBundle()) {
2928    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2929    DefMCID = &DefMI->getDesc();
2930  }
2931  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2932      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
2933    return 1;
2934  }
2935
2936  unsigned UseAdj = 0;
2937  if (UseMI->isBundle()) {
2938    unsigned NewUseIdx;
2939    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2940                                                   Reg, NewUseIdx, UseAdj);
2941    if (!NewUseMI)
2942      return -1;
2943
2944    UseMI = NewUseMI;
2945    UseIdx = NewUseIdx;
2946    UseMCID = &UseMI->getDesc();
2947  }
2948
2949  if (Reg == ARM::CPSR) {
2950    if (DefMI->getOpcode() == ARM::FMSTAT) {
2951      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2952      return Subtarget.isCortexA9() ? 1 : 20;
2953    }
2954
2955    // CPSR set and branch can be paired in the same cycle.
2956    if (UseMI->isBranch())
2957      return 0;
2958
2959    // Otherwise it takes the instruction latency (generally one).
2960    unsigned Latency = getInstrLatency(ItinData, DefMI);
2961
2962    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2963    // its uses. Instructions which are otherwise scheduled between them may
2964    // incur a code size penalty (not able to use the CPSR setting 16-bit
2965    // instructions).
2966    if (Latency > 0 && Subtarget.isThumb2()) {
2967      const MachineFunction *MF = DefMI->getParent()->getParent();
2968      if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2969        --Latency;
2970    }
2971    return Latency;
2972  }
2973
2974  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
2975    return -1;
2976
2977  unsigned DefAlign = DefMI->hasOneMemOperand()
2978    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2979  unsigned UseAlign = UseMI->hasOneMemOperand()
2980    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2981
2982  // Get the itinerary's latency if possible, and handle variable_ops.
2983  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2984                                  *UseMCID, UseIdx, UseAlign);
2985  // Unable to find operand latency. The caller may resort to getInstrLatency.
2986  if (Latency < 0)
2987    return Latency;
2988
2989  // Adjust for IT block position.
2990  int Adj = DefAdj + UseAdj;
2991
2992  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
2993  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
2994  if (Adj >= 0 || (int)Latency > -Adj) {
2995    return Latency + Adj;
2996  }
2997  // Return the itinerary latency, which may be zero but not less than zero.
2998  return Latency;
2999}
3000
3001int
3002ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3003                                    SDNode *DefNode, unsigned DefIdx,
3004                                    SDNode *UseNode, unsigned UseIdx) const {
3005  if (!DefNode->isMachineOpcode())
3006    return 1;
3007
3008  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3009
3010  if (isZeroCost(DefMCID.Opcode))
3011    return 0;
3012
3013  if (!ItinData || ItinData->isEmpty())
3014    return DefMCID.mayLoad() ? 3 : 1;
3015
3016  if (!UseNode->isMachineOpcode()) {
3017    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3018    if (Subtarget.isCortexA9())
3019      return Latency <= 2 ? 1 : Latency - 1;
3020    else
3021      return Latency <= 3 ? 1 : Latency - 2;
3022  }
3023
3024  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3025  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3026  unsigned DefAlign = !DefMN->memoperands_empty()
3027    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3028  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3029  unsigned UseAlign = !UseMN->memoperands_empty()
3030    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3031  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3032                                  UseMCID, UseIdx, UseAlign);
3033
3034  if (Latency > 1 &&
3035      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
3036    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3037    // variants are one cycle cheaper.
3038    switch (DefMCID.getOpcode()) {
3039    default: break;
3040    case ARM::LDRrs:
3041    case ARM::LDRBrs: {
3042      unsigned ShOpVal =
3043        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3044      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3045      if (ShImm == 0 ||
3046          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3047        --Latency;
3048      break;
3049    }
3050    case ARM::t2LDRs:
3051    case ARM::t2LDRBs:
3052    case ARM::t2LDRHs:
3053    case ARM::t2LDRSHs: {
3054      // Thumb2 mode: lsl only.
