Local.cpp revision afc36a9520971832dfbebc0333593bf5d3098296
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30//===----------------------------------------------------------------------===//
31//  Local constant propagation.
32//
33
34// ConstantFoldTerminator - If a terminator instruction is predicated on a
35// constant value, convert it into an unconditional branch to the constant
36// destination.
37//
38bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
39  TerminatorInst *T = BB->getTerminator();
40
41  // Branch - See if we are conditional jumping on constant
42  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
43    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
44    BasicBlock *Dest1 = BI->getSuccessor(0);
45    BasicBlock *Dest2 = BI->getSuccessor(1);
46
47    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
48      // Are we branching on constant?
49      // YES.  Change to unconditional branch...
50      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
51      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
52
53      //cerr << "Function: " << T->getParent()->getParent()
54      //     << "\nRemoving branch from " << T->getParent()
55      //     << "\n\nTo: " << OldDest << endl;
56
57      // Let the basic block know that we are letting go of it.  Based on this,
58      // it will adjust it's PHI nodes.
59      assert(BI->getParent() && "Terminator not inserted in block!");
60      OldDest->removePredecessor(BI->getParent());
61
62      // Set the unconditional destination, and change the insn to be an
63      // unconditional branch.
64      BI->setUnconditionalDest(Destination);
65      return true;
66    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
67      // This branch matches something like this:
68      //     br bool %cond, label %Dest, label %Dest
69      // and changes it into:  br label %Dest
70
71      // Let the basic block know that we are letting go of one copy of it.
72      assert(BI->getParent() && "Terminator not inserted in block!");
73      Dest1->removePredecessor(BI->getParent());
74
75      // Change a conditional branch to unconditional.
76      BI->setUnconditionalDest(Dest1);
77      return true;
78    }
79  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
80    // If we are switching on a constant, we can convert the switch into a
81    // single branch instruction!
82    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
83    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
84    BasicBlock *DefaultDest = TheOnlyDest;
85    assert(TheOnlyDest == SI->getDefaultDest() &&
86           "Default destination is not successor #0?");
87
88    // Figure out which case it goes to...
89    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
90      // Found case matching a constant operand?
91      if (SI->getSuccessorValue(i) == CI) {
92        TheOnlyDest = SI->getSuccessor(i);
93        break;
94      }
95
96      // Check to see if this branch is going to the same place as the default
97      // dest.  If so, eliminate it as an explicit compare.
98      if (SI->getSuccessor(i) == DefaultDest) {
99        // Remove this entry...
100        DefaultDest->removePredecessor(SI->getParent());
101        SI->removeCase(i);
102        --i; --e;  // Don't skip an entry...
103        continue;
104      }
105
106      // Otherwise, check to see if the switch only branches to one destination.
107      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
108      // destinations.
109      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
110    }
111
112    if (CI && !TheOnlyDest) {
113      // Branching on a constant, but not any of the cases, go to the default
114      // successor.
115      TheOnlyDest = SI->getDefaultDest();
116    }
117
118    // If we found a single destination that we can fold the switch into, do so
119    // now.
120    if (TheOnlyDest) {
121      // Insert the new branch..
122      BranchInst::Create(TheOnlyDest, SI);
123      BasicBlock *BB = SI->getParent();
124
125      // Remove entries from PHI nodes which we no longer branch to...
126      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
127        // Found case matching a constant operand?
128        BasicBlock *Succ = SI->getSuccessor(i);
129        if (Succ == TheOnlyDest)
130          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
131        else
132          Succ->removePredecessor(BB);
133      }
134
135      // Delete the old switch...
136      BB->getInstList().erase(SI);
137      return true;
138    } else if (SI->getNumSuccessors() == 2) {
139      // Otherwise, we can fold this switch into a conditional branch
140      // instruction if it has only one non-default destination.
141      Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
142                                 SI->getSuccessorValue(1), "cond", SI);
143      // Insert the new branch...
144      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
145
146      // Delete the old switch...
147      SI->eraseFromParent();
148      return true;
149    }
150  }
151  return false;
152}
153
154
155//===----------------------------------------------------------------------===//
156//  Local dead code elimination...
157//
158
159/// isInstructionTriviallyDead - Return true if the result produced by the
160/// instruction is not used, and the instruction has no side effects.
161///
162bool llvm::isInstructionTriviallyDead(Instruction *I) {
163  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
164
165  // We don't want debug info removed by anything this general.
166  if (isa<DbgInfoIntrinsic>(I)) return false;
167
168  if (!I->mayWriteToMemory())
169    return true;
170
171  // Special case intrinsics that "may write to memory" but can be deleted when
172  // dead.
173  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
174    // Safe to delete llvm.stacksave if dead.
175    if (II->getIntrinsicID() == Intrinsic::stacksave)
176      return true;
177
178  return false;
179}
180
181/// ~ValueDeletionListener - A trivial dtor, defined out of line to give the
182/// class a home.
183llvm::ValueDeletionListener::~ValueDeletionListener() {}
184
185/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
186/// trivially dead instruction, delete it.  If that makes any of its operands
187/// trivially dead, delete them too, recursively.
188///
189/// If a ValueDeletionListener is specified, it is notified of instructions that
190/// are actually deleted (before they are actually deleted).
