1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DIBuilder.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/IRBuilder.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Metadata.h"
27#include "llvm/Operator.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/Analysis/Dominators.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/MemoryBuiltins.h"
33#include "llvm/Analysis/ProfileInfo.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/ValueHandle.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetData.h"
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45//  Local constant propagation.
46//
47
48/// ConstantFoldTerminator - If a terminator instruction is predicated on a
49/// constant value, convert it into an unconditional branch to the constant
50/// destination.  This is a nontrivial operation because the successors of this
51/// basic block must have their PHI nodes updated.
52/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53/// conditions and indirectbr addresses this might make dead if
54/// DeleteDeadConditions is true.
55bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
56                                  const TargetLibraryInfo *TLI) {
57  TerminatorInst *T = BB->getTerminator();
58  IRBuilder<> Builder(T);
59
60  // Branch - See if we are conditional jumping on constant
61  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
62    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
63    BasicBlock *Dest1 = BI->getSuccessor(0);
64    BasicBlock *Dest2 = BI->getSuccessor(1);
65
66    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
67      // Are we branching on constant?
68      // YES.  Change to unconditional branch...
69      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
70      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
71
72      //cerr << "Function: " << T->getParent()->getParent()
73      //     << "\nRemoving branch from " << T->getParent()
74      //     << "\n\nTo: " << OldDest << endl;
75
76      // Let the basic block know that we are letting go of it.  Based on this,
77      // it will adjust it's PHI nodes.
78      OldDest->removePredecessor(BB);
79
80      // Replace the conditional branch with an unconditional one.
81      Builder.CreateBr(Destination);
82      BI->eraseFromParent();
83      return true;
84    }
85
86    if (Dest2 == Dest1) {       // Conditional branch to same location?
87      // This branch matches something like this:
88      //     br bool %cond, label %Dest, label %Dest
89      // and changes it into:  br label %Dest
90
91      // Let the basic block know that we are letting go of one copy of it.
92      assert(BI->getParent() && "Terminator not inserted in block!");
93      Dest1->removePredecessor(BI->getParent());
94
95      // Replace the conditional branch with an unconditional one.
96      Builder.CreateBr(Dest1);
97      Value *Cond = BI->getCondition();
98      BI->eraseFromParent();
99      if (DeleteDeadConditions)
100        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
101      return true;
102    }
103    return false;
104  }
105
106  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
107    // If we are switching on a constant, we can convert the switch into a
108    // single branch instruction!
109    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
110    BasicBlock *TheOnlyDest = SI->getDefaultDest();
111    BasicBlock *DefaultDest = TheOnlyDest;
112
113    // Figure out which case it goes to.
114    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
115         i != e; ++i) {
116      // Found case matching a constant operand?
117      if (i.getCaseValue() == CI) {
118        TheOnlyDest = i.getCaseSuccessor();
119        break;
120      }
121
122      // Check to see if this branch is going to the same place as the default
123      // dest.  If so, eliminate it as an explicit compare.
124      if (i.getCaseSuccessor() == DefaultDest) {
125        // Remove this entry.
126        DefaultDest->removePredecessor(SI->getParent());
127        SI->removeCase(i);
128        --i; --e;
129        continue;
130      }
131
132      // Otherwise, check to see if the switch only branches to one destination.
133      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
134      // destinations.
135      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
136    }
137
138    if (CI && !TheOnlyDest) {
139      // Branching on a constant, but not any of the cases, go to the default
140      // successor.
141      TheOnlyDest = SI->getDefaultDest();
142    }
143
144    // If we found a single destination that we can fold the switch into, do so
145    // now.
146    if (TheOnlyDest) {
147      // Insert the new branch.
148      Builder.CreateBr(TheOnlyDest);
149      BasicBlock *BB = SI->getParent();
150
151      // Remove entries from PHI nodes which we no longer branch to...
152      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
153        // Found case matching a constant operand?
