1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Attributes.h"
17#include "llvm/Constants.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/IRBuilder.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Module.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Analysis/CallGraph.h"
28#include "llvm/Analysis/InstructionSimplify.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Transforms/Utils/Local.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
35                          bool InsertLifetime) {
36  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37}
38bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
39                          bool InsertLifetime) {
40  return InlineFunction(CallSite(II), IFI, InsertLifetime);
41}
42
43namespace {
44  /// A class for recording information about inlining through an invoke.
45  class InvokeInliningInfo {
46    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
49    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
50    SmallVector<Value*, 8> UnwindDestPHIValues;
51
52  public:
53    InvokeInliningInfo(InvokeInst *II)
54      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55        CallerLPad(0), InnerEHValuesPHI(0) {
56      // If there are PHI nodes in the unwind destination block, we need to keep
57      // track of which values came into them from the invoke before removing
58      // the edge from this block.
59      llvm::BasicBlock *InvokeBB = II->getParent();
60      BasicBlock::iterator I = OuterResumeDest->begin();
61      for (; isa<PHINode>(I); ++I) {
62        // Save the value to use for this edge.
63        PHINode *PHI = cast<PHINode>(I);
64        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65      }
66
67      CallerLPad = cast<LandingPadInst>(I);
68    }
69
70    /// getOuterResumeDest - The outer unwind destination is the target of
71    /// unwind edges introduced for calls within the inlined function.
72    BasicBlock *getOuterResumeDest() const {
73      return OuterResumeDest;
74    }
75
76    BasicBlock *getInnerResumeDest();
77
78    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79
80    /// forwardResume - Forward the 'resume' instruction to the caller's landing
81    /// pad block. When the landing pad block has only one predecessor, this is
82    /// a simple branch. When there is more than one predecessor, we need to
83    /// split the landing pad block after the landingpad instruction and jump
84    /// to there.
85    void forwardResume(ResumeInst *RI);
86
87    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
88    /// destination block for the given basic block, using the values for the
89    /// original invoke's source block.
90    void addIncomingPHIValuesFor(BasicBlock *BB) const {
91      addIncomingPHIValuesForInto(BB, OuterResumeDest);
92    }
93
94    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
95      BasicBlock::iterator I = dest->begin();
96      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
97        PHINode *phi = cast<PHINode>(I);
98        phi->addIncoming(UnwindDestPHIValues[i], src);
99      }
100    }
101  };
102}
103
104/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
105BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
106  if (InnerResumeDest) return InnerResumeDest;
107
108  // Split the landing pad.
109  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
110  InnerResumeDest =
111    OuterResumeDest->splitBasicBlock(SplitPoint,
112                                     OuterResumeDest->getName() + ".body");
113
114  // The number of incoming edges we expect to the inner landing pad.
115  const unsigned PHICapacity = 2;
116
117  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
118  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
119  BasicBlock::iterator I = OuterResumeDest->begin();
120  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121    PHINode *OuterPHI = cast<PHINode>(I);
122    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
123                                        OuterPHI->getName() + ".lpad-body",
124                                        InsertPoint);
125    OuterPHI->replaceAllUsesWith(InnerPHI);
126    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
127  }
128
129  // Create a PHI for the exception values.
130  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
131                                     "eh.lpad-body", InsertPoint);
132  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
133  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
134
135  // All done.
136  return InnerResumeDest;
137}
138
139/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
140/// block. When the landing pad block has only one predecessor, this is a simple
141/// branch. When there is more than one predecessor, we need to split the
142/// landing pad block after the landingpad instruction and jump to there.
143void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
144  BasicBlock *Dest = getInnerResumeDest();
145  BasicBlock *Src = RI->getParent();
146
147  BranchInst::Create(Dest, Src);
148
149  // Update the PHIs in the destination. They were inserted in an order which
150  // makes this work.
151  addIncomingPHIValuesForInto(Src, Dest);
152
153  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
154  RI->eraseFromParent();
155}
156
157/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
158/// an invoke, we have to turn all of the calls that can throw into
159/// invokes.  This function analyze BB to see if there are any calls, and if so,
160/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
161/// nodes in that block with the values specified in InvokeDestPHIValues.
