ARMBaseInstrInfo.cpp revision 45ed19499b8f7025d9acf91cc37fbf6ea63abc4f
1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Base ARM implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMBaseInstrInfo.h"
15#include "ARM.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMHazardRecognizer.h"
19#include "ARMMachineFunctionInfo.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/ADT/STLExtras.h"
38
39#define GET_INSTRINFO_CTOR
40#include "ARMGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
46               cl::desc("Enable ARM 2-addr to 3-addr conv"));
47
48static cl::opt<bool>
49WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
50           cl::desc("Widen ARM vmovs to vmovd when possible"));
51
52/// ARM_MLxEntry - Record information about MLA / MLS instructions.
53struct ARM_MLxEntry {
54  uint16_t MLxOpc;     // MLA / MLS opcode
55  uint16_t MulOpc;     // Expanded multiplication opcode
56  uint16_t AddSubOpc;  // Expanded add / sub opcode
57  bool NegAcc;         // True if the acc is negated before the add / sub.
58  bool HasLane;        // True if instruction has an extra "lane" operand.
59};
60
61static const ARM_MLxEntry ARM_MLxTable[] = {
62  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
63  // fp scalar ops
64  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
65  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
66  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
67  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
68  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
69  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
70  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
71  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
72
73  // fp SIMD ops
74  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
75  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
76  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
77  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
78  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
79  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
80  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
81  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
82};
83
84ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
85  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
86    Subtarget(STI) {
87  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
88    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
89      assert(false && "Duplicated entries?");
90    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
91    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
92  }
93}
94
95// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
96// currently defaults to no prepass hazard recognizer.
97ScheduleHazardRecognizer *ARMBaseInstrInfo::
98CreateTargetHazardRecognizer(const TargetMachine *TM,
99                             const ScheduleDAG *DAG) const {
100  if (usePreRAHazardRecognizer()) {
101    const InstrItineraryData *II = TM->getInstrItineraryData();
102    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
103  }
104  return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
105}
106
107ScheduleHazardRecognizer *ARMBaseInstrInfo::
108CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
109                                   const ScheduleDAG *DAG) const {
110  if (Subtarget.isThumb2() || Subtarget.hasVFP2())
111    return (ScheduleHazardRecognizer *)
112      new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
113  return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
114}
115
116MachineInstr *
117ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
118                                        MachineBasicBlock::iterator &MBBI,
119                                        LiveVariables *LV) const {
120  // FIXME: Thumb2 support.
121
122  if (!EnableARM3Addr)
123    return NULL;
124
125  MachineInstr *MI = MBBI;
126  MachineFunction &MF = *MI->getParent()->getParent();
127  uint64_t TSFlags = MI->getDesc().TSFlags;
128  bool isPre = false;
129  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
130  default: return NULL;
131  case ARMII::IndexModePre:
132    isPre = true;
133    break;
134  case ARMII::IndexModePost:
135    break;
136  }
137
138  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
139  // operation.
140  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
141  if (MemOpc == 0)
142    return NULL;
143
144  MachineInstr *UpdateMI = NULL;
145  MachineInstr *MemMI = NULL;
146  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
147  const MCInstrDesc &MCID = MI->getDesc();
148  unsigned NumOps = MCID.getNumOperands();
149  bool isLoad = !MI->mayStore();
150  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
151  const MachineOperand &Base = MI->getOperand(2);
152  const MachineOperand &Offset = MI->getOperand(NumOps-3);
153  unsigned WBReg = WB.getReg();
154  unsigned BaseReg = Base.getReg();
155  unsigned OffReg = Offset.getReg();
156  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
157  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
158  switch (AddrMode) {
159  default: llvm_unreachable("Unknown indexed op!");
160  case ARMII::AddrMode2: {
161    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
162    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
163    if (OffReg == 0) {
164      if (ARM_AM::getSOImmVal(Amt) == -1)
165        // Can't encode it in a so_imm operand. This transformation will
166        // add more than 1 instruction. Abandon!
167        return NULL;
168      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
169                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
170        .addReg(BaseReg).addImm(Amt)
171        .addImm(Pred).addReg(0).addReg(0);
172    } else if (Amt != 0) {
173      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
174      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
175      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
176                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
177        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
178        .addImm(Pred).addReg(0).addReg(0);
179    } else
180      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
181                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
182        .addReg(BaseReg).addReg(OffReg)
183        .addImm(Pred).addReg(0).addReg(0);
184    break;
185  }
186  case ARMII::AddrMode3 : {
187    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
188    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
189    if (OffReg == 0)
190      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
191      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
192                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193        .addReg(BaseReg).addImm(Amt)
194        .addImm(Pred).addReg(0).addReg(0);
195    else
196      UpdateMI = BuildMI(MF, MI->getDebugLoc(),
197                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
198        .addReg(BaseReg).addReg(OffReg)
199        .addImm(Pred).addReg(0).addReg(0);
200    break;
201  }
202  }
203
204  std::vector<MachineInstr*> NewMIs;
205  if (isPre) {
206    if (isLoad)
207      MemMI = BuildMI(MF, MI->getDebugLoc(),
208                      get(MemOpc), MI->getOperand(0).getReg())
209        .addReg(WBReg).addImm(0).addImm(Pred);
210    else
211      MemMI = BuildMI(MF, MI->getDebugLoc(),
212                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
213        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
214    NewMIs.push_back(MemMI);
215    NewMIs.push_back(UpdateMI);
216  } else {
217    if (isLoad)
218      MemMI = BuildMI(MF, MI->getDebugLoc(),
219                      get(MemOpc), MI->getOperand(0).getReg())
220        .addReg(BaseReg).addImm(0).addImm(Pred);
221    else
222      MemMI = BuildMI(MF, MI->getDebugLoc(),
223                      get(MemOpc)).addReg(MI->getOperand(1).getReg())
224        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
225    if (WB.isDead())
226      UpdateMI->getOperand(0).setIsDead();
227    NewMIs.push_back(UpdateMI);
228    NewMIs.push_back(MemMI);
229  }
230
231  // Transfer LiveVariables states, kill / dead info.
232  if (LV) {
233    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234      MachineOperand &MO = MI->getOperand(i);
235      if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
236        unsigned Reg = MO.getReg();
237
238        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
239        if (MO.isDef()) {
240          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
241          if (MO.isDead())
242            LV->addVirtualRegisterDead(Reg, NewMI);
243        }
244        if (MO.isUse() && MO.isKill()) {
245          for (unsigned j = 0; j < 2; ++j) {
246            // Look at the two new MI's in reverse order.
247            MachineInstr *NewMI = NewMIs[j];
248            if (!NewMI->readsRegister(Reg))
249              continue;
250            LV->addVirtualRegisterKilled(Reg, NewMI);
251            if (VI.removeKill(MI))
252              VI.Kills.push_back(NewMI);
253            break;
254          }
255        }
256      }
257    }
258  }
259
260  MFI->insert(MBBI, NewMIs[1]);
261  MFI->insert(MBBI, NewMIs[0]);
262  return NewMIs[0];
263}
264
265// Branch analysis.
266bool
267ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
268                                MachineBasicBlock *&FBB,
269                                SmallVectorImpl<MachineOperand> &Cond,
270                                bool AllowModify) const {
271  // If the block has no terminators, it just falls into the block after it.
272  MachineBasicBlock::iterator I = MBB.end();
273  if (I == MBB.begin())
274    return false;
275  --I;
276  while (I->isDebugValue()) {
277    if (I == MBB.begin())
278      return false;
279    --I;
280  }
281  if (!isUnpredicatedTerminator(I))
282    return false;
283
284  // Get the last instruction in the block.
285  MachineInstr *LastInst = I;
286
287  // If there is only one terminator instruction, process it.
288  unsigned LastOpc = LastInst->getOpcode();
289  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
290    if (isUncondBranchOpcode(LastOpc)) {
291      TBB = LastInst->getOperand(0).getMBB();
292      return false;
293    }
294    if (isCondBranchOpcode(LastOpc)) {
295      // Block ends with fall-through condbranch.
296      TBB = LastInst->getOperand(0).getMBB();
297      Cond.push_back(LastInst->getOperand(1));
298      Cond.push_back(LastInst->getOperand(2));
299      return false;
300    }
301    return true;  // Can't handle indirect branch.
302  }
303
304  // Get the instruction before it if it is a terminator.
305  MachineInstr *SecondLastInst = I;
306  unsigned SecondLastOpc = SecondLastInst->getOpcode();
307
308  // If AllowModify is true and the block ends with two or more unconditional
309  // branches, delete all but the first unconditional branch.
310  if (AllowModify && isUncondBranchOpcode(LastOpc)) {
311    while (isUncondBranchOpcode(SecondLastOpc)) {
312      LastInst->eraseFromParent();
313      LastInst = SecondLastInst;
314      LastOpc = LastInst->getOpcode();
315      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
316        // Return now the only terminator is an unconditional branch.
317        TBB = LastInst->getOperand(0).getMBB();
318        return false;
319      } else {
320        SecondLastInst = I;
321        SecondLastOpc = SecondLastInst->getOpcode();
322      }
323    }
324  }
325
326  // If there are three terminators, we don't know what sort of block this is.
327  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
328    return true;
329
330  // If the block ends with a B and a Bcc, handle it.
331  if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332    TBB =  SecondLastInst->getOperand(0).getMBB();
333    Cond.push_back(SecondLastInst->getOperand(1));
334    Cond.push_back(SecondLastInst->getOperand(2));
335    FBB = LastInst->getOperand(0).getMBB();
336    return false;
337  }
338
339  // If the block ends with two unconditional branches, handle it.  The second
340  // one is not executed, so remove it.
341  if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
342    TBB = SecondLastInst->getOperand(0).getMBB();
343    I = LastInst;
344    if (AllowModify)
345      I->eraseFromParent();
346    return false;
347  }
348
349  // ...likewise if it ends with a branch table followed by an unconditional
350  // branch. The branch folder can create these, and we must get rid of them for
351  // correctness of Thumb constant islands.
352  if ((isJumpTableBranchOpcode(SecondLastOpc) ||
353       isIndirectBranchOpcode(SecondLastOpc)) &&
354      isUncondBranchOpcode(LastOpc)) {
355    I = LastInst;
356    if (AllowModify)
357      I->eraseFromParent();
358    return true;
359  }
360
361  // Otherwise, can't handle this.
362  return true;
363}
364
365
366unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
367  MachineBasicBlock::iterator I = MBB.end();
368  if (I == MBB.begin()) return 0;
369  --I;
370  while (I->isDebugValue()) {
371    if (I == MBB.begin())
372      return 0;
373    --I;
374  }
375  if (!isUncondBranchOpcode(I->getOpcode()) &&
376      !isCondBranchOpcode(I->getOpcode()))
377    return 0;
378
379  // Remove the branch.
380  I->eraseFromParent();
381
382  I = MBB.end();
383
384  if (I == MBB.begin()) return 1;
385  --I;
386  if (!isCondBranchOpcode(I->getOpcode()))
387    return 1;
388
389  // Remove the branch.
390  I->eraseFromParent();
391  return 2;
392}
393
394unsigned
395ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
396                               MachineBasicBlock *FBB,
397                               const SmallVectorImpl<MachineOperand> &Cond,
398                               DebugLoc DL) const {
399  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
400  int BOpc   = !AFI->isThumbFunction()
401    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
402  int BccOpc = !AFI->isThumbFunction()
403    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
404  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
405
406  // Shouldn't be a fall through.
407  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
408  assert((Cond.size() == 2 || Cond.size() == 0) &&
409         "ARM branch conditions have two components!");
410
411  if (FBB == 0) {
412    if (Cond.empty()) { // Unconditional branch?
413      if (isThumb)
414        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
415      else
416        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
417    } else
418      BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
419        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
420    return 1;
421  }
422
423  // Two-way conditional branch.
424  BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
425    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
426  if (isThumb)
427    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
428  else
429    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
430  return 2;
431}
432
433bool ARMBaseInstrInfo::
434ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
435  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
436  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
437  return false;
438}
439
440bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
441  if (MI->isBundle()) {
442    MachineBasicBlock::const_instr_iterator I = MI;
443    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
444    while (++I != E && I->isInsideBundle()) {
445      int PIdx = I->findFirstPredOperandIdx();
446      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
447        return true;
448    }
449    return false;
450  }
451
452  int PIdx = MI->findFirstPredOperandIdx();
453  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
454}
455
456bool ARMBaseInstrInfo::
457PredicateInstruction(MachineInstr *MI,
458                     const SmallVectorImpl<MachineOperand> &Pred) const {
459  unsigned Opc = MI->getOpcode();
460  if (isUncondBranchOpcode(Opc)) {
461    MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
462    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
463    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
464    return true;
465  }
466
467  int PIdx = MI->findFirstPredOperandIdx();
468  if (PIdx != -1) {
469    MachineOperand &PMO = MI->getOperand(PIdx);
470    PMO.setImm(Pred[0].getImm());
471    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
472    return true;
473  }
474  return false;
475}
476
477bool ARMBaseInstrInfo::
478SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
479                  const SmallVectorImpl<MachineOperand> &Pred2) const {
480  if (Pred1.size() > 2 || Pred2.size() > 2)
481    return false;
482
483  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
484  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
485  if (CC1 == CC2)
486    return true;
487
488  switch (CC1) {
489  default:
490    return false;
491  case ARMCC::AL:
492    return true;
493  case ARMCC::HS:
494    return CC2 == ARMCC::HI;
495  case ARMCC::LS:
496    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
497  case ARMCC::GE:
498    return CC2 == ARMCC::GT;
499  case ARMCC::LE:
500    return CC2 == ARMCC::LT;
501  }
502}
503
504bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
505                                    std::vector<MachineOperand> &Pred) const {
506  bool Found = false;
507  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
508    const MachineOperand &MO = MI->getOperand(i);
509    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
510        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
511      Pred.push_back(MO);
512      Found = true;
513    }
514  }
515
516  return Found;
517}
518
519/// isPredicable - Return true if the specified instruction can be predicated.
