Local.cpp revision 5522037136f6f7b7cf5818d131526e7049e2c2da
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Instructions.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
23#include <cerrno>
24#include <cmath>
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Local constant propagation...
29//
30
31/// doConstantPropagation - If an instruction references constants, try to fold
32/// them together...
33///
34bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
35  if (Constant *C = ConstantFoldInstruction(II)) {
36    // Replaces all of the uses of a variable with uses of the constant.
37    II->replaceAllUsesWith(C);
38
39    // Remove the instruction from the basic block...
40    II = II->getParent()->getInstList().erase(II);
41    return true;
42  }
43
44  return false;
45}
46
47/// ConstantFoldInstruction - Attempt to constant fold the specified
48/// instruction.  If successful, the constant result is returned, if not, null
49/// is returned.  Note that this function can only fail when attempting to fold
50/// instructions like loads and stores, which have no constant expression form.
51///
52Constant *llvm::ConstantFoldInstruction(Instruction *I) {
53  if (PHINode *PN = dyn_cast<PHINode>(I)) {
54    if (PN->getNumIncomingValues() == 0)
55      return Constant::getNullValue(PN->getType());
56
57    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
58    if (Result == 0) return 0;
59
60    // Handle PHI nodes specially here...
61    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
62      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
63        return 0;   // Not all the same incoming constants...
64
65    // If we reach here, all incoming values are the same constant.
66    return Result;
67  } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
68    if (Function *F = CI->getCalledFunction())
69      if (canConstantFoldCallTo(F)) {
70        std::vector<Constant*> Args;
71        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
72          if (Constant *Op = dyn_cast<Constant>(CI->getOperand(i)))
73            Args.push_back(Op);
74          else
75            return 0;
76        return ConstantFoldCall(F, Args);
77      }
78    return 0;
79  }
80
81  Constant *Op0 = 0, *Op1 = 0;
82  switch (I->getNumOperands()) {
83  default:
84  case 2:
85    Op1 = dyn_cast<Constant>(I->getOperand(1));
86    if (Op1 == 0) return 0;        // Not a constant?, can't fold
87  case 1:
88    Op0 = dyn_cast<Constant>(I->getOperand(0));
89    if (Op0 == 0) return 0;        // Not a constant?, can't fold
90    break;
91  case 0: return 0;
92  }
93
94  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
95    return ConstantExpr::get(I->getOpcode(), Op0, Op1);
96
97  switch (I->getOpcode()) {
98  default: return 0;
99  case Instruction::Cast:
100    return ConstantExpr::getCast(Op0, I->getType());
101  case Instruction::Select:
102    if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(2)))
103      return ConstantExpr::getSelect(Op0, Op1, Op2);
104    return 0;
105  case Instruction::ExtractElement:
106    return ConstantExpr::getExtractElement(Op0, Op1);
107  case Instruction::GetElementPtr:
108    std::vector<Constant*> IdxList;
109    IdxList.reserve(I->getNumOperands()-1);
110    if (Op1) IdxList.push_back(Op1);
111    for (unsigned i = 2, e = I->getNumOperands(); i != e; ++i)
112      if (Constant *C = dyn_cast<Constant>(I->getOperand(i)))
113        IdxList.push_back(C);
114      else
115        return 0;  // Non-constant operand
116    return ConstantExpr::getGetElementPtr(Op0, IdxList);
117  }
118}
119
120// ConstantFoldTerminator - If a terminator instruction is predicated on a
121// constant value, convert it into an unconditional branch to the constant
122// destination.
123//
124bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
125  TerminatorInst *T = BB->getTerminator();
126
127  // Branch - See if we are conditional jumping on constant
128  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
129    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
130    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
131    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
132
133    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
134      // Are we branching on constant?
135      // YES.  Change to unconditional branch...
136      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
137      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
138
139      //cerr << "Function: " << T->getParent()->getParent()
140      //     << "\nRemoving branch from " << T->getParent()
141      //     << "\n\nTo: " << OldDest << endl;
142
143      // Let the basic block know that we are letting go of it.  Based on this,
144      // it will adjust it's PHI nodes.
145      assert(BI->getParent() && "Terminator not inserted in block!");
146      OldDest->removePredecessor(BI->getParent());
147
148      // Set the unconditional destination, and change the insn to be an
149      // unconditional branch.
150      BI->setUnconditionalDest(Destination);
151      return true;
152    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
153      // This branch matches something like this:
154      //     br bool %cond, label %Dest, label %Dest
155      // and changes it into:  br label %Dest
156
157      // Let the basic block know that we are letting go of one copy of it.
158      assert(BI->getParent() && "Terminator not inserted in block!");
159      Dest1->removePredecessor(BI->getParent());
160
161      // Change a conditional branch to unconditional.
162      BI->setUnconditionalDest(Dest1);
163      return true;
164    }
165  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
166    // If we are switching on a constant, we can convert the switch into a
167    // single branch instruction!
