1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IRBuilder.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/MDBuilder.h"
24#include "llvm/Metadata.h"
25#include "llvm/Module.h"
26#include "llvm/Operator.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ConstantRange.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/NoFolder.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include <algorithm>
45#include <set>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
51   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
52
53static cl::opt<bool>
54DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
55       cl::desc("Duplicate return instructions into unconditional branches"));
56
57STATISTIC(NumSpeculations, "Number of speculative executed instructions");
58STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
59
60namespace {
61  /// ValueEqualityComparisonCase - Represents a case of a switch.
62  struct ValueEqualityComparisonCase {
63    ConstantInt *Value;
64    BasicBlock *Dest;
65
66    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
67      : Value(Value), Dest(Dest) {}
68
69    bool operator<(ValueEqualityComparisonCase RHS) const {
70      // Comparing pointers is ok as we only rely on the order for uniquing.
71      return Value < RHS.Value;
72    }
73  };
74
75class SimplifyCFGOpt {
76  const TargetData *const TD;
77
78  Value *isValueEqualityComparison(TerminatorInst *TI);
79  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
80                               std::vector<ValueEqualityComparisonCase> &Cases);
81  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
82                                                     BasicBlock *Pred,
83                                                     IRBuilder<> &Builder);
84  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
85                                           IRBuilder<> &Builder);
86
87  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
88  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
89  bool SimplifyUnreachable(UnreachableInst *UI);
90  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
91  bool SimplifyIndirectBr(IndirectBrInst *IBI);
92  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
93  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
94
95public:
96  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
97  bool run(BasicBlock *BB);
98};
99}
100
101/// SafeToMergeTerminators - Return true if it is safe to merge these two
102/// terminator instructions together.
103///
104static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
105  if (SI1 == SI2) return false;  // Can't merge with self!
106
107  // It is not safe to merge these two switch instructions if they have a common
108  // successor, and if that successor has a PHI node, and if *that* PHI node has
109  // conflicting incoming values from the two switch blocks.
110  BasicBlock *SI1BB = SI1->getParent();
111  BasicBlock *SI2BB = SI2->getParent();
112  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
113
114  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
115    if (SI1Succs.count(*I))
116      for (BasicBlock::iterator BBI = (*I)->begin();
117           isa<PHINode>(BBI); ++BBI) {
118        PHINode *PN = cast<PHINode>(BBI);
119        if (PN->getIncomingValueForBlock(SI1BB) !=
120            PN->getIncomingValueForBlock(SI2BB))
121          return false;
122      }
123
124  return true;
125}
126
127/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
128/// to merge these two terminator instructions together, where SI1 is an
129/// unconditional branch. PhiNodes will store all PHI nodes in common
130/// successors.
131///
132static bool isProfitableToFoldUnconditional(BranchInst *SI1,
133                                          BranchInst *SI2,
134                                          Instruction *Cond,
135                                          SmallVectorImpl<PHINode*> &PhiNodes) {
136  if (SI1 == SI2) return false;  // Can't merge with self!
137  assert(SI1->isUnconditional() && SI2->isConditional());
138
139  // We fold the unconditional branch if we can easily update all PHI nodes in
140  // common successors:
141  // 1> We have a constant incoming value for the conditional branch;
142  // 2> We have "Cond" as the incoming value for the unconditional branch;
143  // 3> SI2->getCondition() and Cond have same operands.
144  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
145  if (!Ci2) return false;
146  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
147        Cond->getOperand(1) == Ci2->getOperand(1)) &&
148      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
149        Cond->getOperand(1) == Ci2->getOperand(0)))
150    return false;
151
152  BasicBlock *SI1BB = SI1->getParent();
153  BasicBlock *SI2BB = SI2->getParent();
154  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
155  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
156    if (SI1Succs.count(*I))
157      for (BasicBlock::iterator BBI = (*I)->begin();
158           isa<PHINode>(BBI); ++BBI) {
159        PHINode *PN = cast<PHINode>(BBI);
160        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
161            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
162          return false;
163        PhiNodes.push_back(PN);
164      }
165  return true;
166}
167
168/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
169/// now be entries in it from the 'NewPred' block.  The values that will be
170/// flowing into the PHI nodes will be the same as those coming in from
171/// ExistPred, an existing predecessor of Succ.
172static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
173                                  BasicBlock *ExistPred) {
174  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
175
176  PHINode *PN;
177  for (BasicBlock::iterator I = Succ->begin();
178       (PN = dyn_cast<PHINode>(I)); ++I)
179    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
180}
181
182
183/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
184/// least one PHI node in it), check to see if the merge at this block is due
185/// to an "if condition".  If so, return the boolean condition that determines
186/// which entry into BB will be taken.  Also, return by references the block
187/// that will be entered from if the condition is true, and the block that will
188/// be entered if the condition is false.
189///
190/// This does no checking to see if the true/false blocks have large or unsavory
191/// instructions in them.
192static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
193                             BasicBlock *&IfFalse) {
194  PHINode *SomePHI = cast<PHINode>(BB->begin());
195  assert(SomePHI->getNumIncomingValues() == 2 &&
196         "Function can only handle blocks with 2 predecessors!");
197  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
198  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
199
200  // We can only handle branches.  Other control flow will be lowered to
201  // branches if possible anyway.
202  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
203  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
204  if (Pred1Br == 0 || Pred2Br == 0)
205    return 0;
206
207  // Eliminate code duplication by ensuring that Pred1Br is conditional if
208  // either are.
209  if (Pred2Br->isConditional()) {
210    // If both branches are conditional, we don't have an "if statement".  In
211    // reality, we could transform this case, but since the condition will be
212    // required anyway, we stand no chance of eliminating it, so the xform is
213    // probably not profitable.
214    if (Pred1Br->isConditional())
215      return 0;
216
217    std::swap(Pred1, Pred2);
218    std::swap(Pred1Br, Pred2Br);
219  }
220
221  if (Pred1Br->isConditional()) {
222    // The only thing we have to watch out for here is to make sure that Pred2
223    // doesn't have incoming edges from other blocks.  If it does, the condition
224    // doesn't dominate BB.
225    if (Pred2->getSinglePredecessor() == 0)
226      return 0;
227
228    // If we found a conditional branch predecessor, make sure that it branches
229    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
230    if (Pred1Br->getSuccessor(0) == BB &&
231        Pred1Br->getSuccessor(1) == Pred2) {
232      IfTrue = Pred1;
233      IfFalse = Pred2;
234    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
235               Pred1Br->getSuccessor(1) == BB) {
236      IfTrue = Pred2;
237      IfFalse = Pred1;
238    } else {
239      // We know that one arm of the conditional goes to BB, so the other must
240      // go somewhere unrelated, and this must not be an "if statement".
241      return 0;
242    }
243
244    return Pred1Br->getCondition();
245  }
246
247  // Ok, if we got here, both predecessors end with an unconditional branch to
248  // BB.  Don't panic!  If both blocks only have a single (identical)
249  // predecessor, and THAT is a conditional branch, then we're all ok!
250  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
251  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
252    return 0;
253
254  // Otherwise, if this is a conditional branch, then we can use it!
255  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
256  if (BI == 0) return 0;
257
258  assert(BI->isConditional() && "Two successors but not conditional?");
259  if (BI->getSuccessor(0) == Pred1) {
260    IfTrue = Pred1;
261    IfFalse = Pred2;
262  } else {
263    IfTrue = Pred2;
264    IfFalse = Pred1;
265  }
266  return BI->getCondition();
267}
268
269/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
270/// given instruction, which is assumed to be safe to speculate. 1 means
271/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
272static unsigned ComputeSpeculationCost(const User *I) {
273  assert(isSafeToSpeculativelyExecute(I) &&
274         "Instruction is not safe to speculatively execute!");
275  switch (Operator::getOpcode(I)) {
276  default:
277    // In doubt, be conservative.
278    return UINT_MAX;
279  case Instruction::GetElementPtr:
280    // GEPs are cheap if all indices are constant.
281    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
282      return UINT_MAX;
283    return 1;
284  case Instruction::Load:
285  case Instruction::Add:
286  case Instruction::Sub:
287  case Instruction::And:
288  case Instruction::Or:
289  case Instruction::Xor:
290  case Instruction::Shl:
291  case Instruction::LShr:
292  case Instruction::AShr:
293  case Instruction::ICmp:
294  case Instruction::Trunc:
295  case Instruction::ZExt:
296  case Instruction::SExt:
297    return 1; // These are all cheap.
298
299  case Instruction::Call:
300  case Instruction::Select:
301    return 2;
302  }
303}
304
305/// DominatesMergePoint - If we have a merge point of an "if condition" as
306/// accepted above, return true if the specified value dominates the block.  We
307/// don't handle the true generality of domination here, just a special case
308/// which works well enough for us.
309///
310/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
311/// see if V (which must be an instruction) and its recursive operands
312/// that do not dominate BB have a combined cost lower than CostRemaining and
313/// are non-trapping.  If both are true, the instruction is inserted into the
314/// set and true is returned.
315///
316/// The cost for most non-trapping instructions is defined as 1 except for
317/// Select whose cost is 2.
318///
319/// After this function returns, CostRemaining is decreased by the cost of
320/// V plus its non-dominating operands.  If that cost is greater than
321/// CostRemaining, false is returned and CostRemaining is undefined.
322static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
324                                unsigned &CostRemaining) {
325  Instruction *I = dyn_cast<Instruction>(V);
326  if (!I) {
327    // Non-instructions all dominate instructions, but not all constantexprs
328    // can be executed unconditionally.
329    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
330      if (C->canTrap())
331        return false;
332    return true;
333  }
334  BasicBlock *PBB = I->getParent();
335
336  // We don't want to allow weird loops that might have the "if condition" in
337  // the bottom of this block.
338  if (PBB == BB) return false;
339
340  // If this instruction is defined in a block that contains an unconditional
341  // branch to BB, then it must be in the 'conditional' part of the "if
342  // statement".  If not, it definitely dominates the region.
343  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
344  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
345    return true;
346
347  // If we aren't allowing aggressive promotion anymore, then don't consider
348  // instructions in the 'if region'.
349  if (AggressiveInsts == 0) return false;
350
351  // If we have seen this instruction before, don't count it again.
352  if (AggressiveInsts->count(I)) return true;
353
354  // Okay, it looks like the instruction IS in the "condition".  Check to
355  // see if it's a cheap instruction to unconditionally compute, and if it
356  // only uses stuff defined outside of the condition.  If so, hoist it out.
357  if (!isSafeToSpeculativelyExecute(I))
358    return false;
359
360  unsigned Cost = ComputeSpeculationCost(I);
361
362  if (Cost > CostRemaining)
363    return false;
364
365  CostRemaining -= Cost;
366
367  // Okay, we can only really hoist these out if their operands do
368  // not take us over the cost threshold.
369  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
370    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
371      return false;
372  // Okay, it's safe to do this!  Remember this instruction.
373  AggressiveInsts->insert(I);
374  return true;
375}
376
377/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
378/// and PointerNullValue. Return NULL if value is not a constant int.
379static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
380  // Normal constant int.
381  ConstantInt *CI = dyn_cast<ConstantInt>(V);
382  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
383    return CI;
384
385  // This is some kind of pointer constant. Turn it into a pointer-sized
386  // ConstantInt if possible.
387  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
388
389  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
390  if (isa<ConstantPointerNull>(V))
391    return ConstantInt::get(PtrTy, 0);
392
393  // IntToPtr const int.
394  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
395    if (CE->getOpcode() == Instruction::IntToPtr)
396      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
397        // The constant is very likely to have the right type already.
398        if (CI->getType() == PtrTy)
399          return CI;
400        else
401          return cast<ConstantInt>
402            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
403      }
404  return 0;
405}
406
407/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
408/// collection of icmp eq/ne instructions that compare a value against a
409/// constant, return the value being compared, and stick the constant into the
410/// Values vector.
411static Value *
412GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
413                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
414  Instruction *I = dyn_cast<Instruction>(V);
415  if (I == 0) return 0;
416
417  // If this is an icmp against a constant, handle this as one of the cases.
418  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
419    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
420      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
421        UsedICmps++;
422        Vals.push_back(C);
423        return I->getOperand(0);
424      }
425
426      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
427      // the set.
428      ConstantRange Span =
429        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
430
431      // If this is an and/!= check then we want to optimize "x ugt 2" into
432      // x != 0 && x != 1.
433      if (!isEQ)
434        Span = Span.inverse();
435
436      // If there are a ton of values, we don't want to make a ginormous switch.
437      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
438        return 0;
439
440      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
441        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
442      UsedICmps++;
443      return I->getOperand(0);
444    }
445    return 0;
446  }
447
448  // Otherwise, we can only handle an | or &, depending on isEQ.
449  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
450    return 0;
451
452  unsigned NumValsBeforeLHS = Vals.size();
453  unsigned UsedICmpsBeforeLHS = UsedICmps;
454  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
455                                          isEQ, UsedICmps)) {
456    unsigned NumVals = Vals.size();
457    unsigned UsedICmpsBeforeRHS = UsedICmps;
458    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
459                                            isEQ, UsedICmps)) {
460      if (LHS == RHS)
461        return LHS;
462      Vals.resize(NumVals);
463      UsedICmps = UsedICmpsBeforeRHS;
464    }
465
466    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
467    // set it and return success.
468    if (Extra == 0 || Extra == I->getOperand(1)) {
469      Extra = I->getOperand(1);
470      return LHS;
471    }
472
473    Vals.resize(NumValsBeforeLHS);
474    UsedICmps = UsedICmpsBeforeLHS;
475    return 0;
476  }
477
478  // If the LHS can't be folded in, but Extra is available and RHS can, try to
479  // use LHS as Extra.
480  if (Extra == 0 || Extra == I->getOperand(0)) {
481    Value *OldExtra = Extra;
482    Extra = I->getOperand(0);
483    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
484                                            isEQ, UsedICmps))
485      return RHS;
486    assert(Vals.size() == NumValsBeforeLHS);
487    Extra = OldExtra;
488  }
489
490  return 0;
491}
492
493static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
494  Instruction *Cond = 0;
495  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496    Cond = dyn_cast<Instruction>(SI->getCondition());
497  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
498    if (BI->isConditional())
499      Cond = dyn_cast<Instruction>(BI->getCondition());
500  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
501    Cond = dyn_cast<Instruction>(IBI->getAddress());
502  }
503
504  TI->eraseFromParent();
505  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
506}
507
508/// isValueEqualityComparison - Return true if the specified terminator checks
509/// to see if a value is equal to constant integer value.
510Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
511  Value *CV = 0;
512  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
513    // Do not permit merging of large switch instructions into their
514    // predecessors unless there is only one predecessor.
515    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
516                                             pred_end(SI->getParent())) <= 128)
517      CV = SI->getCondition();
518  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
519    if (BI->isConditional() && BI->getCondition()->hasOneUse())
520      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
521        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
522             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
523            GetConstantInt(ICI->getOperand(1), TD))
524          CV = ICI->getOperand(0);
525
526  // Unwrap any lossless ptrtoint cast.
527  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
528    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
529      CV = PTII->getOperand(0);
530  return CV;
531}
532
533/// GetValueEqualityComparisonCases - Given a value comparison instruction,
534/// decode all of the 'cases' that it represents and return the 'default' block.
535BasicBlock *SimplifyCFGOpt::
536GetValueEqualityComparisonCases(TerminatorInst *TI,
537                                std::vector<ValueEqualityComparisonCase>
538                                                                       &Cases) {
539  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
540    Cases.reserve(SI->getNumCases());
541    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
542      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
543                                                  i.getCaseSuccessor()));
544    return SI->getDefaultDest();
545  }
546
547  BranchInst *BI = cast<BranchInst>(TI);
548  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
549  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
550  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
551                                                             TD),
552                                              Succ));
553  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
554}
555
556
557/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
558/// in the list that match the specified block.
559static void EliminateBlockCases(BasicBlock *BB,
560                              std::vector<ValueEqualityComparisonCase> &Cases) {
561  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
562    if (Cases[i].Dest == BB) {
563      Cases.erase(Cases.begin()+i);
564      --i; --e;
565    }
566}
567
568/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
569/// well.
570static bool
571ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
572              std::vector<ValueEqualityComparisonCase > &C2) {
573  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
574
575  // Make V1 be smaller than V2.
576  if (V1->size() > V2->size())
577    std::swap(V1, V2);
578
579  if (V1->size() == 0) return false;
580  if (V1->size() == 1) {
581    // Just scan V2.
582    ConstantInt *TheVal = (*V1)[0].Value;
583    for (unsigned i = 0, e = V2->size(); i != e; ++i)
584      if (TheVal == (*V2)[i].Value)
585        return true;
586  }
587
588  // Otherwise, just sort both lists and compare element by element.
589  array_pod_sort(V1->begin(), V1->end());
590  array_pod_sort(V2->begin(), V2->end());
591  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
592  while (i1 != e1 && i2 != e2) {
593    if ((*V1)[i1].Value == (*V2)[i2].Value)
594      return true;
595    if ((*V1)[i1].Value < (*V2)[i2].Value)
596      ++i1;
597    else
598      ++i2;
599  }
600  return false;
601}
602
603/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
604/// terminator instruction and its block is known to only have a single
605/// predecessor block, check to see if that predecessor is also a value
606/// comparison with the same value, and if that comparison determines the
607/// outcome of this comparison.  If so, simplify TI.  This does a very limited
608/// form of jump threading.
609bool SimplifyCFGOpt::
610SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
611                                              BasicBlock *Pred,
612                                              IRBuilder<> &Builder) {
613  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
614  if (!PredVal) return false;  // Not a value comparison in predecessor.
615
616  Value *ThisVal = isValueEqualityComparison(TI);
617  assert(ThisVal && "This isn't a value comparison!!");
618  if (ThisVal != PredVal) return false;  // Different predicates.
619
620  // TODO: Preserve branch weight metadata, similarly to how
621  // FoldValueComparisonIntoPredecessors preserves it.
622
623  // Find out information about when control will move from Pred to TI's block.
624  std::vector<ValueEqualityComparisonCase> PredCases;
625  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
626                                                        PredCases);
627  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
628
629  // Find information about how control leaves this block.
630  std::vector<ValueEqualityComparisonCase> ThisCases;
631  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
632  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
633
634  // If TI's block is the default block from Pred's comparison, potentially
635  // simplify TI based on this knowledge.
636  if (PredDef == TI->getParent()) {
637    // If we are here, we know that the value is none of those cases listed in
638    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
639    // can simplify TI.
640    if (!ValuesOverlap(PredCases, ThisCases))
641      return false;
642
643    if (isa<BranchInst>(TI)) {
644      // Okay, one of the successors of this condbr is dead.  Convert it to a
645      // uncond br.
646      assert(ThisCases.size() == 1 && "Branch can only have one case!");
647      // Insert the new branch.
648      Instruction *NI = Builder.CreateBr(ThisDef);
649      (void) NI;
650
651      // Remove PHI node entries for the dead edge.
652      ThisCases[0].Dest->removePredecessor(TI->getParent());
653
654      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
655           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
656
657      EraseTerminatorInstAndDCECond(TI);
658      return true;
659    }
660
661    SwitchInst *SI = cast<SwitchInst>(TI);
662    // Okay, TI has cases that are statically dead, prune them away.
663    SmallPtrSet<Constant*, 16> DeadCases;
664    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665      DeadCases.insert(PredCases[i].Value);
666
667    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668                 << "Through successor TI: " << *TI);
669
670    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
671      --i;
672      if (DeadCases.count(i.getCaseValue())) {
673        i.getCaseSuccessor()->removePredecessor(TI->getParent());
674        SI->removeCase(i);
675      }
676    }
677
678    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
679    return true;
680  }
681
682  // Otherwise, TI's block must correspond to some matched value.  Find out
683  // which value (or set of values) this is.
684  ConstantInt *TIV = 0;
685  BasicBlock *TIBB = TI->getParent();
686  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
687    if (PredCases[i].Dest == TIBB) {
688      if (TIV != 0)
689        return false;  // Cannot handle multiple values coming to this block.
690      TIV = PredCases[i].Value;
691    }
692  assert(TIV && "No edge from pred to succ?");
693
694  // Okay, we found the one constant that our value can be if we get into TI's
695  // BB.  Find out which successor will unconditionally be branched to.
696  BasicBlock *TheRealDest = 0;
697  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
698    if (ThisCases[i].Value == TIV) {
699      TheRealDest = ThisCases[i].Dest;
700      break;
701    }
702
703  // If not handled by any explicit cases, it is handled by the default case.
704  if (TheRealDest == 0) TheRealDest = ThisDef;
705
706  // Remove PHI node entries for dead edges.
707  BasicBlock *CheckEdge = TheRealDest;
708  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
709    if (*SI != CheckEdge)
710      (*SI)->removePredecessor(TIBB);
711    else
712      CheckEdge = 0;
713
714  // Insert the new branch.
715  Instruction *NI = Builder.CreateBr(TheRealDest);
716  (void) NI;
717
718  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
719            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
720
721  EraseTerminatorInstAndDCECond(TI);
722  return true;
723}
724
725namespace {
726  /// ConstantIntOrdering - This class implements a stable ordering of constant
727  /// integers that does not depend on their address.  This is important for
728  /// applications that sort ConstantInt's to ensure uniqueness.
729  struct ConstantIntOrdering {
730    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
731      return LHS->getValue().ult(RHS->getValue());
732    }
733  };
734}
735
736static int ConstantIntSortPredicate(const void *P1, const void *P2) {
737  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
738  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
739  if (LHS->getValue().ult(RHS->getValue()))
740    return 1;
741  if (LHS->getValue() == RHS->getValue())
742    return 0;
743  return -1;
744}
745
746static inline bool HasBranchWeights(const Instruction* I) {
747  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
748  if (ProfMD && ProfMD->getOperand(0))
749    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
750      return MDS->getString().equals("branch_weights");
751
752  return false;
753}
754
755/// Tries to get a branch weight for the given instruction, returns NULL if it
756/// can't. Pos starts at 0.
757static ConstantInt* GetWeight(Instruction* I, int Pos) {
758  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
759  if (ProfMD && ProfMD->getOperand(0)) {
760    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) {
761      if (MDS->getString().equals("branch_weights")) {
762        assert(ProfMD->getNumOperands() >= 3);
763        return dyn_cast<ConstantInt>(ProfMD->getOperand(1 + Pos));
764      }
765    }
766  }
767
768  return 0;
769}
770
771/// Scale the given weights based on the successor TI's metadata. Scaling is
772/// done by multiplying every weight by the sum of the successor's weights.
773static void ScaleWeights(Instruction* STI, MutableArrayRef<uint64_t> Weights) {
774  // Sum the successor's weights
775  assert(HasBranchWeights(STI));
776  unsigned Scale = 0;
777  MDNode* ProfMD = STI->getMetadata(LLVMContext::MD_prof);
778  for (unsigned i = 1; i < ProfMD->getNumOperands(); ++i) {
779    ConstantInt* CI = dyn_cast<ConstantInt>(ProfMD->getOperand(i));
780    assert(CI);
781    Scale += CI->getValue().getZExtValue();
782  }
783
784  // Skip default, as it's replaced during the folding
785  for (unsigned i = 1; i < Weights.size(); ++i) {
786    Weights[i] *= Scale;
787  }
788}
789
790/// Sees if any of the weights are too big for a uint32_t, and halves all the
791/// weights if any are.
792static void FitWeights(MutableArrayRef<uint64_t> Weights) {
793  bool Halve = false;
794  for (unsigned i = 0; i < Weights.size(); ++i)
795    if (Weights[i] > UINT_MAX) {
796      Halve = true;
797      break;
798    }
799
800  if (! Halve)
801    return;
802
803  for (unsigned i = 0; i < Weights.size(); ++i)
804    Weights[i] /= 2;
805}
806
807/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
808/// equality comparison instruction (either a switch or a branch on "X == c").
809/// See if any of the predecessors of the terminator block are value comparisons
810/// on the same value.  If so, and if safe to do so, fold them together.
811bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
812                                                         IRBuilder<> &Builder) {
813  BasicBlock *BB = TI->getParent();
814  Value *CV = isValueEqualityComparison(TI);  // CondVal
815  assert(CV && "Not a comparison?");
816  bool Changed = false;
817
818  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
819  while (!Preds.empty()) {
820    BasicBlock *Pred = Preds.pop_back_val();
821
822    // See if the predecessor is a comparison with the same value.
823    TerminatorInst *PTI = Pred->getTerminator();
824    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
825
826    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
827      // Figure out which 'cases' to copy from SI to PSI.
828      std::vector<ValueEqualityComparisonCase> BBCases;
829      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
830
831      std::vector<ValueEqualityComparisonCase> PredCases;
832      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
833
834      // Based on whether the default edge from PTI goes to BB or not, fill in
835      // PredCases and PredDefault with the new switch cases we would like to
836      // build.
837      SmallVector<BasicBlock*, 8> NewSuccessors;
838
839      // Update the branch weight metadata along the way
840      SmallVector<uint64_t, 8> Weights;
841      uint64_t PredDefaultWeight = 0;
842      bool PredHasWeights = HasBranchWeights(PTI);
843      bool SuccHasWeights = HasBranchWeights(TI);
844
845      if (PredHasWeights) {
846        MDNode* MD = PTI->getMetadata(LLVMContext::MD_prof);
847        assert(MD);
848        for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
849          ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
850          assert(CI);
851          Weights.push_back(CI->getValue().getZExtValue());
852        }
853
854        // If the predecessor is a conditional eq, then swap the default weight
855        // to be the first entry.
856        if (BranchInst* BI = dyn_cast<BranchInst>(PTI)) {
857          assert(Weights.size() == 2);
858          ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
859
860          if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
861            std::swap(Weights.front(), Weights.back());
862          }
863        }
864
865        PredDefaultWeight = Weights.front();
866      } else if (SuccHasWeights) {
867        // If there are no predecessor weights but there are successor weights,
868        // populate Weights with 1, which will later be scaled to the sum of
869        // successor's weights
870        Weights.assign(1 + PredCases.size(), 1);
871        PredDefaultWeight = 1;
872      }
873
874      uint64_t SuccDefaultWeight = 0;
875      if (SuccHasWeights) {
876        int Index = 0;
877        if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
878          ICmpInst* ICI = dyn_cast<ICmpInst>(BI->getCondition());
879          assert(ICI);
880
881          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
882            Index = 1;
883        }
884
885        SuccDefaultWeight = GetWeight(TI, Index)->getValue().getZExtValue();
886      }
887
888      if (PredDefault == BB) {
889        // If this is the default destination from PTI, only the edges in TI
890        // that don't occur in PTI, or that branch to BB will be activated.
891        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
892        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
893          if (PredCases[i].Dest != BB)
894            PTIHandled.insert(PredCases[i].Value);
895          else {
896            // The default destination is BB, we don't need explicit targets.
897            std::swap(PredCases[i], PredCases.back());
898
899            if (PredHasWeights) {
900              std::swap(Weights[i+1], Weights.back());
901              Weights.pop_back();
902            }
903
904            PredCases.pop_back();
905            --i; --e;
906          }
907
908        // Reconstruct the new switch statement we will be building.
909        if (PredDefault != BBDefault) {
910          PredDefault->removePredecessor(Pred);
911          PredDefault = BBDefault;
912          NewSuccessors.push_back(BBDefault);
913        }
914
915        if (SuccHasWeights) {
916          ScaleWeights(TI, Weights);
917          Weights.front() *= SuccDefaultWeight;
918        } else if (PredHasWeights) {
919          Weights.front() /= (1 + BBCases.size());
920        }
921
922        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
923          if (!PTIHandled.count(BBCases[i].Value) &&
924              BBCases[i].Dest != BBDefault) {
925            PredCases.push_back(BBCases[i]);
926            NewSuccessors.push_back(BBCases[i].Dest);
927            if (SuccHasWeights) {
928              Weights.push_back(PredDefaultWeight *
929                                GetWeight(TI, i)->getValue().getZExtValue());
930            } else if (PredHasWeights) {
931              // Split the old default's weight amongst the children
932              Weights.push_back(PredDefaultWeight / (1 + BBCases.size()));
933            }
934          }
935
936      } else {
937        // FIXME: preserve branch weight metadata, similarly to the 'then'
938        // above. For now, drop it.
