Local.cpp revision 4a3935c27e5315081844a5b7ae1f7097efc234b0
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/Analysis/DIBuilder.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/MemoryBuiltins.h"
32#include "llvm/Analysis/ProfileInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/IRBuilder.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45//  Local constant propagation.
46//
47
48/// ConstantFoldTerminator - If a terminator instruction is predicated on a
49/// constant value, convert it into an unconditional branch to the constant
50/// destination.  This is a nontrivial operation because the successors of this
51/// basic block must have their PHI nodes updated.
52/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53/// conditions and indirectbr addresses this might make dead if
54/// DeleteDeadConditions is true.
55bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56  TerminatorInst *T = BB->getTerminator();
57  IRBuilder<> Builder(T);
58
59  // Branch - See if we are conditional jumping on constant
60  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
62    BasicBlock *Dest1 = BI->getSuccessor(0);
63    BasicBlock *Dest2 = BI->getSuccessor(1);
64
65    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66      // Are we branching on constant?
67      // YES.  Change to unconditional branch...
68      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
70
71      //cerr << "Function: " << T->getParent()->getParent()
72      //     << "\nRemoving branch from " << T->getParent()
73      //     << "\n\nTo: " << OldDest << endl;
74
75      // Let the basic block know that we are letting go of it.  Based on this,
76      // it will adjust it's PHI nodes.
77      OldDest->removePredecessor(BB);
78
79      // Replace the conditional branch with an unconditional one.
80      Builder.CreateBr(Destination);
81      BI->eraseFromParent();
82      return true;
83    }
84
85    if (Dest2 == Dest1) {       // Conditional branch to same location?
86      // This branch matches something like this:
87      //     br bool %cond, label %Dest, label %Dest
88      // and changes it into:  br label %Dest
89
90      // Let the basic block know that we are letting go of one copy of it.
91      assert(BI->getParent() && "Terminator not inserted in block!");
92      Dest1->removePredecessor(BI->getParent());
93
94      // Replace the conditional branch with an unconditional one.
95      Builder.CreateBr(Dest1);
96      Value *Cond = BI->getCondition();
97      BI->eraseFromParent();
98      if (DeleteDeadConditions)
99        RecursivelyDeleteTriviallyDeadInstructions(Cond);
100      return true;
101    }
102    return false;
103  }
104
105  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106    // If we are switching on a constant, we can convert the switch into a
107    // single branch instruction!
108    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
110    BasicBlock *DefaultDest = TheOnlyDest;
111    assert(TheOnlyDest == SI->getDefaultDest() &&
112           "Default destination is not successor #0?");
113
114    // Figure out which case it goes to.
115    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
116      // Found case matching a constant operand?
117      if (SI->getSuccessorValue(i) == CI) {
118        TheOnlyDest = SI->getSuccessor(i);
119        break;
120      }
121
122      // Check to see if this branch is going to the same place as the default
123      // dest.  If so, eliminate it as an explicit compare.
124      if (SI->getSuccessor(i) == DefaultDest) {
125        // Remove this entry.
126        DefaultDest->removePredecessor(SI->getParent());
127        SI->removeCase(i);
128        --i; --e;  // Don't skip an entry...
129        continue;
130      }
131
132      // Otherwise, check to see if the switch only branches to one destination.
133      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
134      // destinations.
135      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
136    }
137
138    if (CI && !TheOnlyDest) {
139      // Branching on a constant, but not any of the cases, go to the default
140      // successor.
141      TheOnlyDest = SI->getDefaultDest();
142    }
143
144    // If we found a single destination that we can fold the switch into, do so
145    // now.
146    if (TheOnlyDest) {
147      // Insert the new branch.
148      Builder.CreateBr(TheOnlyDest);
149      BasicBlock *BB = SI->getParent();
150
151      // Remove entries from PHI nodes which we no longer branch to...
152      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
153        // Found case matching a constant operand?
