1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98      /// Operands are two FP values to compare; result is a mask of
99      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
100      FSETCCss, FSETCCsd,
101
102      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
103      /// result in an integer GPR.  Needs masking for scalar result.
104      FGETSIGNx86,
105
106      /// X86 conditional moves. Operand 0 and operand 1 are the two values
107      /// to select from. Operand 2 is the condition code, and operand 3 is the
108      /// flag operand produced by a CMP or TEST instruction. It also writes a
109      /// flag result.
110      CMOV,
111
112      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
113      /// is the block to branch if condition is true, operand 2 is the
114      /// condition code, and operand 3 is the flag operand produced by a CMP
115      /// or TEST instruction.
116      BRCOND,
117
118      /// Return with a flag operand. Operand 0 is the chain operand, operand
119      /// 1 is the number of bytes of stack to pop.
120      RET_FLAG,
121
122      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
123      REP_STOS,
124
125      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
126      REP_MOVS,
127
128      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
129      /// at function entry, used for PIC code.
130      GlobalBaseReg,
131
132      /// Wrapper - A wrapper node for TargetConstantPool,
133      /// TargetExternalSymbol, and TargetGlobalAddress.
134      Wrapper,
135
136      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
137      /// relative displacements.
138      WrapperRIP,
139
140      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
141      /// to an MMX vector.  If you think this is too close to the previous
142      /// mnemonic, so do I; blame Intel.
143      MOVDQ2Q,
144
145      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
146      /// i32, corresponds to X86::PEXTRB.
147      PEXTRB,
148
149      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
150      /// i32, corresponds to X86::PEXTRW.
151      PEXTRW,
152
153      /// INSERTPS - Insert any element of a 4 x float vector into any element
154      /// of a destination 4 x floatvector.
155      INSERTPS,
156
157      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
158      /// corresponds to X86::PINSRB.
159      PINSRB,
160
161      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
162      /// corresponds to X86::PINSRW.
163      PINSRW, MMX_PINSRW,
164
165      /// PSHUFB - Shuffle 16 8-bit values within a vector.
166      PSHUFB,
167
168      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
169      ANDNP,
170
171      /// PSIGN - Copy integer sign.
172      PSIGN,
173
174      /// BLENDV - Blend where the selector is an XMM.
175      BLENDV,
176
177      /// BLENDxx - Blend where the selector is an immediate.
178      BLENDPW,
179      BLENDPS,
180      BLENDPD,
181
182      /// HADD - Integer horizontal add.
183      HADD,
184
185      /// HSUB - Integer horizontal sub.
186      HSUB,
187
188      /// FHADD - Floating point horizontal add.
189      FHADD,
190
191      /// FHSUB - Floating point horizontal sub.
192      FHSUB,
193
194      /// FMAX, FMIN - Floating point max and min.
195      ///
196      FMAX, FMIN,
197
198      /// FMAXC, FMINC - Commutative FMIN and FMAX.
199      FMAXC, FMINC,
200
201      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
202      /// approximation.  Note that these typically require refinement
203      /// in order to obtain suitable precision.
204      FRSQRT, FRCP,
205
206      // TLSADDR - Thread Local Storage.
207      TLSADDR,
208
209      // TLSBASEADDR - Thread Local Storage. A call to get the start address
210      // of the TLS block for the current module.
211      TLSBASEADDR,
212
213      // TLSCALL - Thread Local Storage.  When calling to an OS provided
214      // thunk at the address from an earlier relocation.
215      TLSCALL,
216
217      // EH_RETURN - Exception Handling helpers.
218      EH_RETURN,
219
220      /// TC_RETURN - Tail call return.
221      ///   operand #0 chain
222      ///   operand #1 callee (register or absolute)
223      ///   operand #2 stack adjustment
224      ///   operand #3 optional in flag
225      TC_RETURN,
226
227      // VZEXT_MOVL - Vector move low and zero extend.
228      VZEXT_MOVL,
229
230      // VSEXT_MOVL - Vector move low and sign extend.
231      VSEXT_MOVL,
232
233      // VFPEXT - Vector FP extend.
234      VFPEXT,
235
236      // VSHL, VSRL - 128-bit vector logical left / right shift
237      VSHLDQ, VSRLDQ,
238
239      // VSHL, VSRL, VSRA - Vector shift elements
240      VSHL, VSRL, VSRA,
241
242      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
243      VSHLI, VSRLI, VSRAI,
244
245      // CMPP - Vector packed double/float comparison.
