SimplifyCFG.cpp revision 263d1e469d849fb9e2087ea9fbd42b4bfcc98c24
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include <algorithm>
23#include <functional>
24#include <set>
25#include <map>
26using namespace llvm;
27
28/// SafeToMergeTerminators - Return true if it is safe to merge these two
29/// terminator instructions together.
30///
31static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
32  if (SI1 == SI2) return false;  // Can't merge with self!
33
34  // It is not safe to merge these two switch instructions if they have a common
35  // successor, and if that successor has a PHI node, and if *that* PHI node has
36  // conflicting incoming values from the two switch blocks.
37  BasicBlock *SI1BB = SI1->getParent();
38  BasicBlock *SI2BB = SI2->getParent();
39  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
40
41  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
42    if (SI1Succs.count(*I))
43      for (BasicBlock::iterator BBI = (*I)->begin();
44           isa<PHINode>(BBI); ++BBI) {
45        PHINode *PN = cast<PHINode>(BBI);
46        if (PN->getIncomingValueForBlock(SI1BB) !=
47            PN->getIncomingValueForBlock(SI2BB))
48          return false;
49      }
50
51  return true;
52}
53
54/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
55/// now be entries in it from the 'NewPred' block.  The values that will be
56/// flowing into the PHI nodes will be the same as those coming in from
57/// ExistPred, an existing predecessor of Succ.
58static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
59                                  BasicBlock *ExistPred) {
60  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
61         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
62  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
63
64  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
65    PHINode *PN = cast<PHINode>(I);
66    Value *V = PN->getIncomingValueForBlock(ExistPred);
67    PN->addIncoming(V, NewPred);
68  }
69}
70
71// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
72// almost-empty BB ending in an unconditional branch to Succ, into succ.
73//
74// Assumption: Succ is the single successor for BB.
75//
76static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
77  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
78
79  // Check to see if one of the predecessors of BB is already a predecessor of
80  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
81  // with incompatible values coming in from the two edges!
82  //
83  if (isa<PHINode>(Succ->front())) {
84    std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
85    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);\
86         PI != PE; ++PI)
87      if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
88        // Loop over all of the PHI nodes checking to see if there are
89        // incompatible values coming in.
90        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
91          PHINode *PN = cast<PHINode>(I);
92          // Loop up the entries in the PHI node for BB and for *PI if the
93          // values coming in are non-equal, we cannot merge these two blocks
94          // (instead we should insert a conditional move or something, then
95          // merge the blocks).
96          if (PN->getIncomingValueForBlock(BB) !=
97              PN->getIncomingValueForBlock(*PI))
98            return false;  // Values are not equal...
99        }
100      }
101  }
102
103  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
104  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
105  // fold these blocks, as we don't know whether BB dominates Succ or not to
106  // update the PHI nodes correctly.
107  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
108
109  // If the predecessors of Succ are only BB and Succ itself, we can handle this.
110  bool IsSafe = true;
111  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
112    if (*PI != Succ && *PI != BB) {
113      IsSafe = false;
114      break;
115    }
116  if (IsSafe) return true;
117
118  // If the PHI nodes in BB are only used by instructions in Succ, we are ok.
119  IsSafe = true;
120  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I) && IsSafe; ++I) {
121    PHINode *PN = cast<PHINode>(I);
122    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
123         ++UI)
124      if (cast<Instruction>(*UI)->getParent() != Succ) {
125        IsSafe = false;
126        break;
127      }
128  }
129
130  return IsSafe;
131}
132
133/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
134/// branch to Succ, and contains no instructions other than PHI nodes and the
135/// branch.  If possible, eliminate BB.
136static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
137                                                    BasicBlock *Succ) {
138  // If our successor has PHI nodes, then we need to update them to include
139  // entries for BB's predecessors, not for BB itself.  Be careful though,
140  // if this transformation fails (returns true) then we cannot do this
141  // transformation!
