Local.cpp revision 25b8390bf23ed35640664d244951d684c5a7b132
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18using namespace llvm;
19
20//===----------------------------------------------------------------------===//
21//  Local constant propagation...
22//
23
24/// doConstantPropagation - If an instruction references constants, try to fold
25/// them together...
26///
27bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
28  if (Constant *C = ConstantFoldInstruction(II)) {
29    // Replaces all of the uses of a variable with uses of the constant.
30    II->replaceAllUsesWith(C);
31
32    // Remove the instruction from the basic block...
33    II = II->getParent()->getInstList().erase(II);
34    return true;
35  }
36
37  return false;
38}
39
40/// ConstantFoldInstruction - Attempt to constant fold the specified
41/// instruction.  If successful, the constant result is returned, if not, null
42/// is returned.  Note that this function can only fail when attempting to fold
43/// instructions like loads and stores, which have no constant expression form.
44///
45Constant *llvm::ConstantFoldInstruction(Instruction *I) {
46  if (PHINode *PN = dyn_cast<PHINode>(I)) {
47    if (PN->getNumIncomingValues() == 0)
48      return Constant::getNullValue(PN->getType());
49
50    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
51    if (Result == 0) return 0;
52
53    // Handle PHI nodes specially here...
54    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
55      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
56        return 0;   // Not all the same incoming constants...
57
58    // If we reach here, all incoming values are the same constant.
59    return Result;
60  } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
61    if (Function *F = CI->getCalledFunction())
62      if (canConstantFoldCallTo(F)) {
63        std::vector<Constant*> Args;
64        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
65          if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
66            Args.push_back(Op);
67          else
68            return 0;
69        return ConstantFoldCall(F, Args);
70      }
71    return 0;
72  }
73
74  Constant *Op0 = 0, *Op1 = 0;
75  switch (I->getNumOperands()) {
76  default:
77  case 2:
78    Op1 = dyn_cast<Constant>(I->getOperand(1));
79    if (Op1 == 0) return 0;        // Not a constant?, can't fold
80  case 1:
81    Op0 = dyn_cast<Constant>(I->getOperand(0));
82    if (Op0 == 0) return 0;        // Not a constant?, can't fold
83    break;
84  case 0: return 0;
85  }
86
87  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
88    return ConstantExpr::get(I->getOpcode(), Op0, Op1);
89
90  switch (I->getOpcode()) {
91  default: return 0;
92  case Instruction::Cast:
93    return ConstantExpr::getCast(Op0, I->getType());
94  case Instruction::Select:
95    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
96      return ConstantExpr::getSelect(Op0, Op1, Op2);
97    return 0;
98  case Instruction::GetElementPtr:
99    std::vector<Constant*> IdxList;
100    IdxList.reserve(I->getNumOperands()-1);
101    if (Op1) IdxList.push_back(Op1);
102    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
103      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
104        IdxList.push_back(C);
105      else
106        return 0;  // Non-constant operand
107    return ConstantExpr::getGetElementPtr(Op0, IdxList);
108  }
109}
110
111// ConstantFoldTerminator - If a terminator instruction is predicated on a
112// constant value, convert it into an unconditional branch to the constant
113// destination.
114//
115bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
116  TerminatorInst *T = BB->getTerminator();
117
118  // Branch - See if we are conditional jumping on constant
119  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
120    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
121    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
122    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
123
124    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
125      // Are we branching on constant?
126      // YES.  Change to unconditional branch...
127      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
128      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
129
130      //cerr << "Function: " << T->getParent()->getParent()
131      //     << "\nRemoving branch from " << T->getParent()
132      //     << "\n\nTo: " << OldDest << endl;
133
134      // Let the basic block know that we are letting go of it.  Based on this,
135      // it will adjust it's PHI nodes.
136      assert(BI->getParent() && "Terminator not inserted in block!");
137      OldDest->removePredecessor(BI->getParent());
138
139      // Set the unconditional destination, and change the insn to be an
140      // unconditional branch.
141      BI->setUnconditionalDest(Destination);
142      return true;
143    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
144      // This branch matches something like this:
145      //     br bool %cond, label %Dest, label %Dest
146      // and changes it into:  br label %Dest
147
148      // Let the basic block know that we are letting go of one copy of it.
149      assert(BI->getParent() && "Terminator not inserted in block!");
150      Dest1->removePredecessor(BI->getParent());
151
152      // Change a conditional branch to unconditional.
153      BI->setUnconditionalDest(Dest1);
154      return true;
155    }
156  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
157    // If we are switching on a constant, we can convert the switch into a
158    // single branch instruction!
159    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
160    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
161    BasicBlock *DefaultDest = TheOnlyDest;
162    assert(TheOnlyDest == SI->getDefaultDest() &&
163           "Default destination is not successor #0?");
164
165    // Figure out which case it goes to...
166    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
167      // Found case matching a constant operand?
168      if (SI->getSuccessorValue(i) == CI) {
169        TheOnlyDest = SI->getSuccessor(i);
170        break;
171      }
172
173      // Check to see if this branch is going to the same place as the default
174      // dest.  If so, eliminate it as an explicit compare.