154        BasicBlock *Succ = SI->getSuccessor(i);
155        if (Succ == TheOnlyDest)
156          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
157        else
158          Succ->removePredecessor(BB);
159      }
160
161      // Delete the old switch.
162      Value *Cond = SI->getCondition();
163      SI->eraseFromParent();
164      if (DeleteDeadConditions)
165        RecursivelyDeleteTriviallyDeadInstructions(Cond);
166      return true;
167    }
168
169    if (SI->getNumSuccessors() == 2) {
170      // Otherwise, we can fold this switch into a conditional branch
171      // instruction if it has only one non-default destination.
172      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
173                                         SI->getSuccessorValue(1), "cond");
174
175      // Insert the new branch.
176      Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0));
177
178      // Delete the old switch.
179      SI->eraseFromParent();
180      return true;
181    }
182    return false;
183  }
184
185  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
186    // indirectbr blockaddress(@F, @BB) -> br label @BB
187    if (BlockAddress *BA =
188          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
189      BasicBlock *TheOnlyDest = BA->getBasicBlock();
190      // Insert the new branch.
191      Builder.CreateBr(TheOnlyDest);
192
193      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
194        if (IBI->getDestination(i) == TheOnlyDest)
195          TheOnlyDest = 0;
196        else
197          IBI->getDestination(i)->removePredecessor(IBI->getParent());
198      }
199      Value *Address = IBI->getAddress();
200      IBI->eraseFromParent();
201      if (DeleteDeadConditions)
202        RecursivelyDeleteTriviallyDeadInstructions(Address);
203
204      // If we didn't find our destination in the IBI successor list, then we
205      // have undefined behavior.  Replace the unconditional branch with an
206      // 'unreachable' instruction.
207      if (TheOnlyDest) {
208        BB->getTerminator()->eraseFromParent();
209        new UnreachableInst(BB->getContext(), BB);
210      }
211
212      return true;
213    }
214  }
215
216  return false;
217}
218
219
220//===----------------------------------------------------------------------===//
221//  Local dead code elimination.
222//
223
224/// isInstructionTriviallyDead - Return true if the result produced by the
225/// instruction is not used, and the instruction has no side effects.
226///
227bool llvm::isInstructionTriviallyDead(Instruction *I) {
228  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
229
230  // We don't want the landingpad instruction removed by anything this general.
231  if (isa<LandingPadInst>(I))
232    return false;
233
234  // We don't want debug info removed by anything this general, unless
235  // debug info is empty.
236  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
237    if (DDI->getAddress())
238      return false;
239    return true;
240  }
241  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
242    if (DVI->getValue())
243      return false;
244    return true;
245  }
246
247  if (!I->mayHaveSideEffects()) return true;
248
249  // Special case intrinsics that "may have side effects" but can be deleted
250  // when dead.
251  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
252    // Safe to delete llvm.stacksave if dead.
253    if (II->getIntrinsicID() == Intrinsic::stacksave)
254      return true;
255
256    // Lifetime intrinsics are dead when their right-hand is undef.
257    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
258        II->getIntrinsicID() == Intrinsic::lifetime_end)
259      return isa<UndefValue>(II->getArgOperand(1));
260  }
261
262  if (extractMallocCall(I)) return true;
263
264  if (CallInst *CI = isFreeCall(I))
265    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
266      return C->isNullValue() || isa<UndefValue>(C);
267
268  return false;
269}
270
271/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
272/// trivially dead instruction, delete it.  If that makes any of its operands
273/// trivially dead, delete them too, recursively.  Return true if any
274/// instructions were deleted.
275bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
276  Instruction *I = dyn_cast<Instruction>(V);
277  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
278    return false;
279
280  SmallVector<Instruction*, 16> DeadInsts;
281  DeadInsts.push_back(I);
282
283  do {
284    I = DeadInsts.pop_back_val();
285
286    // Null out all of the instruction's operands to see if any operand becomes
287    // dead as we go.