162///
163/// Returns true to indicate that the next block should be skipped.
164static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
165                                                   InvokeInliningInfo &Invoke) {
166  LandingPadInst *LPI = Invoke.getLandingPadInst();
167
168  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
169    Instruction *I = BBI++;
170
171    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
172      unsigned NumClauses = LPI->getNumClauses();
173      L->reserveClauses(NumClauses);
174      for (unsigned i = 0; i != NumClauses; ++i)
175        L->addClause(LPI->getClause(i));
176    }
177
178    // We only need to check for function calls: inlined invoke
179    // instructions require no special handling.
180    CallInst *CI = dyn_cast<CallInst>(I);
181
182    // If this call cannot unwind, don't convert it to an invoke.
183    if (!CI || CI->doesNotThrow())
184      continue;
185
186    // Convert this function call into an invoke instruction.  First, split the
187    // basic block.
188    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
189
190    // Delete the unconditional branch inserted by splitBasicBlock
191    BB->getInstList().pop_back();
192
193    // Create the new invoke instruction.
194    ImmutableCallSite CS(CI);
195    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
196    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
197                                        Invoke.getOuterResumeDest(),
198                                        InvokeArgs, CI->getName(), BB);
199    II->setCallingConv(CI->getCallingConv());
200    II->setAttributes(CI->getAttributes());
201
202    // Make sure that anything using the call now uses the invoke!  This also
203    // updates the CallGraph if present, because it uses a WeakVH.
204    CI->replaceAllUsesWith(II);
205
206    // Delete the original call
207    Split->getInstList().pop_front();
208
209    // Update any PHI nodes in the exceptional block to indicate that there is
210    // now a new entry in them.
211    Invoke.addIncomingPHIValuesFor(BB);
212    return false;
213  }
214
215  return false;
216}
217
218/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
219/// in the body of the inlined function into invokes.
220///
221/// II is the invoke instruction being inlined.  FirstNewBlock is the first
222/// block of the inlined code (the last block is the end of the function),
223/// and InlineCodeInfo is information about the code that got inlined.
224static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
225                                ClonedCodeInfo &InlinedCodeInfo) {
226  BasicBlock *InvokeDest = II->getUnwindDest();
227
228  Function *Caller = FirstNewBlock->getParent();
229
230  // The inlined code is currently at the end of the function, scan from the
231  // start of the inlined code to its end, checking for stuff we need to
232  // rewrite.  If the code doesn't have calls or unwinds, we know there is
233  // nothing to rewrite.
234  if (!InlinedCodeInfo.ContainsCalls) {
235    // Now that everything is happy, we have one final detail.  The PHI nodes in
236    // the exception destination block still have entries due to the original
237    // invoke instruction.  Eliminate these entries (which might even delete the
238    // PHI node) now.
239    InvokeDest->removePredecessor(II->getParent());
240    return;
241  }
242
243  InvokeInliningInfo Invoke(II);
244
245  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
246    if (InlinedCodeInfo.ContainsCalls)
247      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
248        // Honor a request to skip the next block.
249        ++BB;
250        continue;
251      }
252
253    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
254      Invoke.forwardResume(RI);
255  }
256
257  // Now that everything is happy, we have one final detail.  The PHI nodes in
258  // the exception destination block still have entries due to the original
259  // invoke instruction.  Eliminate these entries (which might even delete the
260  // PHI node) now.
261  InvokeDest->removePredecessor(II->getParent());
262}
263
264/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
265/// into the caller, update the specified callgraph to reflect the changes we
266/// made.  Note that it's possible that not all code was copied over, so only
267/// some edges of the callgraph may remain.
268static void UpdateCallGraphAfterInlining(CallSite CS,
269                                         Function::iterator FirstNewBlock,
270                                         ValueToValueMapTy &VMap,
271                                         InlineFunctionInfo &IFI) {
272  CallGraph &CG = *IFI.CG;
273  const Function *Caller = CS.getInstruction()->getParent()->getParent();
274  const Function *Callee = CS.getCalledFunction();
275  CallGraphNode *CalleeNode = CG[Callee];
276  CallGraphNode *CallerNode = CG[Caller];
277
278  // Since we inlined some uninlined call sites in the callee into the caller,
279  // add edges from the caller to all of the callees of the callee.