154        BasicBlock *Succ = SI->getSuccessor(i);
155        if (Succ == TheOnlyDest)
156          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
157        else
158          Succ->removePredecessor(BB);
159      }
160
161      // Delete the old switch.
162      Value *Cond = SI->getCondition();
163      SI->eraseFromParent();
164      if (DeleteDeadConditions)
165        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
166      return true;
167    }
168
169    if (SI->getNumCases() == 1) {
170      // Otherwise, we can fold this switch into a conditional branch
171      // instruction if it has only one non-default destination.
172      SwitchInst::CaseIt FirstCase = SI->case_begin();
173      IntegersSubset& Case = FirstCase.getCaseValueEx();
174      if (Case.isSingleNumber()) {
175        // FIXME: Currently work with ConstantInt based numbers.
176        Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
177             Case.getSingleNumber(0).toConstantInt(),
178            "cond");
179
180        // Insert the new branch.
181        Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
182                             SI->getDefaultDest());
183
184        // Delete the old switch.
185        SI->eraseFromParent();
186        return true;
187      }
188    }
189    return false;
190  }
191
192  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
193    // indirectbr blockaddress(@F, @BB) -> br label @BB
194    if (BlockAddress *BA =
195          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
196      BasicBlock *TheOnlyDest = BA->getBasicBlock();
197      // Insert the new branch.
198      Builder.CreateBr(TheOnlyDest);
199
200      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
201        if (IBI->getDestination(i) == TheOnlyDest)
202          TheOnlyDest = 0;
203        else
204          IBI->getDestination(i)->removePredecessor(IBI->getParent());
205      }
206      Value *Address = IBI->getAddress();
207      IBI->eraseFromParent();
208      if (DeleteDeadConditions)
209        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
210
211      // If we didn't find our destination in the IBI successor list, then we
212      // have undefined behavior.  Replace the unconditional branch with an
213      // 'unreachable' instruction.
214      if (TheOnlyDest) {
215        BB->getTerminator()->eraseFromParent();
216        new UnreachableInst(BB->getContext(), BB);
217      }
218
219      return true;
220    }
221  }
222
223  return false;
224}
225
226
227//===----------------------------------------------------------------------===//
228//  Local dead code elimination.
229//
230
231/// isInstructionTriviallyDead - Return true if the result produced by the
232/// instruction is not used, and the instruction has no side effects.
233///
234bool llvm::isInstructionTriviallyDead(Instruction *I,
235                                      const TargetLibraryInfo *TLI) {
236  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
237
238  // We don't want the landingpad instruction removed by anything this general.
239  if (isa<LandingPadInst>(I))
240    return false;
241
242  // We don't want debug info removed by anything this general, unless
243  // debug info is empty.
244  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
245    if (DDI->getAddress())
246      return false;
247    return true;
248  }
249  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
250    if (DVI->getValue())
251      return false;
252    return true;
253  }
254
255  if (!I->mayHaveSideEffects()) return true;
256
257  // Special case intrinsics that "may have side effects" but can be deleted
258  // when dead.
259  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
260    // Safe to delete llvm.stacksave if dead.
261    if (II->getIntrinsicID() == Intrinsic::stacksave)
262      return true;
263
264    // Lifetime intrinsics are dead when their right-hand is undef.
265    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
266        II->getIntrinsicID() == Intrinsic::lifetime_end)
267      return isa<UndefValue>(II->getArgOperand(1));
268  }
269
270  if (isAllocLikeFn(I, TLI)) return true;
271
272  if (CallInst *CI = isFreeCall(I, TLI))
273    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
274      return C->isNullValue() || isa<UndefValue>(C);
275
276  return false;
277}
278
279/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
280/// trivially dead instruction, delete it.  If that makes any of its operands
281/// trivially dead, delete them too, recursively.  Return true if any
282/// instructions were deleted.