288    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
289      Value *OpV = I->getOperand(i);
290      I->setOperand(i, 0);
291
292      if (!OpV->use_empty()) continue;
293
294      // If the operand is an instruction that became dead as we nulled out the
295      // operand, and if it is 'trivially' dead, delete it in a future loop
296      // iteration.
297      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
298        if (isInstructionTriviallyDead(OpI))
299          DeadInsts.push_back(OpI);
300    }
301
302    I->eraseFromParent();
303  } while (!DeadInsts.empty());
304
305  return true;
306}
307
308/// areAllUsesEqual - Check whether the uses of a value are all the same.
309/// This is similar to Instruction::hasOneUse() except this will also return
310/// true when there are no uses or multiple uses that all refer to the same
311/// value.
312static bool areAllUsesEqual(Instruction *I) {
313  Value::use_iterator UI = I->use_begin();
314  Value::use_iterator UE = I->use_end();
315  if (UI == UE)
316    return true;
317
318  User *TheUse = *UI;
319  for (++UI; UI != UE; ++UI) {
320    if (*UI != TheUse)
321      return false;
322  }
323  return true;
324}
325
326/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
327/// dead PHI node, due to being a def-use chain of single-use nodes that
328/// either forms a cycle or is terminated by a trivially dead instruction,
329/// delete it.  If that makes any of its operands trivially dead, delete them
330/// too, recursively.  Return true if a change was made.
331bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
332  SmallPtrSet<Instruction*, 4> Visited;
333  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
334       I = cast<Instruction>(*I->use_begin())) {
335    if (I->use_empty())
336      return RecursivelyDeleteTriviallyDeadInstructions(I);
337
338    // If we find an instruction more than once, we're on a cycle that
339    // won't prove fruitful.
340    if (!Visited.insert(I)) {
341      // Break the cycle and delete the instruction and its operands.
342      I->replaceAllUsesWith(UndefValue::get(I->getType()));
343      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
344      return true;
345    }
346  }
347  return false;
348}
349
350/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
351/// simplify any instructions in it and recursively delete dead instructions.
352///
353/// This returns true if it changed the code, note that it can delete
354/// instructions in other blocks as well in this block.
355bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
356  bool MadeChange = false;
357  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
358    Instruction *Inst = BI++;
359
360    if (Value *V = SimplifyInstruction(Inst, TD)) {
361      WeakVH BIHandle(BI);
362      ReplaceAndSimplifyAllUses(Inst, V, TD);
363      MadeChange = true;
364      if (BIHandle != BI)
365        BI = BB->begin();
366      continue;
367    }
368
369    if (Inst->isTerminator())
370      break;
371
372    WeakVH BIHandle(BI);
373    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
374    if (BIHandle != BI)
375      BI = BB->begin();
376  }
377  return MadeChange;
378}
379
380//===----------------------------------------------------------------------===//
381//  Control Flow Graph Restructuring.
382//
383
384
385/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
386/// method is called when we're about to delete Pred as a predecessor of BB.  If
387/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
388///
389/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
390/// nodes that collapse into identity values.  For example, if we have:
391///   x = phi(1, 0, 0, 0)
392///   y = and x, z
393///
394/// .. and delete the predecessor corresponding to the '1', this will attempt to
395/// recursively fold the and to 0.
396void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
397                                        TargetData *TD) {
398  // This only adjusts blocks with PHI nodes.
399  if (!isa<PHINode>(BB->begin()))
400    return;
401
402  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
403  // them down.  This will leave us with single entry phi nodes and other phis
404  // that can be removed.
405  BB->removePredecessor(Pred, true);
406
407  WeakVH PhiIt = &BB->front();
408  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
409    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
410
411    Value *PNV = SimplifyInstruction(PN, TD);
412    if (PNV == 0) continue;
413
414    // If we're able to simplify the phi to a single value, substitute the new
415    // value into all of its uses.