939        PredHasWeights = false;
940        SuccHasWeights = false;
941
942        // If this is not the default destination from PSI, only the edges
943        // in SI that occur in PSI with a destination of BB will be
944        // activated.
945        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
946        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
947          if (PredCases[i].Dest == BB) {
948            PTIHandled.insert(PredCases[i].Value);
949            std::swap(PredCases[i], PredCases.back());
950            PredCases.pop_back();
951            --i; --e;
952          }
953
954        // Okay, now we know which constants were sent to BB from the
955        // predecessor.  Figure out where they will all go now.
956        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
957          if (PTIHandled.count(BBCases[i].Value)) {
958            // If this is one we are capable of getting...
959            PredCases.push_back(BBCases[i]);
960            NewSuccessors.push_back(BBCases[i].Dest);
961            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
962          }
963
964        // If there are any constants vectored to BB that TI doesn't handle,
965        // they must go to the default destination of TI.
966        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
967                                    PTIHandled.begin(),
968               E = PTIHandled.end(); I != E; ++I) {
969          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
970          NewSuccessors.push_back(BBDefault);
971        }
972      }
973
974      // Okay, at this point, we know which new successor Pred will get.  Make
975      // sure we update the number of entries in the PHI nodes for these
976      // successors.
977      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
978        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
979
980      Builder.SetInsertPoint(PTI);
981      // Convert pointer to int before we switch.
982      if (CV->getType()->isPointerTy()) {
983        assert(TD && "Cannot switch on pointer without TargetData");
984        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
985                                    "magicptr");
986      }
987
988      // Now that the successors are updated, create the new Switch instruction.
989      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
990                                               PredCases.size());
991      NewSI->setDebugLoc(PTI->getDebugLoc());
992      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
993        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
994
995      if (PredHasWeights || SuccHasWeights) {
996        // Halve the weights if any of them cannot fit in an uint32_t
997        FitWeights(Weights);
998
999        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1000
1001        NewSI->setMetadata(LLVMContext::MD_prof,
1002                           MDBuilder(BB->getContext()).
1003                           createBranchWeights(MDWeights));
1004      }
1005
1006      EraseTerminatorInstAndDCECond(PTI);
1007
1008      // Okay, last check.  If BB is still a successor of PSI, then we must
1009      // have an infinite loop case.  If so, add an infinitely looping block
1010      // to handle the case to preserve the behavior of the code.
1011      BasicBlock *InfLoopBlock = 0;
1012      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1013        if (NewSI->getSuccessor(i) == BB) {
1014          if (InfLoopBlock == 0) {
1015            // Insert it at the end of the function, because it's either code,
1016            // or it won't matter if it's hot. :)
1017            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1018                                              "infloop", BB->getParent());
1019            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1020          }
1021          NewSI->setSuccessor(i, InfLoopBlock);
1022        }
1023
1024      Changed = true;
1025    }
1026  }
1027  return Changed;
1028}
1029
1030// isSafeToHoistInvoke - If we would need to insert a select that uses the
1031// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1032// would need to do this), we can't hoist the invoke, as there is nowhere
1033// to put the select in this case.
1034static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1035                                Instruction *I1, Instruction *I2) {
1036  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1037    PHINode *PN;
1038    for (BasicBlock::iterator BBI = SI->begin();
1039         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1040      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1041      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1042      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1043        return false;
1044      }
1045    }
1046  }
1047  return true;
1048}
1049
1050/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1051/// BB2, hoist any common code in the two blocks up into the branch block.  The
1052/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1053static bool HoistThenElseCodeToIf(BranchInst *BI) {
1054  // This does very trivial matching, with limited scanning, to find identical
1055  // instructions in the two blocks.  In particular, we don't want to get into
1056  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1057  // such, we currently just scan for obviously identical instructions in an
1058  // identical order.
1059  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1060  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1061
1062  BasicBlock::iterator BB1_Itr = BB1->begin();
1063  BasicBlock::iterator BB2_Itr = BB2->begin();
1064
1065  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1066  // Skip debug info if it is not identical.
1067  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1068  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1069  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1070    while (isa<DbgInfoIntrinsic>(I1))
1071      I1 = BB1_Itr++;
1072    while (isa<DbgInfoIntrinsic>(I2))
1073      I2 = BB2_Itr++;
1074  }
1075  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1076      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1077    return false;
1078
1079  // If we get here, we can hoist at least one instruction.
1080  BasicBlock *BIParent = BI->getParent();
1081
1082  do {
1083    // If we are hoisting the terminator instruction, don't move one (making a
1084    // broken BB), instead clone it, and remove BI.
1085    if (isa<TerminatorInst>(I1))
1086      goto HoistTerminator;
1087
1088    // For a normal instruction, we just move one to right before the branch,
1089    // then replace all uses of the other with the first.  Finally, we remove
1090    // the now redundant second instruction.
1091    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1092    if (!I2->use_empty())
1093      I2->replaceAllUsesWith(I1);
1094    I1->intersectOptionalDataWith(I2);
1095    I2->eraseFromParent();
1096
1097    I1 = BB1_Itr++;
1098    I2 = BB2_Itr++;
1099    // Skip debug info if it is not identical.
1100    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1101    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1102    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1103      while (isa<DbgInfoIntrinsic>(I1))
1104        I1 = BB1_Itr++;
1105      while (isa<DbgInfoIntrinsic>(I2))
1106        I2 = BB2_Itr++;
1107    }
1108  } while (I1->isIdenticalToWhenDefined(I2));
1109
1110  return true;
1111
1112HoistTerminator:
1113  // It may not be possible to hoist an invoke.
1114  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1115    return true;
1116
1117  // Okay, it is safe to hoist the terminator.
1118  Instruction *NT = I1->clone();
1119  BIParent->getInstList().insert(BI, NT);
1120  if (!NT->getType()->isVoidTy()) {
1121    I1->replaceAllUsesWith(NT);
1122    I2->replaceAllUsesWith(NT);
1123    NT->takeName(I1);
1124  }
1125
1126  IRBuilder<true, NoFolder> Builder(NT);
1127  // Hoisting one of the terminators from our successor is a great thing.
1128  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1129  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1130  // nodes, so we insert select instruction to compute the final result.
1131  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1132  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1133    PHINode *PN;
1134    for (BasicBlock::iterator BBI = SI->begin();
1135         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1136      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1137      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1138      if (BB1V == BB2V) continue;
1139
1140      // These values do not agree.  Insert a select instruction before NT
1141      // that determines the right value.
1142      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1143      if (SI == 0)
1144        SI = cast<SelectInst>
1145          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1146                                BB1V->getName()+"."+BB2V->getName()));
1147
1148      // Make the PHI node use the select for all incoming values for BB1/BB2
1149      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1150        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1151          PN->setIncomingValue(i, SI);
1152    }
1153  }
1154
1155  // Update any PHI nodes in our new successors.
1156  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1157    AddPredecessorToBlock(*SI, BIParent, BB1);
1158
1159  EraseTerminatorInstAndDCECond(BI);
1160  return true;
1161}
1162
1163/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1164/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1165/// (for now, restricted to a single instruction that's side effect free) from
1166/// the BB1 into the branch block to speculatively execute it.
1167///
1168/// Turn
1169/// BB:
1170///     %t1 = icmp
1171///     br i1 %t1, label %BB1, label %BB2
1172/// BB1:
1173///     %t3 = add %t2, c
1174///     br label BB2
1175/// BB2:
1176/// =>
1177/// BB:
1178///     %t1 = icmp
1179///     %t4 = add %t2, c
1180///     %t3 = select i1 %t1, %t2, %t3
1181static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1182  // Only speculatively execution a single instruction (not counting the
1183  // terminator) for now.
1184  Instruction *HInst = NULL;
1185  Instruction *Term = BB1->getTerminator();
1186  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1187       BBI != BBE; ++BBI) {
1188    Instruction *I = BBI;
1189    // Skip debug info.
1190    if (isa<DbgInfoIntrinsic>(I)) continue;
1191    if (I == Term) break;
1192
1193    if (HInst)
1194      return false;
1195    HInst = I;
1196  }
1197
1198  BasicBlock *BIParent = BI->getParent();
1199
1200  // Check the instruction to be hoisted, if there is one.
1201  if (HInst) {
1202    // Don't hoist the instruction if it's unsafe or expensive.
1203    if (!isSafeToSpeculativelyExecute(HInst))
1204      return false;
1205    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1206      return false;
1207
1208    // Do not hoist the instruction if any of its operands are defined but not
1209    // used in this BB. The transformation will prevent the operand from
1210    // being sunk into the use block.
1211    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1212         i != e; ++i) {
1213      Instruction *OpI = dyn_cast<Instruction>(*i);
1214      if (OpI && OpI->getParent() == BIParent &&
1215          !OpI->mayHaveSideEffects() &&
1216          !OpI->isUsedInBasicBlock(BIParent))
1217        return false;
1218    }
1219  }
1220
1221  // Be conservative for now. FP select instruction can often be expensive.
1222  Value *BrCond = BI->getCondition();
1223  if (isa<FCmpInst>(BrCond))
1224    return false;
1225
1226  // If BB1 is actually on the false edge of the conditional branch, remember
1227  // to swap the select operands later.
1228  bool Invert = false;
1229  if (BB1 != BI->getSuccessor(0)) {
1230    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1231    Invert = true;
1232  }
1233
1234  // Collect interesting PHIs, and scan for hazards.
1235  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1236  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1237  for (BasicBlock::iterator I = BB2->begin();
1238       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1239    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1240    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1241
1242    // Skip PHIs which are trivial.
1243    if (BB1V == BIParentV)
1244      continue;
1245
1246    // Check for saftey.
1247    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1248      // An unfolded ConstantExpr could end up getting expanded into
1249      // Instructions. Don't speculate this and another instruction at
1250      // the same time.
1251      if (HInst)
1252        return false;
1253      if (!isSafeToSpeculativelyExecute(CE))
1254        return false;
1255      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1256        return false;
1257    }
1258
1259    // Ok, we may insert a select for this PHI.
1260    PHIs.insert(std::make_pair(BB1V, BIParentV));
1261  }
1262
1263  // If there are no PHIs to process, bail early. This helps ensure idempotence
1264  // as well.
1265  if (PHIs.empty())
1266    return false;
1267
1268  // If we get here, we can hoist the instruction and if-convert.
1269  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1270
1271  // Hoist the instruction.
1272  if (HInst)
1273    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1274
1275  // Insert selects and rewrite the PHI operands.
1276  IRBuilder<true, NoFolder> Builder(BI);
1277  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1278    Value *TrueV = PHIs[i].first;
1279    Value *FalseV = PHIs[i].second;
1280
1281    // Create a select whose true value is the speculatively executed value and
1282    // false value is the previously determined FalseV.
1283    SelectInst *SI;
1284    if (Invert)
1285      SI = cast<SelectInst>
1286        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1287                              FalseV->getName() + "." + TrueV->getName()));
1288    else
1289      SI = cast<SelectInst>
1290        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1291                              TrueV->getName() + "." + FalseV->getName()));
1292
1293    // Make the PHI node use the select for all incoming values for "then" and
1294    // "if" blocks.
1295    for (BasicBlock::iterator I = BB2->begin();
1296         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1297      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1298      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1299      Value *BB1V = PN->getIncomingValue(BB1I);
1300      Value *BIParentV = PN->getIncomingValue(BIParentI);
1301      if (TrueV == BB1V && FalseV == BIParentV) {
1302        PN->setIncomingValue(BB1I, SI);
1303        PN->setIncomingValue(BIParentI, SI);
1304      }
1305    }
1306  }
1307
1308  ++NumSpeculations;
1309  return true;
1310}
1311
1312/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1313/// across this block.
1314static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1315  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1316  unsigned Size = 0;
1317
1318  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1319    if (isa<DbgInfoIntrinsic>(BBI))
1320      continue;
1321    if (Size > 10) return false;  // Don't clone large BB's.
1322    ++Size;
1323
1324    // We can only support instructions that do not define values that are
1325    // live outside of the current basic block.
1326    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1327         UI != E; ++UI) {
1328      Instruction *U = cast<Instruction>(*UI);
1329      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1330    }
1331
1332    // Looks ok, continue checking.
1333  }
1334
1335  return true;
1336}
1337
1338/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1339/// that is defined in the same block as the branch and if any PHI entries are
1340/// constants, thread edges corresponding to that entry to be branches to their
1341/// ultimate destination.
1342static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1343  BasicBlock *BB = BI->getParent();
1344  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1345  // NOTE: we currently cannot transform this case if the PHI node is used
1346  // outside of the block.
1347  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1348    return false;
1349
1350  // Degenerate case of a single entry PHI.
1351  if (PN->getNumIncomingValues() == 1) {
1352    FoldSingleEntryPHINodes(PN->getParent());
1353    return true;
1354  }
1355
1356  // Now we know that this block has multiple preds and two succs.
1357  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1358
1359  // Okay, this is a simple enough basic block.  See if any phi values are
1360  // constants.
1361  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1362    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1363    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1364
1365    // Okay, we now know that all edges from PredBB should be revectored to
1366    // branch to RealDest.
1367    BasicBlock *PredBB = PN->getIncomingBlock(i);
1368    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1369
1370    if (RealDest == BB) continue;  // Skip self loops.
1371    // Skip if the predecessor's terminator is an indirect branch.
1372    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1373
1374    // The dest block might have PHI nodes, other predecessors and other
1375    // difficult cases.  Instead of being smart about this, just insert a new
1376    // block that jumps to the destination block, effectively splitting
1377    // the edge we are about to create.
1378    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1379                                            RealDest->getName()+".critedge",
1380                                            RealDest->getParent(), RealDest);
1381    BranchInst::Create(RealDest, EdgeBB);
1382
1383    // Update PHI nodes.
1384    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1385
1386    // BB may have instructions that are being threaded over.  Clone these
1387    // instructions into EdgeBB.  We know that there will be no uses of the
1388    // cloned instructions outside of EdgeBB.
1389    BasicBlock::iterator InsertPt = EdgeBB->begin();
1390    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1391    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1392      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1393        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1394        continue;
1395      }
1396      // Clone the instruction.
1397      Instruction *N = BBI->clone();
1398      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1399
1400      // Update operands due to translation.
1401      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1402           i != e; ++i) {
1403        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1404        if (PI != TranslateMap.end())
1405          *i = PI->second;
1406      }
1407
1408      // Check for trivial simplification.