520/// By default, this returns true for every instruction with a
521/// PredicateOperand.
522bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
523  if (!MI->isPredicable())
524    return false;
525
526  if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
527    ARMFunctionInfo *AFI =
528      MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
529    return AFI->isThumb2Function();
530  }
531  return true;
532}
533
534/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
535LLVM_ATTRIBUTE_NOINLINE
536static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
537                                unsigned JTI);
538static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
539                                unsigned JTI) {
540  assert(JTI < JT.size());
541  return JT[JTI].MBBs.size();
542}
543
544/// GetInstSize - Return the size of the specified MachineInstr.
545///
546unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
547  const MachineBasicBlock &MBB = *MI->getParent();
548  const MachineFunction *MF = MBB.getParent();
549  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
550
551  const MCInstrDesc &MCID = MI->getDesc();
552  if (MCID.getSize())
553    return MCID.getSize();
554
555  // If this machine instr is an inline asm, measure it.
556  if (MI->getOpcode() == ARM::INLINEASM)
557    return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
558  if (MI->isLabel())
559    return 0;
560  unsigned Opc = MI->getOpcode();
561  switch (Opc) {
562  case TargetOpcode::IMPLICIT_DEF:
563  case TargetOpcode::KILL:
564  case TargetOpcode::PROLOG_LABEL:
565  case TargetOpcode::EH_LABEL:
566  case TargetOpcode::DBG_VALUE:
567    return 0;
568  case TargetOpcode::BUNDLE:
569    return getInstBundleLength(MI);
570  case ARM::MOVi16_ga_pcrel:
571  case ARM::MOVTi16_ga_pcrel:
572  case ARM::t2MOVi16_ga_pcrel:
573  case ARM::t2MOVTi16_ga_pcrel:
574    return 4;
575  case ARM::MOVi32imm:
576  case ARM::t2MOVi32imm:
577    return 8;
578  case ARM::CONSTPOOL_ENTRY:
579    // If this machine instr is a constant pool entry, its size is recorded as
580    // operand #2.
581    return MI->getOperand(2).getImm();
582  case ARM::Int_eh_sjlj_longjmp:
583    return 16;
584  case ARM::tInt_eh_sjlj_longjmp:
585    return 10;
586  case ARM::Int_eh_sjlj_setjmp:
587  case ARM::Int_eh_sjlj_setjmp_nofp:
588    return 20;
589  case ARM::tInt_eh_sjlj_setjmp:
590  case ARM::t2Int_eh_sjlj_setjmp:
591  case ARM::t2Int_eh_sjlj_setjmp_nofp:
592    return 12;
593  case ARM::BR_JTr:
594  case ARM::BR_JTm:
595  case ARM::BR_JTadd:
596  case ARM::tBR_JTr:
597  case ARM::t2BR_JT:
598  case ARM::t2TBB_JT:
599  case ARM::t2TBH_JT: {
600    // These are jumptable branches, i.e. a branch followed by an inlined
601    // jumptable. The size is 4 + 4 * number of entries. For TBB, each
602    // entry is one byte; TBH two byte each.
603    unsigned EntrySize = (Opc == ARM::t2TBB_JT)
604      ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
605    unsigned NumOps = MCID.getNumOperands();
606    MachineOperand JTOP =
607      MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
608    unsigned JTI = JTOP.getIndex();
609    const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
610    assert(MJTI != 0);
611    const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
612    assert(JTI < JT.size());
613    // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
614    // 4 aligned. The assembler / linker may add 2 byte padding just before
615    // the JT entries.  The size does not include this padding; the
616    // constant islands pass does separate bookkeeping for it.
617    // FIXME: If we know the size of the function is less than (1 << 16) *2
618    // bytes, we can use 16-bit entries instead. Then there won't be an
619    // alignment issue.
620    unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
621    unsigned NumEntries = getNumJTEntries(JT, JTI);
622    if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
623      // Make sure the instruction that follows TBB is 2-byte aligned.
624      // FIXME: Constant island pass should insert an "ALIGN" instruction
625      // instead.
626      ++NumEntries;
627    return NumEntries * EntrySize + InstSize;
628  }
629  default:
630    // Otherwise, pseudo-instruction sizes are zero.
631    return 0;
632  }
633}
634
635unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
636  unsigned Size = 0;
637  MachineBasicBlock::const_instr_iterator I = MI;
638  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
639  while (++I != E && I->isInsideBundle()) {
640    assert(!I->isBundle() && "No nested bundle!");
641    Size += GetInstSizeInBytes(&*I);
642  }
643  return Size;
644}
645
646void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
647                                   MachineBasicBlock::iterator I, DebugLoc DL,
648                                   unsigned DestReg, unsigned SrcReg,
649                                   bool KillSrc) const {
650  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
651  bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
652
653  if (GPRDest && GPRSrc) {
654    AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
655                                  .addReg(SrcReg, getKillRegState(KillSrc))));
656    return;
657  }
658
659  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
660  bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
661
662  unsigned Opc = 0;
663  if (SPRDest && SPRSrc)
664    Opc = ARM::VMOVS;
665  else if (GPRDest && SPRSrc)
666    Opc = ARM::VMOVRS;
667  else if (SPRDest && GPRSrc)
668    Opc = ARM::VMOVSR;
669  else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
670    Opc = ARM::VMOVD;
671  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
672    Opc = ARM::VORRq;
673
674  if (Opc) {
675    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
676    MIB.addReg(SrcReg, getKillRegState(KillSrc));
677    if (Opc == ARM::VORRq)
678      MIB.addReg(SrcReg, getKillRegState(KillSrc));
679    AddDefaultPred(MIB);
680    return;
681  }
682
683  // Handle register classes that require multiple instructions.
684  unsigned BeginIdx = 0;
685  unsigned SubRegs = 0;
686  unsigned Spacing = 1;
687
688  // Use VORRq when possible.
689  if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
690    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
691  else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
692    Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
693  // Fall back to VMOVD.
694  else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
695    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
696  else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
697    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
698  else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
699    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
700
701  else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
702    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
703  else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
704    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
705  else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
706    Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
707
708  if (Opc) {
709    const TargetRegisterInfo *TRI = &getRegisterInfo();
710    MachineInstrBuilder Mov;
711    for (unsigned i = 0; i != SubRegs; ++i) {
712      unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
713      unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
714      assert(Dst && Src && "Bad sub-register");
715      Mov = AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
716                             .addReg(Src));
717      // VORR takes two source operands.
718      if (Opc == ARM::VORRq)
719        Mov.addReg(Src);
720    }
721    // Add implicit super-register defs and kills to the last instruction.
722    Mov->addRegisterDefined(DestReg, TRI);
723    if (KillSrc)
724      Mov->addRegisterKilled(SrcReg, TRI);
725    return;
726  }
727
728  llvm_unreachable("Impossible reg-to-reg copy");
729}
730
731static const
732MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
733                             unsigned Reg, unsigned SubIdx, unsigned State,
734                             const TargetRegisterInfo *TRI) {
735  if (!SubIdx)
736    return MIB.addReg(Reg, State);
737
738  if (TargetRegisterInfo::isPhysicalRegister(Reg))
739    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
740  return MIB.addReg(Reg, State, SubIdx);
741}
742
743void ARMBaseInstrInfo::
744storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
745                    unsigned SrcReg, bool isKill, int FI,
746                    const TargetRegisterClass *RC,
747                    const TargetRegisterInfo *TRI) const {
748  DebugLoc DL;
749  if (I != MBB.end()) DL = I->getDebugLoc();
750  MachineFunction &MF = *MBB.getParent();
751  MachineFrameInfo &MFI = *MF.getFrameInfo();
752  unsigned Align = MFI.getObjectAlignment(FI);
753
754  MachineMemOperand *MMO =
755    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
756                            MachineMemOperand::MOStore,
757                            MFI.getObjectSize(FI),
758                            Align);
759
760  switch (RC->getSize()) {
761    case 4:
762      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
763        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
764                   .addReg(SrcReg, getKillRegState(isKill))
765                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
766      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
767        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
768                   .addReg(SrcReg, getKillRegState(isKill))
769                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
770      } else
771        llvm_unreachable("Unknown reg class!");
772      break;
773    case 8:
774      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
775        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
776                   .addReg(SrcReg, getKillRegState(isKill))
777                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
778      } else
779        llvm_unreachable("Unknown reg class!");
780      break;
781    case 16:
782      if (ARM::DPairRegClass.hasSubClassEq(RC)) {
783        // Use aligned spills if the stack can be realigned.
784        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
785          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
786                     .addFrameIndex(FI).addImm(16)
787                     .addReg(SrcReg, getKillRegState(isKill))
788                     .addMemOperand(MMO));
789        } else {
790          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
791                     .addReg(SrcReg, getKillRegState(isKill))
792                     .addFrameIndex(FI)
793                     .addMemOperand(MMO));
794        }
795      } else
796        llvm_unreachable("Unknown reg class!");
797      break;
798    case 32:
799      if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
800        if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
801          // FIXME: It's possible to only store part of the QQ register if the
802          // spilled def has a sub-register index.
803          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
804                     .addFrameIndex(FI).addImm(16)
805                     .addReg(SrcReg, getKillRegState(isKill))
806                     .addMemOperand(MMO));
807        } else {
808          MachineInstrBuilder MIB =
809          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
810                       .addFrameIndex(FI))
811                       .addMemOperand(MMO);
812          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
813          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
814          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
815                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
816        }
817      } else
818        llvm_unreachable("Unknown reg class!");
819      break;
820    case 64:
821      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
822        MachineInstrBuilder MIB =
823          AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
824                         .addFrameIndex(FI))
825                         .addMemOperand(MMO);
826        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
827        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
828        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
829        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
830        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
831        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
832        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
833              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
834      } else
835        llvm_unreachable("Unknown reg class!");
836      break;
837    default:
838      llvm_unreachable("Unknown reg class!");
839  }
840}
841
842unsigned
843ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
844                                     int &FrameIndex) const {
845  switch (MI->getOpcode()) {
846  default: break;
847  case ARM::STRrs:
848  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
849    if (MI->getOperand(1).isFI() &&
850        MI->getOperand(2).isReg() &&
851        MI->getOperand(3).isImm() &&
852        MI->getOperand(2).getReg() == 0 &&
853        MI->getOperand(3).getImm() == 0) {
854      FrameIndex = MI->getOperand(1).getIndex();
855      return MI->getOperand(0).getReg();
856    }
857    break;
858  case ARM::STRi12:
859  case ARM::t2STRi12:
860  case ARM::tSTRspi:
861  case ARM::VSTRD:
862  case ARM::VSTRS:
863    if (MI->getOperand(1).isFI() &&
864        MI->getOperand(2).isImm() &&
865        MI->getOperand(2).getImm() == 0) {
866      FrameIndex = MI->getOperand(1).getIndex();
867      return MI->getOperand(0).getReg();
868    }
869    break;
870  case ARM::VST1q64:
871    if (MI->getOperand(0).isFI() &&
872        MI->getOperand(2).getSubReg() == 0) {
873      FrameIndex = MI->getOperand(0).getIndex();
874      return MI->getOperand(2).getReg();
875    }
876    break;
877  case ARM::VSTMQIA:
878    if (MI->getOperand(1).isFI() &&
879        MI->getOperand(0).getSubReg() == 0) {
880      FrameIndex = MI->getOperand(1).getIndex();
881      return MI->getOperand(0).getReg();
882    }
883    break;
884  }
885
886  return 0;
887}
888
889unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
890                                                    int &FrameIndex) const {
891  const MachineMemOperand *Dummy;
892  return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
893}
894
895void ARMBaseInstrInfo::
896loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
897                     unsigned DestReg, int FI,
898                     const TargetRegisterClass *RC,
899                     const TargetRegisterInfo *TRI) const {
900  DebugLoc DL;
901  if (I != MBB.end()) DL = I->getDebugLoc();
902  MachineFunction &MF = *MBB.getParent();
903  MachineFrameInfo &MFI = *MF.getFrameInfo();
904  unsigned Align = MFI.getObjectAlignment(FI);
905  MachineMemOperand *MMO =
906    MF.getMachineMemOperand(
907                    MachinePointerInfo::getFixedStack(FI),
908                            MachineMemOperand::MOLoad,
909                            MFI.getObjectSize(FI),
910                            Align);
911
912  switch (RC->getSize()) {
913  case 4:
914    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
915      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
916                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
917
918    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
919      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
920                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
921    } else
922      llvm_unreachable("Unknown reg class!");
923    break;
924  case 8:
925    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
926      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
927                   .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
928    } else
929      llvm_unreachable("Unknown reg class!");
930    break;
931  case 16:
932    if (ARM::DPairRegClass.hasSubClassEq(RC)) {
933      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
934        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
935                     .addFrameIndex(FI).addImm(16)
936                     .addMemOperand(MMO));
937      } else {
938        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
939                       .addFrameIndex(FI)
940                       .addMemOperand(MMO));
941      }
942    } else
943      llvm_unreachable("Unknown reg class!");
944    break;
945  case 32:
946    if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
947      if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
948        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
949                     .addFrameIndex(FI).addImm(16)
950                     .addMemOperand(MMO));
951      } else {
952        MachineInstrBuilder MIB =
953        AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
954                       .addFrameIndex(FI))
955                       .addMemOperand(MMO);
956        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
957        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
958        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
959        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
960        if (TargetRegisterInfo::isPhysicalRegister(DestReg))
961          MIB.addReg(DestReg, RegState::ImplicitDefine);
962      }
963    } else
964      llvm_unreachable("Unknown reg class!");
965    break;
966  case 64:
967    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
968      MachineInstrBuilder MIB =
969      AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
970                     .addFrameIndex(FI))
971                     .addMemOperand(MMO);
972      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
973      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
974      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
975      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
976      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
977      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
978      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
979      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
980      if (TargetRegisterInfo::isPhysicalRegister(DestReg))
981        MIB.addReg(DestReg, RegState::ImplicitDefine);
982    } else
983      llvm_unreachable("Unknown reg class!");
984    break;
985  default:
986    llvm_unreachable("Unknown regclass!");
987  }
988}
989
990unsigned
991ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
992                                      int &FrameIndex) const {
993  switch (MI->getOpcode()) {
994  default: break;
995  case ARM::LDRrs:
996  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
997    if (MI->getOperand(1).isFI() &&
998        MI->getOperand(2).isReg() &&
999        MI->getOperand(3).isImm() &&
1000        MI->getOperand(2).getReg() == 0 &&
1001        MI->getOperand(3).getImm() == 0) {
1002      FrameIndex = MI->getOperand(1).getIndex();
1003      return MI->getOperand(0).getReg();
1004    }
1005    break;
1006  case ARM::LDRi12:
1007  case ARM::t2LDRi12:
1008  case ARM::tLDRspi:
1009  case ARM::VLDRD:
1010  case ARM::VLDRS:
1011    if (MI->getOperand(1).isFI() &&
1012        MI->getOperand(2).isImm() &&
1013        MI->getOperand(2).getImm() == 0) {
1014      FrameIndex = MI->getOperand(1).getIndex();
1015      return MI->getOperand(0).getReg();
1016    }
1017    break;
1018  case ARM::VLD1q64:
1019    if (MI->getOperand(1).isFI() &&
1020        MI->getOperand(0).getSubReg() == 0) {
1021      FrameIndex = MI->getOperand(1).getIndex();
1022      return MI->getOperand(0).getReg();
1023    }
1024    break;
1025  case ARM::VLDMQIA:
1026    if (MI->getOperand(1).isFI() &&
1027        MI->getOperand(0).getSubReg() == 0) {
1028      FrameIndex = MI->getOperand(1).getIndex();
1029      return MI->getOperand(0).getReg();
1030    }
1031    break;
1032  }
1033
1034  return 0;
1035}
1036
1037unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1038                                             int &FrameIndex) const {
1039  const MachineMemOperand *Dummy;
1040  return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1041}
1042
1043bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1044  // This hook gets to expand COPY instructions before they become
1045  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1046  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1047  // changed into a VORR that can go down the NEON pipeline.