3055      unsigned ShAmt =
3056        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3057      if (ShAmt == 0 || ShAmt == 2)
3058        --Latency;
3059      break;
3060    }
3061    }
3062  }
3063
3064  if (DefAlign < 8 && Subtarget.isCortexA9())
3065    switch (DefMCID.getOpcode()) {
3066    default: break;
3067    case ARM::VLD1q8:
3068    case ARM::VLD1q16:
3069    case ARM::VLD1q32:
3070    case ARM::VLD1q64:
3071    case ARM::VLD1q8wb_register:
3072    case ARM::VLD1q16wb_register:
3073    case ARM::VLD1q32wb_register:
3074    case ARM::VLD1q64wb_register:
3075    case ARM::VLD1q8wb_fixed:
3076    case ARM::VLD1q16wb_fixed:
3077    case ARM::VLD1q32wb_fixed:
3078    case ARM::VLD1q64wb_fixed:
3079    case ARM::VLD2d8:
3080    case ARM::VLD2d16:
3081    case ARM::VLD2d32:
3082    case ARM::VLD2q8Pseudo:
3083    case ARM::VLD2q16Pseudo:
3084    case ARM::VLD2q32Pseudo:
3085    case ARM::VLD2d8wb_fixed:
3086    case ARM::VLD2d16wb_fixed:
3087    case ARM::VLD2d32wb_fixed:
3088    case ARM::VLD2q8PseudoWB_fixed:
3089    case ARM::VLD2q16PseudoWB_fixed:
3090    case ARM::VLD2q32PseudoWB_fixed:
3091    case ARM::VLD2d8wb_register:
3092    case ARM::VLD2d16wb_register:
3093    case ARM::VLD2d32wb_register:
3094    case ARM::VLD2q8PseudoWB_register:
3095    case ARM::VLD2q16PseudoWB_register:
3096    case ARM::VLD2q32PseudoWB_register:
3097    case ARM::VLD3d8Pseudo:
3098    case ARM::VLD3d16Pseudo:
3099    case ARM::VLD3d32Pseudo:
3100    case ARM::VLD1d64TPseudo:
3101    case ARM::VLD3d8Pseudo_UPD:
3102    case ARM::VLD3d16Pseudo_UPD:
3103    case ARM::VLD3d32Pseudo_UPD:
3104    case ARM::VLD3q8Pseudo_UPD:
3105    case ARM::VLD3q16Pseudo_UPD:
3106    case ARM::VLD3q32Pseudo_UPD:
3107    case ARM::VLD3q8oddPseudo:
3108    case ARM::VLD3q16oddPseudo:
3109    case ARM::VLD3q32oddPseudo:
3110    case ARM::VLD3q8oddPseudo_UPD:
3111    case ARM::VLD3q16oddPseudo_UPD:
3112    case ARM::VLD3q32oddPseudo_UPD:
3113    case ARM::VLD4d8Pseudo:
3114    case ARM::VLD4d16Pseudo:
3115    case ARM::VLD4d32Pseudo:
3116    case ARM::VLD1d64QPseudo:
3117    case ARM::VLD4d8Pseudo_UPD:
3118    case ARM::VLD4d16Pseudo_UPD:
3119    case ARM::VLD4d32Pseudo_UPD:
3120    case ARM::VLD4q8Pseudo_UPD:
3121    case ARM::VLD4q16Pseudo_UPD:
3122    case ARM::VLD4q32Pseudo_UPD:
3123    case ARM::VLD4q8oddPseudo:
3124    case ARM::VLD4q16oddPseudo:
3125    case ARM::VLD4q32oddPseudo:
3126    case ARM::VLD4q8oddPseudo_UPD:
3127    case ARM::VLD4q16oddPseudo_UPD:
3128    case ARM::VLD4q32oddPseudo_UPD:
3129    case ARM::VLD1DUPq8:
3130    case ARM::VLD1DUPq16:
3131    case ARM::VLD1DUPq32:
3132    case ARM::VLD1DUPq8wb_fixed:
3133    case ARM::VLD1DUPq16wb_fixed:
3134    case ARM::VLD1DUPq32wb_fixed:
3135    case ARM::VLD1DUPq8wb_register:
3136    case ARM::VLD1DUPq16wb_register:
3137    case ARM::VLD1DUPq32wb_register:
3138    case ARM::VLD2DUPd8:
3139    case ARM::VLD2DUPd16:
3140    case ARM::VLD2DUPd32:
3141    case ARM::VLD2DUPd8wb_fixed:
3142    case ARM::VLD2DUPd16wb_fixed:
3143    case ARM::VLD2DUPd32wb_fixed:
3144    case ARM::VLD2DUPd8wb_register:
3145    case ARM::VLD2DUPd16wb_register:
3146    case ARM::VLD2DUPd32wb_register:
3147    case ARM::VLD4DUPd8Pseudo:
3148    case ARM::VLD4DUPd16Pseudo:
3149    case ARM::VLD4DUPd32Pseudo:
3150    case ARM::VLD4DUPd8Pseudo_UPD:
3151    case ARM::VLD4DUPd16Pseudo_UPD:
3152    case ARM::VLD4DUPd32Pseudo_UPD:
3153    case ARM::VLD1LNq8Pseudo:
3154    case ARM::VLD1LNq16Pseudo:
3155    case ARM::VLD1LNq32Pseudo:
3156    case ARM::VLD1LNq8Pseudo_UPD:
3157    case ARM::VLD1LNq16Pseudo_UPD:
3158    case ARM::VLD1LNq32Pseudo_UPD:
3159    case ARM::VLD2LNd8Pseudo:
3160    case ARM::VLD2LNd16Pseudo:
3161    case ARM::VLD2LNd32Pseudo:
3162    case ARM::VLD2LNq16Pseudo:
3163    case ARM::VLD2LNq32Pseudo:
3164    case ARM::VLD2LNd8Pseudo_UPD:
3165    case ARM::VLD2LNd16Pseudo_UPD:
3166    case ARM::VLD2LNd32Pseudo_UPD:
3167    case ARM::VLD2LNq16Pseudo_UPD:
3168    case ARM::VLD2LNq32Pseudo_UPD:
3169    case ARM::VLD4LNd8Pseudo:
3170    case ARM::VLD4LNd16Pseudo:
3171    case ARM::VLD4LNd32Pseudo:
3172    case ARM::VLD4LNq16Pseudo:
3173    case ARM::VLD4LNq32Pseudo:
3174    case ARM::VLD4LNd8Pseudo_UPD:
3175    case ARM::VLD4LNd16Pseudo_UPD:
3176    case ARM::VLD4LNd32Pseudo_UPD:
3177    case ARM::VLD4LNq16Pseudo_UPD:
3178    case ARM::VLD4LNq32Pseudo_UPD:
3179      // If the address is not 64-bit aligned, the latencies of these
3180      // instructions increases by one.
3181      ++Latency;
3182      break;
3183    }
3184
3185  return Latency;
3186}
3187
3188unsigned
3189ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
3190                                   const MachineInstr *DefMI, unsigned DefIdx,
3191                                   const MachineInstr *DepMI) const {
3192  unsigned Reg = DefMI->getOperand(DefIdx).getReg();
3193  if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
3194    return 1;
3195
3196  // If the second MI is predicated, then there is an implicit use dependency.
3197  return getInstrLatency(ItinData, DefMI);
3198}
3199
3200unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3201                                           const MachineInstr *MI,
3202                                           unsigned *PredCost) const {
3203  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3204      MI->isRegSequence() || MI->isImplicitDef())
3205    return 1;
3206
3207  // An instruction scheduler typically runs on unbundled instructions, however
3208  // other passes may query the latency of a bundled instruction.