1409      if (Value *V = SimplifyInstruction(N, TD)) {
1410        TranslateMap[BBI] = V;
1411        delete N;   // Instruction folded away, don't need actual inst
1412      } else {
1413        // Insert the new instruction into its new home.
1414        EdgeBB->getInstList().insert(InsertPt, N);
1415        if (!BBI->use_empty())
1416          TranslateMap[BBI] = N;
1417      }
1418    }
1419
1420    // Loop over all of the edges from PredBB to BB, changing them to branch
1421    // to EdgeBB instead.
1422    TerminatorInst *PredBBTI = PredBB->getTerminator();
1423    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1424      if (PredBBTI->getSuccessor(i) == BB) {
1425        BB->removePredecessor(PredBB);
1426        PredBBTI->setSuccessor(i, EdgeBB);
1427      }
1428
1429    // Recurse, simplifying any other constants.
1430    return FoldCondBranchOnPHI(BI, TD) | true;
1431  }
1432
1433  return false;
1434}
1435
1436/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1437/// PHI node, see if we can eliminate it.
1438static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1439  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1440  // statement", which has a very simple dominance structure.  Basically, we
1441  // are trying to find the condition that is being branched on, which
1442  // subsequently causes this merge to happen.  We really want control
1443  // dependence information for this check, but simplifycfg can't keep it up
1444  // to date, and this catches most of the cases we care about anyway.
1445  BasicBlock *BB = PN->getParent();
1446  BasicBlock *IfTrue, *IfFalse;
1447  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1448  if (!IfCond ||
1449      // Don't bother if the branch will be constant folded trivially.
1450      isa<ConstantInt>(IfCond))
1451    return false;
1452
1453  // Okay, we found that we can merge this two-entry phi node into a select.
1454  // Doing so would require us to fold *all* two entry phi nodes in this block.
1455  // At some point this becomes non-profitable (particularly if the target
1456  // doesn't support cmov's).  Only do this transformation if there are two or
1457  // fewer PHI nodes in this block.
1458  unsigned NumPhis = 0;
1459  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1460    if (NumPhis > 2)
1461      return false;
1462
1463  // Loop over the PHI's seeing if we can promote them all to select
1464  // instructions.  While we are at it, keep track of the instructions
1465  // that need to be moved to the dominating block.
1466  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1467  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1468           MaxCostVal1 = PHINodeFoldingThreshold;
1469
1470  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1471    PHINode *PN = cast<PHINode>(II++);
1472    if (Value *V = SimplifyInstruction(PN, TD)) {
1473      PN->replaceAllUsesWith(V);
1474      PN->eraseFromParent();
1475      continue;
1476    }
1477
1478    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1479                             MaxCostVal0) ||
1480        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1481                             MaxCostVal1))
1482      return false;
1483  }
1484
1485  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1486  // we ran out of PHIs then we simplified them all.
1487  PN = dyn_cast<PHINode>(BB->begin());
1488  if (PN == 0) return true;
1489
1490  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1491  // often be turned into switches and other things.
1492  if (PN->getType()->isIntegerTy(1) &&
1493      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1494       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1495       isa<BinaryOperator>(IfCond)))
1496    return false;
1497
1498  // If we all PHI nodes are promotable, check to make sure that all
1499  // instructions in the predecessor blocks can be promoted as well.  If
1500  // not, we won't be able to get rid of the control flow, so it's not
1501  // worth promoting to select instructions.
1502  BasicBlock *DomBlock = 0;
1503  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1504  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1505  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1506    IfBlock1 = 0;
1507  } else {
1508    DomBlock = *pred_begin(IfBlock1);
1509    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1510      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1511        // This is not an aggressive instruction that we can promote.
1512        // Because of this, we won't be able to get rid of the control
1513        // flow, so the xform is not worth it.
1514        return false;
1515      }
1516  }
1517
1518  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1519    IfBlock2 = 0;
1520  } else {
1521    DomBlock = *pred_begin(IfBlock2);
1522    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1523      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1524        // This is not an aggressive instruction that we can promote.
1525        // Because of this, we won't be able to get rid of the control
1526        // flow, so the xform is not worth it.
1527        return false;
1528      }
1529  }
1530
1531  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1532               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1533
1534  // If we can still promote the PHI nodes after this gauntlet of tests,
1535  // do all of the PHI's now.
1536  Instruction *InsertPt = DomBlock->getTerminator();
1537  IRBuilder<true, NoFolder> Builder(InsertPt);
1538
1539  // Move all 'aggressive' instructions, which are defined in the
1540  // conditional parts of the if's up to the dominating block.
1541  if (IfBlock1)
1542    DomBlock->getInstList().splice(InsertPt,
1543                                   IfBlock1->getInstList(), IfBlock1->begin(),
1544                                   IfBlock1->getTerminator());
1545  if (IfBlock2)
1546    DomBlock->getInstList().splice(InsertPt,
1547                                   IfBlock2->getInstList(), IfBlock2->begin(),
1548                                   IfBlock2->getTerminator());
1549
1550  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1551    // Change the PHI node into a select instruction.
1552    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1553    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1554
1555    SelectInst *NV =
1556      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1557    PN->replaceAllUsesWith(NV);
1558    NV->takeName(PN);
1559    PN->eraseFromParent();
1560  }
1561
1562  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1563  // has been flattened.  Change DomBlock to jump directly to our new block to
1564  // avoid other simplifycfg's kicking in on the diamond.
1565  TerminatorInst *OldTI = DomBlock->getTerminator();
1566  Builder.SetInsertPoint(OldTI);
1567  Builder.CreateBr(BB);
1568  OldTI->eraseFromParent();
1569  return true;
1570}
1571
1572/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1573/// to two returning blocks, try to merge them together into one return,
1574/// introducing a select if the return values disagree.
1575static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1576                                           IRBuilder<> &Builder) {
1577  assert(BI->isConditional() && "Must be a conditional branch");
1578  BasicBlock *TrueSucc = BI->getSuccessor(0);
1579  BasicBlock *FalseSucc = BI->getSuccessor(1);
1580  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1581  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1582
1583  // Check to ensure both blocks are empty (just a return) or optionally empty
1584  // with PHI nodes.  If there are other instructions, merging would cause extra
1585  // computation on one path or the other.
1586  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1587    return false;
1588  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1589    return false;
1590
1591  Builder.SetInsertPoint(BI);
1592  // Okay, we found a branch that is going to two return nodes.  If
1593  // there is no return value for this function, just change the
1594  // branch into a return.
1595  if (FalseRet->getNumOperands() == 0) {
1596    TrueSucc->removePredecessor(BI->getParent());
1597    FalseSucc->removePredecessor(BI->getParent());
1598    Builder.CreateRetVoid();
1599    EraseTerminatorInstAndDCECond(BI);
1600    return true;
1601  }
1602
1603  // Otherwise, figure out what the true and false return values are
1604  // so we can insert a new select instruction.
1605  Value *TrueValue = TrueRet->getReturnValue();
1606  Value *FalseValue = FalseRet->getReturnValue();
1607
1608  // Unwrap any PHI nodes in the return blocks.
1609  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1610    if (TVPN->getParent() == TrueSucc)
1611      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1612  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1613    if (FVPN->getParent() == FalseSucc)
1614      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1615
1616  // In order for this transformation to be safe, we must be able to
1617  // unconditionally execute both operands to the return.  This is
1618  // normally the case, but we could have a potentially-trapping
1619  // constant expression that prevents this transformation from being
1620  // safe.
1621  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1622    if (TCV->canTrap())
1623      return false;
1624  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1625    if (FCV->canTrap())
1626      return false;
1627
1628  // Okay, we collected all the mapped values and checked them for sanity, and
1629  // defined to really do this transformation.  First, update the CFG.
1630  TrueSucc->removePredecessor(BI->getParent());
1631  FalseSucc->removePredecessor(BI->getParent());
1632
1633  // Insert select instructions where needed.
1634  Value *BrCond = BI->getCondition();
1635  if (TrueValue) {
1636    // Insert a select if the results differ.
1637    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1638    } else if (isa<UndefValue>(TrueValue)) {
1639      TrueValue = FalseValue;
1640    } else {
1641      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1642                                       FalseValue, "retval");
1643    }
1644  }
1645
1646  Value *RI = !TrueValue ?
1647    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1648
1649  (void) RI;
1650
1651  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1652               << "\n  " << *BI << "NewRet = " << *RI
1653               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1654
1655  EraseTerminatorInstAndDCECond(BI);
1656
1657  return true;
1658}
1659
1660/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1661/// probabilities of the branch taking each edge. Fills in the two APInt
1662/// parameters and return true, or returns false if no or invalid metadata was
1663/// found.
1664static bool ExtractBranchMetadata(BranchInst *BI,
1665                                  APInt &ProbTrue, APInt &ProbFalse) {
1666  assert(BI->isConditional() &&
1667         "Looking for probabilities on unconditional branch?");
1668  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1669  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1670  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1671  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1672  if (!CITrue || !CIFalse) return false;
1673  ProbTrue = CITrue->getValue();
1674  ProbFalse = CIFalse->getValue();
1675  assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1676         "Branch probability metadata must be 32-bit integers");
1677  return true;
1678}
1679
1680/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1681/// the event of overflow, logically-shifts all four inputs right until the
1682/// multiply fits.
1683static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1684                                      unsigned &BitsLost) {
1685  BitsLost = 0;
1686  bool Overflow = false;
1687  APInt Result = A.umul_ov(B, Overflow);
1688  if (Overflow) {
1689    APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1690    do {
1691      B = B.lshr(1);
1692      ++BitsLost;
1693    } while (B.ugt(MaxB));
1694    A = A.lshr(BitsLost);
1695    C = C.lshr(BitsLost);
1696    D = D.lshr(BitsLost);
1697    Result = A * B;
1698  }
1699  return Result;
1700}
1701
1702/// checkCSEInPredecessor - Return true if the given instruction is available
1703/// in its predecessor block. If yes, the instruction will be removed.
1704///
1705static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1706  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1707    return false;
1708  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1709    Instruction *PBI = &*I;
1710    // Check whether Inst and PBI generate the same value.
1711    if (Inst->isIdenticalTo(PBI)) {
1712      Inst->replaceAllUsesWith(PBI);
1713      Inst->eraseFromParent();
1714      return true;
1715    }
1716  }
1717  return false;
1718}
1719
1720/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1721/// predecessor branches to us and one of our successors, fold the block into
1722/// the predecessor and use logical operations to pick the right destination.
1723bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1724  BasicBlock *BB = BI->getParent();
1725
1726  Instruction *Cond = 0;
1727  if (BI->isConditional())
1728    Cond = dyn_cast<Instruction>(BI->getCondition());
1729  else {
1730    // For unconditional branch, check for a simple CFG pattern, where
1731    // BB has a single predecessor and BB's successor is also its predecessor's
1732    // successor. If such pattern exisits, check for CSE between BB and its
1733    // predecessor.
1734    if (BasicBlock *PB = BB->getSinglePredecessor())
1735      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1736        if (PBI->isConditional() &&
1737            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1738             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1739          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1740               I != E; ) {
1741            Instruction *Curr = I++;
1742            if (isa<CmpInst>(Curr)) {
1743              Cond = Curr;
1744              break;
1745            }
1746            // Quit if we can't remove this instruction.
1747            if (!checkCSEInPredecessor(Curr, PB))
1748              return false;
1749          }
1750        }
1751
1752    if (Cond == 0)
1753      return false;
1754  }
1755
1756  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1757    Cond->getParent() != BB || !Cond->hasOneUse())
1758  return false;
1759
1760  // Only allow this if the condition is a simple instruction that can be
1761  // executed unconditionally.  It must be in the same block as the branch, and
1762  // must be at the front of the block.
1763  BasicBlock::iterator FrontIt = BB->front();
1764
1765  // Ignore dbg intrinsics.
1766  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1767
1768  // Allow a single instruction to be hoisted in addition to the compare
1769  // that feeds the branch.  We later ensure that any values that _it_ uses
1770  // were also live in the predecessor, so that we don't unnecessarily create
1771  // register pressure or inhibit out-of-order execution.
1772  Instruction *BonusInst = 0;
1773  if (&*FrontIt != Cond &&
1774      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1775      isSafeToSpeculativelyExecute(FrontIt)) {
1776    BonusInst = &*FrontIt;
1777    ++FrontIt;
1778
1779    // Ignore dbg intrinsics.
1780    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1781  }
1782
1783  // Only a single bonus inst is allowed.
1784  if (&*FrontIt != Cond)
1785    return false;
1786
1787  // Make sure the instruction after the condition is the cond branch.
1788  BasicBlock::iterator CondIt = Cond; ++CondIt;
1789
1790  // Ingore dbg intrinsics.
1791  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1792
1793  if (&*CondIt != BI)
1794    return false;
1795
1796  // Cond is known to be a compare or binary operator.  Check to make sure that
1797  // neither operand is a potentially-trapping constant expression.
1798  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1799    if (CE->canTrap())
1800      return false;
1801  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1802    if (CE->canTrap())
1803      return false;
1804
1805  // Finally, don't infinitely unroll conditional loops.
1806  BasicBlock *TrueDest  = BI->getSuccessor(0);
1807  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1808  if (TrueDest == BB || FalseDest == BB)
1809    return false;
1810
1811  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1812    BasicBlock *PredBlock = *PI;
1813    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1814
1815    // Check that we have two conditional branches.  If there is a PHI node in
1816    // the common successor, verify that the same value flows in from both
1817    // blocks.
1818    SmallVector<PHINode*, 4> PHIs;
1819    if (PBI == 0 || PBI->isUnconditional() ||
1820        (BI->isConditional() &&
1821         !SafeToMergeTerminators(BI, PBI)) ||
1822        (!BI->isConditional() &&
1823         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1824      continue;
1825
1826    // Determine if the two branches share a common destination.
