Local.cpp revision c10fa6c801e48771b5eade50afc2fe6abaf08227
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/Analysis/DIBuilder.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/MemoryBuiltins.h"
32#include "llvm/Analysis/ProfileInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/IRBuilder.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45//  Local constant propagation.
46//
47
48/// ConstantFoldTerminator - If a terminator instruction is predicated on a
49/// constant value, convert it into an unconditional branch to the constant
50/// destination.  This is a nontrivial operation because the successors of this
51/// basic block must have their PHI nodes updated.
52/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53/// conditions and indirectbr addresses this might make dead if
54/// DeleteDeadConditions is true.
55bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) {
56  TerminatorInst *T = BB->getTerminator();
57  IRBuilder<> Builder(T);
58
59  // Branch - See if we are conditional jumping on constant
60  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
61    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
62    BasicBlock *Dest1 = BI->getSuccessor(0);
63    BasicBlock *Dest2 = BI->getSuccessor(1);
64
65    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
66      // Are we branching on constant?
67      // YES.  Change to unconditional branch...
68      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
69      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
70
71      //cerr << "Function: " << T->getParent()->getParent()
72      //     << "\nRemoving branch from " << T->getParent()
73      //     << "\n\nTo: " << OldDest << endl;
74
75      // Let the basic block know that we are letting go of it.  Based on this,
76      // it will adjust it's PHI nodes.
77      OldDest->removePredecessor(BB);
78
79      // Replace the conditional branch with an unconditional one.
80      Builder.CreateBr(Destination);
81      BI->eraseFromParent();
82      return true;
83    }
84
85    if (Dest2 == Dest1) {       // Conditional branch to same location?
86      // This branch matches something like this:
87      //     br bool %cond, label %Dest, label %Dest
88      // and changes it into:  br label %Dest
89
90      // Let the basic block know that we are letting go of one copy of it.
91      assert(BI->getParent() && "Terminator not inserted in block!");
92      Dest1->removePredecessor(BI->getParent());
93
94      // Replace the conditional branch with an unconditional one.
95      Builder.CreateBr(Dest1);
96      Value *Cond = BI->getCondition();
97      BI->eraseFromParent();
98      if (DeleteDeadConditions)
99        RecursivelyDeleteTriviallyDeadInstructions(Cond);
100      return true;
101    }
102    return false;
103  }
104
105  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
106    // If we are switching on a constant, we can convert the switch into a
107    // single branch instruction!
108    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
109    BasicBlock *TheOnlyDest = SI->getDefaultDest();
110    BasicBlock *DefaultDest = TheOnlyDest;
111
112    // Figure out which case it goes to.
113    for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd();
114         i != e; ++i) {
115      // Found case matching a constant operand?
116      if (i.getCaseValue() == CI) {
117        TheOnlyDest = i.getCaseSuccessor();
118        break;
119      }
120
121      // Check to see if this branch is going to the same place as the default
122      // dest.  If so, eliminate it as an explicit compare.
123      if (i.getCaseSuccessor() == DefaultDest) {
124        // Remove this entry.
125        DefaultDest->removePredecessor(SI->getParent());
126        SI->removeCase(i);
127        --i; --e;
128        continue;
129      }
130
131      // Otherwise, check to see if the switch only branches to one destination.
132      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
133      // destinations.
134      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
135    }
136
137    if (CI && !TheOnlyDest) {
138      // Branching on a constant, but not any of the cases, go to the default
139      // successor.
140      TheOnlyDest = SI->getDefaultDest();
141    }
142
143    // If we found a single destination that we can fold the switch into, do so
144    // now.
145    if (TheOnlyDest) {
146      // Insert the new branch.
147      Builder.CreateBr(TheOnlyDest);
148      BasicBlock *BB = SI->getParent();
149
150      // Remove entries from PHI nodes which we no longer branch to...
151      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
152        // Found case matching a constant operand?