246      CMPP,
247
248      // PCMP* - Vector integer comparisons.
249      PCMPEQ, PCMPGT,
250
251      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
252      ADD, SUB, ADC, SBB, SMUL,
253      INC, DEC, OR, XOR, AND,
254
255      ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
256
257      BLSI,   // BLSI - Extract lowest set isolated bit
258      BLSMSK, // BLSMSK - Get mask up to lowest set bit
259      BLSR,   // BLSR - Reset lowest set bit
260
261      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
262
263      // MUL_IMM - X86 specific multiply by immediate.
264      MUL_IMM,
265
266      // PTEST - Vector bitwise comparisons
267      PTEST,
268
269      // TESTP - Vector packed fp sign bitwise comparisons
270      TESTP,
271
272      // Several flavors of instructions with vector shuffle behaviors.
273      PALIGN,
274      PSHUFD,
275      PSHUFHW,
276      PSHUFLW,
277      SHUFP,
278      MOVDDUP,
279      MOVSHDUP,
280      MOVSLDUP,
281      MOVLHPS,
282      MOVLHPD,
283      MOVHLPS,
284      MOVLPS,
285      MOVLPD,
286      MOVSD,
287      MOVSS,
288      UNPCKL,
289      UNPCKH,
290      VPERMILP,
291      VPERMV,
292      VPERMI,
293      VPERM2X128,
294      VBROADCAST,
295
296      // PMULUDQ - Vector multiply packed unsigned doubleword integers
297      PMULUDQ,
298
299      // FMA nodes
300      FMADD,
301      FNMADD,
302      FMSUB,
303      FNMSUB,
304      FMADDSUB,
305      FMSUBADD,
306
307      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
308      // according to %al. An operator is needed so that this can be expanded
309      // with control flow.
310      VASTART_SAVE_XMM_REGS,
311
312      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
313      WIN_ALLOCA,
314
315      // SEG_ALLOCA - For allocating variable amounts of stack space when using
316      // segmented stacks. Check if the current stacklet has enough space, and
317      // falls back to heap allocation if not.
318      SEG_ALLOCA,
319
320      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
321      WIN_FTOL,
322
323      // Memory barrier
324      MEMBARRIER,
325      MFENCE,
326      SFENCE,
327      LFENCE,
328
329      // FNSTSW16r - Store FP status word into i16 register.
330      FNSTSW16r,
331
332      // SAHF - Store contents of %ah into %eflags.
333      SAHF,
334
335      // RDRAND - Get a random integer and indicate whether it is valid in CF.
336      RDRAND,
337
338      // PCMP*STRI
339      PCMPISTRI,
340      PCMPESTRI,
341
342      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
343      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
344      // Atomic 64-bit binary operations.
345      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
346      ATOMSUB64_DAG,
347      ATOMOR64_DAG,
348      ATOMXOR64_DAG,
349      ATOMAND64_DAG,
350      ATOMNAND64_DAG,
351      ATOMSWAP64_DAG,
352
353      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
354      LCMPXCHG_DAG,
355      LCMPXCHG8_DAG,
356      LCMPXCHG16_DAG,
357
358      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
359      VZEXT_LOAD,
360
361      // FNSTCW16m - Store FP control world into i16 memory.
362      FNSTCW16m,
363
364      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
365      /// integer destination in memory and a FP reg source.  This corresponds
366      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
367      /// has two inputs (token chain and address) and two outputs (int value
368      /// and token chain).
369      FP_TO_INT16_IN_MEM,
370      FP_TO_INT32_IN_MEM,
371      FP_TO_INT64_IN_MEM,
372
373      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
374      /// integer source in memory and FP reg result.  This corresponds to the
375      /// X86::FILD*m instructions. It has three inputs (token chain, address,
376      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
377      /// also produces a flag).
378      FILD,
379      FILD_FLAG,
380
381      /// FLD - This instruction implements an extending load to FP stack slots.
382      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
383      /// operand, ptr to load from, and a ValueType node indicating the type
384      /// to load to.
385      FLD,
386
387      /// FST - This instruction implements a truncating store to FP stack
388      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
389      /// chain operand, value to store, address, and a ValueType to store it
390      /// as.
391      FST,
392
393      /// VAARG_64 - This instruction grabs the address of the next argument
394      /// from a va_list. (reads and modifies the va_list in memory)
395      VAARG_64
396
397      // WARNING: Do not add anything in the end unless you want the node to
398      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
399      // thought as target memory ops!