1827    Instruction::BinaryOps Opc;
1828    bool InvertPredCond = false;
1829
1830    if (BI->isConditional()) {
1831      if (PBI->getSuccessor(0) == TrueDest)
1832        Opc = Instruction::Or;
1833      else if (PBI->getSuccessor(1) == FalseDest)
1834        Opc = Instruction::And;
1835      else if (PBI->getSuccessor(0) == FalseDest)
1836        Opc = Instruction::And, InvertPredCond = true;
1837      else if (PBI->getSuccessor(1) == TrueDest)
1838        Opc = Instruction::Or, InvertPredCond = true;
1839      else
1840        continue;
1841    } else {
1842      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1843        continue;
1844    }
1845
1846    // Ensure that any values used in the bonus instruction are also used
1847    // by the terminator of the predecessor.  This means that those values
1848    // must already have been resolved, so we won't be inhibiting the
1849    // out-of-order core by speculating them earlier.
1850    if (BonusInst) {
1851      // Collect the values used by the bonus inst
1852      SmallPtrSet<Value*, 4> UsedValues;
1853      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1854           OE = BonusInst->op_end(); OI != OE; ++OI) {
1855        Value *V = *OI;
1856        if (!isa<Constant>(V))
1857          UsedValues.insert(V);
1858      }
1859
1860      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1861      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1862
1863      // Walk up to four levels back up the use-def chain of the predecessor's
1864      // terminator to see if all those values were used.  The choice of four
1865      // levels is arbitrary, to provide a compile-time-cost bound.
1866      while (!Worklist.empty()) {
1867        std::pair<Value*, unsigned> Pair = Worklist.back();
1868        Worklist.pop_back();
1869
1870        if (Pair.second >= 4) continue;
1871        UsedValues.erase(Pair.first);
1872        if (UsedValues.empty()) break;
1873
1874        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1875          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1876               OI != OE; ++OI)
1877            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1878        }
1879      }
1880
1881      if (!UsedValues.empty()) return false;
1882    }
1883
1884    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1885    IRBuilder<> Builder(PBI);
1886
1887    // If we need to invert the condition in the pred block to match, do so now.
1888    if (InvertPredCond) {
1889      Value *NewCond = PBI->getCondition();
1890
1891      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1892        CmpInst *CI = cast<CmpInst>(NewCond);
1893        CI->setPredicate(CI->getInversePredicate());
1894      } else {
1895        NewCond = Builder.CreateNot(NewCond,
1896                                    PBI->getCondition()->getName()+".not");
1897      }
1898
1899      PBI->setCondition(NewCond);
1900      PBI->swapSuccessors();
1901    }
1902
1903    // If we have a bonus inst, clone it into the predecessor block.
1904    Instruction *NewBonus = 0;
1905    if (BonusInst) {
1906      NewBonus = BonusInst->clone();
1907      PredBlock->getInstList().insert(PBI, NewBonus);
1908      NewBonus->takeName(BonusInst);
1909      BonusInst->setName(BonusInst->getName()+".old");
1910    }
1911
1912    // Clone Cond into the predecessor basic block, and or/and the
1913    // two conditions together.
1914    Instruction *New = Cond->clone();
1915    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1916    PredBlock->getInstList().insert(PBI, New);
1917    New->takeName(Cond);
1918    Cond->setName(New->getName()+".old");
1919
1920    if (BI->isConditional()) {
1921      Instruction *NewCond =
1922        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1923                                            New, "or.cond"));
1924      PBI->setCondition(NewCond);
1925
1926      if (PBI->getSuccessor(0) == BB) {
1927        AddPredecessorToBlock(TrueDest, PredBlock, BB);
1928        PBI->setSuccessor(0, TrueDest);
1929      }
1930      if (PBI->getSuccessor(1) == BB) {
1931        AddPredecessorToBlock(FalseDest, PredBlock, BB);
1932        PBI->setSuccessor(1, FalseDest);
1933      }
1934    } else {
1935      // Update PHI nodes in the common successors.
1936      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1937        ConstantInt *PBI_C = cast<ConstantInt>(
1938          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1939        assert(PBI_C->getType()->isIntegerTy(1));
1940        Instruction *MergedCond = 0;
1941        if (PBI->getSuccessor(0) == TrueDest) {
1942          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1943          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1944          //       is false: !PBI_Cond and BI_Value
1945          Instruction *NotCond =
1946            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1947                                "not.cond"));
1948          MergedCond =
1949            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1950                                NotCond, New,
1951                                "and.cond"));
1952          if (PBI_C->isOne())
1953            MergedCond =
1954              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1955                                  PBI->getCondition(), MergedCond,
1956                                  "or.cond"));
1957        } else {
1958          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1959          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1960          //       is false: PBI_Cond and BI_Value
1961          MergedCond =
1962            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1963                                PBI->getCondition(), New,
1964                                "and.cond"));
1965          if (PBI_C->isOne()) {
1966            Instruction *NotCond =
1967              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1968                                  "not.cond"));
1969            MergedCond =
1970              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1971                                  NotCond, MergedCond,
1972                                  "or.cond"));
1973          }
1974        }
1975        // Update PHI Node.
1976        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1977                                  MergedCond);
1978      }
1979      // Change PBI from Conditional to Unconditional.
1980      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1981      EraseTerminatorInstAndDCECond(PBI);
1982      PBI = New_PBI;
1983    }
1984
1985    // TODO: If BB is reachable from all paths through PredBlock, then we
1986    // could replace PBI's branch probabilities with BI's.
1987
1988    // Merge probability data into PredBlock's branch.
1989    APInt A, B, C, D;
1990    if (PBI->isConditional() && BI->isConditional() &&
1991        ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1992      // Given IR which does:
1993      //   bbA:
1994      //     br i1 %x, label %bbB, label %bbC
1995      //   bbB:
1996      //     br i1 %y, label %bbD, label %bbC
1997      // Let's call the probability that we take the edge from %bbA to %bbB
1998      // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1999      // %bbC probability 'd'.
2000      //
2001      // We transform the IR into:
2002      //   bbA:
2003      //     br i1 %z, label %bbD, label %bbC
2004      // where the probability of going to %bbD is (a*c) and going to bbC is
2005      // (b+a*d).
2006      //
2007      // Probabilities aren't stored as ratios directly. Using branch weights,
2008      // we get:
2009      // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
2010
2011      // In the event of overflow, we want to drop the LSB of the input
2012      // probabilities.
2013      unsigned BitsLost;
2014
2015      // Ignore overflow result on ProbTrue.
2016      APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
2017
2018      APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
2019      if (BitsLost) {
2020        ProbTrue = ProbTrue.lshr(BitsLost*2);
2021      }
2022
2023      APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
2024      if (BitsLost) {
2025        ProbTrue = ProbTrue.lshr(BitsLost*2);
2026        Tmp1 = Tmp1.lshr(BitsLost*2);
2027      }
2028
2029      APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
2030      if (BitsLost) {
2031        ProbTrue = ProbTrue.lshr(BitsLost*2);
2032        Tmp1 = Tmp1.lshr(BitsLost*2);
2033        Tmp2 = Tmp2.lshr(BitsLost*2);
2034      }
2035
2036      bool Overflow1 = false, Overflow2 = false;
2037      APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
2038      APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
2039
2040      if (Overflow1 || Overflow2) {
2041        ProbTrue = ProbTrue.lshr(1);
2042        Tmp1 = Tmp1.lshr(1);
2043        Tmp2 = Tmp2.lshr(1);
2044        Tmp3 = Tmp3.lshr(1);
2045        Tmp4 = Tmp2 + Tmp3;
2046        ProbFalse = Tmp4 + Tmp1;
2047      }
2048
2049      // The sum of branch weights must fit in 32-bits.
2050      if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
2051        ProbTrue = ProbTrue.lshr(1);
2052        ProbFalse = ProbFalse.lshr(1);
2053      }
2054
2055      if (ProbTrue != ProbFalse) {
2056        // Normalize the result.
2057        APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
2058        ProbTrue = ProbTrue.udiv(GCD);
2059        ProbFalse = ProbFalse.udiv(GCD);
2060
2061        MDBuilder MDB(BI->getContext());
2062        MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
2063                                            ProbFalse.getZExtValue());
2064        PBI->setMetadata(LLVMContext::MD_prof, N);
2065      } else {
2066        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2067      }
2068    } else {
2069      PBI->setMetadata(LLVMContext::MD_prof, NULL);
2070    }
2071
2072    // Copy any debug value intrinsics into the end of PredBlock.
2073    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2074      if (isa<DbgInfoIntrinsic>(*I))
2075        I->clone()->insertBefore(PBI);
2076
2077    return true;
2078  }
2079  return false;
2080}
2081
2082/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2083/// predecessor of another block, this function tries to simplify it.  We know
2084/// that PBI and BI are both conditional branches, and BI is in one of the
2085/// successor blocks of PBI - PBI branches to BI.
2086static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2087  assert(PBI->isConditional() && BI->isConditional());
2088  BasicBlock *BB = BI->getParent();
2089
2090  // If this block ends with a branch instruction, and if there is a
2091  // predecessor that ends on a branch of the same condition, make
2092  // this conditional branch redundant.
2093  if (PBI->getCondition() == BI->getCondition() &&
2094      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2095    // Okay, the outcome of this conditional branch is statically
2096    // knowable.  If this block had a single pred, handle specially.
2097    if (BB->getSinglePredecessor()) {
2098      // Turn this into a branch on constant.
2099      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2100      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2101                                        CondIsTrue));
2102      return true;  // Nuke the branch on constant.
2103    }
2104
2105    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2106    // in the constant and simplify the block result.  Subsequent passes of
2107    // simplifycfg will thread the block.
2108    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2109      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2110      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2111                                       std::distance(PB, PE),
2112                                       BI->getCondition()->getName() + ".pr",
2113                                       BB->begin());
2114      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2115      // predecessor, compute the PHI'd conditional value for all of the preds.
2116      // Any predecessor where the condition is not computable we keep symbolic.
2117      for (pred_iterator PI = PB; PI != PE; ++PI) {
2118        BasicBlock *P = *PI;
2119        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2120            PBI != BI && PBI->isConditional() &&
2121            PBI->getCondition() == BI->getCondition() &&
2122            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2123          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2124          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2125                                              CondIsTrue), P);
2126        } else {
2127          NewPN->addIncoming(BI->getCondition(), P);
2128        }
2129      }
2130
2131      BI->setCondition(NewPN);
2132      return true;
2133    }
2134  }
2135
2136  // If this is a conditional branch in an empty block, and if any
2137  // predecessors is a conditional branch to one of our destinations,
2138  // fold the conditions into logical ops and one cond br.
2139  BasicBlock::iterator BBI = BB->begin();
2140  // Ignore dbg intrinsics.
2141  while (isa<DbgInfoIntrinsic>(BBI))
2142    ++BBI;
2143  if (&*BBI != BI)
2144    return false;
2145
2146
2147  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2148    if (CE->canTrap())
2149      return false;
2150
2151  int PBIOp, BIOp;
2152  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2153    PBIOp = BIOp = 0;
2154  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2155    PBIOp = 0, BIOp = 1;
2156  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2157    PBIOp = 1, BIOp = 0;
2158  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2159    PBIOp = BIOp = 1;
2160  else
2161    return false;
2162
2163  // Check to make sure that the other destination of this branch
2164  // isn't BB itself.  If so, this is an infinite loop that will
2165  // keep getting unwound.
2166  if (PBI->getSuccessor(PBIOp) == BB)
2167    return false;
2168
2169  // Do not perform this transformation if it would require
2170  // insertion of a large number of select instructions. For targets
2171  // without predication/cmovs, this is a big pessimization.
2172  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2173
2174  unsigned NumPhis = 0;
2175  for (BasicBlock::iterator II = CommonDest->begin();
2176       isa<PHINode>(II); ++II, ++NumPhis)
2177    if (NumPhis > 2) // Disable this xform.
2178      return false;
2179
2180  // Finally, if everything is ok, fold the branches to logical ops.
2181  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2182
2183  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2184               << "AND: " << *BI->getParent());
2185
2186
2187  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2188  // branch in it, where one edge (OtherDest) goes back to itself but the other
2189  // exits.  We don't *know* that the program avoids the infinite loop
2190  // (even though that seems likely).  If we do this xform naively, we'll end up
2191  // recursively unpeeling the loop.  Since we know that (after the xform is
2192  // done) that the block *is* infinite if reached, we just make it an obviously
2193  // infinite loop with no cond branch.
2194  if (OtherDest == BB) {
2195    // Insert it at the end of the function, because it's either code,
2196    // or it won't matter if it's hot. :)
2197    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2198                                                  "infloop", BB->getParent());
2199    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2200    OtherDest = InfLoopBlock;
2201  }
2202
2203  DEBUG(dbgs() << *PBI->getParent()->getParent());
2204
2205  // BI may have other predecessors.  Because of this, we leave
2206  // it alone, but modify PBI.
2207
2208  // Make sure we get to CommonDest on True&True directions.
2209  Value *PBICond = PBI->getCondition();
2210  IRBuilder<true, NoFolder> Builder(PBI);
2211  if (PBIOp)
2212    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2213
2214  Value *BICond = BI->getCondition();
2215  if (BIOp)
2216    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2217
2218  // Merge the conditions.
2219  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2220
2221  // Modify PBI to branch on the new condition to the new dests.
2222  PBI->setCondition(Cond);
2223  PBI->setSuccessor(0, CommonDest);
2224  PBI->setSuccessor(1, OtherDest);
2225
2226  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2227  // block that are identical to the entries for BI's block.
2228  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2229
2230  // We know that the CommonDest already had an edge from PBI to
2231  // it.  If it has PHIs though, the PHIs may have different
2232  // entries for BB and PBI's BB.  If so, insert a select to make
2233  // them agree.
2234  PHINode *PN;
2235  for (BasicBlock::iterator II = CommonDest->begin();
2236       (PN = dyn_cast<PHINode>(II)); ++II) {
2237    Value *BIV = PN->getIncomingValueForBlock(BB);
2238    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2239    Value *PBIV = PN->getIncomingValue(PBBIdx);
2240    if (BIV != PBIV) {
2241      // Insert a select in PBI to pick the right value.
2242      Value *NV = cast<SelectInst>
2243        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2244      PN->setIncomingValue(PBBIdx, NV);
2245    }
2246  }
2247
2248  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2249  DEBUG(dbgs() << *PBI->getParent()->getParent());
2250
2251  // This basic block is probably dead.  We know it has at least
2252  // one fewer predecessor.
2253  return true;
2254}
2255
2256// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2257// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2258// Takes care of updating the successors and removing the old terminator.