153        BasicBlock *Succ = SI->getSuccessor(i);
154        if (Succ == TheOnlyDest)
155          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
156        else
157          Succ->removePredecessor(BB);
158      }
159
160      // Delete the old switch.
161      Value *Cond = SI->getCondition();
162      SI->eraseFromParent();
163      if (DeleteDeadConditions)
164        RecursivelyDeleteTriviallyDeadInstructions(Cond);
165      return true;
166    }
167
168    if (SI->getNumCases() == 1) {
169      // Otherwise, we can fold this switch into a conditional branch
170      // instruction if it has only one non-default destination.
171      SwitchInst::CaseIt FirstCase = SI->caseBegin();
172      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
173          FirstCase.getCaseValue(), "cond");
174
175      // Insert the new branch.
176      Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
177                           SI->getDefaultDest());
178
179      // Delete the old switch.
180      SI->eraseFromParent();
181      return true;
182    }
183    return false;
184  }
185
186  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
187    // indirectbr blockaddress(@F, @BB) -> br label @BB
188    if (BlockAddress *BA =
189          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
190      BasicBlock *TheOnlyDest = BA->getBasicBlock();
191      // Insert the new branch.
192      Builder.CreateBr(TheOnlyDest);
193
194      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
195        if (IBI->getDestination(i) == TheOnlyDest)
196          TheOnlyDest = 0;
197        else
198          IBI->getDestination(i)->removePredecessor(IBI->getParent());
199      }
200      Value *Address = IBI->getAddress();
201      IBI->eraseFromParent();
202      if (DeleteDeadConditions)
203        RecursivelyDeleteTriviallyDeadInstructions(Address);
204
205      // If we didn't find our destination in the IBI successor list, then we
206      // have undefined behavior.  Replace the unconditional branch with an
207      // 'unreachable' instruction.
208      if (TheOnlyDest) {
209        BB->getTerminator()->eraseFromParent();
210        new UnreachableInst(BB->getContext(), BB);
211      }
212
213      return true;
214    }
215  }
216
217  return false;
218}
219
220
221//===----------------------------------------------------------------------===//
222//  Local dead code elimination.
223//
224
225/// isInstructionTriviallyDead - Return true if the result produced by the
226/// instruction is not used, and the instruction has no side effects.
227///
228bool llvm::isInstructionTriviallyDead(Instruction *I) {
229  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
230
231  // We don't want the landingpad instruction removed by anything this general.
232  if (isa<LandingPadInst>(I))
233    return false;
234
235  // We don't want debug info removed by anything this general, unless
236  // debug info is empty.
237  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
238    if (DDI->getAddress())
239      return false;
240    return true;
241  }
242  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
243    if (DVI->getValue())
244      return false;
245    return true;
246  }
247
248  if (!I->mayHaveSideEffects()) return true;
249
250  // Special case intrinsics that "may have side effects" but can be deleted
251  // when dead.
252  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
253    // Safe to delete llvm.stacksave if dead.
254    if (II->getIntrinsicID() == Intrinsic::stacksave)
255      return true;
256
257    // Lifetime intrinsics are dead when their right-hand is undef.
258    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
259        II->getIntrinsicID() == Intrinsic::lifetime_end)
260      return isa<UndefValue>(II->getArgOperand(1));
261  }
262
263  if (extractMallocCall(I)) return true;
264
265  if (CallInst *CI = isFreeCall(I))
266    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
267      return C->isNullValue() || isa<UndefValue>(C);
268
269  return false;
270}
271
272/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
273/// trivially dead instruction, delete it.  If that makes any of its operands
274/// trivially dead, delete them too, recursively.  Return true if any
275/// instructions were deleted.
276bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
277  Instruction *I = dyn_cast<Instruction>(V);
278  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
279    return false;
280
281  SmallVector<Instruction*, 16> DeadInsts;
282  DeadInsts.push_back(I);
283
284  do {
285    I = DeadInsts.pop_back_val();
286
287    // Null out all of the instruction's operands to see if any operand becomes
288    // dead as we go.