400    };
401  }
402
403  /// Define some predicates that are used for node matching.
404  namespace X86 {
405    /// isVEXTRACTF128Index - Return true if the specified
406    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
407    /// suitable for input to VEXTRACTF128.
408    bool isVEXTRACTF128Index(SDNode *N);
409
410    /// isVINSERTF128Index - Return true if the specified
411    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
412    /// suitable for input to VINSERTF128.
413    bool isVINSERTF128Index(SDNode *N);
414
415    /// getExtractVEXTRACTF128Immediate - Return the appropriate
416    /// immediate to extract the specified EXTRACT_SUBVECTOR index
417    /// with VEXTRACTF128 instructions.
418    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
419
420    /// getInsertVINSERTF128Immediate - Return the appropriate
421    /// immediate to insert at the specified INSERT_SUBVECTOR index
422    /// with VINSERTF128 instructions.
423    unsigned getInsertVINSERTF128Immediate(SDNode *N);
424
425    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
426    /// constant +0.0.
427    bool isZeroNode(SDValue Elt);
428
429    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
430    /// fit into displacement field of the instruction.
431    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
432                                      bool hasSymbolicDisplacement = true);
433
434
435    /// isCalleePop - Determines whether the callee is required to pop its
436    /// own arguments. Callee pop is necessary to support tail calls.
437    bool isCalleePop(CallingConv::ID CallingConv,
438                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
439  }
440
441  //===--------------------------------------------------------------------===//
442  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
443  class X86TargetLowering : public TargetLowering {
444  public:
445    explicit X86TargetLowering(X86TargetMachine &TM);
446
447    virtual unsigned getJumpTableEncoding() const;
448
449    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
450
451    virtual const MCExpr *
452    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
453                              const MachineBasicBlock *MBB, unsigned uid,
454                              MCContext &Ctx) const;
455
456    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
457    /// jumptable.
458    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
459                                             SelectionDAG &DAG) const;
460    virtual const MCExpr *
461    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
462                                 unsigned JTI, MCContext &Ctx) const;
463
464    /// getStackPtrReg - Return the stack pointer register we are using: either
465    /// ESP or RSP.
466    unsigned getStackPtrReg() const { return X86StackPtr; }
467
468    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
469    /// function arguments in the caller parameter area. For X86, aggregates
470    /// that contains are placed at 16-byte boundaries while the rest are at
471    /// 4-byte boundaries.
472    virtual unsigned getByValTypeAlignment(Type *Ty) const;
473
474    /// getOptimalMemOpType - Returns the target specific optimal type for load
475    /// and store operations as a result of memset, memcpy, and memmove
476    /// lowering. If DstAlign is zero that means it's safe to destination
477    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
478    /// means there isn't a need to check it against alignment requirement,
479    /// probably because the source does not need to be loaded. If
480    /// 'IsZeroVal' is true, that means it's safe to return a
481    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
482    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
483    /// constant so it does not need to be loaded.
484    /// It returns EVT::Other if the type should be determined using generic
485    /// target-independent logic.
486    virtual EVT
487    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
488                        bool IsZeroVal, bool MemcpyStrSrc,
489                        MachineFunction &MF) const;
490
491    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
492    /// unaligned memory accesses. of the specified type.
493    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
494      return true;
495    }
496
497    /// LowerOperation - Provide custom lowering hooks for some operations.
498    ///
499    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
500
501    /// ReplaceNodeResults - Replace the results of node with an illegal result
502    /// type with new values built out of custom code.
503    ///
504    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
505                                    SelectionDAG &DAG) const;
506
507
508    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
509
510    /// isTypeDesirableForOp - Return true if the target has native support for
511    /// the specified value type and it is 'desirable' to use the type for the
512    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
513    /// instruction encodings are longer and some i16 instructions are slow.
514    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
515
516    /// isTypeDesirable - Return true if the target has native support for the
517    /// specified value type and it is 'desirable' to use the type. e.g. On x86
518    /// i16 is legal, but undesirable since i16 instruction encodings are longer
519    /// and some i16 instructions are slow.
520    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
521
522    virtual MachineBasicBlock *
523      EmitInstrWithCustomInserter(MachineInstr *MI,
524                                  MachineBasicBlock *MBB) const;
525
526
527    /// getTargetNodeName - This method returns the name of a target specific
528    /// DAG node.