191void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
192                                                   ValueDeletionListener *VDL) {
193  Instruction *I = dyn_cast<Instruction>(V);
194  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
195    return;
196
197  SmallVector<Instruction*, 16> DeadInsts;
198  DeadInsts.push_back(I);
199
200  while (!DeadInsts.empty()) {
201    I = DeadInsts.back();
202    DeadInsts.pop_back();
203
204    // If the client wanted to know, tell it about deleted instructions.
205    if (VDL)
206      VDL->ValueWillBeDeleted(I);
207
208    // Null out all of the instruction's operands to see if any operand becomes
209    // dead as we go.
210    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
211      Value *OpV = I->getOperand(i);
212      I->setOperand(i, 0);
213
214      if (!OpV->use_empty()) continue;
215
216      // If the operand is an instruction that became dead as we nulled out the
217      // operand, and if it is 'trivially' dead, delete it in a future loop
218      // iteration.
219      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
220        if (isInstructionTriviallyDead(OpI))
221          DeadInsts.push_back(OpI);
222    }
223
224    I->eraseFromParent();
225  }
226}
227
228/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
229/// dead PHI node, due to being a def-use chain of single-use nodes that
230/// either forms a cycle or is terminated by a trivially dead instruction,
231/// delete it.  If that makes any of its operands trivially dead, delete them
232/// too, recursively.
233///
234/// If a ValueDeletionListener is specified, it is notified of instructions that
235/// are actually deleted (before they are actually deleted).
236void
237llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, ValueDeletionListener *VDL) {
238
239  // We can remove a PHI if it is on a cycle in the def-use graph
240  // where each node in the cycle has degree one, i.e. only one use,
241  // and is an instruction with no side effects.
242  if (!PN->hasOneUse())
243    return;
244
245  SmallPtrSet<PHINode *, 4> PHIs;
246  PHIs.insert(PN);
247  for (Instruction *J = cast<Instruction>(*PN->use_begin());
248       J->hasOneUse() && !J->mayWriteToMemory();
249       J = cast<Instruction>(*J->use_begin()))
250    // If we find a PHI more than once, we're on a cycle that
251    // won't prove fruitful.
252    if (PHINode *JP = dyn_cast<PHINode>(J))
253      if (!PHIs.insert(cast<PHINode>(JP))) {
254        // Break the cycle and delete the PHI and its operands.
255        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
256        RecursivelyDeleteTriviallyDeadInstructions(JP, VDL);
257        break;
258      }
259}
260
261//===----------------------------------------------------------------------===//
262//  Control Flow Graph Restructuring...
263//
264
265/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
266/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
267/// between them, moving the instructions in the predecessor into DestBB and
268/// deleting the predecessor block.
269///
270void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
271  // If BB has single-entry PHI nodes, fold them.
272  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
273    Value *NewVal = PN->getIncomingValue(0);
274    // Replace self referencing PHI with undef, it must be dead.
275    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
276    PN->replaceAllUsesWith(NewVal);
277    PN->eraseFromParent();
278  }
279
280  BasicBlock *PredBB = DestBB->getSinglePredecessor();
281  assert(PredBB && "Block doesn't have a single predecessor!");
282
283  // Splice all the instructions from PredBB to DestBB.
284  PredBB->getTerminator()->eraseFromParent();
285  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
286
287  // Anything that branched to PredBB now branches to DestBB.
288  PredBB->replaceAllUsesWith(DestBB);
289
290  // Nuke BB.
291  PredBB->eraseFromParent();
292}
293
294/// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
295/// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
296/// with the DbgInfoIntrinsic that use the instruction I.
297bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
298                               SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
299  if (DbgInUses)
300    DbgInUses->clear();
301
302  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
303       ++UI) {
304    if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
305      if (DbgInUses)
306        DbgInUses->push_back(DI);
307    } else {
308      if (DbgInUses)
309        DbgInUses->clear();
310      return false;
311    }
312  }
313  return true;
314}
315
316/// UserIsDebugInfo - Return true if U is a constant expr used by
317/// llvm.dbg.variable or llvm.dbg.global_variable
318bool llvm::UserIsDebugInfo(User *U) {
319  ConstantExpr *CE = dyn_cast<ConstantExpr>(U);
320
321  if (!CE || CE->getNumUses() != 1)
322    return false;
323
324  Constant *Init = dyn_cast<Constant>(CE->use_back());
325  if (!Init || Init->getNumUses() != 1)
326    return false;
327
328  GlobalVariable *GV = dyn_cast<GlobalVariable>(Init->use_back());
329  if (!GV || !GV->hasInitializer() || GV->getInitializer() != Init)
330    return false;
331
332  DIVariable DV(GV);
333  if (!DV.isNull())
334    return true; // User is llvm.dbg.variable
335
336  DIGlobalVariable DGV(GV);
337  if (!DGV.isNull())
338    return true; // User is llvm.dbg.global_variable
339
340  return false;
341}
342
343/// RemoveDbgInfoUser - Remove an User which is representing debug info.
344void llvm::RemoveDbgInfoUser(User *U) {
345  assert (UserIsDebugInfo(U) && "Unexpected User!");
346  ConstantExpr *CE = cast<ConstantExpr>(U);
347  while (!CE->use_empty()) {
348    Constant *C = cast<Constant>(CE->use_back());
349    while (!C->use_empty()) {
350      GlobalVariable *GV = cast<GlobalVariable>(C->use_back());
351      GV->eraseFromParent();
352    }
353    C->destroyConstant();
354  }
355  CE->destroyConstant();
356}
357