1048  if (!WidenVMOVS || !MI->isCopy())
1049    return false;
1050
1051  // Look for a copy between even S-registers.  That is where we keep floats
1052  // when using NEON v2f32 instructions for f32 arithmetic.
1053  unsigned DstRegS = MI->getOperand(0).getReg();
1054  unsigned SrcRegS = MI->getOperand(1).getReg();
1055  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1056    return false;
1057
1058  const TargetRegisterInfo *TRI = &getRegisterInfo();
1059  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1060                                              &ARM::DPRRegClass);
1061  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1062                                              &ARM::DPRRegClass);
1063  if (!DstRegD || !SrcRegD)
1064    return false;
1065
1066  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1067  // legal if the COPY already defines the full DstRegD, and it isn't a
1068  // sub-register insertion.
1069  if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1070    return false;
1071
1072  // A dead copy shouldn't show up here, but reject it just in case.
1073  if (MI->getOperand(0).isDead())
1074    return false;
1075
1076  // All clear, widen the COPY.
1077  DEBUG(dbgs() << "widening:    " << *MI);
1078
1079  // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1080  // or some other super-register.
1081  int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1082  if (ImpDefIdx != -1)
1083    MI->RemoveOperand(ImpDefIdx);
1084
1085  // Change the opcode and operands.
1086  MI->setDesc(get(ARM::VMOVD));
1087  MI->getOperand(0).setReg(DstRegD);
1088  MI->getOperand(1).setReg(SrcRegD);
1089  AddDefaultPred(MachineInstrBuilder(MI));
1090
1091  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1092  // register scavenger and machine verifier, so we need to indicate that we
1093  // are reading an undefined value from SrcRegD, but a proper value from
1094  // SrcRegS.
1095  MI->getOperand(1).setIsUndef();
1096  MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1097
1098  // SrcRegD may actually contain an unrelated value in the ssub_1
1099  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1100  if (MI->getOperand(1).isKill()) {
1101    MI->getOperand(1).setIsKill(false);
1102    MI->addRegisterKilled(SrcRegS, TRI, true);
1103  }
1104
1105  DEBUG(dbgs() << "replaced by: " << *MI);
1106  return true;
1107}
1108
1109MachineInstr*
1110ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1111                                           int FrameIx, uint64_t Offset,
1112                                           const MDNode *MDPtr,
1113                                           DebugLoc DL) const {
1114  MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1115    .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1116  return &*MIB;
1117}
1118
1119/// Create a copy of a const pool value. Update CPI to the new index and return
1120/// the label UID.
1121static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1122  MachineConstantPool *MCP = MF.getConstantPool();
1123  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1124
1125  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1126  assert(MCPE.isMachineConstantPoolEntry() &&
1127         "Expecting a machine constantpool entry!");
1128  ARMConstantPoolValue *ACPV =
1129    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1130
1131  unsigned PCLabelId = AFI->createPICLabelUId();
1132  ARMConstantPoolValue *NewCPV = 0;
1133  // FIXME: The below assumes PIC relocation model and that the function
1134  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1135  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1136  // instructions, so that's probably OK, but is PIC always correct when
1137  // we get here?
1138  if (ACPV->isGlobalValue())
1139    NewCPV = ARMConstantPoolConstant::
1140      Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1141             ARMCP::CPValue, 4);
1142  else if (ACPV->isExtSymbol())
1143    NewCPV = ARMConstantPoolSymbol::
1144      Create(MF.getFunction()->getContext(),
1145             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1146  else if (ACPV->isBlockAddress())
1147    NewCPV = ARMConstantPoolConstant::
1148      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1149             ARMCP::CPBlockAddress, 4);
1150  else if (ACPV->isLSDA())
1151    NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1152                                             ARMCP::CPLSDA, 4);
1153  else if (ACPV->isMachineBasicBlock())
1154    NewCPV = ARMConstantPoolMBB::
1155      Create(MF.getFunction()->getContext(),
1156             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1157  else
1158    llvm_unreachable("Unexpected ARM constantpool value type!!");
1159  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1160  return PCLabelId;
1161}
1162
1163void ARMBaseInstrInfo::
1164reMaterialize(MachineBasicBlock &MBB,
1165              MachineBasicBlock::iterator I,
1166              unsigned DestReg, unsigned SubIdx,
1167              const MachineInstr *Orig,
1168              const TargetRegisterInfo &TRI) const {
1169  unsigned Opcode = Orig->getOpcode();
1170  switch (Opcode) {
1171  default: {
1172    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1173    MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1174    MBB.insert(I, MI);
1175    break;
1176  }
1177  case ARM::tLDRpci_pic:
1178  case ARM::t2LDRpci_pic: {
1179    MachineFunction &MF = *MBB.getParent();
1180    unsigned CPI = Orig->getOperand(1).getIndex();
1181    unsigned PCLabelId = duplicateCPV(MF, CPI);
1182    MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1183                                      DestReg)
1184      .addConstantPoolIndex(CPI).addImm(PCLabelId);
1185    MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1186    break;
1187  }
1188  }
1189}
1190
1191MachineInstr *
1192ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1193  MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1194  switch(Orig->getOpcode()) {
1195  case ARM::tLDRpci_pic:
1196  case ARM::t2LDRpci_pic: {
1197    unsigned CPI = Orig->getOperand(1).getIndex();
1198    unsigned PCLabelId = duplicateCPV(MF, CPI);
1199    Orig->getOperand(1).setIndex(CPI);
1200    Orig->getOperand(2).setImm(PCLabelId);
1201    break;
1202  }
1203  }
1204  return MI;
1205}
1206
1207bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1208                                        const MachineInstr *MI1,
1209                                        const MachineRegisterInfo *MRI) const {
1210  int Opcode = MI0->getOpcode();
1211  if (Opcode == ARM::t2LDRpci ||
1212      Opcode == ARM::t2LDRpci_pic ||
1213      Opcode == ARM::tLDRpci ||
1214      Opcode == ARM::tLDRpci_pic ||
1215      Opcode == ARM::MOV_ga_dyn ||
1216      Opcode == ARM::MOV_ga_pcrel ||
1217      Opcode == ARM::MOV_ga_pcrel_ldr ||
1218      Opcode == ARM::t2MOV_ga_dyn ||
1219      Opcode == ARM::t2MOV_ga_pcrel) {
1220    if (MI1->getOpcode() != Opcode)
1221      return false;
1222    if (MI0->getNumOperands() != MI1->getNumOperands())
1223      return false;
1224
1225    const MachineOperand &MO0 = MI0->getOperand(1);
1226    const MachineOperand &MO1 = MI1->getOperand(1);
1227    if (MO0.getOffset() != MO1.getOffset())
1228      return false;
1229
1230    if (Opcode == ARM::MOV_ga_dyn ||
1231        Opcode == ARM::MOV_ga_pcrel ||
1232        Opcode == ARM::MOV_ga_pcrel_ldr ||
1233        Opcode == ARM::t2MOV_ga_dyn ||
1234        Opcode == ARM::t2MOV_ga_pcrel)
1235      // Ignore the PC labels.
1236      return MO0.getGlobal() == MO1.getGlobal();
1237
1238    const MachineFunction *MF = MI0->getParent()->getParent();
1239    const MachineConstantPool *MCP = MF->getConstantPool();
1240    int CPI0 = MO0.getIndex();
1241    int CPI1 = MO1.getIndex();
1242    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1243    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1244    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1245    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1246    if (isARMCP0 && isARMCP1) {
1247      ARMConstantPoolValue *ACPV0 =
1248        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1249      ARMConstantPoolValue *ACPV1 =
1250        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1251      return ACPV0->hasSameValue(ACPV1);
1252    } else if (!isARMCP0 && !isARMCP1) {
1253      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1254    }
1255    return false;
1256  } else if (Opcode == ARM::PICLDR) {
1257    if (MI1->getOpcode() != Opcode)
1258      return false;
1259    if (MI0->getNumOperands() != MI1->getNumOperands())
1260      return false;
1261
1262    unsigned Addr0 = MI0->getOperand(1).getReg();
1263    unsigned Addr1 = MI1->getOperand(1).getReg();
1264    if (Addr0 != Addr1) {
1265      if (!MRI ||
1266          !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1267          !TargetRegisterInfo::isVirtualRegister(Addr1))
1268        return false;
1269
1270      // This assumes SSA form.
1271      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1272      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1273      // Check if the loaded value, e.g. a constantpool of a global address, are
1274      // the same.
1275      if (!produceSameValue(Def0, Def1, MRI))
1276        return false;
1277    }
1278
1279    for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1280      // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1281      const MachineOperand &MO0 = MI0->getOperand(i);
1282      const MachineOperand &MO1 = MI1->getOperand(i);
1283      if (!MO0.isIdenticalTo(MO1))
1284        return false;
1285    }
1286    return true;
1287  }
1288
1289  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1290}
1291
1292/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1293/// determine if two loads are loading from the same base address. It should
1294/// only return true if the base pointers are the same and the only differences
1295/// between the two addresses is the offset. It also returns the offsets by
1296/// reference.
1297bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1298                                               int64_t &Offset1,
1299                                               int64_t &Offset2) const {
1300  // Don't worry about Thumb: just ARM and Thumb2.
1301  if (Subtarget.isThumb1Only()) return false;
1302
1303  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1304    return false;
1305
1306  switch (Load1->getMachineOpcode()) {
1307  default:
1308    return false;
1309  case ARM::LDRi12:
1310  case ARM::LDRBi12:
1311  case ARM::LDRD:
1312  case ARM::LDRH:
1313  case ARM::LDRSB:
1314  case ARM::LDRSH:
1315  case ARM::VLDRD:
1316  case ARM::VLDRS:
1317  case ARM::t2LDRi8:
1318  case ARM::t2LDRDi8:
1319  case ARM::t2LDRSHi8:
1320  case ARM::t2LDRi12:
1321  case ARM::t2LDRSHi12:
1322    break;
1323  }
1324
1325  switch (Load2->getMachineOpcode()) {
1326  default:
1327    return false;
1328  case ARM::LDRi12:
1329  case ARM::LDRBi12:
1330  case ARM::LDRD:
1331  case ARM::LDRH:
1332  case ARM::LDRSB:
1333  case ARM::LDRSH:
1334  case ARM::VLDRD:
1335  case ARM::VLDRS:
1336  case ARM::t2LDRi8:
1337  case ARM::t2LDRDi8:
1338  case ARM::t2LDRSHi8:
1339  case ARM::t2LDRi12:
1340  case ARM::t2LDRSHi12:
1341    break;
1342  }
1343
1344  // Check if base addresses and chain operands match.