416    assert(PNV != PN && "SimplifyInstruction broken!");
417
418    Value *OldPhiIt = PhiIt;
419    ReplaceAndSimplifyAllUses(PN, PNV, TD);
420
421    // If recursive simplification ended up deleting the next PHI node we would
422    // iterate to, then our iterator is invalid, restart scanning from the top
423    // of the block.
424    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
425  }
426}
427
428
429/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
430/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
431/// between them, moving the instructions in the predecessor into DestBB and
432/// deleting the predecessor block.
433///
434void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
435  // If BB has single-entry PHI nodes, fold them.
436  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
437    Value *NewVal = PN->getIncomingValue(0);
438    // Replace self referencing PHI with undef, it must be dead.
439    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
440    PN->replaceAllUsesWith(NewVal);
441    PN->eraseFromParent();
442  }
443
444  BasicBlock *PredBB = DestBB->getSinglePredecessor();
445  assert(PredBB && "Block doesn't have a single predecessor!");
446
447  // Zap anything that took the address of DestBB.  Not doing this will give the
448  // address an invalid value.
449  if (DestBB->hasAddressTaken()) {
450    BlockAddress *BA = BlockAddress::get(DestBB);
451    Constant *Replacement =
452      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
453    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
454                                                     BA->getType()));
455    BA->destroyConstant();
456  }
457
458  // Anything that branched to PredBB now branches to DestBB.
459  PredBB->replaceAllUsesWith(DestBB);
460
461  // Splice all the instructions from PredBB to DestBB.
462  PredBB->getTerminator()->eraseFromParent();
463  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
464
465  if (P) {
466    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
467    if (DT) {
468      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
469      DT->changeImmediateDominator(DestBB, PredBBIDom);
470      DT->eraseNode(PredBB);
471    }
472    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
473    if (PI) {
474      PI->replaceAllUses(PredBB, DestBB);
475      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
476    }
477  }
478  // Nuke BB.
479  PredBB->eraseFromParent();
480}
481
482/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
483/// almost-empty BB ending in an unconditional branch to Succ, into succ.
484///
485/// Assumption: Succ is the single successor for BB.
486///
487static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
488  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
489
490  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
491        << Succ->getName() << "\n");
492  // Shortcut, if there is only a single predecessor it must be BB and merging
493  // is always safe
494  if (Succ->getSinglePredecessor()) return true;
495
496  // Make a list of the predecessors of BB
497  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
498  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
499
500  // Use that list to make another list of common predecessors of BB and Succ
501  BlockSet CommonPreds;
502  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
503       PI != PE; ++PI) {
504    BasicBlock *P = *PI;
505    if (BBPreds.count(P))
506      CommonPreds.insert(P);
507  }
508
509  // Shortcut, if there are no common predecessors, merging is always safe
510  if (CommonPreds.empty())
511    return true;
512
513  // Look at all the phi nodes in Succ, to see if they present a conflict when
514  // merging these blocks
515  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
516    PHINode *PN = cast<PHINode>(I);
517
518    // If the incoming value from BB is again a PHINode in
519    // BB which has the same incoming value for *PI as PN does, we can
520    // merge the phi nodes and then the blocks can still be merged
521    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
522    if (BBPN && BBPN->getParent() == BB) {
523      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
524            PI != PE; PI++) {
525        if (BBPN->getIncomingValueForBlock(*PI)
526              != PN->getIncomingValueForBlock(*PI)) {
527          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
528                << Succ->getName() << " is conflicting with "
529                << BBPN->getName() << " with regard to common predecessor "
530                << (*PI)->getName() << "\n");
531          return false;
532        }
533      }
534    } else {
535      Value* Val = PN->getIncomingValueForBlock(BB);
536      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
537            PI != PE; PI++) {
538        // See if the incoming value for the common predecessor is equal to the
539        // one for BB, in which case this phi node will not prevent the merging
540        // of the block.