280  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
281
282  // Consider the case where CalleeNode == CallerNode.
283  CallGraphNode::CalledFunctionsVector CallCache;
284  if (CalleeNode == CallerNode) {
285    CallCache.assign(I, E);
286    I = CallCache.begin();
287    E = CallCache.end();
288  }
289
290  for (; I != E; ++I) {
291    const Value *OrigCall = I->first;
292
293    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
294    // Only copy the edge if the call was inlined!
295    if (VMI == VMap.end() || VMI->second == 0)
296      continue;
297
298    // If the call was inlined, but then constant folded, there is no edge to
299    // add.  Check for this case.
300    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
301    if (NewCall == 0) continue;
302
303    // Remember that this call site got inlined for the client of
304    // InlineFunction.
305    IFI.InlinedCalls.push_back(NewCall);
306
307    // It's possible that inlining the callsite will cause it to go from an
308    // indirect to a direct call by resolving a function pointer.  If this
309    // happens, set the callee of the new call site to a more precise
310    // destination.  This can also happen if the call graph node of the caller
311    // was just unnecessarily imprecise.
312    if (I->second->getFunction() == 0)
313      if (Function *F = CallSite(NewCall).getCalledFunction()) {
314        // Indirect call site resolved to direct call.
315        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
316
317        continue;
318      }
319
320    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
321  }
322
323  // Update the call graph by deleting the edge from Callee to Caller.  We must
324  // do this after the loop above in case Caller and Callee are the same.
325  CallerNode->removeCallEdgeFor(CS);
326}
327
328/// HandleByValArgument - When inlining a call site that has a byval argument,
329/// we have to make the implicit memcpy explicit by adding it.
330static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
331                                  const Function *CalledFunc,
332                                  InlineFunctionInfo &IFI,
333                                  unsigned ByValAlignment) {
334  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
335
336  // If the called function is readonly, then it could not mutate the caller's
337  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
338  // temporary.
339  if (CalledFunc->onlyReadsMemory()) {
340    // If the byval argument has a specified alignment that is greater than the
341    // passed in pointer, then we either have to round up the input pointer or
342    // give up on this transformation.
343    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
344      return Arg;
345
346    // If the pointer is already known to be sufficiently aligned, or if we can
347    // round it up to a larger alignment, then we don't need a temporary.
348    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
349                                   IFI.TD) >= ByValAlignment)
350      return Arg;
351
352    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
353    // for code quality, but rarely happens and is required for correctness.
354  }
355
356  LLVMContext &Context = Arg->getContext();
357
358  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
359
360  // Create the alloca.  If we have TargetData, use nice alignment.
361  unsigned Align = 1;
362  if (IFI.TD)
363    Align = IFI.TD->getPrefTypeAlignment(AggTy);
364
365  // If the byval had an alignment specified, we *must* use at least that
366  // alignment, as it is required by the byval argument (and uses of the
367  // pointer inside the callee).
368  Align = std::max(Align, ByValAlignment);
369
370  Function *Caller = TheCall->getParent()->getParent();
371
372  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
373                                    &*Caller->begin()->begin());
374  // Emit a memcpy.
375  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
376  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
377                                                 Intrinsic::memcpy,
378                                                 Tys);
379  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
380  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
381
382  Value *Size;
383  if (IFI.TD == 0)
384    Size = ConstantExpr::getSizeOf(AggTy);
385  else
386    Size = ConstantInt::get(Type::getInt64Ty(Context),
387                            IFI.TD->getTypeStoreSize(AggTy));
388
389  // Always generate a memcpy of alignment 1 here because we don't know
390  // the alignment of the src pointer.  Other optimizations can infer
391  // better alignment.
392  Value *CallArgs[] = {
393    DestCast, SrcCast, Size,
394    ConstantInt::get(Type::getInt32Ty(Context), 1),
395    ConstantInt::getFalse(Context) // isVolatile
396  };
397  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
398
399  // Uses of the argument in the function should use our new alloca
400  // instead.