1345  if (Load1->getOperand(0) != Load2->getOperand(0) ||
1346      Load1->getOperand(4) != Load2->getOperand(4))
1347    return false;
1348
1349  // Index should be Reg0.
1350  if (Load1->getOperand(3) != Load2->getOperand(3))
1351    return false;
1352
1353  // Determine the offsets.
1354  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1355      isa<ConstantSDNode>(Load2->getOperand(1))) {
1356    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1357    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1358    return true;
1359  }
1360
1361  return false;
1362}
1363
1364/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1365/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1366/// be scheduled togther. On some targets if two loads are loading from
1367/// addresses in the same cache line, it's better if they are scheduled
1368/// together. This function takes two integers that represent the load offsets
1369/// from the common base address. It returns true if it decides it's desirable
1370/// to schedule the two loads together. "NumLoads" is the number of loads that
1371/// have already been scheduled after Load1.
1372bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1373                                               int64_t Offset1, int64_t Offset2,
1374                                               unsigned NumLoads) const {
1375  // Don't worry about Thumb: just ARM and Thumb2.
1376  if (Subtarget.isThumb1Only()) return false;
1377
1378  assert(Offset2 > Offset1);
1379
1380  if ((Offset2 - Offset1) / 8 > 64)
1381    return false;
1382
1383  if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1384    return false;  // FIXME: overly conservative?
1385
1386  // Four loads in a row should be sufficient.
1387  if (NumLoads >= 3)
1388    return false;
1389
1390  return true;
1391}
1392
1393bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1394                                            const MachineBasicBlock *MBB,
1395                                            const MachineFunction &MF) const {
1396  // Debug info is never a scheduling boundary. It's necessary to be explicit
1397  // due to the special treatment of IT instructions below, otherwise a
1398  // dbg_value followed by an IT will result in the IT instruction being
1399  // considered a scheduling hazard, which is wrong. It should be the actual
1400  // instruction preceding the dbg_value instruction(s), just like it is
1401  // when debug info is not present.
1402  if (MI->isDebugValue())
1403    return false;
1404
1405  // Terminators and labels can't be scheduled around.
1406  if (MI->isTerminator() || MI->isLabel())
1407    return true;
1408
1409  // Treat the start of the IT block as a scheduling boundary, but schedule
1410  // t2IT along with all instructions following it.
1411  // FIXME: This is a big hammer. But the alternative is to add all potential
1412  // true and anti dependencies to IT block instructions as implicit operands
1413  // to the t2IT instruction. The added compile time and complexity does not
1414  // seem worth it.
1415  MachineBasicBlock::const_iterator I = MI;
1416  // Make sure to skip any dbg_value instructions
1417  while (++I != MBB->end() && I->isDebugValue())
1418    ;
1419  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1420    return true;
1421
1422  // Don't attempt to schedule around any instruction that defines
1423  // a stack-oriented pointer, as it's unlikely to be profitable. This
1424  // saves compile time, because it doesn't require every single
1425  // stack slot reference to depend on the instruction that does the
1426  // modification.
1427  // Calls don't actually change the stack pointer, even if they have imp-defs.
1428  // No ARM calling conventions change the stack pointer. (X86 calling
1429  // conventions sometimes do).
1430  if (!MI->isCall() && MI->definesRegister(ARM::SP))
1431    return true;
1432
1433  return false;
1434}
1435
1436bool ARMBaseInstrInfo::
1437isProfitableToIfCvt(MachineBasicBlock &MBB,
1438                    unsigned NumCycles, unsigned ExtraPredCycles,
1439                    const BranchProbability &Probability) const {
1440  if (!NumCycles)
1441    return false;
1442
1443  // Attempt to estimate the relative costs of predication versus branching.
1444  unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1445  UnpredCost /= Probability.getDenominator();
1446  UnpredCost += 1; // The branch itself
1447  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1448
1449  return (NumCycles + ExtraPredCycles) <= UnpredCost;
1450}
1451
1452bool ARMBaseInstrInfo::
1453isProfitableToIfCvt(MachineBasicBlock &TMBB,
1454                    unsigned TCycles, unsigned TExtra,
1455                    MachineBasicBlock &FMBB,
1456                    unsigned FCycles, unsigned FExtra,
1457                    const BranchProbability &Probability) const {
1458  if (!TCycles || !FCycles)
1459    return false;
1460
1461  // Attempt to estimate the relative costs of predication versus branching.
1462  unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1463  TUnpredCost /= Probability.getDenominator();
1464
1465  uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1466  unsigned FUnpredCost = Comp * FCycles;
1467  FUnpredCost /= Probability.getDenominator();
1468
1469  unsigned UnpredCost = TUnpredCost + FUnpredCost;
1470  UnpredCost += 1; // The branch itself
1471  UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1472
1473  return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1474}
1475
1476/// getInstrPredicate - If instruction is predicated, returns its predicate
1477/// condition, otherwise returns AL. It also returns the condition code
1478/// register by reference.
1479ARMCC::CondCodes
1480llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1481  int PIdx = MI->findFirstPredOperandIdx();
1482  if (PIdx == -1) {
1483    PredReg = 0;
1484    return ARMCC::AL;
1485  }
1486
1487  PredReg = MI->getOperand(PIdx+1).getReg();
1488  return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1489}
1490
1491
1492int llvm::getMatchingCondBranchOpcode(int Opc) {
1493  if (Opc == ARM::B)
1494    return ARM::Bcc;
1495  if (Opc == ARM::tB)
1496    return ARM::tBcc;
1497  if (Opc == ARM::t2B)
1498    return ARM::t2Bcc;
1499
1500  llvm_unreachable("Unknown unconditional branch opcode!");
1501}
1502
1503/// commuteInstruction - Handle commutable instructions.
1504MachineInstr *
1505ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1506  switch (MI->getOpcode()) {
1507  case ARM::MOVCCr:
1508  case ARM::t2MOVCCr: {
1509    // MOVCC can be commuted by inverting the condition.
1510    unsigned PredReg = 0;
1511    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1512    // MOVCC AL can't be inverted. Shouldn't happen.
1513    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1514      return NULL;
1515    MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1516    if (!MI)
1517      return NULL;
1518    // After swapping the MOVCC operands, also invert the condition.
1519    MI->getOperand(MI->findFirstPredOperandIdx())
1520      .setImm(ARMCC::getOppositeCondition(CC));
1521    return MI;
1522  }
1523  }
1524  return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1525}
1526
1527/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1528/// instruction is encoded with an 'S' bit is determined by the optional CPSR
1529/// def operand.
1530///
1531/// This will go away once we can teach tblgen how to set the optional CPSR def
1532/// operand itself.
1533struct AddSubFlagsOpcodePair {
1534  uint16_t PseudoOpc;
1535  uint16_t MachineOpc;
1536};
1537
1538static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1539  {ARM::ADDSri, ARM::ADDri},
1540  {ARM::ADDSrr, ARM::ADDrr},
1541  {ARM::ADDSrsi, ARM::ADDrsi},
1542  {ARM::ADDSrsr, ARM::ADDrsr},
1543
1544  {ARM::SUBSri, ARM::SUBri},
1545  {ARM::SUBSrr, ARM::SUBrr},
1546  {ARM::SUBSrsi, ARM::SUBrsi},
1547  {ARM::SUBSrsr, ARM::SUBrsr},
1548
1549  {ARM::RSBSri, ARM::RSBri},
1550  {ARM::RSBSrsi, ARM::RSBrsi},
1551  {ARM::RSBSrsr, ARM::RSBrsr},
1552
1553  {ARM::t2ADDSri, ARM::t2ADDri},
1554  {ARM::t2ADDSrr, ARM::t2ADDrr},
1555  {ARM::t2ADDSrs, ARM::t2ADDrs},
1556
1557  {ARM::t2SUBSri, ARM::t2SUBri},
1558  {ARM::t2SUBSrr, ARM::t2SUBrr},
1559  {ARM::t2SUBSrs, ARM::t2SUBrs},
1560
1561  {ARM::t2RSBSri, ARM::t2RSBri},
1562  {ARM::t2RSBSrs, ARM::t2RSBrs},
1563};
1564
1565unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1566  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1567    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1568      return AddSubFlagsOpcodeMap[i].MachineOpc;
1569  return 0;
1570}
1571
1572void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1573                               MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1574                               unsigned DestReg, unsigned BaseReg, int NumBytes,
1575                               ARMCC::CondCodes Pred, unsigned PredReg,
1576                               const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1577  bool isSub = NumBytes < 0;
1578  if (isSub) NumBytes = -NumBytes;
1579
1580  while (NumBytes) {
1581    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1582    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1583    assert(ThisVal && "Didn't extract field correctly");
1584
1585    // We will handle these bits from offset, clear them.
1586    NumBytes &= ~ThisVal;
1587
1588    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1589
1590    // Build the new ADD / SUB.
1591    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1592    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1593      .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1594      .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1595      .setMIFlags(MIFlags);
1596    BaseReg = DestReg;
1597  }
1598}
1599
1600bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1601                                unsigned FrameReg, int &Offset,
1602                                const ARMBaseInstrInfo &TII) {
1603  unsigned Opcode = MI.getOpcode();
1604  const MCInstrDesc &Desc = MI.getDesc();
1605  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1606  bool isSub = false;
1607
1608  // Memory operands in inline assembly always use AddrMode2.
1609  if (Opcode == ARM::INLINEASM)
1610    AddrMode = ARMII::AddrMode2;
1611
1612  if (Opcode == ARM::ADDri) {
1613    Offset += MI.getOperand(FrameRegIdx+1).getImm();
1614    if (Offset == 0) {
1615      // Turn it into a move.
1616      MI.setDesc(TII.get(ARM::MOVr));
1617      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1618      MI.RemoveOperand(FrameRegIdx+1);
1619      Offset = 0;
1620      return true;
1621    } else if (Offset < 0) {
1622      Offset = -Offset;
1623      isSub = true;
1624      MI.setDesc(TII.get(ARM::SUBri));
1625    }
1626
1627    // Common case: small offset, fits into instruction.
1628    if (ARM_AM::getSOImmVal(Offset) != -1) {
1629      // Replace the FrameIndex with sp / fp
1630      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1631      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1632      Offset = 0;
1633      return true;
1634    }
1635
1636    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1637    // as possible.
1638    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1639    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1640
1641    // We will handle these bits from offset, clear them.
1642    Offset &= ~ThisImmVal;
1643
1644    // Get the properly encoded SOImmVal field.
1645    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1646           "Bit extraction didn't work?");
1647    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1648 } else {
1649    unsigned ImmIdx = 0;
1650    int InstrOffs = 0;
1651    unsigned NumBits = 0;
1652    unsigned Scale = 1;
1653    switch (AddrMode) {
1654    case ARMII::AddrMode_i12: {
1655      ImmIdx = FrameRegIdx + 1;
1656      InstrOffs = MI.getOperand(ImmIdx).getImm();
1657      NumBits = 12;
1658      break;
1659    }
1660    case ARMII::AddrMode2: {
1661      ImmIdx = FrameRegIdx+2;
1662      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1663      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1664        InstrOffs *= -1;
1665      NumBits = 12;
1666      break;
1667    }
1668    case ARMII::AddrMode3: {
1669      ImmIdx = FrameRegIdx+2;
1670      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1671      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1672        InstrOffs *= -1;
1673      NumBits = 8;
1674      break;
1675    }
1676    case ARMII::AddrMode4:
1677    case ARMII::AddrMode6:
1678      // Can't fold any offset even if it's zero.
1679      return false;
1680    case ARMII::AddrMode5: {
1681      ImmIdx = FrameRegIdx+1;
1682      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1683      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1684        InstrOffs *= -1;
1685      NumBits = 8;
1686      Scale = 4;
1687      break;
1688    }
1689    default:
1690      llvm_unreachable("Unsupported addressing mode!");
1691    }
1692
1693    Offset += InstrOffs * Scale;
1694    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1695    if (Offset < 0) {
1696      Offset = -Offset;
1697      isSub = true;
1698    }
1699
1700    // Attempt to fold address comp. if opcode has offset bits
1701    if (NumBits > 0) {
1702      // Common case: small offset, fits into instruction.
1703      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1704      int ImmedOffset = Offset / Scale;
1705      unsigned Mask = (1 << NumBits) - 1;
1706      if ((unsigned)Offset <= Mask * Scale) {
1707        // Replace the FrameIndex with sp
1708        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1709        // FIXME: When addrmode2 goes away, this will simplify (like the
1710        // T2 version), as the LDR.i12 versions don't need the encoding
1711        // tricks for the offset value.
1712        if (isSub) {
1713          if (AddrMode == ARMII::AddrMode_i12)
1714            ImmedOffset = -ImmedOffset;
1715          else
1716            ImmedOffset |= 1 << NumBits;
1717        }
1718        ImmOp.ChangeToImmediate(ImmedOffset);
1719        Offset = 0;
1720        return true;
1721      }
1722
1723      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1724      ImmedOffset = ImmedOffset & Mask;
1725      if (isSub) {
1726        if (AddrMode == ARMII::AddrMode_i12)
1727          ImmedOffset = -ImmedOffset;
1728        else
1729          ImmedOffset |= 1 << NumBits;
1730      }
1731      ImmOp.ChangeToImmediate(ImmedOffset);
1732      Offset &= ~(Mask*Scale);
1733    }
1734  }
1735
1736  Offset = (isSub) ? -Offset : Offset;
1737  return Offset == 0;
1738}
1739
1740/// analyzeCompare - For a comparison instruction, return the source registers
1741/// in SrcReg and SrcReg2 if having two register operands, and the value it
1742/// compares against in CmpValue. Return true if the comparison instruction
1743/// can be analyzed.