289    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
290      Value *OpV = I->getOperand(i);
291      I->setOperand(i, 0);
292
293      if (!OpV->use_empty()) continue;
294
295      // If the operand is an instruction that became dead as we nulled out the
296      // operand, and if it is 'trivially' dead, delete it in a future loop
297      // iteration.
298      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
299        if (isInstructionTriviallyDead(OpI))
300          DeadInsts.push_back(OpI);
301    }
302
303    I->eraseFromParent();
304  } while (!DeadInsts.empty());
305
306  return true;
307}
308
309/// areAllUsesEqual - Check whether the uses of a value are all the same.
310/// This is similar to Instruction::hasOneUse() except this will also return
311/// true when there are no uses or multiple uses that all refer to the same
312/// value.
313static bool areAllUsesEqual(Instruction *I) {
314  Value::use_iterator UI = I->use_begin();
315  Value::use_iterator UE = I->use_end();
316  if (UI == UE)
317    return true;
318
319  User *TheUse = *UI;
320  for (++UI; UI != UE; ++UI) {
321    if (*UI != TheUse)
322      return false;
323  }
324  return true;
325}
326
327/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
328/// dead PHI node, due to being a def-use chain of single-use nodes that
329/// either forms a cycle or is terminated by a trivially dead instruction,
330/// delete it.  If that makes any of its operands trivially dead, delete them
331/// too, recursively.  Return true if a change was made.
332bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
333  SmallPtrSet<Instruction*, 4> Visited;
334  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
335       I = cast<Instruction>(*I->use_begin())) {
336    if (I->use_empty())
337      return RecursivelyDeleteTriviallyDeadInstructions(I);
338
339    // If we find an instruction more than once, we're on a cycle that
340    // won't prove fruitful.
341    if (!Visited.insert(I)) {
342      // Break the cycle and delete the instruction and its operands.
343      I->replaceAllUsesWith(UndefValue::get(I->getType()));
344      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
345      return true;
346    }
347  }
348  return false;
349}
350
351/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
352/// simplify any instructions in it and recursively delete dead instructions.
353///
354/// This returns true if it changed the code, note that it can delete
355/// instructions in other blocks as well in this block.
356bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
357  bool MadeChange = false;
358  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
359    Instruction *Inst = BI++;
360
361    if (Value *V = SimplifyInstruction(Inst, TD)) {
362      WeakVH BIHandle(BI);
363      ReplaceAndSimplifyAllUses(Inst, V, TD);
364      MadeChange = true;
365      if (BIHandle != BI)
366        BI = BB->begin();
367      continue;
368    }
369
370    if (Inst->isTerminator())
371      break;
372
373    WeakVH BIHandle(BI);
374    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
375    if (BIHandle != BI)
376      BI = BB->begin();
377  }
378  return MadeChange;
379}
380
381//===----------------------------------------------------------------------===//
382//  Control Flow Graph Restructuring.
383//
384
385
386/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
387/// method is called when we're about to delete Pred as a predecessor of BB.  If
388/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
389///
390/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
391/// nodes that collapse into identity values.  For example, if we have:
392///   x = phi(1, 0, 0, 0)
393///   y = and x, z
394///
395/// .. and delete the predecessor corresponding to the '1', this will attempt to
396/// recursively fold the and to 0.
397void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
398                                        TargetData *TD) {
399  // This only adjusts blocks with PHI nodes.
400  if (!isa<PHINode>(BB->begin()))
401    return;
402
403  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
404  // them down.  This will leave us with single entry phi nodes and other phis
405  // that can be removed.
406  BB->removePredecessor(Pred, true);
407
408  WeakVH PhiIt = &BB->front();
409  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
410    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
411
412    Value *PNV = SimplifyInstruction(PN, TD);
413    if (PNV == 0) continue;
414
415    // If we're able to simplify the phi to a single value, substitute the new
416    // value into all of its uses.