401  return NewAlloca;
402}
403
404// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
405// intrinsic.
406static bool isUsedByLifetimeMarker(Value *V) {
407  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
408       ++UI) {
409    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
410      switch (II->getIntrinsicID()) {
411      default: break;
412      case Intrinsic::lifetime_start:
413      case Intrinsic::lifetime_end:
414        return true;
415      }
416    }
417  }
418  return false;
419}
420
421// hasLifetimeMarkers - Check whether the given alloca already has
422// lifetime.start or lifetime.end intrinsics.
423static bool hasLifetimeMarkers(AllocaInst *AI) {
424  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
425  if (AI->getType() == Int8PtrTy)
426    return isUsedByLifetimeMarker(AI);
427
428  // Do a scan to find all the casts to i8*.
429  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
430       ++I) {
431    if (I->getType() != Int8PtrTy) continue;
432    if (I->stripPointerCasts() != AI) continue;
433    if (isUsedByLifetimeMarker(*I))
434      return true;
435  }
436  return false;
437}
438
439/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
440/// recursively update InlinedAtEntry of a DebugLoc.
441static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
442                                    const DebugLoc &InlinedAtDL,
443                                    LLVMContext &Ctx) {
444  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
445    DebugLoc NewInlinedAtDL
446      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
447    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
448                         NewInlinedAtDL.getAsMDNode(Ctx));
449  }
450
451  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
452                       InlinedAtDL.getAsMDNode(Ctx));
453}
454
455/// fixupLineNumbers - Update inlined instructions' line numbers to
456/// to encode location where these instructions are inlined.
457static void fixupLineNumbers(Function *Fn, Function::iterator FI,
458                             Instruction *TheCall) {
459  DebugLoc TheCallDL = TheCall->getDebugLoc();
460  if (TheCallDL.isUnknown())
461    return;
462
463  for (; FI != Fn->end(); ++FI) {
464    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
465         BI != BE; ++BI) {
466      DebugLoc DL = BI->getDebugLoc();
467      if (!DL.isUnknown()) {
468        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
469        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
470          LLVMContext &Ctx = BI->getContext();
471          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
472          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
473                                                   InlinedAt, Ctx));
474        }
475      }
476    }
477  }
478}
479
480/// InlineFunction - This function inlines the called function into the basic
481/// block of the caller.  This returns false if it is not possible to inline
482/// this call.  The program is still in a well defined state if this occurs
483/// though.
484///
485/// Note that this only does one level of inlining.  For example, if the
486/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
487/// exists in the instruction stream.  Similarly this will inline a recursive
488/// function by one level.
489bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
490                          bool InsertLifetime) {
491  Instruction *TheCall = CS.getInstruction();
492  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
493         "Instruction not in function!");
494
495  // If IFI has any state in it, zap it before we fill it in.
496  IFI.reset();
497
498  const Function *CalledFunc = CS.getCalledFunction();
499  if (CalledFunc == 0 ||          // Can't inline external function or indirect
500      CalledFunc->isDeclaration() || // call, or call to a vararg function!
501      CalledFunc->getFunctionType()->isVarArg()) return false;
502
503  // If the call to the callee is not a tail call, we must clear the 'tail'
504  // flags on any calls that we inline.
505  bool MustClearTailCallFlags =
506    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
507
508  // If the call to the callee cannot throw, set the 'nounwind' flag on any
509  // calls that we inline.
510  bool MarkNoUnwind = CS.doesNotThrow();
511
512  BasicBlock *OrigBB = TheCall->getParent();
513  Function *Caller = OrigBB->getParent();
514
515  // GC poses two hazards to inlining, which only occur when the callee has GC:
516  //  1. If the caller has no GC, then the callee's GC must be propagated to the
517  //     caller.
518  //  2. If the caller has a differing GC, it is invalid to inline.
