Local.cpp revision 564c0a233010cb1ff2f9ee2d4d16870284d72487
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Instructions.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Support/GetElementPtrTypeIterator.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/ADT/SmallPtrSet.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  Local constant propagation.
30//
31
32// ConstantFoldTerminator - If a terminator instruction is predicated on a
33// constant value, convert it into an unconditional branch to the constant
34// destination.
35//
36bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
37  TerminatorInst *T = BB->getTerminator();
38
39  // Branch - See if we are conditional jumping on constant
40  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
41    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
42    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
43    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
44
45    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
46      // Are we branching on constant?
47      // YES.  Change to unconditional branch...
48      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
49      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
50
51      //cerr << "Function: " << T->getParent()->getParent()
52      //     << "\nRemoving branch from " << T->getParent()
53      //     << "\n\nTo: " << OldDest << endl;
54
55      // Let the basic block know that we are letting go of it.  Based on this,
56      // it will adjust it's PHI nodes.
57      assert(BI->getParent() && "Terminator not inserted in block!");
58      OldDest->removePredecessor(BI->getParent());
59
60      // Set the unconditional destination, and change the insn to be an
61      // unconditional branch.
62      BI->setUnconditionalDest(Destination);
63      return true;
64    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
65      // This branch matches something like this:
66      //     br bool %cond, label %Dest, label %Dest
67      // and changes it into:  br label %Dest
68
69      // Let the basic block know that we are letting go of one copy of it.
70      assert(BI->getParent() && "Terminator not inserted in block!");
71      Dest1->removePredecessor(BI->getParent());
72
73      // Change a conditional branch to unconditional.
74      BI->setUnconditionalDest(Dest1);
75      return true;
76    }
77  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
78    // If we are switching on a constant, we can convert the switch into a
79    // single branch instruction!
80    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
81    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
82    BasicBlock *DefaultDest = TheOnlyDest;
83    assert(TheOnlyDest == SI->getDefaultDest() &&
84           "Default destination is not successor #0?");
85
86    // Figure out which case it goes to...
87    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
88      // Found case matching a constant operand?
89      if (SI->getSuccessorValue(i) == CI) {
90        TheOnlyDest = SI->getSuccessor(i);
91        break;
92      }
93
94      // Check to see if this branch is going to the same place as the default
95      // dest.  If so, eliminate it as an explicit compare.
96      if (SI->getSuccessor(i) == DefaultDest) {
97        // Remove this entry...
98        DefaultDest->removePredecessor(SI->getParent());
99        SI->removeCase(i);
100        --i; --e;  // Don't skip an entry...
101        continue;
102      }
103
104      // Otherwise, check to see if the switch only branches to one destination.
105      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
106      // destinations.
107      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
108    }
109
110    if (CI && !TheOnlyDest) {
111      // Branching on a constant, but not any of the cases, go to the default
112      // successor.
113      TheOnlyDest = SI->getDefaultDest();
114    }
115
116    // If we found a single destination that we can fold the switch into, do so
117    // now.
118    if (TheOnlyDest) {
119      // Insert the new branch..
120      BranchInst::Create(TheOnlyDest, SI);
121      BasicBlock *BB = SI->getParent();
122
123      // Remove entries from PHI nodes which we no longer branch to...
124      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
125        // Found case matching a constant operand?
126        BasicBlock *Succ = SI->getSuccessor(i);
127        if (Succ == TheOnlyDest)
128          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
129        else
130          Succ->removePredecessor(BB);
131      }
132
133      // Delete the old switch...
134      BB->getInstList().erase(SI);
135      return true;
136    } else if (SI->getNumSuccessors() == 2) {
137      // Otherwise, we can fold this switch into a conditional branch
138      // instruction if it has only one non-default destination.
139      Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
140                                 SI->getSuccessorValue(1), "cond", SI);
141      // Insert the new branch...
142      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
143
144      // Delete the old switch...
145      SI->eraseFromParent();
146      return true;
147    }
148  }
149  return false;
150}
151
152
153//===----------------------------------------------------------------------===//
154//  Local dead code elimination...
155//
156
157/// isInstructionTriviallyDead - Return true if the result produced by the
158/// instruction is not used, and the instruction has no side effects.
159///
160bool llvm::isInstructionTriviallyDead(Instruction *I) {
161  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
162
163  if (!I->mayWriteToMemory())
164    return true;
165
166  // Special case intrinsics that "may write to memory" but can be deleted when
167  // dead.
168  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
169    // Safe to delete llvm.stacksave if dead.
170    if (II->getIntrinsicID() == Intrinsic::stacksave)
171      return true;
172
173  return false;
174}
175
176/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
177/// trivially dead instruction, delete it.  If that makes any of its operands
178/// trivially dead, delete them too, recursively.
179///
180/// If DeadInst is specified, the vector is filled with the instructions that
181/// are actually deleted.
182void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
183                                      SmallVectorImpl<Instruction*> *DeadInst) {
184  Instruction *I = dyn_cast<Instruction>(V);
185  if (!I || !I->use_empty()) return;
186
187  SmallPtrSet<Instruction*, 16> Insts;
188  Insts.insert(I);
189
190  while (!Insts.empty()) {
191    I = *Insts.begin();
192    Insts.erase(I);
193
194    // If this is a PHI node, we may be able to make it dead if we know all the
195    // input values are the same.
196    if (PHINode *PN = dyn_cast<PHINode>(I)) {
197      if (Value *PNV = PN->hasConstantValue())
198        PN->replaceAllUsesWith(PNV);
199    }
200
201    // Okay, if the instruction is dead, delete it.
202    if (!isInstructionTriviallyDead(I))
203      continue;
204
205    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
206      if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
207        Insts.insert(U);
208    I->eraseFromParent();
209
210    if (DeadInst)
211      DeadInst->push_back(I);
212  }
213}
214
215
216//===----------------------------------------------------------------------===//
217//  Control Flow Graph Restructuring...
218//
219
220/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
221/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
222/// between them, moving the instructions in the predecessor into DestBB and
223/// deleting the predecessor block.
224///
225void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
226  // If BB has single-entry PHI nodes, fold them.
227  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
228    Value *NewVal = PN->getIncomingValue(0);
229    // Replace self referencing PHI with undef, it must be dead.
230    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
231    PN->replaceAllUsesWith(NewVal);
232    PN->eraseFromParent();
233  }
234
235  BasicBlock *PredBB = DestBB->getSinglePredecessor();
236  assert(PredBB && "Block doesn't have a single predecessor!");
237
238  // Splice all the instructions from PredBB to DestBB.
239  PredBB->getTerminator()->eraseFromParent();
240  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
241
242  // Anything that branched to PredBB now branches to DestBB.
243  PredBB->replaceAllUsesWith(DestBB);
244
245  // Nuke BB.
246  PredBB->eraseFromParent();
247}
248