541        if (Val != PN->getIncomingValueForBlock(*PI)) {
542          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
543                << Succ->getName() << " is conflicting with regard to common "
544                << "predecessor " << (*PI)->getName() << "\n");
545          return false;
546        }
547      }
548    }
549  }
550
551  return true;
552}
553
554/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
555/// unconditional branch, and contains no instructions other than PHI nodes,
556/// potential side-effect free intrinsics and the branch.  If possible,
557/// eliminate BB by rewriting all the predecessors to branch to the successor
558/// block and return true.  If we can't transform, return false.
559bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
560  assert(BB != &BB->getParent()->getEntryBlock() &&
561         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
562
563  // We can't eliminate infinite loops.
564  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
565  if (BB == Succ) return false;
566
567  // Check to see if merging these blocks would cause conflicts for any of the
568  // phi nodes in BB or Succ. If not, we can safely merge.
569  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
570
571  // Check for cases where Succ has multiple predecessors and a PHI node in BB
572  // has uses which will not disappear when the PHI nodes are merged.  It is
573  // possible to handle such cases, but difficult: it requires checking whether
574  // BB dominates Succ, which is non-trivial to calculate in the case where
575  // Succ has multiple predecessors.  Also, it requires checking whether
576  // constructing the necessary self-referential PHI node doesn't intoduce any
577  // conflicts; this isn't too difficult, but the previous code for doing this
578  // was incorrect.
579  //
580  // Note that if this check finds a live use, BB dominates Succ, so BB is
581  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
582  // folding the branch isn't profitable in that case anyway.
583  if (!Succ->getSinglePredecessor()) {
584    BasicBlock::iterator BBI = BB->begin();
585    while (isa<PHINode>(*BBI)) {
586      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
587           UI != E; ++UI) {
588        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
589          if (PN->getIncomingBlock(UI) != BB)
590            return false;
591        } else {
592          return false;
593        }
594      }
595      ++BBI;
596    }
597  }
598
599  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
600
601  if (isa<PHINode>(Succ->begin())) {
602    // If there is more than one pred of succ, and there are PHI nodes in
603    // the successor, then we need to add incoming edges for the PHI nodes
604    //
605    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
606
607    // Loop over all of the PHI nodes in the successor of BB.
608    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
609      PHINode *PN = cast<PHINode>(I);
610      Value *OldVal = PN->removeIncomingValue(BB, false);
611      assert(OldVal && "No entry in PHI for Pred BB!");
612
613      // If this incoming value is one of the PHI nodes in BB, the new entries
614      // in the PHI node are the entries from the old PHI.
615      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
616        PHINode *OldValPN = cast<PHINode>(OldVal);
617        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
618          // Note that, since we are merging phi nodes and BB and Succ might
619          // have common predecessors, we could end up with a phi node with
620          // identical incoming branches. This will be cleaned up later (and
621          // will trigger asserts if we try to clean it up now, without also
622          // simplifying the corresponding conditional branch).
623          PN->addIncoming(OldValPN->getIncomingValue(i),
624                          OldValPN->getIncomingBlock(i));
625      } else {
626        // Add an incoming value for each of the new incoming values.
627        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
628          PN->addIncoming(OldVal, BBPreds[i]);
629      }
630    }
631  }
632
633  if (Succ->getSinglePredecessor()) {
634    // BB is the only predecessor of Succ, so Succ will end up with exactly
635    // the same predecessors BB had.
636
637    // Copy over any phi, debug or lifetime instruction.
638    BB->getTerminator()->eraseFromParent();
639    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
640  } else {
641    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
642      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
643      assert(PN->use_empty() && "There shouldn't be any uses here!");
644      PN->eraseFromParent();
645    }
646  }
647
648  // Everything that jumped to BB now goes to Succ.