1744bool ARMBaseInstrInfo::
1745analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
1746               int &CmpMask, int &CmpValue) const {
1747  switch (MI->getOpcode()) {
1748  default: break;
1749  case ARM::CMPri:
1750  case ARM::t2CMPri:
1751    SrcReg = MI->getOperand(0).getReg();
1752    SrcReg2 = 0;
1753    CmpMask = ~0;
1754    CmpValue = MI->getOperand(1).getImm();
1755    return true;
1756  case ARM::CMPrr:
1757  case ARM::t2CMPrr:
1758    SrcReg = MI->getOperand(0).getReg();
1759    SrcReg2 = MI->getOperand(1).getReg();
1760    CmpMask = ~0;
1761    CmpValue = 0;
1762    return true;
1763  case ARM::TSTri:
1764  case ARM::t2TSTri:
1765    SrcReg = MI->getOperand(0).getReg();
1766    SrcReg2 = 0;
1767    CmpMask = MI->getOperand(1).getImm();
1768    CmpValue = 0;
1769    return true;
1770  }
1771
1772  return false;
1773}
1774
1775/// isSuitableForMask - Identify a suitable 'and' instruction that
1776/// operates on the given source register and applies the same mask
1777/// as a 'tst' instruction. Provide a limited look-through for copies.
1778/// When successful, MI will hold the found instruction.
1779static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1780                              int CmpMask, bool CommonUse) {
1781  switch (MI->getOpcode()) {
1782    case ARM::ANDri:
1783    case ARM::t2ANDri:
1784      if (CmpMask != MI->getOperand(2).getImm())
1785        return false;
1786      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1787        return true;
1788      break;
1789    case ARM::COPY: {
1790      // Walk down one instruction which is potentially an 'and'.
1791      const MachineInstr &Copy = *MI;
1792      MachineBasicBlock::iterator AND(
1793        llvm::next(MachineBasicBlock::iterator(MI)));
1794      if (AND == MI->getParent()->end()) return false;
1795      MI = AND;
1796      return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1797                               CmpMask, true);
1798    }
1799  }
1800
1801  return false;
1802}
1803
1804/// getSwappedCondition - assume the flags are set by MI(a,b), return
1805/// the condition code if we modify the instructions such that flags are
1806/// set by MI(b,a).
1807inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
1808  switch (CC) {
1809  default: return ARMCC::AL;
1810  case ARMCC::EQ: return ARMCC::EQ;
1811  case ARMCC::NE: return ARMCC::NE;
1812  case ARMCC::HS: return ARMCC::LS;
1813  case ARMCC::LO: return ARMCC::HI;
1814  case ARMCC::HI: return ARMCC::LO;
1815  case ARMCC::LS: return ARMCC::HS;
1816  case ARMCC::GE: return ARMCC::LE;
1817  case ARMCC::LT: return ARMCC::GT;
1818  case ARMCC::GT: return ARMCC::LT;
1819  case ARMCC::LE: return ARMCC::GE;
1820  }
1821}
1822
1823/// isRedundantFlagInstr - check whether the first instruction, whose only
1824/// purpose is to update flags, can be made redundant.
1825/// CMPrr can be made redundant by SUBrr if the operands are the same.
1826/// CMPri can be made redundant by SUBri if the operands are the same.
1827/// This function can be extended later on.
1828inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
1829                                        unsigned SrcReg2, int ImmValue,
1830                                        MachineInstr *OI) {
1831  if ((CmpI->getOpcode() == ARM::CMPrr ||
1832       CmpI->getOpcode() == ARM::t2CMPrr) &&
1833      (OI->getOpcode() == ARM::SUBrr ||
1834       OI->getOpcode() == ARM::t2SUBrr) &&
1835      ((OI->getOperand(1).getReg() == SrcReg &&
1836        OI->getOperand(2).getReg() == SrcReg2) ||
1837       (OI->getOperand(1).getReg() == SrcReg2 &&
1838        OI->getOperand(2).getReg() == SrcReg)))
1839    return true;
1840
1841  if ((CmpI->getOpcode() == ARM::CMPri ||
1842       CmpI->getOpcode() == ARM::t2CMPri) &&
1843      (OI->getOpcode() == ARM::SUBri ||
1844       OI->getOpcode() == ARM::t2SUBri) &&
1845      OI->getOperand(1).getReg() == SrcReg &&
1846      OI->getOperand(2).getImm() == ImmValue)
1847    return true;
1848  return false;
1849}
1850
1851/// optimizeCompareInstr - Convert the instruction supplying the argument to the
1852/// comparison into one that sets the zero bit in the flags register;
1853/// Remove a redundant Compare instruction if an earlier instruction can set the
1854/// flags in the same way as Compare.
1855/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
1856/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
1857/// condition code of instructions which use the flags.
1858bool ARMBaseInstrInfo::
1859optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
1860                     int CmpMask, int CmpValue,
1861                     const MachineRegisterInfo *MRI) const {
1862  // Get the unique definition of SrcReg.
1863  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1864  if (!MI) return false;
1865
1866  // Masked compares sometimes use the same register as the corresponding 'and'.
1867  if (CmpMask != ~0) {
1868    if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1869      MI = 0;
1870      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1871           UE = MRI->use_end(); UI != UE; ++UI) {
1872        if (UI->getParent() != CmpInstr->getParent()) continue;
1873        MachineInstr *PotentialAND = &*UI;
1874        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1875          continue;
1876        MI = PotentialAND;
1877        break;
1878      }
1879      if (!MI) return false;
1880    }
1881  }
1882
1883  // Get ready to iterate backward from CmpInstr.
1884  MachineBasicBlock::iterator I = CmpInstr, E = MI,
1885                              B = CmpInstr->getParent()->begin();
1886
1887  // Early exit if CmpInstr is at the beginning of the BB.
1888  if (I == B) return false;
1889
1890  // There are two possible candidates which can be changed to set CPSR:
1891  // One is MI, the other is a SUB instruction.
1892  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1893  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
1894  MachineInstr *Sub = NULL;
1895  if (SrcReg2 != 0)
1896    // MI is not a candidate for CMPrr.
1897    MI = NULL;
1898  else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
1899    // Conservatively refuse to convert an instruction which isn't in the same
1900    // BB as the comparison.
1901    // For CMPri, we need to check Sub, thus we can't return here.
1902    if (CmpInstr->getOpcode() == ARM::CMPri ||
1903       CmpInstr->getOpcode() == ARM::t2CMPri)
1904      MI = NULL;
1905    else
1906      return false;
1907  }
1908
1909  // Check that CPSR isn't set between the comparison instruction and the one we
1910  // want to change. At the same time, search for Sub.
1911  const TargetRegisterInfo *TRI = &getRegisterInfo();
1912  --I;
1913  for (; I != E; --I) {
1914    const MachineInstr &Instr = *I;
1915
1916    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
1917        Instr.readsRegister(ARM::CPSR, TRI))
1918      // This instruction modifies or uses CPSR after the one we want to
1919      // change. We can't do this transformation.
1920      return false;
1921
1922    // Check whether CmpInstr can be made redundant by the current instruction.
1923    if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
1924      Sub = &*I;
1925      break;
1926    }
1927
1928    if (I == B)
1929      // The 'and' is below the comparison instruction.
1930      return false;
1931  }
1932
1933  // Return false if no candidates exist.
1934  if (!MI && !Sub)
1935    return false;
1936
1937  // The single candidate is called MI.
1938  if (!MI) MI = Sub;
1939
1940  switch (MI->getOpcode()) {
1941  default: break;
1942  case ARM::RSBrr:
1943  case ARM::RSBri:
1944  case ARM::RSCrr:
1945  case ARM::RSCri:
1946  case ARM::ADDrr:
1947  case ARM::ADDri:
1948  case ARM::ADCrr:
1949  case ARM::ADCri:
1950  case ARM::SUBrr:
1951  case ARM::SUBri:
1952  case ARM::SBCrr:
1953  case ARM::SBCri:
1954  case ARM::t2RSBri:
1955  case ARM::t2ADDrr:
1956  case ARM::t2ADDri:
1957  case ARM::t2ADCrr:
1958  case ARM::t2ADCri:
1959  case ARM::t2SUBrr:
1960  case ARM::t2SUBri:
1961  case ARM::t2SBCrr:
1962  case ARM::t2SBCri:
1963  case ARM::ANDrr:
1964  case ARM::ANDri:
1965  case ARM::t2ANDrr:
1966  case ARM::t2ANDri:
1967  case ARM::ORRrr:
1968  case ARM::ORRri:
1969  case ARM::t2ORRrr:
1970  case ARM::t2ORRri:
1971  case ARM::EORrr:
1972  case ARM::EORri:
1973  case ARM::t2EORrr:
1974  case ARM::t2EORri: {
1975    // Scan forward for the use of CPSR
1976    // When checking against MI: if it's a conditional code requires
1977    // checking of V bit, then this is not safe to do.
1978    // It is safe to remove CmpInstr if CPSR is redefined or killed.
1979    // If we are done with the basic block, we need to check whether CPSR is
1980    // live-out.
1981    SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
1982        OperandsToUpdate;
1983    bool isSafe = false;
1984    I = CmpInstr;
1985    E = CmpInstr->getParent()->end();
1986    while (!isSafe && ++I != E) {
1987      const MachineInstr &Instr = *I;
1988      for (unsigned IO = 0, EO = Instr.getNumOperands();
1989           !isSafe && IO != EO; ++IO) {
1990        const MachineOperand &MO = Instr.getOperand(IO);
1991        if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
1992          isSafe = true;
1993          break;
1994        }
1995        if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1996          continue;
1997        if (MO.isDef()) {
1998          isSafe = true;
1999          break;
2000        }
2001        // Condition code is after the operand before CPSR.
2002        ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
2003        if (Sub) {
2004          ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2005          if (NewCC == ARMCC::AL)
2006            return false;
2007          // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2008          // on CMP needs to be updated to be based on SUB.
2009          // Push the condition code operands to OperandsToUpdate.
2010          // If it is safe to remove CmpInstr, the condition code of these
2011          // operands will be modified.
2012          if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2013              Sub->getOperand(2).getReg() == SrcReg)
2014            OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
2015                                                      NewCC));
2016        }
2017        else
2018          switch (CC) {
2019          default:
2020            // CPSR can be used mutliple times, we should continue.
2021            break;
2022          case ARMCC::VS:
2023          case ARMCC::VC:
2024          case ARMCC::GE:
2025          case ARMCC::LT:
2026          case ARMCC::GT:
2027          case ARMCC::LE:
2028            return false;
2029          }
2030      }
2031    }
2032
2033    // If CPSR is not killed nor re-defined, we should check whether it is
2034    // live-out. If it is live-out, do not optimize.
2035    if (!isSafe) {
2036      MachineBasicBlock *MBB = CmpInstr->getParent();
2037      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2038               SE = MBB->succ_end(); SI != SE; ++SI)
2039        if ((*SI)->isLiveIn(ARM::CPSR))
2040          return false;
2041    }
2042
2043    // Toggle the optional operand to CPSR.
2044    MI->getOperand(5).setReg(ARM::CPSR);
2045    MI->getOperand(5).setIsDef(true);
2046    CmpInstr->eraseFromParent();
2047
2048    // Modify the condition code of operands in OperandsToUpdate.
2049    // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2050    // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2051    for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2052      OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2053    return true;
2054  }
2055  }
2056
2057  return false;
2058}
2059
2060bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2061                                     MachineInstr *DefMI, unsigned Reg,
2062                                     MachineRegisterInfo *MRI) const {
2063  // Fold large immediates into add, sub, or, xor.
2064  unsigned DefOpc = DefMI->getOpcode();
2065  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2066    return false;
2067  if (!DefMI->getOperand(1).isImm())
2068    // Could be t2MOVi32imm <ga:xx>
2069    return false;
2070
2071  if (!MRI->hasOneNonDBGUse(Reg))
2072    return false;
2073
2074  const MCInstrDesc &DefMCID = DefMI->getDesc();
2075  if (DefMCID.hasOptionalDef()) {
2076    unsigned NumOps = DefMCID.getNumOperands();
2077    const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2078    if (MO.getReg() == ARM::CPSR && !MO.isDead())
2079      // If DefMI defines CPSR and it is not dead, it's obviously not safe
2080      // to delete DefMI.
2081      return false;
2082  }
2083
2084  const MCInstrDesc &UseMCID = UseMI->getDesc();
2085  if (UseMCID.hasOptionalDef()) {
2086    unsigned NumOps = UseMCID.getNumOperands();
2087    if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2088      // If the instruction sets the flag, do not attempt this optimization
2089      // since it may change the semantics of the code.