417    assert(PNV != PN && "SimplifyInstruction broken!");
418
419    Value *OldPhiIt = PhiIt;
420    ReplaceAndSimplifyAllUses(PN, PNV, TD);
421
422    // If recursive simplification ended up deleting the next PHI node we would
423    // iterate to, then our iterator is invalid, restart scanning from the top
424    // of the block.
425    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
426  }
427}
428
429
430/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
431/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
432/// between them, moving the instructions in the predecessor into DestBB and
433/// deleting the predecessor block.
434///
435void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
436  // If BB has single-entry PHI nodes, fold them.
437  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
438    Value *NewVal = PN->getIncomingValue(0);
439    // Replace self referencing PHI with undef, it must be dead.
440    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
441    PN->replaceAllUsesWith(NewVal);
442    PN->eraseFromParent();
443  }
444
445  BasicBlock *PredBB = DestBB->getSinglePredecessor();
446  assert(PredBB && "Block doesn't have a single predecessor!");
447
448  // Zap anything that took the address of DestBB.  Not doing this will give the
449  // address an invalid value.
450  if (DestBB->hasAddressTaken()) {
451    BlockAddress *BA = BlockAddress::get(DestBB);
452    Constant *Replacement =
453      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
454    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
455                                                     BA->getType()));
456    BA->destroyConstant();
457  }
458
459  // Anything that branched to PredBB now branches to DestBB.
460  PredBB->replaceAllUsesWith(DestBB);
461
462  // Splice all the instructions from PredBB to DestBB.
463  PredBB->getTerminator()->eraseFromParent();
464  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
465
466  if (P) {
467    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
468    if (DT) {
469      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
470      DT->changeImmediateDominator(DestBB, PredBBIDom);
471      DT->eraseNode(PredBB);
472    }
473    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
474    if (PI) {
475      PI->replaceAllUses(PredBB, DestBB);
476      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
477    }
478  }
479  // Nuke BB.
480  PredBB->eraseFromParent();
481}
482
483/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
484/// almost-empty BB ending in an unconditional branch to Succ, into succ.
485///
486/// Assumption: Succ is the single successor for BB.
487///
488static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
489  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
490
491  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
492        << Succ->getName() << "\n");
493  // Shortcut, if there is only a single predecessor it must be BB and merging
494  // is always safe
495  if (Succ->getSinglePredecessor()) return true;
496
497  // Make a list of the predecessors of BB
498  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
499
500  // Look at all the phi nodes in Succ, to see if they present a conflict when
501  // merging these blocks
502  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
503    PHINode *PN = cast<PHINode>(I);
504
505    // If the incoming value from BB is again a PHINode in
506    // BB which has the same incoming value for *PI as PN does, we can
507    // merge the phi nodes and then the blocks can still be merged
508    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
509    if (BBPN && BBPN->getParent() == BB) {
510      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
511        BasicBlock *IBB = PN->getIncomingBlock(PI);
512        if (BBPreds.count(IBB) &&
513            BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
514          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
515                << Succ->getName() << " is conflicting with "
516                << BBPN->getName() << " with regard to common predecessor "
517                << IBB->getName() << "\n");
518          return false;
519        }
520      }
521    } else {
522      Value* Val = PN->getIncomingValueForBlock(BB);
523      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
524        // See if the incoming value for the common predecessor is equal to the
525        // one for BB, in which case this phi node will not prevent the merging
526        // of the block.
527        BasicBlock *IBB = PN->getIncomingBlock(PI);
528        if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
529          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
530                << Succ->getName() << " is conflicting with regard to common "
531                << "predecessor " << IBB->getName() << "\n");
532          return false;
533        }
534      }
535    }
536  }
537
538  return true;
539}
540
541/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
542/// unconditional branch, and contains no instructions other than PHI nodes,
543/// potential side-effect free intrinsics and the branch.  If possible,
544/// eliminate BB by rewriting all the predecessors to branch to the successor
545/// block and return true.  If we can't transform, return false.
546bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
547  assert(BB != &BB->getParent()->getEntryBlock() &&
548         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
549
550  // We can't eliminate infinite loops.
551  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
552  if (BB == Succ) return false;
553
554  // Check to see if merging these blocks would cause conflicts for any of the
555  // phi nodes in BB or Succ. If not, we can safely merge.
556  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
557
558  // Check for cases where Succ has multiple predecessors and a PHI node in BB
559  // has uses which will not disappear when the PHI nodes are merged.  It is
560  // possible to handle such cases, but difficult: it requires checking whether
561  // BB dominates Succ, which is non-trivial to calculate in the case where
562  // Succ has multiple predecessors.  Also, it requires checking whether
563  // constructing the necessary self-referential PHI node doesn't intoduce any
564  // conflicts; this isn't too difficult, but the previous code for doing this
565  // was incorrect.
566  //
567  // Note that if this check finds a live use, BB dominates Succ, so BB is
568  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
569  // folding the branch isn't profitable in that case anyway.
570  if (!Succ->getSinglePredecessor()) {
571    BasicBlock::iterator BBI = BB->begin();
572    while (isa<PHINode>(*BBI)) {
573      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
574           UI != E; ++UI) {
575        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
576          if (PN->getIncomingBlock(UI) != BB)
577            return false;
578        } else {
579          return false;
580        }
581      }
582      ++BBI;
583    }
584  }
585
586  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
587
588  if (isa<PHINode>(Succ->begin())) {
589    // If there is more than one pred of succ, and there are PHI nodes in
590    // the successor, then we need to add incoming edges for the PHI nodes
591    //
592    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
593
594    // Loop over all of the PHI nodes in the successor of BB.
595    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
596      PHINode *PN = cast<PHINode>(I);
597      Value *OldVal = PN->removeIncomingValue(BB, false);
598      assert(OldVal && "No entry in PHI for Pred BB!");
599
600      // If this incoming value is one of the PHI nodes in BB, the new entries
601      // in the PHI node are the entries from the old PHI.
602      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
603        PHINode *OldValPN = cast<PHINode>(OldVal);
604        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
605          // Note that, since we are merging phi nodes and BB and Succ might
606          // have common predecessors, we could end up with a phi node with
607          // identical incoming branches. This will be cleaned up later (and
608          // will trigger asserts if we try to clean it up now, without also
609          // simplifying the corresponding conditional branch).
610          PN->addIncoming(OldValPN->getIncomingValue(i),
611                          OldValPN->getIncomingBlock(i));
612      } else {
613        // Add an incoming value for each of the new incoming values.
614        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
615          PN->addIncoming(OldVal, BBPreds[i]);
616      }
617    }
618  }
619
620  if (Succ->getSinglePredecessor()) {
621    // BB is the only predecessor of Succ, so Succ will end up with exactly
622    // the same predecessors BB had.
623
624    // Copy over any phi, debug or lifetime instruction.
625    BB->getTerminator()->eraseFromParent();
626    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
627  } else {
628    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
629      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
630      assert(PN->use_empty() && "There shouldn't be any uses here!");
631      PN->eraseFromParent();
632    }
633  }
634
635  // Everything that jumped to BB now goes to Succ.
636  BB->replaceAllUsesWith(Succ);
637  if (!Succ->hasName()) Succ->takeName(BB);
638  BB->eraseFromParent();              // Delete the old basic block.
639  return true;
640}
641
642/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
643/// nodes in this block. This doesn't try to be clever about PHI nodes
644/// which differ only in the order of the incoming values, but instcombine
645/// orders them so it usually won't matter.