529    virtual const char *getTargetNodeName(unsigned Opcode) const;
530
531    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
532    virtual EVT getSetCCResultType(EVT VT) const;
533
534    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
535    /// in Mask are known to be either zero or one and return them in the
536    /// KnownZero/KnownOne bitsets.
537    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
538                                                APInt &KnownZero,
539                                                APInt &KnownOne,
540                                                const SelectionDAG &DAG,
541                                                unsigned Depth = 0) const;
542
543    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
544    // operation that are sign bits.
545    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
546                                                     unsigned Depth) const;
547
548    virtual bool
549    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
550
551    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
552
553    virtual bool ExpandInlineAsm(CallInst *CI) const;
554
555    ConstraintType getConstraintType(const std::string &Constraint) const;
556
557    /// Examine constraint string and operand type and determine a weight value.
558    /// The operand object must already have been set up with the operand type.
559    virtual ConstraintWeight getSingleConstraintMatchWeight(
560      AsmOperandInfo &info, const char *constraint) const;
561
562    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
563
564    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
565    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
566    /// true it means one of the asm constraint of the inline asm instruction
567    /// being processed is 'm'.
568    virtual void LowerAsmOperandForConstraint(SDValue Op,
569                                              std::string &Constraint,
570                                              std::vector<SDValue> &Ops,
571                                              SelectionDAG &DAG) const;
572
573    /// getRegForInlineAsmConstraint - Given a physical register constraint
574    /// (e.g. {edx}), return the register number and the register class for the
575    /// register.  This should only be used for C_Register constraints.  On
576    /// error, this returns a register number of 0.
577    std::pair<unsigned, const TargetRegisterClass*>
578      getRegForInlineAsmConstraint(const std::string &Constraint,
579                                   EVT VT) const;
580
581    /// isLegalAddressingMode - Return true if the addressing mode represented
582    /// by AM is legal for this target, for a load/store of the specified type.
583    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
584
585    /// isLegalICmpImmediate - Return true if the specified immediate is legal
586    /// icmp immediate, that is the target has icmp instructions which can
587    /// compare a register against the immediate without having to materialize
588    /// the immediate into a register.
589    virtual bool isLegalICmpImmediate(int64_t Imm) const;
590
591    /// isLegalAddImmediate - Return true if the specified immediate is legal
592    /// add immediate, that is the target has add instructions which can
593    /// add a register and the immediate without having to materialize
594    /// the immediate into a register.
595    virtual bool isLegalAddImmediate(int64_t Imm) const;
596
597    /// isTruncateFree - Return true if it's free to truncate a value of
598    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
599    /// register EAX to i16 by referencing its sub-register AX.
600    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
601    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
602
603    /// isZExtFree - Return true if any actual instruction that defines a
604    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
605    /// register. This does not necessarily include registers defined in
606    /// unknown ways, such as incoming arguments, or copies from unknown
607    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
608    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
609    /// all instructions that define 32-bit values implicit zero-extend the
610    /// result out to 64 bits.
611    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
612    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
613
614    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
615    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
616    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
617    /// is expanded to mul + add.
618    virtual bool isFMAFasterThanMulAndAdd(EVT) const { return true; }
619
620    /// isNarrowingProfitable - Return true if it's profitable to narrow
621    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
622    /// from i32 to i8 but not from i32 to i16.
623    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
624
625    /// isFPImmLegal - Returns true if the target can instruction select the
626    /// specified FP immediate natively. If false, the legalizer will
627    /// materialize the FP immediate as a load from a constant pool.
628    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
629
630    /// isShuffleMaskLegal - Targets can use this to indicate that they only
631    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
632    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
633    /// values are assumed to be legal.
634    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
635                                    EVT VT) const;
636
637    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
638    /// used by Targets can use this to indicate if there is a suitable
639    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
640    /// pool entry.
641    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
642                                        EVT VT) const;
643
644    /// ShouldShrinkFPConstant - If true, then instruction selection should
645    /// seek to shrink the FP constant of the specified type to a smaller type
646    /// in order to save space and / or reduce runtime.
647    virtual bool ShouldShrinkFPConstant(EVT VT) const {
648      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
649      // expensive than a straight movsd. On the other hand, it's important to
650      // shrink long double fp constant since fldt is very slow.
651      return !X86ScalarSSEf64 || VT == MVT::f80;
652    }
653
654    const X86Subtarget* getSubtarget() const {
655      return Subtarget;
656    }
657
658    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
659    /// computed in an SSE register, not on the X87 floating point stack.