2259// Also makes sure not to introduce new successors by assuming that edges to
2260// non-successor TrueBBs and FalseBBs aren't reachable.
2261static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2262                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
2263  // Remove any superfluous successor edges from the CFG.
2264  // First, figure out which successors to preserve.
2265  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2266  // successor.
2267  BasicBlock *KeepEdge1 = TrueBB;
2268  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2269
2270  // Then remove the rest.
2271  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2272    BasicBlock *Succ = OldTerm->getSuccessor(I);
2273    // Make sure only to keep exactly one copy of each edge.
2274    if (Succ == KeepEdge1)
2275      KeepEdge1 = 0;
2276    else if (Succ == KeepEdge2)
2277      KeepEdge2 = 0;
2278    else
2279      Succ->removePredecessor(OldTerm->getParent());
2280  }
2281
2282  IRBuilder<> Builder(OldTerm);
2283  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2284
2285  // Insert an appropriate new terminator.
2286  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2287    if (TrueBB == FalseBB)
2288      // We were only looking for one successor, and it was present.
2289      // Create an unconditional branch to it.
2290      Builder.CreateBr(TrueBB);
2291    else
2292      // We found both of the successors we were looking for.
2293      // Create a conditional branch sharing the condition of the select.
2294      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2295  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2296    // Neither of the selected blocks were successors, so this
2297    // terminator must be unreachable.
2298    new UnreachableInst(OldTerm->getContext(), OldTerm);
2299  } else {
2300    // One of the selected values was a successor, but the other wasn't.
2301    // Insert an unconditional branch to the one that was found;
2302    // the edge to the one that wasn't must be unreachable.
2303    if (KeepEdge1 == 0)
2304      // Only TrueBB was found.
2305      Builder.CreateBr(TrueBB);
2306    else
2307      // Only FalseBB was found.
2308      Builder.CreateBr(FalseBB);
2309  }
2310
2311  EraseTerminatorInstAndDCECond(OldTerm);
2312  return true;
2313}
2314
2315// SimplifySwitchOnSelect - Replaces
2316//   (switch (select cond, X, Y)) on constant X, Y
2317// with a branch - conditional if X and Y lead to distinct BBs,
2318// unconditional otherwise.
2319static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2320  // Check for constant integer values in the select.
2321  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2322  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2323  if (!TrueVal || !FalseVal)
2324    return false;
2325
2326  // Find the relevant condition and destinations.
2327  Value *Condition = Select->getCondition();
2328  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2329  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2330
2331  // Perform the actual simplification.
2332  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2333}
2334
2335// SimplifyIndirectBrOnSelect - Replaces
2336//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2337//                             blockaddress(@fn, BlockB)))
2338// with
2339//   (br cond, BlockA, BlockB).
2340static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2341  // Check that both operands of the select are block addresses.
2342  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2343  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2344  if (!TBA || !FBA)
2345    return false;
2346
2347  // Extract the actual blocks.
2348  BasicBlock *TrueBB = TBA->getBasicBlock();
2349  BasicBlock *FalseBB = FBA->getBasicBlock();
2350
2351  // Perform the actual simplification.
2352  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2353}
2354
2355/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2356/// instruction (a seteq/setne with a constant) as the only instruction in a
2357/// block that ends with an uncond branch.  We are looking for a very specific
2358/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2359/// this case, we merge the first two "or's of icmp" into a switch, but then the
2360/// default value goes to an uncond block with a seteq in it, we get something
2361/// like:
2362///
2363///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2364/// DEFAULT:
2365///   %tmp = icmp eq i8 %A, 92
2366///   br label %end
2367/// end:
2368///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2369///
2370/// We prefer to split the edge to 'end' so that there is a true/false entry to
2371/// the PHI, merging the third icmp into the switch.
2372static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2373                                                  const TargetData *TD,
2374                                                  IRBuilder<> &Builder) {
2375  BasicBlock *BB = ICI->getParent();
2376
2377  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2378  // complex.
2379  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2380
2381  Value *V = ICI->getOperand(0);
2382  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2383
2384  // The pattern we're looking for is where our only predecessor is a switch on
2385  // 'V' and this block is the default case for the switch.  In this case we can
2386  // fold the compared value into the switch to simplify things.
2387  BasicBlock *Pred = BB->getSinglePredecessor();
2388  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2389
2390  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2391  if (SI->getCondition() != V)
2392    return false;
2393
2394  // If BB is reachable on a non-default case, then we simply know the value of
2395  // V in this block.  Substitute it and constant fold the icmp instruction
2396  // away.
2397  if (SI->getDefaultDest() != BB) {
2398    ConstantInt *VVal = SI->findCaseDest(BB);
2399    assert(VVal && "Should have a unique destination value");
2400    ICI->setOperand(0, VVal);
2401
2402    if (Value *V = SimplifyInstruction(ICI, TD)) {
2403      ICI->replaceAllUsesWith(V);
2404      ICI->eraseFromParent();
2405    }
2406    // BB is now empty, so it is likely to simplify away.
2407    return SimplifyCFG(BB) | true;
2408  }
2409
2410  // Ok, the block is reachable from the default dest.  If the constant we're
2411  // comparing exists in one of the other edges, then we can constant fold ICI
2412  // and zap it.
2413  if (SI->findCaseValue(Cst) != SI->case_default()) {
2414    Value *V;
2415    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2416      V = ConstantInt::getFalse(BB->getContext());
2417    else
2418      V = ConstantInt::getTrue(BB->getContext());
2419
2420    ICI->replaceAllUsesWith(V);
2421    ICI->eraseFromParent();
2422    // BB is now empty, so it is likely to simplify away.
2423    return SimplifyCFG(BB) | true;
2424  }
2425
2426  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2427  // the block.
2428  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2429  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2430  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2431      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2432    return false;
2433
2434  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2435  // true in the PHI.
2436  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2437  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2438
2439  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2440    std::swap(DefaultCst, NewCst);
2441
2442  // Replace ICI (which is used by the PHI for the default value) with true or
2443  // false depending on if it is EQ or NE.
2444  ICI->replaceAllUsesWith(DefaultCst);
2445  ICI->eraseFromParent();
2446
2447  // Okay, the switch goes to this block on a default value.  Add an edge from
2448  // the switch to the merge point on the compared value.
2449  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2450                                         BB->getParent(), BB);
2451  SI->addCase(Cst, NewBB);
2452
2453  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2454  Builder.SetInsertPoint(NewBB);
2455  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2456  Builder.CreateBr(SuccBlock);
2457  PHIUse->addIncoming(NewCst, NewBB);
2458  return true;
2459}
2460
2461/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2462/// Check to see if it is branching on an or/and chain of icmp instructions, and
2463/// fold it into a switch instruction if so.
2464static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2465                                      IRBuilder<> &Builder) {
2466  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2467  if (Cond == 0) return false;
2468
2469
2470  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2471  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2472  // 'setne's and'ed together, collect them.
2473  Value *CompVal = 0;
2474  std::vector<ConstantInt*> Values;
2475  bool TrueWhenEqual = true;
2476  Value *ExtraCase = 0;
2477  unsigned UsedICmps = 0;
2478
2479  if (Cond->getOpcode() == Instruction::Or) {
2480    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2481                                     UsedICmps);
2482  } else if (Cond->getOpcode() == Instruction::And) {
2483    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2484                                     UsedICmps);
2485    TrueWhenEqual = false;
2486  }
2487
2488  // If we didn't have a multiply compared value, fail.
2489  if (CompVal == 0) return false;
2490
2491  // Avoid turning single icmps into a switch.
2492  if (UsedICmps <= 1)
2493    return false;
2494
2495  // There might be duplicate constants in the list, which the switch
2496  // instruction can't handle, remove them now.
2497  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2498  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2499
2500  // If Extra was used, we require at least two switch values to do the
2501  // transformation.  A switch with one value is just an cond branch.
2502  if (ExtraCase && Values.size() < 2) return false;
2503
2504  // TODO: Preserve branch weight metadata, similarly to how
2505  // FoldValueComparisonIntoPredecessors preserves it.
2506
2507  // Figure out which block is which destination.
2508  BasicBlock *DefaultBB = BI->getSuccessor(1);
2509  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2510  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2511
2512  BasicBlock *BB = BI->getParent();
2513
2514  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2515               << " cases into SWITCH.  BB is:\n" << *BB);
2516
2517  // If there are any extra values that couldn't be folded into the switch
2518  // then we evaluate them with an explicit branch first.  Split the block
2519  // right before the condbr to handle it.
2520  if (ExtraCase) {
2521    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2522    // Remove the uncond branch added to the old block.
2523    TerminatorInst *OldTI = BB->getTerminator();
2524    Builder.SetInsertPoint(OldTI);
2525
2526    if (TrueWhenEqual)
2527      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2528    else
2529      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2530
2531    OldTI->eraseFromParent();
2532
2533    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2534    // for the edge we just added.
2535    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2536
2537    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2538          << "\nEXTRABB = " << *BB);
2539    BB = NewBB;
2540  }
2541
2542  Builder.SetInsertPoint(BI);
2543  // Convert pointer to int before we switch.
2544  if (CompVal->getType()->isPointerTy()) {
2545    assert(TD && "Cannot switch on pointer without TargetData");
2546    CompVal = Builder.CreatePtrToInt(CompVal,
2547                                     TD->getIntPtrType(CompVal->getContext()),
2548                                     "magicptr");
2549  }
2550
2551  // Create the new switch instruction now.
2552  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2553
2554  // Add all of the 'cases' to the switch instruction.
2555  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2556    New->addCase(Values[i], EdgeBB);
2557
2558  // We added edges from PI to the EdgeBB.  As such, if there were any
2559  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2560  // the number of edges added.
2561  for (BasicBlock::iterator BBI = EdgeBB->begin();
2562       isa<PHINode>(BBI); ++BBI) {
2563    PHINode *PN = cast<PHINode>(BBI);
2564    Value *InVal = PN->getIncomingValueForBlock(BB);
2565    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2566      PN->addIncoming(InVal, BB);
2567  }
2568
2569  // Erase the old branch instruction.
2570  EraseTerminatorInstAndDCECond(BI);
2571
2572  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2573  return true;
2574}
2575
2576bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2577  // If this is a trivial landing pad that just continues unwinding the caught
2578  // exception then zap the landing pad, turning its invokes into calls.
2579  BasicBlock *BB = RI->getParent();
2580  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2581  if (RI->getValue() != LPInst)
2582    // Not a landing pad, or the resume is not unwinding the exception that
2583    // caused control to branch here.
2584    return false;
2585
2586  // Check that there are no other instructions except for debug intrinsics.
2587  BasicBlock::iterator I = LPInst, E = RI;
2588  while (++I != E)
2589    if (!isa<DbgInfoIntrinsic>(I))
2590      return false;
2591
2592  // Turn all invokes that unwind here into calls and delete the basic block.
2593  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2594    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2595    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2596    // Insert a call instruction before the invoke.
2597    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2598    Call->takeName(II);
2599    Call->setCallingConv(II->getCallingConv());
2600    Call->setAttributes(II->getAttributes());
2601    Call->setDebugLoc(II->getDebugLoc());
2602
2603    // Anything that used the value produced by the invoke instruction now uses
2604    // the value produced by the call instruction.  Note that we do this even
2605    // for void functions and calls with no uses so that the callgraph edge is
2606    // updated.
2607    II->replaceAllUsesWith(Call);
2608    BB->removePredecessor(II->getParent());
2609
2610    // Insert a branch to the normal destination right before the invoke.
2611    BranchInst::Create(II->getNormalDest(), II);
2612
2613    // Finally, delete the invoke instruction!
2614    II->eraseFromParent();
2615  }
2616
2617  // The landingpad is now unreachable.  Zap it.
2618  BB->eraseFromParent();
2619  return true;
2620}
2621
2622bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2623  BasicBlock *BB = RI->getParent();
2624  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2625
2626  // Find predecessors that end with branches.
2627  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2628  SmallVector<BranchInst*, 8> CondBranchPreds;
2629  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2630    BasicBlock *P = *PI;
2631    TerminatorInst *PTI = P->getTerminator();
2632    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2633      if (BI->isUnconditional())
2634        UncondBranchPreds.push_back(P);
2635      else
2636        CondBranchPreds.push_back(BI);
2637    }
2638  }
2639
2640  // If we found some, do the transformation!
2641  if (!UncondBranchPreds.empty() && DupRet) {
2642    while (!UncondBranchPreds.empty()) {
2643      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2644      DEBUG(dbgs() << "FOLDING: " << *BB
2645            << "INTO UNCOND BRANCH PRED: " << *Pred);
2646      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2647    }
2648
2649    // If we eliminated all predecessors of the block, delete the block now.
2650    if (pred_begin(BB) == pred_end(BB))
2651      // We know there are no successors, so just nuke the block.
2652      BB->eraseFromParent();
2653
2654    return true;
2655  }
2656
2657  // Check out all of the conditional branches going to this return
2658  // instruction.  If any of them just select between returns, change the
2659  // branch itself into a select/return pair.
2660  while (!CondBranchPreds.empty()) {
2661    BranchInst *BI = CondBranchPreds.pop_back_val();
2662
2663    // Check to see if the non-BB successor is also a return block.
2664    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2665        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2666        SimplifyCondBranchToTwoReturns(BI, Builder))
2667      return true;
2668  }
2669  return false;
2670}
2671
2672bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2673  BasicBlock *BB = UI->getParent();
2674
2675  bool Changed = false;
2676
2677  // If there are any instructions immediately before the unreachable that can
2678  // be removed, do so.
2679  while (UI != BB->begin()) {
2680    BasicBlock::iterator BBI = UI;
2681    --BBI;
2682    // Do not delete instructions that can have side effects which might cause
2683    // the unreachable to not be reachable; specifically, calls and volatile
2684    // operations may have this effect.
2685    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2686
2687    if (BBI->mayHaveSideEffects()) {
2688      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2689        if (SI->isVolatile())
2690          break;
2691      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2692        if (LI->isVolatile())
2693          break;
2694      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2695        if (RMWI->isVolatile())
2696          break;
2697      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2698        if (CXI->isVolatile())
2699          break;
2700      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2701                 !isa<LandingPadInst>(BBI)) {
2702        break;
2703      }
2704      // Note that deleting LandingPad's here is in fact okay, although it
2705      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2706      // all the predecessors of this block will be the unwind edges of Invokes,
2707      // and we can therefore guarantee this block will be erased.