646///
647bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
648  bool Changed = false;
649
650  // This implementation doesn't currently consider undef operands
651  // specially. Theoretically, two phis which are identical except for
652  // one having an undef where the other doesn't could be collapsed.
653
654  // Map from PHI hash values to PHI nodes. If multiple PHIs have
655  // the same hash value, the element is the first PHI in the
656  // linked list in CollisionMap.
657  DenseMap<uintptr_t, PHINode *> HashMap;
658
659  // Maintain linked lists of PHI nodes with common hash values.
660  DenseMap<PHINode *, PHINode *> CollisionMap;
661
662  // Examine each PHI.
663  for (BasicBlock::iterator I = BB->begin();
664       PHINode *PN = dyn_cast<PHINode>(I++); ) {
665    // Compute a hash value on the operands. Instcombine will likely have sorted
666    // them, which helps expose duplicates, but we have to check all the
667    // operands to be safe in case instcombine hasn't run.
668    uintptr_t Hash = 0;
669    // This hash algorithm is quite weak as hash functions go, but it seems
670    // to do a good enough job for this particular purpose, and is very quick.
671    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
672      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
673      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
674    }
675    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
676         I != E; ++I) {
677      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
678      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
679    }
680    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
681    Hash >>= 1;
682    // If we've never seen this hash value before, it's a unique PHI.
683    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
684      HashMap.insert(std::make_pair(Hash, PN));
685    if (Pair.second) continue;
686    // Otherwise it's either a duplicate or a hash collision.
687    for (PHINode *OtherPN = Pair.first->second; ; ) {
688      if (OtherPN->isIdenticalTo(PN)) {
689        // A duplicate. Replace this PHI with its duplicate.
690        PN->replaceAllUsesWith(OtherPN);
691        PN->eraseFromParent();
692        Changed = true;
693        break;
694      }
695      // A non-duplicate hash collision.
696      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
697      if (I == CollisionMap.end()) {
698        // Set this PHI to be the head of the linked list of colliding PHIs.
699        PHINode *Old = Pair.first->second;
700        Pair.first->second = PN;
701        CollisionMap[PN] = Old;
702        break;
703      }
704      // Procede to the next PHI in the list.
705      OtherPN = I->second;
706    }
707  }
708
709  return Changed;
710}
711
712/// enforceKnownAlignment - If the specified pointer points to an object that
713/// we control, modify the object's alignment to PrefAlign. This isn't
714/// often possible though. If alignment is important, a more reliable approach
715/// is to simply align all global variables and allocation instructions to
716/// their preferred alignment from the beginning.
717///
718static unsigned enforceKnownAlignment(Value *V, unsigned Align,
719                                      unsigned PrefAlign, const TargetData *TD) {
720  V = V->stripPointerCasts();
721
722  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
723    // If the preferred alignment is greater than the natural stack alignment
724    // then don't round up. This avoids dynamic stack realignment.
725    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
726      return Align;
727    // If there is a requested alignment and if this is an alloca, round up.
728    if (AI->getAlignment() >= PrefAlign)
729      return AI->getAlignment();
730    AI->setAlignment(PrefAlign);
731    return PrefAlign;
732  }
733
734  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
735    // If there is a large requested alignment and we can, bump up the alignment
736    // of the global.
737    if (GV->isDeclaration()) return Align;
738    // If the memory we set aside for the global may not be the memory used by
739    // the final program then it is impossible for us to reliably enforce the
740    // preferred alignment.
741    if (GV->isWeakForLinker()) return Align;
742
743    if (GV->getAlignment() >= PrefAlign)
744      return GV->getAlignment();
745    // We can only increase the alignment of the global if it has no alignment
746    // specified or if it is not assigned a section.  If it is assigned a
747    // section, the global could be densely packed with other objects in the
748    // section, increasing the alignment could cause padding issues.