3209  if (MI->isBundle()) {
3210    unsigned Latency = 0;
3211    MachineBasicBlock::const_instr_iterator I = MI;
3212    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3213    while (++I != E && I->isInsideBundle()) {
3214      if (I->getOpcode() != ARM::t2IT)
3215        Latency += getInstrLatency(ItinData, I, PredCost);
3216    }
3217    return Latency;
3218  }
3219
3220  const MCInstrDesc &MCID = MI->getDesc();
3221  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3222    // When predicated, CPSR is an additional source operand for CPSR updating
3223    // instructions, this apparently increases their latencies.
3224    *PredCost = 1;
3225  }
3226  // Be sure to call getStageLatency for an empty itinerary in case it has a
3227  // valid MinLatency property.
3228  if (!ItinData)
3229    return MI->mayLoad() ? 3 : 1;
3230
3231  unsigned Class = MCID.getSchedClass();
3232
3233  // For instructions with variable uops, use uops as latency.
3234  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3235    return getNumMicroOps(ItinData, MI);
3236
3237  // For the common case, fall back on the itinerary's latency.
3238  unsigned Latency = ItinData->getStageLatency(Class);
3239
3240  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3241  unsigned DefAlign = MI->hasOneMemOperand()
3242    ? (*MI->memoperands_begin())->getAlignment() : 0;
3243  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3244  if (Adj >= 0 || (int)Latency > -Adj) {
3245    return Latency + Adj;
3246  }
3247  return Latency;
3248}
3249
3250int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3251                                      SDNode *Node) const {
3252  if (!Node->isMachineOpcode())
3253    return 1;
3254
3255  if (!ItinData || ItinData->isEmpty())
3256    return 1;
3257
3258  unsigned Opcode = Node->getMachineOpcode();
3259  switch (Opcode) {
3260  default:
3261    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3262  case ARM::VLDMQIA:
3263  case ARM::VSTMQIA:
3264    return 2;
3265  }
3266}
3267
3268bool ARMBaseInstrInfo::
3269hasHighOperandLatency(const InstrItineraryData *ItinData,
3270                      const MachineRegisterInfo *MRI,
3271                      const MachineInstr *DefMI, unsigned DefIdx,
3272                      const MachineInstr *UseMI, unsigned UseIdx) const {
3273  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3274  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3275  if (Subtarget.isCortexA8() &&
3276      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3277    // CortexA8 VFP instructions are not pipelined.
3278    return true;
3279
3280  // Hoist VFP / NEON instructions with 4 or higher latency.
3281  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
3282                                      /*FindMin=*/false);
3283  if (Latency < 0)
3284    Latency = getInstrLatency(ItinData, DefMI);
3285  if (Latency <= 3)
3286    return false;
3287  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3288         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3289}
3290
3291bool ARMBaseInstrInfo::
3292hasLowDefLatency(const InstrItineraryData *ItinData,
3293                 const MachineInstr *DefMI, unsigned DefIdx) const {
3294  if (!ItinData || ItinData->isEmpty())
3295    return false;
3296
3297  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3298  if (DDomain == ARMII::DomainGeneral) {
3299    unsigned DefClass = DefMI->getDesc().getSchedClass();
3300    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3301    return (DefCycle != -1 && DefCycle <= 2);
3302  }
3303  return false;
3304}
3305
3306bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3307                                         StringRef &ErrInfo) const {
3308  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3309    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3310    return false;
3311  }
3312  return true;
3313}
3314
3315bool
3316ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3317                                     unsigned &AddSubOpc,
3318                                     bool &NegAcc, bool &HasLane) const {
3319  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3320  if (I == MLxEntryMap.end())
3321    return false;
3322
3323  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3324  MulOpc = Entry.MulOpc;
3325  AddSubOpc = Entry.AddSubOpc;
3326  NegAcc = Entry.NegAcc;
3327  HasLane = Entry.HasLane;
3328  return true;
3329}
3330
3331//===----------------------------------------------------------------------===//
3332// Execution domains.
3333//===----------------------------------------------------------------------===//
3334//
3335// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3336// and some can go down both.  The vmov instructions go down the VFP pipeline,
3337// but they can be changed to vorr equivalents that are executed by the NEON
3338// pipeline.