283bool
284llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
285                                                 const TargetLibraryInfo *TLI) {
286  Instruction *I = dyn_cast<Instruction>(V);
287  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
288    return false;
289
290  SmallVector<Instruction*, 16> DeadInsts;
291  DeadInsts.push_back(I);
292
293  do {
294    I = DeadInsts.pop_back_val();
295
296    // Null out all of the instruction's operands to see if any operand becomes
297    // dead as we go.
298    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
299      Value *OpV = I->getOperand(i);
300      I->setOperand(i, 0);
301
302      if (!OpV->use_empty()) continue;
303
304      // If the operand is an instruction that became dead as we nulled out the
305      // operand, and if it is 'trivially' dead, delete it in a future loop
306      // iteration.
307      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
308        if (isInstructionTriviallyDead(OpI, TLI))
309          DeadInsts.push_back(OpI);
310    }
311
312    I->eraseFromParent();
313  } while (!DeadInsts.empty());
314
315  return true;
316}
317
318/// areAllUsesEqual - Check whether the uses of a value are all the same.
319/// This is similar to Instruction::hasOneUse() except this will also return
320/// true when there are no uses or multiple uses that all refer to the same
321/// value.
322static bool areAllUsesEqual(Instruction *I) {
323  Value::use_iterator UI = I->use_begin();
324  Value::use_iterator UE = I->use_end();
325  if (UI == UE)
326    return true;
327
328  User *TheUse = *UI;
329  for (++UI; UI != UE; ++UI) {
330    if (*UI != TheUse)
331      return false;
332  }
333  return true;
334}
335
336/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
337/// dead PHI node, due to being a def-use chain of single-use nodes that
338/// either forms a cycle or is terminated by a trivially dead instruction,
339/// delete it.  If that makes any of its operands trivially dead, delete them
340/// too, recursively.  Return true if a change was made.
341bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
342                                        const TargetLibraryInfo *TLI) {
343  SmallPtrSet<Instruction*, 4> Visited;
344  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
345       I = cast<Instruction>(*I->use_begin())) {
346    if (I->use_empty())
347      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
348
349    // If we find an instruction more than once, we're on a cycle that
350    // won't prove fruitful.
351    if (!Visited.insert(I)) {
352      // Break the cycle and delete the instruction and its operands.
353      I->replaceAllUsesWith(UndefValue::get(I->getType()));
354      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
355      return true;
356    }
357  }
358  return false;
359}
360
361/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
362/// simplify any instructions in it and recursively delete dead instructions.
363///
364/// This returns true if it changed the code, note that it can delete
365/// instructions in other blocks as well in this block.
366bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
367                                       const TargetLibraryInfo *TLI) {
368  bool MadeChange = false;
369
370#ifndef NDEBUG
371  // In debug builds, ensure that the terminator of the block is never replaced
372  // or deleted by these simplifications. The idea of simplification is that it
373  // cannot introduce new instructions, and there is no way to replace the
374  // terminator of a block without introducing a new instruction.
375  AssertingVH<Instruction> TerminatorVH(--BB->end());
376#endif
377
378  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
379    assert(!BI->isTerminator());
380    Instruction *Inst = BI++;
381
382    WeakVH BIHandle(BI);
383    if (recursivelySimplifyInstruction(Inst, TD)) {
384      MadeChange = true;
385      if (BIHandle != BI)
386        BI = BB->begin();
387      continue;
388    }
389
390    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
391    if (BIHandle != BI)
392      BI = BB->begin();
393  }
394  return MadeChange;
395}
396
397//===----------------------------------------------------------------------===//
398//  Control Flow Graph Restructuring.
399//
400
401
402/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
403/// method is called when we're about to delete Pred as a predecessor of BB.  If
404/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
405///
406/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
407/// nodes that collapse into identity values.  For example, if we have:
408///   x = phi(1, 0, 0, 0)
409///   y = and x, z
410///
411/// .. and delete the predecessor corresponding to the '1', this will attempt to
412/// recursively fold the and to 0.