649  BB->replaceAllUsesWith(Succ);
650  if (!Succ->hasName()) Succ->takeName(BB);
651  BB->eraseFromParent();              // Delete the old basic block.
652  return true;
653}
654
655/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
656/// nodes in this block. This doesn't try to be clever about PHI nodes
657/// which differ only in the order of the incoming values, but instcombine
658/// orders them so it usually won't matter.
659///
660bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
661  bool Changed = false;
662
663  // This implementation doesn't currently consider undef operands
664  // specially. Theoretically, two phis which are identical except for
665  // one having an undef where the other doesn't could be collapsed.
666
667  // Map from PHI hash values to PHI nodes. If multiple PHIs have
668  // the same hash value, the element is the first PHI in the
669  // linked list in CollisionMap.
670  DenseMap<uintptr_t, PHINode *> HashMap;
671
672  // Maintain linked lists of PHI nodes with common hash values.
673  DenseMap<PHINode *, PHINode *> CollisionMap;
674
675  // Examine each PHI.
676  for (BasicBlock::iterator I = BB->begin();
677       PHINode *PN = dyn_cast<PHINode>(I++); ) {
678    // Compute a hash value on the operands. Instcombine will likely have sorted
679    // them, which helps expose duplicates, but we have to check all the
680    // operands to be safe in case instcombine hasn't run.
681    uintptr_t Hash = 0;
682    // This hash algorithm is quite weak as hash functions go, but it seems
683    // to do a good enough job for this particular purpose, and is very quick.
684    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
685      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
686      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
687    }
688    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
689         I != E; ++I) {
690      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
691      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
692    }
693    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
694    Hash >>= 1;
695    // If we've never seen this hash value before, it's a unique PHI.
696    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
697      HashMap.insert(std::make_pair(Hash, PN));
698    if (Pair.second) continue;
699    // Otherwise it's either a duplicate or a hash collision.
700    for (PHINode *OtherPN = Pair.first->second; ; ) {
701      if (OtherPN->isIdenticalTo(PN)) {
702        // A duplicate. Replace this PHI with its duplicate.
703        PN->replaceAllUsesWith(OtherPN);
704        PN->eraseFromParent();
705        Changed = true;
706        break;
707      }
708      // A non-duplicate hash collision.
709      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
710      if (I == CollisionMap.end()) {
711        // Set this PHI to be the head of the linked list of colliding PHIs.
712        PHINode *Old = Pair.first->second;
713        Pair.first->second = PN;
714        CollisionMap[PN] = Old;
715        break;
716      }
717      // Procede to the next PHI in the list.
718      OtherPN = I->second;
719    }
720  }
721
722  return Changed;
723}
724
725/// enforceKnownAlignment - If the specified pointer points to an object that
726/// we control, modify the object's alignment to PrefAlign. This isn't
727/// often possible though. If alignment is important, a more reliable approach
728/// is to simply align all global variables and allocation instructions to
729/// their preferred alignment from the beginning.
730///
731static unsigned enforceKnownAlignment(Value *V, unsigned Align,
732                                      unsigned PrefAlign, const TargetData *TD) {
733  V = V->stripPointerCasts();
734
735  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
736    // If the preferred alignment is greater than the natural stack alignment
737    // then don't round up. This avoids dynamic stack realignment.
738    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
739      return Align;
740    // If there is a requested alignment and if this is an alloca, round up.
741    if (AI->getAlignment() >= PrefAlign)
742      return AI->getAlignment();
743    AI->setAlignment(PrefAlign);
744    return PrefAlign;
745  }
746
747  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
748    // If there is a large requested alignment and we can, bump up the alignment
749    // of the global.
750    if (GV->isDeclaration()) return Align;
751
752    if (GV->getAlignment() >= PrefAlign)
753      return GV->getAlignment();
754    // We can only increase the alignment of the global if it has no alignment
755    // specified or if it is not assigned a section.  If it is assigned a
756    // section, the global could be densely packed with other objects in the
757    // section, increasing the alignment could cause padding issues.