168    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
169    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
170    BasicBlock *DefaultDest = TheOnlyDest;
171    assert(TheOnlyDest == SI->getDefaultDest() &&
172           "Default destination is not successor #0?");
173
174    // Figure out which case it goes to...
175    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
176      // Found case matching a constant operand?
177      if (SI->getSuccessorValue(i) == CI) {
178        TheOnlyDest = SI->getSuccessor(i);
179        break;
180      }
181
182      // Check to see if this branch is going to the same place as the default
183      // dest.  If so, eliminate it as an explicit compare.
184      if (SI->getSuccessor(i) == DefaultDest) {
185        // Remove this entry...
186        DefaultDest->removePredecessor(SI->getParent());
187        SI->removeCase(i);
188        --i; --e;  // Don't skip an entry...
189        continue;
190      }
191
192      // Otherwise, check to see if the switch only branches to one destination.
193      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
194      // destinations.
195      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
196    }
197
198    if (CI && !TheOnlyDest) {
199      // Branching on a constant, but not any of the cases, go to the default
200      // successor.
201      TheOnlyDest = SI->getDefaultDest();
202    }
203
204    // If we found a single destination that we can fold the switch into, do so
205    // now.
206    if (TheOnlyDest) {
207      // Insert the new branch..
208      new BranchInst(TheOnlyDest, SI);
209      BasicBlock *BB = SI->getParent();
210
211      // Remove entries from PHI nodes which we no longer branch to...
212      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
213        // Found case matching a constant operand?
214        BasicBlock *Succ = SI->getSuccessor(i);
215        if (Succ == TheOnlyDest)
216          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
217        else
218          Succ->removePredecessor(BB);
219      }
220
221      // Delete the old switch...
222      BB->getInstList().erase(SI);
223      return true;
224    } else if (SI->getNumSuccessors() == 2) {
225      // Otherwise, we can fold this switch into a conditional branch
226      // instruction if it has only one non-default destination.
227      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
228                                    SI->getSuccessorValue(1), "cond", SI);
229      // Insert the new branch...
230      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
231
232      // Delete the old switch...
233      SI->getParent()->getInstList().erase(SI);
234      return true;
235    }
236  }
237  return false;
238}
239
240/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
241/// getelementptr constantexpr, return the constant value being addressed by the
242/// constant expression, or null if something is funny and we can't decide.
243Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
244                                                       ConstantExpr *CE) {
245  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
246    return 0;  // Do not allow stepping over the value!
247
248  // Loop over all of the operands, tracking down which value we are
249  // addressing...
250  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
251  for (++I; I != E; ++I)
252    if (const StructType *STy = dyn_cast<StructType>(*I)) {
253      ConstantUInt *CU = cast<ConstantUInt>(I.getOperand());
254      assert(CU->getValue() < STy->getNumElements() &&
255             "Struct index out of range!");
256      unsigned El = (unsigned)CU->getValue();
257      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
258        C = CS->getOperand(El);
259      } else if (isa<ConstantAggregateZero>(C)) {
260        C = Constant::getNullValue(STy->getElementType(El));
261      } else if (isa<UndefValue>(C)) {
262        C = UndefValue::get(STy->getElementType(El));
263      } else {
264        return 0;
265      }
266    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
267      const ArrayType *ATy = cast<ArrayType>(*I);
268      if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0;
269      if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
270        C = CA->getOperand((unsigned)CI->getRawValue());
271      else if (isa<ConstantAggregateZero>(C))
272        C = Constant::getNullValue(ATy->getElementType());
273      else if (isa<UndefValue>(C))
274        C = UndefValue::get(ATy->getElementType());
275      else
276        return 0;
277    } else {
278      return 0;
279    }
280  return C;
281}
282
283
284//===----------------------------------------------------------------------===//
285//  Local dead code elimination...
286//
287
288bool llvm::isInstructionTriviallyDead(Instruction *I) {
289  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
290
291  if (!I->mayWriteToMemory()) return true;
292
293  if (CallInst *CI = dyn_cast<CallInst>(I))
294    if (Function *F = CI->getCalledFunction())
295      switch (F->getIntrinsicID()) {
296      default: break;
297      case Intrinsic::returnaddress:
298      case Intrinsic::frameaddress:
299      case Intrinsic::stacksave:
300      case Intrinsic::isunordered:
301      case Intrinsic::ctpop:
302      case Intrinsic::ctlz:
303      case Intrinsic::cttz:
304      case Intrinsic::sqrt:
305        return true;             // These intrinsics have no side effects.
306      }
307  return false;
308}
309
310// dceInstruction - Inspect the instruction at *BBI and figure out if it's
311// [trivially] dead.  If so, remove the instruction and update the iterator
312// to point to the instruction that immediately succeeded the original
313// instruction.
314//
315bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
316  // Look for un"used" definitions...
317  if (isInstructionTriviallyDead(BBI)) {
318    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
319    return true;
320  }
321  return false;
322}
323