519  if (CalledFunc->hasGC()) {
520    if (!Caller->hasGC())
521      Caller->setGC(CalledFunc->getGC());
522    else if (CalledFunc->getGC() != Caller->getGC())
523      return false;
524  }
525
526  // Get the personality function from the callee if it contains a landing pad.
527  Value *CalleePersonality = 0;
528  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
529       I != E; ++I)
530    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
531      const BasicBlock *BB = II->getUnwindDest();
532      const LandingPadInst *LP = BB->getLandingPadInst();
533      CalleePersonality = LP->getPersonalityFn();
534      break;
535    }
536
537  // Find the personality function used by the landing pads of the caller. If it
538  // exists, then check to see that it matches the personality function used in
539  // the callee.
540  if (CalleePersonality) {
541    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
542         I != E; ++I)
543      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
544        const BasicBlock *BB = II->getUnwindDest();
545        const LandingPadInst *LP = BB->getLandingPadInst();
546
547        // If the personality functions match, then we can perform the
548        // inlining. Otherwise, we can't inline.
549        // TODO: This isn't 100% true. Some personality functions are proper
550        //       supersets of others and can be used in place of the other.
551        if (LP->getPersonalityFn() != CalleePersonality)
552          return false;
553
554        break;
555      }
556  }
557
558  // Get an iterator to the last basic block in the function, which will have
559  // the new function inlined after it.
560  Function::iterator LastBlock = &Caller->back();
561
562  // Make sure to capture all of the return instructions from the cloned
563  // function.
564  SmallVector<ReturnInst*, 8> Returns;
565  ClonedCodeInfo InlinedFunctionInfo;
566  Function::iterator FirstNewBlock;
567
568  { // Scope to destroy VMap after cloning.
569    ValueToValueMapTy VMap;
570
571    assert(CalledFunc->arg_size() == CS.arg_size() &&
572           "No varargs calls can be inlined!");
573
574    // Calculate the vector of arguments to pass into the function cloner, which
575    // matches up the formal to the actual argument values.
576    CallSite::arg_iterator AI = CS.arg_begin();
577    unsigned ArgNo = 0;
578    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
579         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
580      Value *ActualArg = *AI;
581
582      // When byval arguments actually inlined, we need to make the copy implied
583      // by them explicit.  However, we don't do this if the callee is readonly
584      // or readnone, because the copy would be unneeded: the callee doesn't
585      // modify the struct.
586      if (CS.isByValArgument(ArgNo)) {
587        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
588                                        CalledFunc->getParamAlignment(ArgNo+1));
589
590        // Calls that we inline may use the new alloca, so we need to clear
591        // their 'tail' flags if HandleByValArgument introduced a new alloca and
592        // the callee has calls.
593        MustClearTailCallFlags |= ActualArg != *AI;
594      }
595
596      VMap[I] = ActualArg;
597    }
598
599    // We want the inliner to prune the code as it copies.  We would LOVE to
600    // have no dead or constant instructions leftover after inlining occurs
601    // (which can happen, e.g., because an argument was constant), but we'll be
602    // happy with whatever the cloner can do.
603    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
604                              /*ModuleLevelChanges=*/false, Returns, ".i",
605                              &InlinedFunctionInfo, IFI.TD, TheCall);
606
607    // Remember the first block that is newly cloned over.
608    FirstNewBlock = LastBlock; ++FirstNewBlock;
609
610    // Update the callgraph if requested.
611    if (IFI.CG)
612      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
613
614    // Update inlined instructions' line number information.
615    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
616  }
617
618  // If there are any alloca instructions in the block that used to be the entry
619  // block for the callee, move them to the entry block of the caller.  First
620  // calculate which instruction they should be inserted before.  We insert the
621  // instructions at the end of the current alloca list.
622  {
623    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
624    for (BasicBlock::iterator I = FirstNewBlock->begin(),
625         E = FirstNewBlock->end(); I != E; ) {
626      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
627      if (AI == 0) continue;
628
629      // If the alloca is now dead, remove it.  This often occurs due to code
630      // specialization.
631      if (AI->use_empty()) {
632        AI->eraseFromParent();
633        continue;
634      }
635
636      if (!isa<Constant>(AI->getArraySize()))
637        continue;
638
639      // Keep track of the static allocas that we inline into the caller.