749    if (!GV->hasSection() || GV->getAlignment() == 0)
750      GV->setAlignment(PrefAlign);
751    return GV->getAlignment();
752  }
753
754  return Align;
755}
756
757/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
758/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
759/// and it is more than the alignment of the ultimate object, see if we can
760/// increase the alignment of the ultimate object, making this check succeed.
761unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
762                                          const TargetData *TD) {
763  assert(V->getType()->isPointerTy() &&
764         "getOrEnforceKnownAlignment expects a pointer!");
765  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
766  APInt Mask = APInt::getAllOnesValue(BitWidth);
767  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
768  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
769  unsigned TrailZ = KnownZero.countTrailingOnes();
770
771  // Avoid trouble with rediculously large TrailZ values, such as
772  // those computed from a null pointer.
773  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
774
775  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
776
777  // LLVM doesn't support alignments larger than this currently.
778  Align = std::min(Align, +Value::MaximumAlignment);
779
780  if (PrefAlign > Align)
781    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
782
783  // We don't need to make any adjustment.
784  return Align;
785}
786
787///===---------------------------------------------------------------------===//
788///  Dbg Intrinsic utilities
789///
790
791/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
792/// that has an associated llvm.dbg.decl intrinsic.
793bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
794                                           StoreInst *SI, DIBuilder &Builder) {
795  DIVariable DIVar(DDI->getVariable());
796  if (!DIVar.Verify())
797    return false;
798
799  Instruction *DbgVal = NULL;
800  // If an argument is zero extended then use argument directly. The ZExt
801  // may be zapped by an optimization pass in future.
802  Argument *ExtendedArg = NULL;
803  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
804    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
805  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
806    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
807  if (ExtendedArg)
808    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
809  else
810    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
811
812  // Propagate any debug metadata from the store onto the dbg.value.
813  DebugLoc SIDL = SI->getDebugLoc();
814  if (!SIDL.isUnknown())
815    DbgVal->setDebugLoc(SIDL);
816  // Otherwise propagate debug metadata from dbg.declare.
817  else
818    DbgVal->setDebugLoc(DDI->getDebugLoc());
819  return true;
820}
821
822/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
823/// that has an associated llvm.dbg.decl intrinsic.
824bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
825                                           LoadInst *LI, DIBuilder &Builder) {
826  DIVariable DIVar(DDI->getVariable());
827  if (!DIVar.Verify())
828    return false;
829
830  Instruction *DbgVal =
831    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
832                                    DIVar, LI);
833
834  // Propagate any debug metadata from the store onto the dbg.value.
835  DebugLoc LIDL = LI->getDebugLoc();
836  if (!LIDL.isUnknown())
837    DbgVal->setDebugLoc(LIDL);
838  // Otherwise propagate debug metadata from dbg.declare.
839  else
840    DbgVal->setDebugLoc(DDI->getDebugLoc());
841  return true;
842}
843
844/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
845/// of llvm.dbg.value intrinsics.
846bool llvm::LowerDbgDeclare(Function &F) {
847  DIBuilder DIB(*F.getParent());
848  SmallVector<DbgDeclareInst *, 4> Dbgs;
849  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
850    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
851      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
852        Dbgs.push_back(DDI);
853    }
854  if (Dbgs.empty())
855    return false;
856
857  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
858         E = Dbgs.end(); I != E; ++I) {
859    DbgDeclareInst *DDI = *I;
860    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
861      bool RemoveDDI = true;
862      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
863           UI != E; ++UI)
864        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
865          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
866        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
867          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
868        else
869          RemoveDDI = false;
870      if (RemoveDDI)
871        DDI->eraseFromParent();
872    }
873  }
874  return true;
875}
876
877/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
878/// alloca 'V', if any.
879DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
880  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
881    for (Value::use_iterator UI = DebugNode->use_begin(),
882         E = DebugNode->use_end(); UI != E; ++UI)
883      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
884        return DDI;
885
886  return 0;
887}
888