2090      return false;
2091  }
2092
2093  unsigned UseOpc = UseMI->getOpcode();
2094  unsigned NewUseOpc = 0;
2095  uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2096  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2097  bool Commute = false;
2098  switch (UseOpc) {
2099  default: return false;
2100  case ARM::SUBrr:
2101  case ARM::ADDrr:
2102  case ARM::ORRrr:
2103  case ARM::EORrr:
2104  case ARM::t2SUBrr:
2105  case ARM::t2ADDrr:
2106  case ARM::t2ORRrr:
2107  case ARM::t2EORrr: {
2108    Commute = UseMI->getOperand(2).getReg() != Reg;
2109    switch (UseOpc) {
2110    default: break;
2111    case ARM::SUBrr: {
2112      if (Commute)
2113        return false;
2114      ImmVal = -ImmVal;
2115      NewUseOpc = ARM::SUBri;
2116      // Fallthrough
2117    }
2118    case ARM::ADDrr:
2119    case ARM::ORRrr:
2120    case ARM::EORrr: {
2121      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2122        return false;
2123      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2124      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2125      switch (UseOpc) {
2126      default: break;
2127      case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2128      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2129      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2130      }
2131      break;
2132    }
2133    case ARM::t2SUBrr: {
2134      if (Commute)
2135        return false;
2136      ImmVal = -ImmVal;
2137      NewUseOpc = ARM::t2SUBri;
2138      // Fallthrough
2139    }
2140    case ARM::t2ADDrr:
2141    case ARM::t2ORRrr:
2142    case ARM::t2EORrr: {
2143      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2144        return false;
2145      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2146      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2147      switch (UseOpc) {
2148      default: break;
2149      case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2150      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2151      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2152      }
2153      break;
2154    }
2155    }
2156  }
2157  }
2158
2159  unsigned OpIdx = Commute ? 2 : 1;
2160  unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2161  bool isKill = UseMI->getOperand(OpIdx).isKill();
2162  unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2163  AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2164                                      UseMI, UseMI->getDebugLoc(),
2165                                      get(NewUseOpc), NewReg)
2166                              .addReg(Reg1, getKillRegState(isKill))
2167                              .addImm(SOImmValV1)));
2168  UseMI->setDesc(get(NewUseOpc));
2169  UseMI->getOperand(1).setReg(NewReg);
2170  UseMI->getOperand(1).setIsKill();
2171  UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2172  DefMI->eraseFromParent();
2173  return true;
2174}
2175
2176unsigned
2177ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2178                                 const MachineInstr *MI) const {
2179  if (!ItinData || ItinData->isEmpty())
2180    return 1;
2181
2182  const MCInstrDesc &Desc = MI->getDesc();
2183  unsigned Class = Desc.getSchedClass();
2184  int ItinUOps = ItinData->getNumMicroOps(Class);
2185  if (ItinUOps >= 0)
2186    return ItinUOps;
2187
2188  unsigned Opc = MI->getOpcode();
2189  switch (Opc) {
2190  default:
2191    llvm_unreachable("Unexpected multi-uops instruction!");
2192  case ARM::VLDMQIA:
2193  case ARM::VSTMQIA:
2194    return 2;
2195
2196  // The number of uOps for load / store multiple are determined by the number
2197  // registers.
2198  //
2199  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
2200  // same cycle. The scheduling for the first load / store must be done
2201  // separately by assuming the the address is not 64-bit aligned.
2202  //
2203  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2204  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2205  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2206  case ARM::VLDMDIA:
2207  case ARM::VLDMDIA_UPD:
2208  case ARM::VLDMDDB_UPD:
2209  case ARM::VLDMSIA:
2210  case ARM::VLDMSIA_UPD:
2211  case ARM::VLDMSDB_UPD:
2212  case ARM::VSTMDIA:
2213  case ARM::VSTMDIA_UPD:
2214  case ARM::VSTMDDB_UPD:
2215  case ARM::VSTMSIA:
2216  case ARM::VSTMSIA_UPD:
2217  case ARM::VSTMSDB_UPD: {
2218    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2219    return (NumRegs / 2) + (NumRegs % 2) + 1;
2220  }
2221
2222  case ARM::LDMIA_RET:
2223  case ARM::LDMIA:
2224  case ARM::LDMDA:
2225  case ARM::LDMDB:
2226  case ARM::LDMIB:
2227  case ARM::LDMIA_UPD:
2228  case ARM::LDMDA_UPD:
2229  case ARM::LDMDB_UPD:
2230  case ARM::LDMIB_UPD:
2231  case ARM::STMIA:
2232  case ARM::STMDA:
2233  case ARM::STMDB:
2234  case ARM::STMIB:
2235  case ARM::STMIA_UPD:
2236  case ARM::STMDA_UPD:
2237  case ARM::STMDB_UPD:
2238  case ARM::STMIB_UPD:
2239  case ARM::tLDMIA:
2240  case ARM::tLDMIA_UPD:
2241  case ARM::tSTMIA_UPD:
2242  case ARM::tPOP_RET:
2243  case ARM::tPOP:
2244  case ARM::tPUSH:
2245  case ARM::t2LDMIA_RET:
2246  case ARM::t2LDMIA:
2247  case ARM::t2LDMDB:
2248  case ARM::t2LDMIA_UPD:
2249  case ARM::t2LDMDB_UPD:
2250  case ARM::t2STMIA:
2251  case ARM::t2STMDB:
2252  case ARM::t2STMIA_UPD:
2253  case ARM::t2STMDB_UPD: {
2254    unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2255    if (Subtarget.isCortexA8()) {
2256      if (NumRegs < 4)
2257        return 2;
2258      // 4 registers would be issued: 2, 2.
2259      // 5 registers would be issued: 2, 2, 1.
2260      int A8UOps = (NumRegs / 2);
2261      if (NumRegs % 2)
2262        ++A8UOps;
2263      return A8UOps;
2264    } else if (Subtarget.isCortexA9()) {
2265      int A9UOps = (NumRegs / 2);
2266      // If there are odd number of registers or if it's not 64-bit aligned,
2267      // then it takes an extra AGU (Address Generation Unit) cycle.
2268      if ((NumRegs % 2) ||
2269          !MI->hasOneMemOperand() ||
2270          (*MI->memoperands_begin())->getAlignment() < 8)
2271        ++A9UOps;
2272      return A9UOps;
2273    } else {
2274      // Assume the worst.
2275      return NumRegs;
2276    }
2277  }
2278  }
2279}
2280
2281int
2282ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2283                                  const MCInstrDesc &DefMCID,
2284                                  unsigned DefClass,
2285                                  unsigned DefIdx, unsigned DefAlign) const {
2286  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2287  if (RegNo <= 0)
2288    // Def is the address writeback.
2289    return ItinData->getOperandCycle(DefClass, DefIdx);
2290
2291  int DefCycle;
2292  if (Subtarget.isCortexA8()) {
2293    // (regno / 2) + (regno % 2) + 1
2294    DefCycle = RegNo / 2 + 1;
2295    if (RegNo % 2)
2296      ++DefCycle;
2297  } else if (Subtarget.isCortexA9()) {
2298    DefCycle = RegNo;
2299    bool isSLoad = false;
2300
2301    switch (DefMCID.getOpcode()) {
2302    default: break;
2303    case ARM::VLDMSIA:
2304    case ARM::VLDMSIA_UPD:
2305    case ARM::VLDMSDB_UPD:
2306      isSLoad = true;
2307      break;
2308    }
2309
2310    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2311    // then it takes an extra cycle.
2312    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2313      ++DefCycle;
2314  } else {
2315    // Assume the worst.
2316    DefCycle = RegNo + 2;
2317  }
2318
2319  return DefCycle;
2320}
2321
2322int
2323ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2324                                 const MCInstrDesc &DefMCID,
2325                                 unsigned DefClass,
2326                                 unsigned DefIdx, unsigned DefAlign) const {
2327  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2328  if (RegNo <= 0)
2329    // Def is the address writeback.
2330    return ItinData->getOperandCycle(DefClass, DefIdx);
2331
2332  int DefCycle;
2333  if (Subtarget.isCortexA8()) {
2334    // 4 registers would be issued: 1, 2, 1.
2335    // 5 registers would be issued: 1, 2, 2.
2336    DefCycle = RegNo / 2;
2337    if (DefCycle < 1)
2338      DefCycle = 1;
2339    // Result latency is issue cycle + 2: E2.
2340    DefCycle += 2;
2341  } else if (Subtarget.isCortexA9()) {
2342    DefCycle = (RegNo / 2);
2343    // If there are odd number of registers or if it's not 64-bit aligned,
2344    // then it takes an extra AGU (Address Generation Unit) cycle.
2345    if ((RegNo % 2) || DefAlign < 8)
2346      ++DefCycle;
2347    // Result latency is AGU cycles + 2.
2348    DefCycle += 2;
2349  } else {
2350    // Assume the worst.
2351    DefCycle = RegNo + 2;
2352  }
2353
2354  return DefCycle;
2355}
2356
2357int
2358ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2359                                  const MCInstrDesc &UseMCID,
2360                                  unsigned UseClass,
2361                                  unsigned UseIdx, unsigned UseAlign) const {
2362  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2363  if (RegNo <= 0)
2364    return ItinData->getOperandCycle(UseClass, UseIdx);
2365
2366  int UseCycle;
2367  if (Subtarget.isCortexA8()) {
2368    // (regno / 2) + (regno % 2) + 1
2369    UseCycle = RegNo / 2 + 1;
2370    if (RegNo % 2)
2371      ++UseCycle;
2372  } else if (Subtarget.isCortexA9()) {
2373    UseCycle = RegNo;
2374    bool isSStore = false;
2375
2376    switch (UseMCID.getOpcode()) {
2377    default: break;
2378    case ARM::VSTMSIA:
2379    case ARM::VSTMSIA_UPD:
2380    case ARM::VSTMSDB_UPD:
2381      isSStore = true;
2382      break;
2383    }
2384
2385    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2386    // then it takes an extra cycle.
2387    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2388      ++UseCycle;
2389  } else {
2390    // Assume the worst.
2391    UseCycle = RegNo + 2;
2392  }
2393
2394  return UseCycle;
2395}
2396
2397int
2398ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2399                                 const MCInstrDesc &UseMCID,
2400                                 unsigned UseClass,
2401                                 unsigned UseIdx, unsigned UseAlign) const {
2402  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2403  if (RegNo <= 0)
2404    return ItinData->getOperandCycle(UseClass, UseIdx);
2405
2406  int UseCycle;
2407  if (Subtarget.isCortexA8()) {
2408    UseCycle = RegNo / 2;
2409    if (UseCycle < 2)
2410      UseCycle = 2;
2411    // Read in E3.
2412    UseCycle += 2;
2413  } else if (Subtarget.isCortexA9()) {
2414    UseCycle = (RegNo / 2);
2415    // If there are odd number of registers or if it's not 64-bit aligned,
2416    // then it takes an extra AGU (Address Generation Unit) cycle.
2417    if ((RegNo % 2) || UseAlign < 8)
2418      ++UseCycle;
2419  } else {
2420    // Assume the worst.
2421    UseCycle = 1;
2422  }
2423  return UseCycle;
2424}
2425
2426int
2427ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2428                                    const MCInstrDesc &DefMCID,
2429                                    unsigned DefIdx, unsigned DefAlign,
2430                                    const MCInstrDesc &UseMCID,
2431                                    unsigned UseIdx, unsigned UseAlign) const {
2432  unsigned DefClass = DefMCID.getSchedClass();
2433  unsigned UseClass = UseMCID.getSchedClass();
2434
2435  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2436    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2437
2438  // This may be a def / use of a variable_ops instruction, the operand
2439  // latency might be determinable dynamically. Let the target try to
2440  // figure it out.
2441  int DefCycle = -1;
2442  bool LdmBypass = false;
2443  switch (DefMCID.getOpcode()) {
2444  default:
2445    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2446    break;
2447
2448  case ARM::VLDMDIA:
2449  case ARM::VLDMDIA_UPD:
2450  case ARM::VLDMDDB_UPD:
2451  case ARM::VLDMSIA:
2452  case ARM::VLDMSIA_UPD:
2453  case ARM::VLDMSDB_UPD:
2454    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2455    break;
2456
2457  case ARM::LDMIA_RET:
2458  case ARM::LDMIA:
2459  case ARM::LDMDA:
2460  case ARM::LDMDB:
2461  case ARM::LDMIB:
2462  case ARM::LDMIA_UPD:
2463  case ARM::LDMDA_UPD:
2464  case ARM::LDMDB_UPD:
2465  case ARM::LDMIB_UPD:
2466  case ARM::tLDMIA:
2467  case ARM::tLDMIA_UPD:
2468  case ARM::tPUSH:
2469  case ARM::t2LDMIA_RET:
2470  case ARM::t2LDMIA:
2471  case ARM::t2LDMDB:
2472  case ARM::t2LDMIA_UPD:
2473  case ARM::t2LDMDB_UPD:
2474    LdmBypass = 1;
2475    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2476    break;
2477  }
2478
2479  if (DefCycle == -1)
2480    // We can't seem to determine the result latency of the def, assume it's 2.
2481    DefCycle = 2;
2482
2483  int UseCycle = -1;
2484  switch (UseMCID.getOpcode()) {
2485  default:
2486    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2487    break;
2488
2489  case ARM::VSTMDIA:
2490  case ARM::VSTMDIA_UPD:
2491  case ARM::VSTMDDB_UPD:
2492  case ARM::VSTMSIA:
2493  case ARM::VSTMSIA_UPD:
2494  case ARM::VSTMSDB_UPD:
2495    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2496    break;
2497
2498  case ARM::STMIA:
2499  case ARM::STMDA:
2500  case ARM::STMDB:
2501  case ARM::STMIB:
2502  case ARM::STMIA_UPD:
2503  case ARM::STMDA_UPD:
2504  case ARM::STMDB_UPD:
2505  case ARM::STMIB_UPD:
2506  case ARM::tSTMIA_UPD:
2507  case ARM::tPOP_RET:
2508  case ARM::tPOP:
2509  case ARM::t2STMIA:
2510  case ARM::t2STMDB:
2511  case ARM::t2STMIA_UPD:
2512  case ARM::t2STMDB_UPD:
2513    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2514    break;
2515  }
2516
2517  if (UseCycle == -1)
2518    // Assume it's read in the first stage.