2708    }
2709
2710    // Delete this instruction (any uses are guaranteed to be dead)
2711    if (!BBI->use_empty())
2712      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2713    BBI->eraseFromParent();
2714    Changed = true;
2715  }
2716
2717  // If the unreachable instruction is the first in the block, take a gander
2718  // at all of the predecessors of this instruction, and simplify them.
2719  if (&BB->front() != UI) return Changed;
2720
2721  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2722  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2723    TerminatorInst *TI = Preds[i]->getTerminator();
2724    IRBuilder<> Builder(TI);
2725    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2726      if (BI->isUnconditional()) {
2727        if (BI->getSuccessor(0) == BB) {
2728          new UnreachableInst(TI->getContext(), TI);
2729          TI->eraseFromParent();
2730          Changed = true;
2731        }
2732      } else {
2733        if (BI->getSuccessor(0) == BB) {
2734          Builder.CreateBr(BI->getSuccessor(1));
2735          EraseTerminatorInstAndDCECond(BI);
2736        } else if (BI->getSuccessor(1) == BB) {
2737          Builder.CreateBr(BI->getSuccessor(0));
2738          EraseTerminatorInstAndDCECond(BI);
2739          Changed = true;
2740        }
2741      }
2742    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2743      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2744           i != e; ++i)
2745        if (i.getCaseSuccessor() == BB) {
2746          BB->removePredecessor(SI->getParent());
2747          SI->removeCase(i);
2748          --i; --e;
2749          Changed = true;
2750        }
2751      // If the default value is unreachable, figure out the most popular
2752      // destination and make it the default.
2753      if (SI->getDefaultDest() == BB) {
2754        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2755        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2756             i != e; ++i) {
2757          std::pair<unsigned, unsigned> &entry =
2758              Popularity[i.getCaseSuccessor()];
2759          if (entry.first == 0) {
2760            entry.first = 1;
2761            entry.second = i.getCaseIndex();
2762          } else {
2763            entry.first++;
2764          }
2765        }
2766
2767        // Find the most popular block.
2768        unsigned MaxPop = 0;
2769        unsigned MaxIndex = 0;
2770        BasicBlock *MaxBlock = 0;
2771        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2772             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2773          if (I->second.first > MaxPop ||
2774              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2775            MaxPop = I->second.first;
2776            MaxIndex = I->second.second;
2777            MaxBlock = I->first;
2778          }
2779        }
2780        if (MaxBlock) {
2781          // Make this the new default, allowing us to delete any explicit
2782          // edges to it.
2783          SI->setDefaultDest(MaxBlock);
2784          Changed = true;
2785
2786          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2787          // it.
2788          if (isa<PHINode>(MaxBlock->begin()))
2789            for (unsigned i = 0; i != MaxPop-1; ++i)
2790              MaxBlock->removePredecessor(SI->getParent());
2791
2792          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2793               i != e; ++i)
2794            if (i.getCaseSuccessor() == MaxBlock) {
2795              SI->removeCase(i);
2796              --i; --e;
2797            }
2798        }
2799      }
2800    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2801      if (II->getUnwindDest() == BB) {
2802        // Convert the invoke to a call instruction.  This would be a good
2803        // place to note that the call does not throw though.
2804        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2805        II->removeFromParent();   // Take out of symbol table
2806
2807        // Insert the call now...
2808        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2809        Builder.SetInsertPoint(BI);
2810        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2811                                          Args, II->getName());
2812        CI->setCallingConv(II->getCallingConv());
2813        CI->setAttributes(II->getAttributes());
2814        // If the invoke produced a value, the call does now instead.
2815        II->replaceAllUsesWith(CI);
2816        delete II;
2817        Changed = true;
2818      }
2819    }
2820  }
2821
2822  // If this block is now dead, remove it.
2823  if (pred_begin(BB) == pred_end(BB) &&
2824      BB != &BB->getParent()->getEntryBlock()) {
2825    // We know there are no successors, so just nuke the block.
2826    BB->eraseFromParent();
2827    return true;
2828  }
2829
2830  return Changed;
2831}
2832
2833/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2834/// integer range comparison into a sub, an icmp and a branch.
2835static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2836  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2837
2838  // Make sure all cases point to the same destination and gather the values.
2839  SmallVector<ConstantInt *, 16> Cases;
2840  SwitchInst::CaseIt I = SI->case_begin();
2841  Cases.push_back(I.getCaseValue());
2842  SwitchInst::CaseIt PrevI = I++;
2843  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2844    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2845      return false;
2846    Cases.push_back(I.getCaseValue());
2847  }
2848  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2849
2850  // Sort the case values, then check if they form a range we can transform.
2851  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2852  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2853    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2854      return false;
2855  }
2856
2857  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2858  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2859
2860  Value *Sub = SI->getCondition();
2861  if (!Offset->isNullValue())
2862    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2863  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2864  Builder.CreateCondBr(
2865      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2866
2867  // Prune obsolete incoming values off the successor's PHI nodes.
2868  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2869       isa<PHINode>(BBI); ++BBI) {
2870    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2871      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2872  }
2873  SI->eraseFromParent();
2874
2875  return true;
2876}
2877
2878/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2879/// and use it to remove dead cases.
2880static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2881  Value *Cond = SI->getCondition();
2882  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2883  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2884  ComputeMaskedBits(Cond, KnownZero, KnownOne);
2885
2886  // Gather dead cases.
2887  SmallVector<ConstantInt*, 8> DeadCases;
2888  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2889    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2890        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2891      DeadCases.push_back(I.getCaseValue());
2892      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2893                   << I.getCaseValue() << "' is dead.\n");
2894    }
2895  }
2896
2897  // Remove dead cases from the switch.
2898  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2899    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2900    assert(Case != SI->case_default() &&
2901           "Case was not found. Probably mistake in DeadCases forming.");
2902    // Prune unused values from PHI nodes.
2903    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2904    SI->removeCase(Case);
2905  }
2906
2907  return !DeadCases.empty();
2908}
2909
2910/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2911/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2912/// by an unconditional branch), look at the phi node for BB in the successor
2913/// block and see if the incoming value is equal to CaseValue. If so, return
2914/// the phi node, and set PhiIndex to BB's index in the phi node.
2915static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2916                                              BasicBlock *BB,
2917                                              int *PhiIndex) {
2918  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2919    return NULL; // BB must be empty to be a candidate for simplification.
2920  if (!BB->getSinglePredecessor())
2921    return NULL; // BB must be dominated by the switch.
2922
2923  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2924  if (!Branch || !Branch->isUnconditional())
2925    return NULL; // Terminator must be unconditional branch.
2926
2927  BasicBlock *Succ = Branch->getSuccessor(0);
2928
2929  BasicBlock::iterator I = Succ->begin();
2930  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2931    int Idx = PHI->getBasicBlockIndex(BB);
2932    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2933
2934    Value *InValue = PHI->getIncomingValue(Idx);
2935    if (InValue != CaseValue) continue;
2936
2937    *PhiIndex = Idx;
2938    return PHI;
2939  }
2940
2941  return NULL;
2942}
2943
2944/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2945/// instruction to a phi node dominated by the switch, if that would mean that
2946/// some of the destination blocks of the switch can be folded away.
2947/// Returns true if a change is made.
2948static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2949  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2950  ForwardingNodesMap ForwardingNodes;
2951
2952  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2953    ConstantInt *CaseValue = I.getCaseValue();
2954    BasicBlock *CaseDest = I.getCaseSuccessor();
2955
2956    int PhiIndex;
2957    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2958                                                 &PhiIndex);
2959    if (!PHI) continue;
2960
2961    ForwardingNodes[PHI].push_back(PhiIndex);
2962  }
2963
2964  bool Changed = false;
2965
2966  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2967       E = ForwardingNodes.end(); I != E; ++I) {
2968    PHINode *Phi = I->first;
2969    SmallVector<int,4> &Indexes = I->second;
2970
2971    if (Indexes.size() < 2) continue;
2972
2973    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2974      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2975    Changed = true;
2976  }
2977
2978  return Changed;
2979}
2980
2981/// ValidLookupTableConstant - Return true if the backend will be able to handle
2982/// initializing an array of constants like C.
2983static bool ValidLookupTableConstant(Constant *C) {
2984  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2985    return CE->isGEPWithNoNotionalOverIndexing();
2986
2987  return isa<ConstantFP>(C) ||
2988      isa<ConstantInt>(C) ||
2989      isa<ConstantPointerNull>(C) ||
2990      isa<GlobalValue>(C) ||
2991      isa<UndefValue>(C);
2992}
2993
2994/// GetCaseResulsts - Try to determine the resulting constant values in phi
2995/// nodes at the common destination basic block for one of the case
2996/// destinations of a switch instruction.
2997static bool GetCaseResults(SwitchInst *SI,
2998                           BasicBlock *CaseDest,
2999                           BasicBlock **CommonDest,
3000                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3001  // The block from which we enter the common destination.
3002  BasicBlock *Pred = SI->getParent();
3003
3004  // If CaseDest is empty, continue to its successor.
3005  if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
3006      !isa<PHINode>(CaseDest->begin())) {
3007
3008    TerminatorInst *Terminator = CaseDest->getTerminator();
3009    if (Terminator->getNumSuccessors() != 1)
3010      return false;
3011
3012    Pred = CaseDest;
3013    CaseDest = Terminator->getSuccessor(0);
3014  }
3015
3016  // If we did not have a CommonDest before, use the current one.
3017  if (!*CommonDest)
3018    *CommonDest = CaseDest;
3019  // If the destination isn't the common one, abort.
3020  if (CaseDest != *CommonDest)
3021    return false;
3022
3023  // Get the values for this case from phi nodes in the destination block.
3024  BasicBlock::iterator I = (*CommonDest)->begin();
3025  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3026    int Idx = PHI->getBasicBlockIndex(Pred);
3027    if (Idx == -1)
3028      continue;
3029
3030    Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
3031    if (!ConstVal)
3032      return false;
3033
3034    // Be conservative about which kinds of constants we support.
3035    if (!ValidLookupTableConstant(ConstVal))
3036      return false;
3037
3038    Res.push_back(std::make_pair(PHI, ConstVal));
3039  }
3040
3041  return true;
3042}
3043
3044/// BuildLookupTable - Build a lookup table with the contents of Results, using
3045/// DefaultResult to fill the holes in the table. If the table ends up
3046/// containing the same result in each element, set *SingleResult to that value
3047/// and return NULL.
3048static GlobalVariable *BuildLookupTable(Module &M,
3049                                        uint64_t TableSize,
3050                                        ConstantInt *Offset,
3051              const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Results,
3052                                        Constant *DefaultResult,
3053                                        Constant **SingleResult) {
3054  assert(Results.size() && "Need values to build lookup table");
3055  assert(TableSize >= Results.size() && "Table needs to hold all values");
3056
3057  // If all values in the table are equal, this is that value.
3058  Constant *SameResult = Results.begin()->second;
3059
3060  // Build up the table contents.
3061  std::vector<Constant*> TableContents(TableSize);
3062  for (size_t I = 0, E = Results.size(); I != E; ++I) {
3063    ConstantInt *CaseVal = Results[I].first;
3064    Constant *CaseRes = Results[I].second;
3065
3066    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
3067    TableContents[Idx] = CaseRes;
3068
3069    if (CaseRes != SameResult)
3070      SameResult = NULL;
3071  }
3072
3073  // Fill in any holes in the table with the default result.
3074  if (Results.size() < TableSize) {
3075    for (unsigned i = 0; i < TableSize; ++i) {
3076      if (!TableContents[i])
3077        TableContents[i] = DefaultResult;
3078    }
3079
3080    if (DefaultResult != SameResult)
3081      SameResult = NULL;
3082  }
3083
3084  // Same result was used in the entire table; just return that.
3085  if (SameResult) {
3086    *SingleResult = SameResult;
3087    return NULL;
3088  }
3089
3090  ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize);
3091  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3092
3093  GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3094                                          GlobalVariable::PrivateLinkage,
3095                                          Initializer,
3096                                          "switch.table");
3097  GV->setUnnamedAddr(true);
3098  return GV;
3099}
3100
3101/// SwitchToLookupTable - If the switch is only used to initialize one or more
3102/// phi nodes in a common successor block with different constant values,
3103/// replace the switch with lookup tables.
3104static bool SwitchToLookupTable(SwitchInst *SI,
3105                                IRBuilder<> &Builder) {
3106  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3107  // FIXME: Handle unreachable cases.
3108
3109  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3110  // split off a dense part and build a lookup table for that.
3111
3112  // FIXME: If the results are all integers and the lookup table would fit in a
3113  // target-legal register, we should store them as a bitmap and use shift/mask
3114  // to look up the result.
3115
3116  // FIXME: This creates arrays of GEPs to constant strings, which means each
3117  // GEP needs a runtime relocation in PIC code. We should just build one big
3118  // string and lookup indices into that.
3119
3120  // Ignore the switch if the number of cases are too small.
3121  // This is similar to the check when building jump tables in
3122  // SelectionDAGBuilder::handleJTSwitchCase.
3123  // FIXME: Determine the best cut-off.
3124  if (SI->getNumCases() < 4)
3125    return false;
3126
3127  // Figure out the corresponding result for each case value and phi node in the
3128  // common destination, as well as the the min and max case values.
3129  assert(SI->case_begin() != SI->case_end());
3130  SwitchInst::CaseIt CI = SI->case_begin();
3131  ConstantInt *MinCaseVal = CI.getCaseValue();
3132  ConstantInt *MaxCaseVal = CI.getCaseValue();
3133
3134  BasicBlock *CommonDest = NULL;
3135  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3136  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3137  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3138  SmallDenseMap<PHINode*, Type*> ResultTypes;
3139  SmallVector<PHINode*, 4> PHIs;
3140
3141  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3142    ConstantInt *CaseVal = CI.getCaseValue();
3143    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3144      MinCaseVal = CaseVal;
3145    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3146      MaxCaseVal = CaseVal;
3147
3148    // Resulting value at phi nodes for this case value.
3149    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3150    ResultsTy Results;
3151    if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
3152      return false;
3153
3154    // Append the result from this case to the list for each phi.