640      IFI.StaticAllocas.push_back(AI);
641
642      // Scan for the block of allocas that we can move over, and move them
643      // all at once.
644      while (isa<AllocaInst>(I) &&
645             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
646        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
647        ++I;
648      }
649
650      // Transfer all of the allocas over in a block.  Using splice means
651      // that the instructions aren't removed from the symbol table, then
652      // reinserted.
653      Caller->getEntryBlock().getInstList().splice(InsertPoint,
654                                                   FirstNewBlock->getInstList(),
655                                                   AI, I);
656    }
657  }
658
659  // Leave lifetime markers for the static alloca's, scoping them to the
660  // function we just inlined.
661  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
662    IRBuilder<> builder(FirstNewBlock->begin());
663    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
664      AllocaInst *AI = IFI.StaticAllocas[ai];
665
666      // If the alloca is already scoped to something smaller than the whole
667      // function then there's no need to add redundant, less accurate markers.
668      if (hasLifetimeMarkers(AI))
669        continue;
670
671      builder.CreateLifetimeStart(AI);
672      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
673        IRBuilder<> builder(Returns[ri]);
674        builder.CreateLifetimeEnd(AI);
675      }
676    }
677  }
678
679  // If the inlined code contained dynamic alloca instructions, wrap the inlined
680  // code with llvm.stacksave/llvm.stackrestore intrinsics.
681  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
682    Module *M = Caller->getParent();
683    // Get the two intrinsics we care about.
684    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
685    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
686
687    // Insert the llvm.stacksave.
688    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
689      .CreateCall(StackSave, "savedstack");
690
691    // Insert a call to llvm.stackrestore before any return instructions in the
692    // inlined function.
693    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
694      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
695    }
696  }
697
698  // If we are inlining tail call instruction through a call site that isn't
699  // marked 'tail', we must remove the tail marker for any calls in the inlined
700  // code.  Also, calls inlined through a 'nounwind' call site should be marked
701  // 'nounwind'.
702  if (InlinedFunctionInfo.ContainsCalls &&
703      (MustClearTailCallFlags || MarkNoUnwind)) {
704    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
705         BB != E; ++BB)
706      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
707        if (CallInst *CI = dyn_cast<CallInst>(I)) {
708          if (MustClearTailCallFlags)
709            CI->setTailCall(false);
710          if (MarkNoUnwind)
711            CI->setDoesNotThrow();
712        }
713  }
714
715  // If we are inlining for an invoke instruction, we must make sure to rewrite
716  // any call instructions into invoke instructions.
717  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
718    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
719
720  // If we cloned in _exactly one_ basic block, and if that block ends in a
721  // return instruction, we splice the body of the inlined callee directly into
722  // the calling basic block.
723  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
724    // Move all of the instructions right before the call.
725    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
726                                 FirstNewBlock->begin(), FirstNewBlock->end());
727    // Remove the cloned basic block.
728    Caller->getBasicBlockList().pop_back();
729
730    // If the call site was an invoke instruction, add a branch to the normal
731    // destination.
732    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
733      BranchInst::Create(II->getNormalDest(), TheCall);
734
735    // If the return instruction returned a value, replace uses of the call with
736    // uses of the returned value.
737    if (!TheCall->use_empty()) {
738      ReturnInst *R = Returns[0];
739      if (TheCall == R->getReturnValue())
740        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
741      else
742        TheCall->replaceAllUsesWith(R->getReturnValue());
743    }
744    // Since we are now done with the Call/Invoke, we can delete it.
745    TheCall->eraseFromParent();
746
747    // Since we are now done with the return instruction, delete it also.
748    Returns[0]->eraseFromParent();
749
750    // We are now done with the inlining.
751    return true;
752  }
753
754  // Otherwise, we have the normal case, of more than one block to inline or
755  // multiple return sites.
756
757  // We want to clone the entire callee function into the hole between the
758  // "starter" and "ender" blocks.  How we accomplish this depends on whether
759  // this is an invoke instruction or a call instruction.