2519    UseCycle = 1;
2520
2521  UseCycle = DefCycle - UseCycle + 1;
2522  if (UseCycle > 0) {
2523    if (LdmBypass) {
2524      // It's a variable_ops instruction so we can't use DefIdx here. Just use
2525      // first def operand.
2526      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2527                                          UseClass, UseIdx))
2528        --UseCycle;
2529    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2530                                               UseClass, UseIdx)) {
2531      --UseCycle;
2532    }
2533  }
2534
2535  return UseCycle;
2536}
2537
2538static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
2539                                           const MachineInstr *MI, unsigned Reg,
2540                                           unsigned &DefIdx, unsigned &Dist) {
2541  Dist = 0;
2542
2543  MachineBasicBlock::const_iterator I = MI; ++I;
2544  MachineBasicBlock::const_instr_iterator II =
2545    llvm::prior(I.getInstrIterator());
2546  assert(II->isInsideBundle() && "Empty bundle?");
2547
2548  int Idx = -1;
2549  while (II->isInsideBundle()) {
2550    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
2551    if (Idx != -1)
2552      break;
2553    --II;
2554    ++Dist;
2555  }
2556
2557  assert(Idx != -1 && "Cannot find bundled definition!");
2558  DefIdx = Idx;
2559  return II;
2560}
2561
2562static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
2563                                           const MachineInstr *MI, unsigned Reg,
2564                                           unsigned &UseIdx, unsigned &Dist) {
2565  Dist = 0;
2566
2567  MachineBasicBlock::const_instr_iterator II = MI; ++II;
2568  assert(II->isInsideBundle() && "Empty bundle?");
2569  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
2570
2571  // FIXME: This doesn't properly handle multiple uses.
2572  int Idx = -1;
2573  while (II != E && II->isInsideBundle()) {
2574    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
2575    if (Idx != -1)
2576      break;
2577    if (II->getOpcode() != ARM::t2IT)
2578      ++Dist;
2579    ++II;
2580  }
2581
2582  if (Idx == -1) {
2583    Dist = 0;
2584    return 0;
2585  }
2586
2587  UseIdx = Idx;
2588  return II;
2589}
2590
2591/// Return the number of cycles to add to (or subtract from) the static
2592/// itinerary based on the def opcode and alignment. The caller will ensure that
2593/// adjusted latency is at least one cycle.
2594static int adjustDefLatency(const ARMSubtarget &Subtarget,
2595                            const MachineInstr *DefMI,
2596                            const MCInstrDesc *DefMCID, unsigned DefAlign) {
2597  int Adjust = 0;
2598  if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
2599    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2600    // variants are one cycle cheaper.
2601    switch (DefMCID->getOpcode()) {
2602    default: break;
2603    case ARM::LDRrs:
2604    case ARM::LDRBrs: {
2605      unsigned ShOpVal = DefMI->getOperand(3).getImm();
2606      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2607      if (ShImm == 0 ||
2608          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2609        --Adjust;
2610      break;
2611    }
2612    case ARM::t2LDRs:
2613    case ARM::t2LDRBs:
2614    case ARM::t2LDRHs:
2615    case ARM::t2LDRSHs: {
2616      // Thumb2 mode: lsl only.
2617      unsigned ShAmt = DefMI->getOperand(3).getImm();
2618      if (ShAmt == 0 || ShAmt == 2)
2619        --Adjust;
2620      break;
2621    }
2622    }
2623  }
2624
2625  if (DefAlign < 8 && Subtarget.isCortexA9()) {
2626    switch (DefMCID->getOpcode()) {
2627    default: break;
2628    case ARM::VLD1q8:
2629    case ARM::VLD1q16:
2630    case ARM::VLD1q32:
2631    case ARM::VLD1q64:
2632    case ARM::VLD1q8wb_fixed:
2633    case ARM::VLD1q16wb_fixed:
2634    case ARM::VLD1q32wb_fixed:
2635    case ARM::VLD1q64wb_fixed:
2636    case ARM::VLD1q8wb_register:
2637    case ARM::VLD1q16wb_register:
2638    case ARM::VLD1q32wb_register:
2639    case ARM::VLD1q64wb_register:
2640    case ARM::VLD2d8:
2641    case ARM::VLD2d16:
2642    case ARM::VLD2d32:
2643    case ARM::VLD2q8:
2644    case ARM::VLD2q16:
2645    case ARM::VLD2q32:
2646    case ARM::VLD2d8wb_fixed:
2647    case ARM::VLD2d16wb_fixed:
2648    case ARM::VLD2d32wb_fixed:
2649    case ARM::VLD2q8wb_fixed:
2650    case ARM::VLD2q16wb_fixed:
2651    case ARM::VLD2q32wb_fixed:
2652    case ARM::VLD2d8wb_register:
2653    case ARM::VLD2d16wb_register:
2654    case ARM::VLD2d32wb_register:
2655    case ARM::VLD2q8wb_register:
2656    case ARM::VLD2q16wb_register:
2657    case ARM::VLD2q32wb_register:
2658    case ARM::VLD3d8:
2659    case ARM::VLD3d16:
2660    case ARM::VLD3d32:
2661    case ARM::VLD1d64T:
2662    case ARM::VLD3d8_UPD:
2663    case ARM::VLD3d16_UPD:
2664    case ARM::VLD3d32_UPD:
2665    case ARM::VLD1d64Twb_fixed:
2666    case ARM::VLD1d64Twb_register:
2667    case ARM::VLD3q8_UPD:
2668    case ARM::VLD3q16_UPD:
2669    case ARM::VLD3q32_UPD:
2670    case ARM::VLD4d8:
2671    case ARM::VLD4d16:
2672    case ARM::VLD4d32:
2673    case ARM::VLD1d64Q:
2674    case ARM::VLD4d8_UPD:
2675    case ARM::VLD4d16_UPD:
2676    case ARM::VLD4d32_UPD:
2677    case ARM::VLD1d64Qwb_fixed:
2678    case ARM::VLD1d64Qwb_register:
2679    case ARM::VLD4q8_UPD:
2680    case ARM::VLD4q16_UPD:
2681    case ARM::VLD4q32_UPD:
2682    case ARM::VLD1DUPq8:
2683    case ARM::VLD1DUPq16:
2684    case ARM::VLD1DUPq32:
2685    case ARM::VLD1DUPq8wb_fixed:
2686    case ARM::VLD1DUPq16wb_fixed:
2687    case ARM::VLD1DUPq32wb_fixed:
2688    case ARM::VLD1DUPq8wb_register:
2689    case ARM::VLD1DUPq16wb_register:
2690    case ARM::VLD1DUPq32wb_register:
2691    case ARM::VLD2DUPd8:
2692    case ARM::VLD2DUPd16:
2693    case ARM::VLD2DUPd32:
2694    case ARM::VLD2DUPd8wb_fixed:
2695    case ARM::VLD2DUPd16wb_fixed:
2696    case ARM::VLD2DUPd32wb_fixed:
2697    case ARM::VLD2DUPd8wb_register:
2698    case ARM::VLD2DUPd16wb_register:
2699    case ARM::VLD2DUPd32wb_register:
2700    case ARM::VLD4DUPd8:
2701    case ARM::VLD4DUPd16:
2702    case ARM::VLD4DUPd32:
2703    case ARM::VLD4DUPd8_UPD:
2704    case ARM::VLD4DUPd16_UPD:
2705    case ARM::VLD4DUPd32_UPD:
2706    case ARM::VLD1LNd8:
2707    case ARM::VLD1LNd16:
2708    case ARM::VLD1LNd32:
2709    case ARM::VLD1LNd8_UPD:
2710    case ARM::VLD1LNd16_UPD:
2711    case ARM::VLD1LNd32_UPD:
2712    case ARM::VLD2LNd8:
2713    case ARM::VLD2LNd16:
2714    case ARM::VLD2LNd32:
2715    case ARM::VLD2LNq16:
2716    case ARM::VLD2LNq32:
2717    case ARM::VLD2LNd8_UPD:
2718    case ARM::VLD2LNd16_UPD:
2719    case ARM::VLD2LNd32_UPD:
2720    case ARM::VLD2LNq16_UPD:
2721    case ARM::VLD2LNq32_UPD:
2722    case ARM::VLD4LNd8:
2723    case ARM::VLD4LNd16:
2724    case ARM::VLD4LNd32:
2725    case ARM::VLD4LNq16:
2726    case ARM::VLD4LNq32:
2727    case ARM::VLD4LNd8_UPD:
2728    case ARM::VLD4LNd16_UPD:
2729    case ARM::VLD4LNd32_UPD:
2730    case ARM::VLD4LNq16_UPD:
2731    case ARM::VLD4LNq32_UPD:
2732      // If the address is not 64-bit aligned, the latencies of these
2733      // instructions increases by one.
2734      ++Adjust;
2735      break;
2736    }
2737  }
2738  return Adjust;
2739}
2740
2741
2742
2743int
2744ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2745                                    const MachineInstr *DefMI, unsigned DefIdx,
2746                                    const MachineInstr *UseMI,
2747                                    unsigned UseIdx) const {
2748  // No operand latency. The caller may fall back to getInstrLatency.
2749  if (!ItinData || ItinData->isEmpty())
2750    return -1;
2751
2752  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2753  unsigned Reg = DefMO.getReg();
2754  const MCInstrDesc *DefMCID = &DefMI->getDesc();
2755  const MCInstrDesc *UseMCID = &UseMI->getDesc();
2756
2757  unsigned DefAdj = 0;
2758  if (DefMI->isBundle()) {
2759    DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
2760    DefMCID = &DefMI->getDesc();
2761  }
2762  if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2763      DefMI->isRegSequence() || DefMI->isImplicitDef()) {
2764    return 1;
2765  }
2766
2767  unsigned UseAdj = 0;
2768  if (UseMI->isBundle()) {
2769    unsigned NewUseIdx;
2770    const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
2771                                                   Reg, NewUseIdx, UseAdj);
2772    if (!NewUseMI)
2773      return -1;
2774
2775    UseMI = NewUseMI;
2776    UseIdx = NewUseIdx;
2777    UseMCID = &UseMI->getDesc();
2778  }
2779
2780  if (Reg == ARM::CPSR) {
2781    if (DefMI->getOpcode() == ARM::FMSTAT) {
2782      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2783      return Subtarget.isCortexA9() ? 1 : 20;
2784    }
2785
2786    // CPSR set and branch can be paired in the same cycle.
2787    if (UseMI->isBranch())
2788      return 0;
2789
2790    // Otherwise it takes the instruction latency (generally one).
2791    unsigned Latency = getInstrLatency(ItinData, DefMI);
2792
2793    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
2794    // its uses. Instructions which are otherwise scheduled between them may
2795    // incur a code size penalty (not able to use the CPSR setting 16-bit
2796    // instructions).
2797    if (Latency > 0 && Subtarget.isThumb2()) {
2798      const MachineFunction *MF = DefMI->getParent()->getParent();
2799      if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2800        --Latency;
2801    }
2802    return Latency;
2803  }
2804
2805  if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
2806    return -1;
2807
2808  unsigned DefAlign = DefMI->hasOneMemOperand()
2809    ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2810  unsigned UseAlign = UseMI->hasOneMemOperand()
2811    ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2812
2813  // Get the itinerary's latency if possible, and handle variable_ops.
2814  int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
2815                                  *UseMCID, UseIdx, UseAlign);
2816  // Unable to find operand latency. The caller may resort to getInstrLatency.
2817  if (Latency < 0)
2818    return Latency;
2819
2820  // Adjust for IT block position.
2821  int Adj = DefAdj + UseAdj;
2822
2823  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
2824  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
2825  if (Adj >= 0 || (int)Latency > -Adj) {
2826    return Latency + Adj;
2827  }
2828  // Return the itinerary latency, which may be zero but not less than zero.
2829  return Latency;
2830}
2831
2832int
2833ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2834                                    SDNode *DefNode, unsigned DefIdx,
2835                                    SDNode *UseNode, unsigned UseIdx) const {
2836  if (!DefNode->isMachineOpcode())
2837    return 1;
2838
2839  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2840
2841  if (isZeroCost(DefMCID.Opcode))
2842    return 0;
2843
2844  if (!ItinData || ItinData->isEmpty())
2845    return DefMCID.mayLoad() ? 3 : 1;
2846
2847  if (!UseNode->isMachineOpcode()) {
2848    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2849    if (Subtarget.isCortexA9())
2850      return Latency <= 2 ? 1 : Latency - 1;
2851    else
2852      return Latency <= 3 ? 1 : Latency - 2;
2853  }
2854
2855  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2856  const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2857  unsigned DefAlign = !DefMN->memoperands_empty()
2858    ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2859  const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2860  unsigned UseAlign = !UseMN->memoperands_empty()
2861    ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2862  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2863                                  UseMCID, UseIdx, UseAlign);
2864
2865  if (Latency > 1 &&
2866      (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2867    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2868    // variants are one cycle cheaper.
2869    switch (DefMCID.getOpcode()) {
2870    default: break;
2871    case ARM::LDRrs:
2872    case ARM::LDRBrs: {
2873      unsigned ShOpVal =
2874        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2875      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2876      if (ShImm == 0 ||
2877          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2878        --Latency;
2879      break;
2880    }
2881    case ARM::t2LDRs:
2882    case ARM::t2LDRBs:
2883    case ARM::t2LDRHs:
2884    case ARM::t2LDRSHs: {
2885      // Thumb2 mode: lsl only.