413void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
414                                        TargetData *TD) {
415  // This only adjusts blocks with PHI nodes.
416  if (!isa<PHINode>(BB->begin()))
417    return;
418
419  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
420  // them down.  This will leave us with single entry phi nodes and other phis
421  // that can be removed.
422  BB->removePredecessor(Pred, true);
423
424  WeakVH PhiIt = &BB->front();
425  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
426    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
427    Value *OldPhiIt = PhiIt;
428
429    if (!recursivelySimplifyInstruction(PN, TD))
430      continue;
431
432    // If recursive simplification ended up deleting the next PHI node we would
433    // iterate to, then our iterator is invalid, restart scanning from the top
434    // of the block.
435    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
436  }
437}
438
439
440/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
441/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
442/// between them, moving the instructions in the predecessor into DestBB and
443/// deleting the predecessor block.
444///
445void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
446  // If BB has single-entry PHI nodes, fold them.
447  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
448    Value *NewVal = PN->getIncomingValue(0);
449    // Replace self referencing PHI with undef, it must be dead.
450    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
451    PN->replaceAllUsesWith(NewVal);
452    PN->eraseFromParent();
453  }
454
455  BasicBlock *PredBB = DestBB->getSinglePredecessor();
456  assert(PredBB && "Block doesn't have a single predecessor!");
457
458  // Zap anything that took the address of DestBB.  Not doing this will give the
459  // address an invalid value.
460  if (DestBB->hasAddressTaken()) {
461    BlockAddress *BA = BlockAddress::get(DestBB);
462    Constant *Replacement =
463      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
464    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
465                                                     BA->getType()));
466    BA->destroyConstant();
467  }
468
469  // Anything that branched to PredBB now branches to DestBB.
470  PredBB->replaceAllUsesWith(DestBB);
471
472  // Splice all the instructions from PredBB to DestBB.
473  PredBB->getTerminator()->eraseFromParent();
474  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
475
476  if (P) {
477    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
478    if (DT) {
479      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
480      DT->changeImmediateDominator(DestBB, PredBBIDom);
481      DT->eraseNode(PredBB);
482    }
483    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
484    if (PI) {
485      PI->replaceAllUses(PredBB, DestBB);
486      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
487    }
488  }
489  // Nuke BB.
490  PredBB->eraseFromParent();
491}
492
493/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
494/// almost-empty BB ending in an unconditional branch to Succ, into succ.
495///
496/// Assumption: Succ is the single successor for BB.
497///
498static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
499  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
500
501  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
502        << Succ->getName() << "\n");
503  // Shortcut, if there is only a single predecessor it must be BB and merging
504  // is always safe
505  if (Succ->getSinglePredecessor()) return true;
506
507  // Make a list of the predecessors of BB
508  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
509
510  // Look at all the phi nodes in Succ, to see if they present a conflict when
511  // merging these blocks
512  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
513    PHINode *PN = cast<PHINode>(I);
514
515    // If the incoming value from BB is again a PHINode in
516    // BB which has the same incoming value for *PI as PN does, we can
517    // merge the phi nodes and then the blocks can still be merged
518    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
519    if (BBPN && BBPN->getParent() == BB) {
520      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
521        BasicBlock *IBB = PN->getIncomingBlock(PI);
522        if (BBPreds.count(IBB) &&
523            BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
524          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
525                << Succ->getName() << " is conflicting with "
526                << BBPN->getName() << " with regard to common predecessor "
527                << IBB->getName() << "\n");
528          return false;
529        }
530      }
531    } else {
532      Value* Val = PN->getIncomingValueForBlock(BB);
533      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
534        // See if the incoming value for the common predecessor is equal to the
535        // one for BB, in which case this phi node will not prevent the merging
536        // of the block.