3339//
3340// We use the following execution domain numbering:
3341//
3342enum ARMExeDomain {
3343  ExeGeneric = 0,
3344  ExeVFP = 1,
3345  ExeNEON = 2
3346};
3347//
3348// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3349//
3350std::pair<uint16_t, uint16_t>
3351ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3352  // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
3353  // if they are not predicated.
3354  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3355    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3356
3357  // Cortex-A9 is particularly picky about mixing the two and wants these
3358  // converted.
3359  if (Subtarget.isCortexA9() && !isPredicated(MI) &&
3360      (MI->getOpcode() == ARM::VMOVRS ||
3361       MI->getOpcode() == ARM::VMOVSR ||
3362       MI->getOpcode() == ARM::VMOVS))
3363    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3364
3365  // No other instructions can be swizzled, so just determine their domain.
3366  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3367
3368  if (Domain & ARMII::DomainNEON)
3369    return std::make_pair(ExeNEON, 0);
3370
3371  // Certain instructions can go either way on Cortex-A8.
3372  // Treat them as NEON instructions.
3373  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3374    return std::make_pair(ExeNEON, 0);
3375
3376  if (Domain & ARMII::DomainVFP)
3377    return std::make_pair(ExeVFP, 0);
3378
3379  return std::make_pair(ExeGeneric, 0);
3380}
3381
3382static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
3383                                            unsigned SReg, unsigned &Lane) {
3384  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
3385  Lane = 0;
3386
3387  if (DReg != ARM::NoRegister)
3388   return DReg;
3389
3390  Lane = 1;
3391  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
3392
3393  assert(DReg && "S-register with no D super-register?");
3394  return DReg;
3395}
3396
3397
3398void
3399ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3400  unsigned DstReg, SrcReg, DReg;
3401  unsigned Lane;
3402  MachineInstrBuilder MIB(MI);
3403  const TargetRegisterInfo *TRI = &getRegisterInfo();
3404  switch (MI->getOpcode()) {
3405    default:
3406      llvm_unreachable("cannot handle opcode!");
3407      break;
3408    case ARM::VMOVD:
3409      if (Domain != ExeNEON)
3410        break;
3411
3412      // Zap the predicate operands.
3413      assert(!isPredicated(MI) && "Cannot predicate a VORRd");
3414
3415      // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
3416      DstReg = MI->getOperand(0).getReg();
3417      SrcReg = MI->getOperand(1).getReg();
3418
3419      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3420        MI->RemoveOperand(i-1);
3421
3422      // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
3423      MI->setDesc(get(ARM::VORRd));
3424      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3425                        .addReg(SrcReg)
3426                        .addReg(SrcReg));
3427      break;
3428    case ARM::VMOVRS:
3429      if (Domain != ExeNEON)
3430        break;
3431      assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
3432
3433      // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
3434      DstReg = MI->getOperand(0).getReg();
3435      SrcReg = MI->getOperand(1).getReg();
3436
3437      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3438        MI->RemoveOperand(i-1);
3439
3440      DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
3441
3442      // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
3443      // Note that DSrc has been widened and the other lane may be undef, which
3444      // contaminates the entire register.
3445      MI->setDesc(get(ARM::VGETLNi32));
3446      AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
3447                        .addReg(DReg, RegState::Undef)
3448                        .addImm(Lane));
3449
3450      // The old source should be an implicit use, otherwise we might think it
3451      // was dead before here.
3452      MIB.addReg(SrcReg, RegState::Implicit);
3453      break;
3454    case ARM::VMOVSR:
3455      if (Domain != ExeNEON)
3456        break;
3457      assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
3458
3459      // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
3460      DstReg = MI->getOperand(0).getReg();
3461      SrcReg = MI->getOperand(1).getReg();
3462
3463      DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
3464
3465      // If we insert both a novel <def> and an <undef> on the DReg, we break
3466      // any existing dependency chain on the unused lane. Either already being
3467      // present means this instruction is in that chain anyway so we can make
3468      // the transformation.