758    if (!GV->hasSection() || GV->getAlignment() == 0)
759      GV->setAlignment(PrefAlign);
760    return GV->getAlignment();
761  }
762
763  return Align;
764}
765
766/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
767/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
768/// and it is more than the alignment of the ultimate object, see if we can
769/// increase the alignment of the ultimate object, making this check succeed.
770unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
771                                          const TargetData *TD) {
772  assert(V->getType()->isPointerTy() &&
773         "getOrEnforceKnownAlignment expects a pointer!");
774  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
775  APInt Mask = APInt::getAllOnesValue(BitWidth);
776  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
777  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
778  unsigned TrailZ = KnownZero.countTrailingOnes();
779
780  // Avoid trouble with rediculously large TrailZ values, such as
781  // those computed from a null pointer.
782  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
783
784  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
785
786  // LLVM doesn't support alignments larger than this currently.
787  Align = std::min(Align, +Value::MaximumAlignment);
788
789  if (PrefAlign > Align)
790    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
791
792  // We don't need to make any adjustment.
793  return Align;
794}
795
796///===---------------------------------------------------------------------===//
797///  Dbg Intrinsic utilities
798///
799
800/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
801/// that has an associated llvm.dbg.decl intrinsic.
802bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
803                                           StoreInst *SI, DIBuilder &Builder) {
804  DIVariable DIVar(DDI->getVariable());
805  if (!DIVar.Verify())
806    return false;
807
808  Instruction *DbgVal = NULL;
809  // If an argument is zero extended then use argument directly. The ZExt
810  // may be zapped by an optimization pass in future.
811  Argument *ExtendedArg = NULL;
812  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
813    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
814  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
815    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
816  if (ExtendedArg)
817    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
818  else
819    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
820
821  // Propagate any debug metadata from the store onto the dbg.value.
822  DebugLoc SIDL = SI->getDebugLoc();
823  if (!SIDL.isUnknown())
824    DbgVal->setDebugLoc(SIDL);
825  // Otherwise propagate debug metadata from dbg.declare.
826  else
827    DbgVal->setDebugLoc(DDI->getDebugLoc());
828  return true;
829}
830
831/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
832/// that has an associated llvm.dbg.decl intrinsic.
833bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
834                                           LoadInst *LI, DIBuilder &Builder) {
835  DIVariable DIVar(DDI->getVariable());
836  if (!DIVar.Verify())
837    return false;
838
839  Instruction *DbgVal =
840    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
841                                    DIVar, LI);
842
843  // Propagate any debug metadata from the store onto the dbg.value.
844  DebugLoc LIDL = LI->getDebugLoc();
845  if (!LIDL.isUnknown())
846    DbgVal->setDebugLoc(LIDL);
847  // Otherwise propagate debug metadata from dbg.declare.
848  else
849    DbgVal->setDebugLoc(DDI->getDebugLoc());
850  return true;
851}
852
853/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
854/// of llvm.dbg.value intrinsics.
855bool llvm::LowerDbgDeclare(Function &F) {
856  DIBuilder DIB(*F.getParent());
857  SmallVector<DbgDeclareInst *, 4> Dbgs;
858  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
859    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
860      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
861        Dbgs.push_back(DDI);
862    }
863  if (Dbgs.empty())
864    return false;
865
866  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
867         E = Dbgs.end(); I != E; ++I) {
868    DbgDeclareInst *DDI = *I;
869    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
870      bool RemoveDDI = true;
871      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
872           UI != E; ++UI)
873        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
874          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
875        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
876          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
877        else
878          RemoveDDI = false;
879      if (RemoveDDI)
880        DDI->eraseFromParent();
881    }
882  }
883  return true;
884}
885
886/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
887/// alloca 'V', if any.
888DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
889  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
890    for (Value::use_iterator UI = DebugNode->use_begin(),
891         E = DebugNode->use_end(); UI != E; ++UI)
892      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
893        return DDI;
894
895  return 0;
896}
897