537        BasicBlock *IBB = PN->getIncomingBlock(PI);
538        if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
539          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
540                << Succ->getName() << " is conflicting with regard to common "
541                << "predecessor " << IBB->getName() << "\n");
542          return false;
543        }
544      }
545    }
546  }
547
548  return true;
549}
550
551/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
552/// unconditional branch, and contains no instructions other than PHI nodes,
553/// potential side-effect free intrinsics and the branch.  If possible,
554/// eliminate BB by rewriting all the predecessors to branch to the successor
555/// block and return true.  If we can't transform, return false.
556bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
557  assert(BB != &BB->getParent()->getEntryBlock() &&
558         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
559
560  // We can't eliminate infinite loops.
561  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
562  if (BB == Succ) return false;
563
564  // Check to see if merging these blocks would cause conflicts for any of the
565  // phi nodes in BB or Succ. If not, we can safely merge.
566  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
567
568  // Check for cases where Succ has multiple predecessors and a PHI node in BB
569  // has uses which will not disappear when the PHI nodes are merged.  It is
570  // possible to handle such cases, but difficult: it requires checking whether
571  // BB dominates Succ, which is non-trivial to calculate in the case where
572  // Succ has multiple predecessors.  Also, it requires checking whether
573  // constructing the necessary self-referential PHI node doesn't intoduce any
574  // conflicts; this isn't too difficult, but the previous code for doing this
575  // was incorrect.
576  //
577  // Note that if this check finds a live use, BB dominates Succ, so BB is
578  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
579  // folding the branch isn't profitable in that case anyway.
580  if (!Succ->getSinglePredecessor()) {
581    BasicBlock::iterator BBI = BB->begin();
582    while (isa<PHINode>(*BBI)) {
583      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
584           UI != E; ++UI) {
585        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
586          if (PN->getIncomingBlock(UI) != BB)
587            return false;
588        } else {
589          return false;
590        }
591      }
592      ++BBI;
593    }
594  }
595
596  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
597
598  if (isa<PHINode>(Succ->begin())) {
599    // If there is more than one pred of succ, and there are PHI nodes in
600    // the successor, then we need to add incoming edges for the PHI nodes
601    //
602    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
603
604    // Loop over all of the PHI nodes in the successor of BB.
605    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
606      PHINode *PN = cast<PHINode>(I);
607      Value *OldVal = PN->removeIncomingValue(BB, false);
608      assert(OldVal && "No entry in PHI for Pred BB!");
609
610      // If this incoming value is one of the PHI nodes in BB, the new entries
611      // in the PHI node are the entries from the old PHI.
612      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
613        PHINode *OldValPN = cast<PHINode>(OldVal);
614        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
615          // Note that, since we are merging phi nodes and BB and Succ might
616          // have common predecessors, we could end up with a phi node with
617          // identical incoming branches. This will be cleaned up later (and
618          // will trigger asserts if we try to clean it up now, without also
619          // simplifying the corresponding conditional branch).
620          PN->addIncoming(OldValPN->getIncomingValue(i),
621                          OldValPN->getIncomingBlock(i));
622      } else {
623        // Add an incoming value for each of the new incoming values.
624        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
625          PN->addIncoming(OldVal, BBPreds[i]);
626      }
627    }
628  }
629
630  if (Succ->getSinglePredecessor()) {
631    // BB is the only predecessor of Succ, so Succ will end up with exactly
632    // the same predecessors BB had.
633
634    // Copy over any phi, debug or lifetime instruction.
635    BB->getTerminator()->eraseFromParent();
636    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
637  } else {
638    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
639      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
640      assert(PN->use_empty() && "There shouldn't be any uses here!");
641      PN->eraseFromParent();
642    }
643  }
644
645  // Everything that jumped to BB now goes to Succ.
646  BB->replaceAllUsesWith(Succ);
647  if (!Succ->hasName()) Succ->takeName(BB);
648  BB->eraseFromParent();              // Delete the old basic block.
649  return true;
650}
651
652/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
653/// nodes in this block. This doesn't try to be clever about PHI nodes
654/// which differ only in the order of the incoming values, but instcombine
655/// orders them so it usually won't matter.