2886      unsigned ShAmt =
2887        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2888      if (ShAmt == 0 || ShAmt == 2)
2889        --Latency;
2890      break;
2891    }
2892    }
2893  }
2894
2895  if (DefAlign < 8 && Subtarget.isCortexA9())
2896    switch (DefMCID.getOpcode()) {
2897    default: break;
2898    case ARM::VLD1q8:
2899    case ARM::VLD1q16:
2900    case ARM::VLD1q32:
2901    case ARM::VLD1q64:
2902    case ARM::VLD1q8wb_register:
2903    case ARM::VLD1q16wb_register:
2904    case ARM::VLD1q32wb_register:
2905    case ARM::VLD1q64wb_register:
2906    case ARM::VLD1q8wb_fixed:
2907    case ARM::VLD1q16wb_fixed:
2908    case ARM::VLD1q32wb_fixed:
2909    case ARM::VLD1q64wb_fixed:
2910    case ARM::VLD2d8:
2911    case ARM::VLD2d16:
2912    case ARM::VLD2d32:
2913    case ARM::VLD2q8Pseudo:
2914    case ARM::VLD2q16Pseudo:
2915    case ARM::VLD2q32Pseudo:
2916    case ARM::VLD2d8wb_fixed:
2917    case ARM::VLD2d16wb_fixed:
2918    case ARM::VLD2d32wb_fixed:
2919    case ARM::VLD2q8PseudoWB_fixed:
2920    case ARM::VLD2q16PseudoWB_fixed:
2921    case ARM::VLD2q32PseudoWB_fixed:
2922    case ARM::VLD2d8wb_register:
2923    case ARM::VLD2d16wb_register:
2924    case ARM::VLD2d32wb_register:
2925    case ARM::VLD2q8PseudoWB_register:
2926    case ARM::VLD2q16PseudoWB_register:
2927    case ARM::VLD2q32PseudoWB_register:
2928    case ARM::VLD3d8Pseudo:
2929    case ARM::VLD3d16Pseudo:
2930    case ARM::VLD3d32Pseudo:
2931    case ARM::VLD1d64TPseudo:
2932    case ARM::VLD3d8Pseudo_UPD:
2933    case ARM::VLD3d16Pseudo_UPD:
2934    case ARM::VLD3d32Pseudo_UPD:
2935    case ARM::VLD3q8Pseudo_UPD:
2936    case ARM::VLD3q16Pseudo_UPD:
2937    case ARM::VLD3q32Pseudo_UPD:
2938    case ARM::VLD3q8oddPseudo:
2939    case ARM::VLD3q16oddPseudo:
2940    case ARM::VLD3q32oddPseudo:
2941    case ARM::VLD3q8oddPseudo_UPD:
2942    case ARM::VLD3q16oddPseudo_UPD:
2943    case ARM::VLD3q32oddPseudo_UPD:
2944    case ARM::VLD4d8Pseudo:
2945    case ARM::VLD4d16Pseudo:
2946    case ARM::VLD4d32Pseudo:
2947    case ARM::VLD1d64QPseudo:
2948    case ARM::VLD4d8Pseudo_UPD:
2949    case ARM::VLD4d16Pseudo_UPD:
2950    case ARM::VLD4d32Pseudo_UPD:
2951    case ARM::VLD4q8Pseudo_UPD:
2952    case ARM::VLD4q16Pseudo_UPD:
2953    case ARM::VLD4q32Pseudo_UPD:
2954    case ARM::VLD4q8oddPseudo:
2955    case ARM::VLD4q16oddPseudo:
2956    case ARM::VLD4q32oddPseudo:
2957    case ARM::VLD4q8oddPseudo_UPD:
2958    case ARM::VLD4q16oddPseudo_UPD:
2959    case ARM::VLD4q32oddPseudo_UPD:
2960    case ARM::VLD1DUPq8:
2961    case ARM::VLD1DUPq16:
2962    case ARM::VLD1DUPq32:
2963    case ARM::VLD1DUPq8wb_fixed:
2964    case ARM::VLD1DUPq16wb_fixed:
2965    case ARM::VLD1DUPq32wb_fixed:
2966    case ARM::VLD1DUPq8wb_register:
2967    case ARM::VLD1DUPq16wb_register:
2968    case ARM::VLD1DUPq32wb_register:
2969    case ARM::VLD2DUPd8:
2970    case ARM::VLD2DUPd16:
2971    case ARM::VLD2DUPd32:
2972    case ARM::VLD2DUPd8wb_fixed:
2973    case ARM::VLD2DUPd16wb_fixed:
2974    case ARM::VLD2DUPd32wb_fixed:
2975    case ARM::VLD2DUPd8wb_register:
2976    case ARM::VLD2DUPd16wb_register:
2977    case ARM::VLD2DUPd32wb_register:
2978    case ARM::VLD4DUPd8Pseudo:
2979    case ARM::VLD4DUPd16Pseudo:
2980    case ARM::VLD4DUPd32Pseudo:
2981    case ARM::VLD4DUPd8Pseudo_UPD:
2982    case ARM::VLD4DUPd16Pseudo_UPD:
2983    case ARM::VLD4DUPd32Pseudo_UPD:
2984    case ARM::VLD1LNq8Pseudo:
2985    case ARM::VLD1LNq16Pseudo:
2986    case ARM::VLD1LNq32Pseudo:
2987    case ARM::VLD1LNq8Pseudo_UPD:
2988    case ARM::VLD1LNq16Pseudo_UPD:
2989    case ARM::VLD1LNq32Pseudo_UPD:
2990    case ARM::VLD2LNd8Pseudo:
2991    case ARM::VLD2LNd16Pseudo:
2992    case ARM::VLD2LNd32Pseudo:
2993    case ARM::VLD2LNq16Pseudo:
2994    case ARM::VLD2LNq32Pseudo:
2995    case ARM::VLD2LNd8Pseudo_UPD:
2996    case ARM::VLD2LNd16Pseudo_UPD:
2997    case ARM::VLD2LNd32Pseudo_UPD:
2998    case ARM::VLD2LNq16Pseudo_UPD:
2999    case ARM::VLD2LNq32Pseudo_UPD:
3000    case ARM::VLD4LNd8Pseudo:
3001    case ARM::VLD4LNd16Pseudo:
3002    case ARM::VLD4LNd32Pseudo:
3003    case ARM::VLD4LNq16Pseudo:
3004    case ARM::VLD4LNq32Pseudo:
3005    case ARM::VLD4LNd8Pseudo_UPD:
3006    case ARM::VLD4LNd16Pseudo_UPD:
3007    case ARM::VLD4LNd32Pseudo_UPD:
3008    case ARM::VLD4LNq16Pseudo_UPD:
3009    case ARM::VLD4LNq32Pseudo_UPD:
3010      // If the address is not 64-bit aligned, the latencies of these
3011      // instructions increases by one.
3012      ++Latency;
3013      break;
3014    }
3015
3016  return Latency;
3017}
3018
3019unsigned
3020ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
3021                                   const MachineInstr *DefMI, unsigned DefIdx,
3022                                   const MachineInstr *DepMI) const {
3023  unsigned Reg = DefMI->getOperand(DefIdx).getReg();
3024  if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
3025    return 1;
3026
3027  // If the second MI is predicated, then there is an implicit use dependency.
3028  return getInstrLatency(ItinData, DefMI);
3029}
3030
3031unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3032                                           const MachineInstr *MI,
3033                                           unsigned *PredCost) const {
3034  if (MI->isCopyLike() || MI->isInsertSubreg() ||
3035      MI->isRegSequence() || MI->isImplicitDef())
3036    return 1;
3037
3038  // An instruction scheduler typically runs on unbundled instructions, however
3039  // other passes may query the latency of a bundled instruction.
3040  if (MI->isBundle()) {
3041    unsigned Latency = 0;
3042    MachineBasicBlock::const_instr_iterator I = MI;
3043    MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3044    while (++I != E && I->isInsideBundle()) {
3045      if (I->getOpcode() != ARM::t2IT)
3046        Latency += getInstrLatency(ItinData, I, PredCost);
3047    }
3048    return Latency;
3049  }
3050
3051  const MCInstrDesc &MCID = MI->getDesc();
3052  if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3053    // When predicated, CPSR is an additional source operand for CPSR updating
3054    // instructions, this apparently increases their latencies.
3055    *PredCost = 1;
3056  }
3057  // Be sure to call getStageLatency for an empty itinerary in case it has a
3058  // valid MinLatency property.
3059  if (!ItinData)
3060    return MI->mayLoad() ? 3 : 1;
3061
3062  unsigned Class = MCID.getSchedClass();
3063
3064  // For instructions with variable uops, use uops as latency.
3065  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3066    return getNumMicroOps(ItinData, MI);
3067
3068  // For the common case, fall back on the itinerary's latency.
3069  unsigned Latency = ItinData->getStageLatency(Class);
3070
3071  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3072  unsigned DefAlign = MI->hasOneMemOperand()
3073    ? (*MI->memoperands_begin())->getAlignment() : 0;
3074  int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3075  if (Adj >= 0 || (int)Latency > -Adj) {
3076    return Latency + Adj;
3077  }
3078  return Latency;
3079}
3080
3081int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3082                                      SDNode *Node) const {
3083  if (!Node->isMachineOpcode())
3084    return 1;
3085
3086  if (!ItinData || ItinData->isEmpty())
3087    return 1;
3088
3089  unsigned Opcode = Node->getMachineOpcode();
3090  switch (Opcode) {
3091  default:
3092    return ItinData->getStageLatency(get(Opcode).getSchedClass());
3093  case ARM::VLDMQIA:
3094  case ARM::VSTMQIA:
3095    return 2;
3096  }
3097}
3098
3099bool ARMBaseInstrInfo::
3100hasHighOperandLatency(const InstrItineraryData *ItinData,
3101                      const MachineRegisterInfo *MRI,
3102                      const MachineInstr *DefMI, unsigned DefIdx,
3103                      const MachineInstr *UseMI, unsigned UseIdx) const {
3104  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3105  unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
3106  if (Subtarget.isCortexA8() &&
3107      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
3108    // CortexA8 VFP instructions are not pipelined.
3109    return true;
3110
3111  // Hoist VFP / NEON instructions with 4 or higher latency.
3112  int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
3113                                      /*FindMin=*/false);
3114  if (Latency < 0)
3115    Latency = getInstrLatency(ItinData, DefMI);
3116  if (Latency <= 3)
3117    return false;
3118  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
3119         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
3120}
3121
3122bool ARMBaseInstrInfo::
3123hasLowDefLatency(const InstrItineraryData *ItinData,
3124                 const MachineInstr *DefMI, unsigned DefIdx) const {
3125  if (!ItinData || ItinData->isEmpty())
3126    return false;
3127
3128  unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
3129  if (DDomain == ARMII::DomainGeneral) {
3130    unsigned DefClass = DefMI->getDesc().getSchedClass();
3131    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3132    return (DefCycle != -1 && DefCycle <= 2);
3133  }
3134  return false;
3135}
3136
3137bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
3138                                         StringRef &ErrInfo) const {
3139  if (convertAddSubFlagsOpcode(MI->getOpcode())) {
3140    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
3141    return false;
3142  }
3143  return true;
3144}
3145
3146bool
3147ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
3148                                     unsigned &AddSubOpc,
3149                                     bool &NegAcc, bool &HasLane) const {
3150  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
3151  if (I == MLxEntryMap.end())
3152    return false;
3153
3154  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
3155  MulOpc = Entry.MulOpc;
3156  AddSubOpc = Entry.AddSubOpc;
3157  NegAcc = Entry.NegAcc;
3158  HasLane = Entry.HasLane;
3159  return true;
3160}
3161
3162//===----------------------------------------------------------------------===//
3163// Execution domains.
3164//===----------------------------------------------------------------------===//
3165//
3166// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
3167// and some can go down both.  The vmov instructions go down the VFP pipeline,
3168// but they can be changed to vorr equivalents that are executed by the NEON
3169// pipeline.
3170//
3171// We use the following execution domain numbering:
3172//
3173enum ARMExeDomain {
3174  ExeGeneric = 0,
3175  ExeVFP = 1,
3176  ExeNEON = 2
3177};
3178//
3179// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
3180//
3181std::pair<uint16_t, uint16_t>
3182ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3183  // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
3184  // predicated.
3185  if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
3186    return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
3187
3188  // No other instructions can be swizzled, so just determine their domain.
3189  unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
3190
3191  if (Domain & ARMII::DomainNEON)
3192    return std::make_pair(ExeNEON, 0);
3193
3194  // Certain instructions can go either way on Cortex-A8.
3195  // Treat them as NEON instructions.
3196  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
3197    return std::make_pair(ExeNEON, 0);
3198
3199  if (Domain & ARMII::DomainVFP)
3200    return std::make_pair(ExeVFP, 0);
3201
3202  return std::make_pair(ExeGeneric, 0);
3203}
3204
3205void
3206ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3207  // We only know how to change VMOVD into VORR.
3208  assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
3209  if (Domain != ExeNEON)
3210    return;
3211
3212  // Zap the predicate operands.
3213  assert(!isPredicated(MI) && "Cannot predicate a VORRd");
3214  MI->RemoveOperand(3);
3215  MI->RemoveOperand(2);
3216
3217  // Change to a VORRd which requires two identical use operands.
3218  MI->setDesc(get(ARM::VORRd));
3219
3220  // Add the extra source operand and new predicates.
3221  // This will go before any implicit ops.
3222  AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
3223}
3224
3225bool ARMBaseInstrInfo::hasNOP() const {
3226  return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
3227}
3228