660    bool isScalarFPTypeInSSEReg(EVT VT) const {
661      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
662      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
663    }
664
665    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
666    /// for fptoui.
667    bool isTargetFTOL() const {
668      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
669    }
670
671    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
672    /// used for fptoui to the given type.
673    bool isIntegerTypeFTOL(EVT VT) const {
674      return isTargetFTOL() && VT == MVT::i64;
675    }
676
677    /// createFastISel - This method returns a target specific FastISel object,
678    /// or null if the target does not support "fast" ISel.
679    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
680                                     const TargetLibraryInfo *libInfo) const;
681
682    /// getStackCookieLocation - Return true if the target stores stack
683    /// protector cookies at a fixed offset in some non-standard address
684    /// space, and populates the address space and offset as
685    /// appropriate.
686    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
687
688    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
689                      SelectionDAG &DAG) const;
690
691  protected:
692    std::pair<const TargetRegisterClass*, uint8_t>
693    findRepresentativeClass(EVT VT) const;
694
695  private:
696    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
697    /// make the right decision when generating code for different targets.
698    const X86Subtarget *Subtarget;
699    const X86RegisterInfo *RegInfo;
700    const TargetData *TD;
701
702    /// X86StackPtr - X86 physical register used as stack ptr.
703    unsigned X86StackPtr;
704
705    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
706    /// floating point ops.
707    /// When SSE is available, use it for f32 operations.
708    /// When SSE2 is available, use it for f64 operations.
709    bool X86ScalarSSEf32;
710    bool X86ScalarSSEf64;
711
712    /// LegalFPImmediates - A list of legal fp immediates.
713    std::vector<APFloat> LegalFPImmediates;
714
715    /// addLegalFPImmediate - Indicate that this x86 target can instruction
716    /// select the specified FP immediate natively.
717    void addLegalFPImmediate(const APFloat& Imm) {
718      LegalFPImmediates.push_back(Imm);
719    }
720
721    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
722                            CallingConv::ID CallConv, bool isVarArg,
723                            const SmallVectorImpl<ISD::InputArg> &Ins,
724                            DebugLoc dl, SelectionDAG &DAG,
725                            SmallVectorImpl<SDValue> &InVals) const;
726    SDValue LowerMemArgument(SDValue Chain,
727                             CallingConv::ID CallConv,
728                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
729                             DebugLoc dl, SelectionDAG &DAG,
730                             const CCValAssign &VA,  MachineFrameInfo *MFI,
731                              unsigned i) const;
732    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
733                             DebugLoc dl, SelectionDAG &DAG,
734                             const CCValAssign &VA,
735                             ISD::ArgFlagsTy Flags) const;
736
737    // Call lowering helpers.
738
739    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
740    /// for tail call optimization. Targets which want to do tail call
741    /// optimization should implement this function.
742    bool IsEligibleForTailCallOptimization(SDValue Callee,
743                                           CallingConv::ID CalleeCC,
744                                           bool isVarArg,
745                                           bool isCalleeStructRet,
746                                           bool isCallerStructRet,
747                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
748                                    const SmallVectorImpl<SDValue> &OutVals,
749                                    const SmallVectorImpl<ISD::InputArg> &Ins,
750                                           SelectionDAG& DAG) const;
751    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
752    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
753                                SDValue Chain, bool IsTailCall, bool Is64Bit,
754                                int FPDiff, DebugLoc dl) const;
755
756    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
757                                         SelectionDAG &DAG) const;
758
759    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
760                                               bool isSigned,
761                                               bool isReplace) const;
762
763    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
764                                   SelectionDAG &DAG) const;
765    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
766    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
767    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
768    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
769    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
770    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
772    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
773    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
774    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
775    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
776    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
777    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
778                               int64_t Offset, SelectionDAG &DAG) const;
779    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
780    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
784    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
785    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
786    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
787    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
788    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
789    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
790    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
791    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
792    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
793    SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const;
794    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
795                      DebugLoc dl, SelectionDAG &DAG) const;
796    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
797    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
798    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
799    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
800    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
801    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
802    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
803    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
804    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
805    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
806    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
807    SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
808    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
809    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
810    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
811    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
812    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