3155    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3156      if (!ResultLists.count(I->first))
3157        PHIs.push_back(I->first);
3158      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3159    }
3160  }
3161
3162  // Get the resulting values for the default case.
3163  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3164  if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
3165    return false;
3166  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3167    PHINode *PHI = DefaultResultsList[I].first;
3168    Constant *Result = DefaultResultsList[I].second;
3169    DefaultResults[PHI] = Result;
3170    ResultTypes[PHI] = Result->getType();
3171  }
3172
3173  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3174  // The table density should be at lest 40%. This is the same criterion as for
3175  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3176  // FIXME: Find the best cut-off.
3177  // Be careful to avoid overlow in the density computation.
3178  if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1))
3179    return false;
3180  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3181  if (SI->getNumCases() * 10 < TableSize * 4)
3182    return false;
3183
3184  // Build the lookup tables.
3185  SmallDenseMap<PHINode*, GlobalVariable*> LookupTables;
3186  SmallDenseMap<PHINode*, Constant*> SingleResults;
3187
3188  Module &Mod = *CommonDest->getParent()->getParent();
3189  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3190       I != E; ++I) {
3191    PHINode *PHI = *I;
3192
3193    Constant *SingleResult = NULL;
3194    LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal,
3195                                         ResultLists[PHI], DefaultResults[PHI],
3196                                         &SingleResult);
3197    SingleResults[PHI] = SingleResult;
3198  }
3199
3200  // Create the BB that does the lookups.
3201  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3202                                            "switch.lookup",
3203                                            CommonDest->getParent(),
3204                                            CommonDest);
3205
3206  // Check whether the condition value is within the case range, and branch to
3207  // the new BB.
3208  Builder.SetInsertPoint(SI);
3209  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3210                                        "switch.tableidx");
3211  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3212      MinCaseVal->getType(), TableSize));
3213  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3214
3215  // Populate the BB that does the lookups.
3216  Builder.SetInsertPoint(LookupBB);
3217  bool ReturnedEarly = false;
3218  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3219       I != E; ++I) {
3220    PHINode *PHI = *I;
3221    // There was a single result for this phi; just use that.
3222    if (Constant *SingleResult = SingleResults[PHI]) {
3223      PHI->addIncoming(SingleResult, LookupBB);
3224      continue;
3225    }
3226
3227    Value *GEPIndices[] = { Builder.getInt32(0), TableIndex };
3228    Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices,
3229                                           "switch.gep");
3230    Value *Result = Builder.CreateLoad(GEP, "switch.load");
3231
3232    // If the result is only going to be used to return from the function,
3233    // we want to do that right here.
3234    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin())) {
3235      if (CommonDest->getFirstNonPHIOrDbg() == CommonDest->getTerminator()) {
3236        Builder.CreateRet(Result);
3237        ReturnedEarly = true;
3238      }
3239    }
3240
3241    if (!ReturnedEarly)
3242      PHI->addIncoming(Result, LookupBB);
3243  }
3244
3245  if (!ReturnedEarly)
3246    Builder.CreateBr(CommonDest);
3247
3248  // Remove the switch.
3249  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3250    BasicBlock *Succ = SI->getSuccessor(i);
3251    if (Succ == SI->getDefaultDest()) continue;
3252    Succ->removePredecessor(SI->getParent());
3253  }
3254  SI->eraseFromParent();
3255
3256  ++NumLookupTables;
3257  return true;
3258}
3259
3260bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3261  // If this switch is too complex to want to look at, ignore it.
3262  if (!isValueEqualityComparison(SI))
3263    return false;
3264
3265  BasicBlock *BB = SI->getParent();
3266
3267  // If we only have one predecessor, and if it is a branch on this value,
3268  // see if that predecessor totally determines the outcome of this switch.
3269  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3270    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3271      return SimplifyCFG(BB) | true;
3272
3273  Value *Cond = SI->getCondition();
3274  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3275    if (SimplifySwitchOnSelect(SI, Select))
3276      return SimplifyCFG(BB) | true;
3277
3278  // If the block only contains the switch, see if we can fold the block
3279  // away into any preds.
3280  BasicBlock::iterator BBI = BB->begin();
3281  // Ignore dbg intrinsics.
3282  while (isa<DbgInfoIntrinsic>(BBI))
3283    ++BBI;
3284  if (SI == &*BBI)
3285    if (FoldValueComparisonIntoPredecessors(SI, Builder))
3286      return SimplifyCFG(BB) | true;
3287
3288  // Try to transform the switch into an icmp and a branch.
3289  if (TurnSwitchRangeIntoICmp(SI, Builder))
3290    return SimplifyCFG(BB) | true;
3291
3292  // Remove unreachable cases.
3293  if (EliminateDeadSwitchCases(SI))
3294    return SimplifyCFG(BB) | true;
3295
3296  if (ForwardSwitchConditionToPHI(SI))
3297    return SimplifyCFG(BB) | true;
3298
3299  if (SwitchToLookupTable(SI, Builder))
3300    return SimplifyCFG(BB) | true;
3301
3302  return false;
3303}
3304
3305bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3306  BasicBlock *BB = IBI->getParent();
3307  bool Changed = false;
3308
3309  // Eliminate redundant destinations.
3310  SmallPtrSet<Value *, 8> Succs;
3311  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3312    BasicBlock *Dest = IBI->getDestination(i);
3313    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3314      Dest->removePredecessor(BB);
3315      IBI->removeDestination(i);
3316      --i; --e;
3317      Changed = true;
3318    }
3319  }
3320
3321  if (IBI->getNumDestinations() == 0) {
3322    // If the indirectbr has no successors, change it to unreachable.
3323    new UnreachableInst(IBI->getContext(), IBI);
3324    EraseTerminatorInstAndDCECond(IBI);
3325    return true;
3326  }
3327
3328  if (IBI->getNumDestinations() == 1) {
3329    // If the indirectbr has one successor, change it to a direct branch.
3330    BranchInst::Create(IBI->getDestination(0), IBI);
3331    EraseTerminatorInstAndDCECond(IBI);
3332    return true;
3333  }
3334
3335  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3336    if (SimplifyIndirectBrOnSelect(IBI, SI))
3337      return SimplifyCFG(BB) | true;
3338  }
3339  return Changed;
3340}
3341
3342bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3343  BasicBlock *BB = BI->getParent();
3344
3345  // If the Terminator is the only non-phi instruction, simplify the block.
3346  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3347  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3348      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3349    return true;
3350
3351  // If the only instruction in the block is a seteq/setne comparison
3352  // against a constant, try to simplify the block.
3353  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3354    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3355      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3356        ;
3357      if (I->isTerminator() &&
3358          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3359        return true;
3360    }
3361
3362  // If this basic block is ONLY a compare and a branch, and if a predecessor
3363  // branches to us and our successor, fold the comparison into the
3364  // predecessor and use logical operations to update the incoming value
3365  // for PHI nodes in common successor.
3366  if (FoldBranchToCommonDest(BI))
3367    return SimplifyCFG(BB) | true;
3368  return false;
3369}
3370
3371
3372bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3373  BasicBlock *BB = BI->getParent();
3374
3375  // Conditional branch
3376  if (isValueEqualityComparison(BI)) {
3377    // If we only have one predecessor, and if it is a branch on this value,
3378    // see if that predecessor totally determines the outcome of this
3379    // switch.
3380    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3381      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3382        return SimplifyCFG(BB) | true;
3383
3384    // This block must be empty, except for the setcond inst, if it exists.
3385    // Ignore dbg intrinsics.
3386    BasicBlock::iterator I = BB->begin();
3387    // Ignore dbg intrinsics.
3388    while (isa<DbgInfoIntrinsic>(I))
3389      ++I;
3390    if (&*I == BI) {
3391      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3392        return SimplifyCFG(BB) | true;
3393    } else if (&*I == cast<Instruction>(BI->getCondition())){
3394      ++I;
3395      // Ignore dbg intrinsics.
3396      while (isa<DbgInfoIntrinsic>(I))
3397        ++I;
3398      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3399        return SimplifyCFG(BB) | true;
3400    }
3401  }
3402
3403  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3404  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3405    return true;
3406
3407  // If this basic block is ONLY a compare and a branch, and if a predecessor
3408  // branches to us and one of our successors, fold the comparison into the
3409  // predecessor and use logical operations to pick the right destination.
3410  if (FoldBranchToCommonDest(BI))
3411    return SimplifyCFG(BB) | true;
3412
3413  // We have a conditional branch to two blocks that are only reachable
3414  // from BI.  We know that the condbr dominates the two blocks, so see if
3415  // there is any identical code in the "then" and "else" blocks.  If so, we
3416  // can hoist it up to the branching block.
3417  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3418    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3419      if (HoistThenElseCodeToIf(BI))
3420        return SimplifyCFG(BB) | true;
3421    } else {
3422      // If Successor #1 has multiple preds, we may be able to conditionally
3423      // execute Successor #0 if it branches to successor #1.
3424      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3425      if (Succ0TI->getNumSuccessors() == 1 &&
3426          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3427        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3428          return SimplifyCFG(BB) | true;
3429    }
3430  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3431    // If Successor #0 has multiple preds, we may be able to conditionally
3432    // execute Successor #1 if it branches to successor #0.
3433    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3434    if (Succ1TI->getNumSuccessors() == 1 &&
3435        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3436      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3437        return SimplifyCFG(BB) | true;
3438  }
3439
3440  // If this is a branch on a phi node in the current block, thread control
3441  // through this block if any PHI node entries are constants.
3442  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3443    if (PN->getParent() == BI->getParent())
3444      if (FoldCondBranchOnPHI(BI, TD))
3445        return SimplifyCFG(BB) | true;
3446
3447  // Scan predecessor blocks for conditional branches.
3448  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3449    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3450      if (PBI != BI && PBI->isConditional())
3451        if (SimplifyCondBranchToCondBranch(PBI, BI))
3452          return SimplifyCFG(BB) | true;
3453
3454  return false;
3455}
3456
3457/// Check if passing a value to an instruction will cause undefined behavior.
3458static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3459  Constant *C = dyn_cast<Constant>(V);
3460  if (!C)
3461    return false;
3462
3463  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3464    return false;
3465
3466  if (C->isNullValue()) {
3467    Instruction *Use = I->use_back();
3468
3469    // Now make sure that there are no instructions in between that can alter
3470    // control flow (eg. calls)
3471    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3472      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3473        return false;
3474
3475    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3476    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3477      if (GEP->getPointerOperand() == I)
3478        return passingValueIsAlwaysUndefined(V, GEP);
3479
3480    // Look through bitcasts.
3481    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3482      return passingValueIsAlwaysUndefined(V, BC);
3483
3484    // Load from null is undefined.
3485    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3486      return LI->getPointerAddressSpace() == 0;
3487
3488    // Store to null is undefined.
3489    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3490      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3491  }
3492  return false;
3493}
3494
3495/// If BB has an incoming value that will always trigger undefined behavior
3496/// (eg. null pointer dereference), remove the branch leading here.
3497static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3498  for (BasicBlock::iterator i = BB->begin();
3499       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3500    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3501      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3502        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3503        IRBuilder<> Builder(T);
3504        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3505          BB->removePredecessor(PHI->getIncomingBlock(i));
3506          // Turn uncoditional branches into unreachables and remove the dead
3507          // destination from conditional branches.
3508          if (BI->isUnconditional())
3509            Builder.CreateUnreachable();
3510          else
3511            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3512                                                         BI->getSuccessor(0));
3513          BI->eraseFromParent();
3514          return true;
3515        }
3516        // TODO: SwitchInst.
3517      }
3518
3519  return false;
3520}
3521
3522bool SimplifyCFGOpt::run(BasicBlock *BB) {
3523  bool Changed = false;
3524
3525  assert(BB && BB->getParent() && "Block not embedded in function!");
3526  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3527
3528  // Remove basic blocks that have no predecessors (except the entry block)...
3529  // or that just have themself as a predecessor.  These are unreachable.
3530  if ((pred_begin(BB) == pred_end(BB) &&
3531       BB != &BB->getParent()->getEntryBlock()) ||
3532      BB->getSinglePredecessor() == BB) {
3533    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3534    DeleteDeadBlock(BB);
3535    return true;
3536  }
3537
3538  // Check to see if we can constant propagate this terminator instruction
3539  // away...
3540  Changed |= ConstantFoldTerminator(BB, true);
3541
3542  // Check for and eliminate duplicate PHI nodes in this block.
3543  Changed |= EliminateDuplicatePHINodes(BB);
3544
3545  // Check for and remove branches that will always cause undefined behavior.
3546  Changed |= removeUndefIntroducingPredecessor(BB);
3547
3548  // Merge basic blocks into their predecessor if there is only one distinct
3549  // pred, and if there is only one distinct successor of the predecessor, and
3550  // if there are no PHI nodes.
3551  //
3552  if (MergeBlockIntoPredecessor(BB))
3553    return true;
3554
3555  IRBuilder<> Builder(BB);
3556
3557  // If there is a trivial two-entry PHI node in this basic block, and we can
3558  // eliminate it, do so now.
3559  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3560    if (PN->getNumIncomingValues() == 2)
3561      Changed |= FoldTwoEntryPHINode(PN, TD);
3562
3563  Builder.SetInsertPoint(BB->getTerminator());
3564  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3565    if (BI->isUnconditional()) {
3566      if (SimplifyUncondBranch(BI, Builder)) return true;
3567    } else {
3568      if (SimplifyCondBranch(BI, Builder)) return true;
3569    }
3570  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3571    if (SimplifyReturn(RI, Builder)) return true;
3572  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3573    if (SimplifyResume(RI, Builder)) return true;
3574  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3575    if (SimplifySwitch(SI, Builder)) return true;
3576  } else if (UnreachableInst *UI =
3577               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3578    if (SimplifyUnreachable(UI)) return true;
3579  } else if (IndirectBrInst *IBI =
3580               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3581    if (SimplifyIndirectBr(IBI)) return true;
3582  }
3583
3584  return Changed;
3585}
3586
3587/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3588/// example, it adjusts branches to branches to eliminate the extra hop, it
3589/// eliminates unreachable basic blocks, and does other "peephole" optimization
3590/// of the CFG.  It returns true if a modification was made.
3591///
3592bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3593  return SimplifyCFGOpt(TD).run(BB);
3594}
3595