656///
657bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
658  bool Changed = false;
659
660  // This implementation doesn't currently consider undef operands
661  // specially. Theoretically, two phis which are identical except for
662  // one having an undef where the other doesn't could be collapsed.
663
664  // Map from PHI hash values to PHI nodes. If multiple PHIs have
665  // the same hash value, the element is the first PHI in the
666  // linked list in CollisionMap.
667  DenseMap<uintptr_t, PHINode *> HashMap;
668
669  // Maintain linked lists of PHI nodes with common hash values.
670  DenseMap<PHINode *, PHINode *> CollisionMap;
671
672  // Examine each PHI.
673  for (BasicBlock::iterator I = BB->begin();
674       PHINode *PN = dyn_cast<PHINode>(I++); ) {
675    // Compute a hash value on the operands. Instcombine will likely have sorted
676    // them, which helps expose duplicates, but we have to check all the
677    // operands to be safe in case instcombine hasn't run.
678    uintptr_t Hash = 0;
679    // This hash algorithm is quite weak as hash functions go, but it seems
680    // to do a good enough job for this particular purpose, and is very quick.
681    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
682      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
683      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
684    }
685    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
686         I != E; ++I) {
687      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
688      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
689    }
690    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
691    Hash >>= 1;
692    // If we've never seen this hash value before, it's a unique PHI.
693    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
694      HashMap.insert(std::make_pair(Hash, PN));
695    if (Pair.second) continue;
696    // Otherwise it's either a duplicate or a hash collision.
697    for (PHINode *OtherPN = Pair.first->second; ; ) {
698      if (OtherPN->isIdenticalTo(PN)) {
699        // A duplicate. Replace this PHI with its duplicate.
700        PN->replaceAllUsesWith(OtherPN);
701        PN->eraseFromParent();
702        Changed = true;
703        break;
704      }
705      // A non-duplicate hash collision.
706      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
707      if (I == CollisionMap.end()) {
708        // Set this PHI to be the head of the linked list of colliding PHIs.
709        PHINode *Old = Pair.first->second;
710        Pair.first->second = PN;
711        CollisionMap[PN] = Old;
712        break;
713      }
714      // Proceed to the next PHI in the list.
715      OtherPN = I->second;
716    }
717  }
718
719  return Changed;
720}
721
722/// enforceKnownAlignment - If the specified pointer points to an object that
723/// we control, modify the object's alignment to PrefAlign. This isn't
724/// often possible though. If alignment is important, a more reliable approach
725/// is to simply align all global variables and allocation instructions to
726/// their preferred alignment from the beginning.
727///
728static unsigned enforceKnownAlignment(Value *V, unsigned Align,
729                                      unsigned PrefAlign, const TargetData *TD) {
730  V = V->stripPointerCasts();
731
732  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
733    // If the preferred alignment is greater than the natural stack alignment
734    // then don't round up. This avoids dynamic stack realignment.
735    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
736      return Align;
737    // If there is a requested alignment and if this is an alloca, round up.
738    if (AI->getAlignment() >= PrefAlign)
739      return AI->getAlignment();
740    AI->setAlignment(PrefAlign);
741    return PrefAlign;
742  }
743
744  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
745    // If there is a large requested alignment and we can, bump up the alignment
746    // of the global.
747    if (GV->isDeclaration()) return Align;
748    // If the memory we set aside for the global may not be the memory used by
749    // the final program then it is impossible for us to reliably enforce the
750    // preferred alignment.
751    if (GV->isWeakForLinker()) return Align;
752
753    if (GV->getAlignment() >= PrefAlign)
754      return GV->getAlignment();
755    // We can only increase the alignment of the global if it has no alignment
756    // specified or if it is not assigned a section.  If it is assigned a
757    // section, the global could be densely packed with other objects in the
758    // section, increasing the alignment could cause padding issues.