813    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
814    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
815    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
816    SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const;
817    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
818    SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const;
819    SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const;
820    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
821    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
822    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
823
824    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
825    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
826    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
827    SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
828    SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
829    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
830    SDValue PerformTruncateCombine(SDNode* N, SelectionDAG &DAG, DAGCombinerInfo &DCI) const;
831
832    // Utility functions to help LowerVECTOR_SHUFFLE
833    SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
834    SDValue LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const;
835    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
836
837    SDValue LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const;
838
839    virtual SDValue
840      LowerFormalArguments(SDValue Chain,
841                           CallingConv::ID CallConv, bool isVarArg,
842                           const SmallVectorImpl<ISD::InputArg> &Ins,
843                           DebugLoc dl, SelectionDAG &DAG,
844                           SmallVectorImpl<SDValue> &InVals) const;
845    virtual SDValue
846      LowerCall(CallLoweringInfo &CLI,
847                SmallVectorImpl<SDValue> &InVals) const;
848
849    virtual SDValue
850      LowerReturn(SDValue Chain,
851                  CallingConv::ID CallConv, bool isVarArg,
852                  const SmallVectorImpl<ISD::OutputArg> &Outs,
853                  const SmallVectorImpl<SDValue> &OutVals,
854                  DebugLoc dl, SelectionDAG &DAG) const;
855
856    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
857
858    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
859
860    virtual EVT
861    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
862                             ISD::NodeType ExtendKind) const;
863
864    virtual bool
865    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
866                   bool isVarArg,
867                   const SmallVectorImpl<ISD::OutputArg> &Outs,
868                   LLVMContext &Context) const;
869
870    /// Utility function to emit string processing sse4.2 instructions
871    /// that return in xmm0.
872    /// This takes the instruction to expand, the associated machine basic
873    /// block, the number of args, and whether or not the second arg is
874    /// in memory or not.
875    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
876                                unsigned argNum, bool inMem) const;
877
878    /// Utility functions to emit monitor and mwait instructions. These
879    /// need to make sure that the arguments to the intrinsic are in the
880    /// correct registers.
881    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
882                                   MachineBasicBlock *BB) const;
883    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
884
885    /// Utility function to emit atomic bitwise operations (and, or, xor).
886    /// It takes the bitwise instruction to expand, the associated machine basic
887    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
888    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
889                                                    MachineInstr *BInstr,
890                                                    MachineBasicBlock *BB,
891                                                    unsigned regOpc,
892                                                    unsigned immOpc,
893                                                    unsigned loadOpc,
894                                                    unsigned cxchgOpc,
895                                                    unsigned notOpc,
896                                                    unsigned EAXreg,
897                                              const TargetRegisterClass *RC,
898                                                    bool Invert = false) const;
899
900    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
901                                                    MachineInstr *BInstr,
902                                                    MachineBasicBlock *BB,
903                                                    unsigned regOpcL,
904                                                    unsigned regOpcH,
905                                                    unsigned immOpcL,
906                                                    unsigned immOpcH,
907                                                    bool Invert = false) const;
908
909    /// Utility function to emit atomic min and max.  It takes the min/max
910    /// instruction to expand, the associated basic block, and the associated
911    /// cmov opcode for moving the min or max value.
912    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
913                                                          MachineBasicBlock *BB,
914                                                        unsigned cmovOpc) const;
915
916    // Utility function to emit the low-level va_arg code for X86-64.
917    MachineBasicBlock *EmitVAARG64WithCustomInserter(
918                       MachineInstr *MI,
919                       MachineBasicBlock *MBB) const;
920
921    /// Utility function to emit the xmm reg save portion of va_start.
922    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
923                                                   MachineInstr *BInstr,
924                                                   MachineBasicBlock *BB) const;
925
926    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
927                                         MachineBasicBlock *BB) const;
928
929    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
930                                              MachineBasicBlock *BB) const;
931
932    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
933                                            MachineBasicBlock *BB,
934                                            bool Is64Bit) const;
935
936    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
937                                          MachineBasicBlock *BB) const;
938
939    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
940                                          MachineBasicBlock *BB) const;
941
942    /// Emit nodes that will be selected as "test Op0,Op0", or something
943    /// equivalent, for use with the given x86 condition code.
944    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
945
946    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
947    /// equivalent, for use with the given x86 condition code.
948    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
949                    SelectionDAG &DAG) const;
950
951    /// Convert a comparison if required by the subtarget.
952    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
953  };
954
955  namespace X86 {
956    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
957                             const TargetLibraryInfo *libInfo);
958  }
959}
960
961#endif    // X86ISELLOWERING_H
962