175      if (SI->getSuccessor(i) == DefaultDest) {
176        // Remove this entry...
177        DefaultDest->removePredecessor(SI->getParent());
178        SI->removeCase(i);
179        --i; --e;  // Don't skip an entry...
180        continue;
181      }
182
183      // Otherwise, check to see if the switch only branches to one destination.
184      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
185      // destinations.
186      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
187    }
188
189    if (CI && !TheOnlyDest) {
190      // Branching on a constant, but not any of the cases, go to the default
191      // successor.
192      TheOnlyDest = SI->getDefaultDest();
193    }
194
195    // If we found a single destination that we can fold the switch into, do so
196    // now.
197    if (TheOnlyDest) {
198      // Insert the new branch..
199      new BranchInst(TheOnlyDest, SI);
200      BasicBlock *BB = SI->getParent();
201
202      // Remove entries from PHI nodes which we no longer branch to...
203      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
204        // Found case matching a constant operand?
205        BasicBlock *Succ = SI->getSuccessor(i);
206        if (Succ == TheOnlyDest)
207          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
208        else
209          Succ->removePredecessor(BB);
210      }
211
212      // Delete the old switch...
213      BB->getInstList().erase(SI);
214      return true;
215    } else if (SI->getNumSuccessors() == 2) {
216      // Otherwise, we can fold this switch into a conditional branch
217      // instruction if it has only one non-default destination.
218      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
219                                    SI->getSuccessorValue(1), "cond", SI);
220      // Insert the new branch...
221      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
222
223      // Delete the old switch...
224      SI->getParent()->getInstList().erase(SI);
225      return true;
226    }
227  }
228  return false;
229}
230
231/// canConstantFoldCallTo - Return true if its even possible to fold a call to
232/// the specified function.
233bool llvm::canConstantFoldCallTo(Function *F) {
234  const std::string &Name = F->getName();
235  return Name == "sin" || Name == "cos" || Name == "tan" || Name == "sqrt";
236}
237
238/// ConstantFoldCall - Attempt to constant fold a call to the specified function
239/// with the specified arguments, returning null if unsuccessful.
240Constant *llvm::ConstantFoldCall(Function *F,
241                                 const std::vector<Constant*> &Operands) {
242  const std::string &Name = F->getName();
243  const Type *Ty = F->getReturnType();
244
245  if (Name == "sin") {
246    if (Operands.size() == 1)
247      if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operands[0]))
248        return ConstantFP::get(Ty, sin(CFP->getValue()));
249
250  } else if (Name == "cos") {
251    if (Operands.size() == 1)
252      if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operands[0]))
253        return ConstantFP::get(Ty, cos(CFP->getValue()));
254
255  } else if (Name == "tan") {
256    if (Operands.size() == 1)
257      if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operands[0]))
258        return ConstantFP::get(Ty, tan(CFP->getValue()));
259
260  } else if (Name == "sqrt") {
261    if (Operands.size() == 1)
262      if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operands[0]))
263        if (CFP->getValue() >= 0)
264          return ConstantFP::get(Ty, sqrt(CFP->getValue()));
265  }
266  return 0;
267}
268
269
270
271
272//===----------------------------------------------------------------------===//
273//  Local dead code elimination...
274//
275
276bool llvm::isInstructionTriviallyDead(Instruction *I) {
277  return I->use_empty() && !I->mayWriteToMemory() && !isa<TerminatorInst>(I);
278}
279
280// dceInstruction - Inspect the instruction at *BBI and figure out if it's
281// [trivially] dead.  If so, remove the instruction and update the iterator
282// to point to the instruction that immediately succeeded the original
283// instruction.
284//
285bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
286  // Look for un"used" definitions...
287  if (isInstructionTriviallyDead(BBI)) {
288    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
289    return true;
290  }
291  return false;
292}
293
294//===----------------------------------------------------------------------===//
295//  PHI Instruction Simplification
296//
297
298/// hasConstantValue - If the specified PHI node always merges together the same
299/// value, return the value, otherwise return null.
300///
301Value *llvm::hasConstantValue(PHINode *PN) {
302  // If the PHI node only has one incoming value, eliminate the PHI node...
303  if (PN->getNumIncomingValues() == 1)
304    return PN->getIncomingValue(0);
305
306  // Otherwise if all of the incoming values are the same for the PHI, replace
307  // the PHI node with the incoming value.
308  //
309  Value *InVal = 0;
310  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
311    if (PN->getIncomingValue(i) != PN)  // Not the PHI node itself...
312      if (InVal && PN->getIncomingValue(i) != InVal)
313        return 0;  // Not the same, bail out.
314      else
315        InVal = PN->getIncomingValue(i);
316
317  // The only case that could cause InVal to be null is if we have a PHI node
318  // that only has entries for itself.  In this case, there is no entry into the
319  // loop, so kill the PHI.
320  //
321  if (InVal == 0) InVal = Constant::getNullValue(PN->getType());
322
323  // All of the incoming values are the same, return the value now.
324  return InVal;
325}
326