3469      if (!MI->definesRegister(DReg, TRI) && !MI->readsRegister(DReg, TRI))
3470          break;
3471
3472      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3473        MI->RemoveOperand(i-1);
3474
3475      // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
3476      // Again DDst may be undefined at the beginning of this instruction.
3477      MI->setDesc(get(ARM::VSETLNi32));
3478      MIB.addReg(DReg, RegState::Define)
3479         .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
3480         .addReg(SrcReg)
3481         .addImm(Lane);
3482      AddDefaultPred(MIB);
3483
3484      // The narrower destination must be marked as set to keep previous chains
3485      // in place.
3486      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
3487      break;
3488    case ARM::VMOVS: {
3489      if (Domain != ExeNEON)
3490        break;
3491
3492      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
3493      DstReg = MI->getOperand(0).getReg();
3494      SrcReg = MI->getOperand(1).getReg();
3495
3496      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
3497      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
3498      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
3499
3500      // If we insert both a novel <def> and an <undef> on the DReg, we break
3501      // any existing dependency chain on the unused lane. Either already being
3502      // present means this instruction is in that chain anyway so we can make
3503      // the transformation.
3504      if (!MI->definesRegister(DDst, TRI) && !MI->readsRegister(DDst, TRI))
3505          break;
3506
3507      for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
3508        MI->RemoveOperand(i-1);
3509
3510      if (DSrc == DDst) {
3511        // Destination can be:
3512        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
3513        MI->setDesc(get(ARM::VDUPLN32d));
3514        MIB.addReg(DDst, RegState::Define)
3515           .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
3516           .addImm(SrcLane);
3517        AddDefaultPred(MIB);
3518
3519        // Neither the source or the destination are naturally represented any
3520        // more, so add them in manually.
3521        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
3522        MIB.addReg(SrcReg, RegState::Implicit);
3523        break;
3524      }
3525
3526      // In general there's no single instruction that can perform an S <-> S
3527      // move in NEON space, but a pair of VEXT instructions *can* do the
3528      // job. It turns out that the VEXTs needed will only use DSrc once, with
3529      // the position based purely on the combination of lane-0 and lane-1
3530      // involved. For example
3531      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
3532      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
3533      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
3534      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
3535      //
3536      // Pattern of the MachineInstrs is:
3537      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
3538      MachineInstrBuilder NewMIB;
3539      NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
3540                       get(ARM::VEXTd32), DDst);
3541
3542      // On the first instruction, both DSrc and DDst may be <undef> if present.
3543      // Specifically when the original instruction didn't have them as an
3544      // <imp-use>.
3545      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
3546      bool CurUndef = !MI->readsRegister(CurReg, TRI);
3547      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
3548
3549      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
3550      CurUndef = !MI->readsRegister(CurReg, TRI);
3551      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
3552
3553      NewMIB.addImm(1);
3554      AddDefaultPred(NewMIB);
3555
3556      if (SrcLane == DstLane)
3557        NewMIB.addReg(SrcReg, RegState::Implicit);
3558
3559      MI->setDesc(get(ARM::VEXTd32));
3560      MIB.addReg(DDst, RegState::Define);
3561
3562      // On the second instruction, DDst has definitely been defined above, so
3563      // it is not <undef>. DSrc, if present, can be <undef> as above.
3564      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
3565      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
3566      MIB.addReg(CurReg, getUndefRegState(CurUndef));
3567
3568      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
3569      CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
3570      MIB.addReg(CurReg, getUndefRegState(CurUndef));
3571
3572      MIB.addImm(1);
3573      AddDefaultPred(MIB);
3574
3575      if (SrcLane != DstLane)
3576        MIB.addReg(SrcReg, RegState::Implicit);
3577
3578      // As before, the original destination is no longer represented, add it
3579      // implicitly.
3580      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
3581      break;
3582    }
3583  }
3584
3585}
3586
3587bool ARMBaseInstrInfo::hasNOP() const {
3588  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
3589}
3590