760  BasicBlock *AfterCallBB;
761  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
762
763    // Add an unconditional branch to make this look like the CallInst case...
764    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
765
766    // Split the basic block.  This guarantees that no PHI nodes will have to be
767    // updated due to new incoming edges, and make the invoke case more
768    // symmetric to the call case.
769    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
770                                          CalledFunc->getName()+".exit");
771
772  } else {  // It's a call
773    // If this is a call instruction, we need to split the basic block that
774    // the call lives in.
775    //
776    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
777                                          CalledFunc->getName()+".exit");
778  }
779
780  // Change the branch that used to go to AfterCallBB to branch to the first
781  // basic block of the inlined function.
782  //
783  TerminatorInst *Br = OrigBB->getTerminator();
784  assert(Br && Br->getOpcode() == Instruction::Br &&
785         "splitBasicBlock broken!");
786  Br->setOperand(0, FirstNewBlock);
787
788
789  // Now that the function is correct, make it a little bit nicer.  In
790  // particular, move the basic blocks inserted from the end of the function
791  // into the space made by splitting the source basic block.
792  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
793                                     FirstNewBlock, Caller->end());
794
795  // Handle all of the return instructions that we just cloned in, and eliminate
796  // any users of the original call/invoke instruction.
797  Type *RTy = CalledFunc->getReturnType();
798
799  PHINode *PHI = 0;
800  if (Returns.size() > 1) {
801    // The PHI node should go at the front of the new basic block to merge all
802    // possible incoming values.
803    if (!TheCall->use_empty()) {
804      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
805                            AfterCallBB->begin());
806      // Anything that used the result of the function call should now use the
807      // PHI node as their operand.
808      TheCall->replaceAllUsesWith(PHI);
809    }
810
811    // Loop over all of the return instructions adding entries to the PHI node
812    // as appropriate.
813    if (PHI) {
814      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
815        ReturnInst *RI = Returns[i];
816        assert(RI->getReturnValue()->getType() == PHI->getType() &&
817               "Ret value not consistent in function!");
818        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
819      }
820    }
821
822
823    // Add a branch to the merge points and remove return instructions.
824    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
825      ReturnInst *RI = Returns[i];
826      BranchInst::Create(AfterCallBB, RI);
827      RI->eraseFromParent();
828    }
829  } else if (!Returns.empty()) {
830    // Otherwise, if there is exactly one return value, just replace anything
831    // using the return value of the call with the computed value.
832    if (!TheCall->use_empty()) {
833      if (TheCall == Returns[0]->getReturnValue())
834        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
835      else
836        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
837    }
838
839    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
840    BasicBlock *ReturnBB = Returns[0]->getParent();
841    ReturnBB->replaceAllUsesWith(AfterCallBB);
842
843    // Splice the code from the return block into the block that it will return
844    // to, which contains the code that was after the call.
845    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
846                                      ReturnBB->getInstList());
847
848    // Delete the return instruction now and empty ReturnBB now.
849    Returns[0]->eraseFromParent();
850    ReturnBB->eraseFromParent();
851  } else if (!TheCall->use_empty()) {
852    // No returns, but something is using the return value of the call.  Just
853    // nuke the result.
854    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
855  }
856
857  // Since we are now done with the Call/Invoke, we can delete it.
858  TheCall->eraseFromParent();
859
860  // We should always be able to fold the entry block of the function into the
861  // single predecessor of the block...
862  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
863  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
864
865  // Splice the code entry block into calling block, right before the
866  // unconditional branch.
867  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
868  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
869
870  // Remove the unconditional branch.
871  OrigBB->getInstList().erase(Br);
872
873  // Now we can remove the CalleeEntry block, which is now empty.
874  Caller->getBasicBlockList().erase(CalleeEntry);
875
876  // If we inserted a phi node, check to see if it has a single value (e.g. all
877  // the entries are the same or undef).  If so, remove the PHI so it doesn't
878  // block other optimizations.
879  if (PHI) {
880    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
881      PHI->replaceAllUsesWith(V);
882      PHI->eraseFromParent();
883    }
884  }
885
886  return true;
887}
888