759    if (!GV->hasSection() || GV->getAlignment() == 0)
760      GV->setAlignment(PrefAlign);
761    return GV->getAlignment();
762  }
763
764  return Align;
765}
766
767/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
768/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
769/// and it is more than the alignment of the ultimate object, see if we can
770/// increase the alignment of the ultimate object, making this check succeed.
771unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
772                                          const TargetData *TD) {
773  assert(V->getType()->isPointerTy() &&
774         "getOrEnforceKnownAlignment expects a pointer!");
775  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
776  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
777  ComputeMaskedBits(V, KnownZero, KnownOne, TD);
778  unsigned TrailZ = KnownZero.countTrailingOnes();
779
780  // Avoid trouble with rediculously large TrailZ values, such as
781  // those computed from a null pointer.
782  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
783
784  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
785
786  // LLVM doesn't support alignments larger than this currently.
787  Align = std::min(Align, +Value::MaximumAlignment);
788
789  if (PrefAlign > Align)
790    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
791
792  // We don't need to make any adjustment.
793  return Align;
794}
795
796///===---------------------------------------------------------------------===//
797///  Dbg Intrinsic utilities
798///
799
800/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
801/// that has an associated llvm.dbg.decl intrinsic.
802bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
803                                           StoreInst *SI, DIBuilder &Builder) {
804  DIVariable DIVar(DDI->getVariable());
805  if (!DIVar.Verify())
806    return false;
807
808  Instruction *DbgVal = NULL;
809  // If an argument is zero extended then use argument directly. The ZExt
810  // may be zapped by an optimization pass in future.
811  Argument *ExtendedArg = NULL;
812  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
813    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
814  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
815    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
816  if (ExtendedArg)
817    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
818  else
819    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
820
821  // Propagate any debug metadata from the store onto the dbg.value.
822  DebugLoc SIDL = SI->getDebugLoc();
823  if (!SIDL.isUnknown())
824    DbgVal->setDebugLoc(SIDL);
825  // Otherwise propagate debug metadata from dbg.declare.
826  else
827    DbgVal->setDebugLoc(DDI->getDebugLoc());
828  return true;
829}
830
831/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
832/// that has an associated llvm.dbg.decl intrinsic.
833bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
834                                           LoadInst *LI, DIBuilder &Builder) {
835  DIVariable DIVar(DDI->getVariable());
836  if (!DIVar.Verify())
837    return false;
838
839  Instruction *DbgVal =
840    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
841                                    DIVar, LI);
842
843  // Propagate any debug metadata from the store onto the dbg.value.
844  DebugLoc LIDL = LI->getDebugLoc();
845  if (!LIDL.isUnknown())
846    DbgVal->setDebugLoc(LIDL);
847  // Otherwise propagate debug metadata from dbg.declare.
848  else
849    DbgVal->setDebugLoc(DDI->getDebugLoc());
850  return true;
851}
852
853/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
854/// of llvm.dbg.value intrinsics.
855bool llvm::LowerDbgDeclare(Function &F) {
856  DIBuilder DIB(*F.getParent());
857  SmallVector<DbgDeclareInst *, 4> Dbgs;
858  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
859    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
860      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
861        Dbgs.push_back(DDI);
862    }
863  if (Dbgs.empty())
864    return false;
865
866  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
867         E = Dbgs.end(); I != E; ++I) {
868    DbgDeclareInst *DDI = *I;
869    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
870      bool RemoveDDI = true;
871      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
872           UI != E; ++UI)
873        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
874          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
875        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
876          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
877        else
878          RemoveDDI = false;
879      if (RemoveDDI)
880        DDI->eraseFromParent();
881    }
882  }
883  return true;
884}
885
886/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
887/// alloca 'V', if any.
888DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
889  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
890    for (Value::use_iterator UI = DebugNode->use_begin(),
891         E = DebugNode->use_end(); UI != E; ++UI)
892      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
893        return DDI;
894
895  return 0;
896}
897