142  //
143  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
144
145  DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
146
147  if (isa<PHINode>(Succ->begin())) {
148    // If there is more than one pred of succ, and there are PHI nodes in
149    // the successor, then we need to add incoming edges for the PHI nodes
150    //
151    const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
152
153    // Loop over all of the PHI nodes in the successor of BB.
154    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
155      PHINode *PN = cast<PHINode>(I);
156      Value *OldVal = PN->removeIncomingValue(BB, false);
157      assert(OldVal && "No entry in PHI for Pred BB!");
158
159      // If this incoming value is one of the PHI nodes in BB, the new entries
160      // in the PHI node are the entries from the old PHI.
161      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
162        PHINode *OldValPN = cast<PHINode>(OldVal);
163        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
164          PN->addIncoming(OldValPN->getIncomingValue(i),
165                          OldValPN->getIncomingBlock(i));
166      } else {
167        for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
168             End = BBPreds.end(); PredI != End; ++PredI) {
169          // Add an incoming value for each of the new incoming values...
170          PN->addIncoming(OldVal, *PredI);
171        }
172      }
173    }
174  }
175
176  if (isa<PHINode>(&BB->front())) {
177    std::vector<BasicBlock*>
178    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
179
180    // Move all PHI nodes in BB to Succ if they are alive, otherwise
181    // delete them.
182    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
183      if (PN->use_empty()) {
184        // Just remove the dead phi.  This happens if Succ's PHIs were the only
185        // users of the PHI nodes.
186        PN->eraseFromParent();
187      } else {
188        // The instruction is alive, so this means that Succ must have
189        // *ONLY* had BB as a predecessor, and the PHI node is still valid
190        // now.  Simply move it into Succ, because we know that BB
191        // strictly dominated Succ.
192        Succ->getInstList().splice(Succ->begin(),
193                                   BB->getInstList(), BB->begin());
194
195        // We need to add new entries for the PHI node to account for
196        // predecessors of Succ that the PHI node does not take into
197        // account.  At this point, since we know that BB dominated succ,
198        // this means that we should any newly added incoming edges should
199        // use the PHI node as the value for these edges, because they are
200        // loop back edges.
201        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
202          if (OldSuccPreds[i] != BB)
203            PN->addIncoming(PN, OldSuccPreds[i]);
204      }
205  }
206
207  // Everything that jumped to BB now goes to Succ.
208  std::string OldName = BB->getName();
209  BB->replaceAllUsesWith(Succ);
210  BB->eraseFromParent();              // Delete the old basic block.
211
212  if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
213    Succ->setName(OldName);
214  return true;
215}
216
217/// GetIfCondition - Given a basic block (BB) with two predecessors (and
218/// presumably PHI nodes in it), check to see if the merge at this block is due
219/// to an "if condition".  If so, return the boolean condition that determines
220/// which entry into BB will be taken.  Also, return by references the block
221/// that will be entered from if the condition is true, and the block that will
222/// be entered if the condition is false.
223///
224///
225static Value *GetIfCondition(BasicBlock *BB,
226                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
227  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
228         "Function can only handle blocks with 2 predecessors!");
229  BasicBlock *Pred1 = *pred_begin(BB);
230  BasicBlock *Pred2 = *++pred_begin(BB);
231
232  // We can only handle branches.  Other control flow will be lowered to
233  // branches if possible anyway.
234  if (!isa<BranchInst>(Pred1->getTerminator()) ||
235      !isa<BranchInst>(Pred2->getTerminator()))
236    return 0;
237  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
238  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
239
240  // Eliminate code duplication by ensuring that Pred1Br is conditional if
241  // either are.
242  if (Pred2Br->isConditional()) {
243    // If both branches are conditional, we don't have an "if statement".  In
244    // reality, we could transform this case, but since the condition will be
245    // required anyway, we stand no chance of eliminating it, so the xform is
246    // probably not profitable.
247    if (Pred1Br->isConditional())
248      return 0;
249
250    std::swap(Pred1, Pred2);
251    std::swap(Pred1Br, Pred2Br);
252  }
253
254  if (Pred1Br->isConditional()) {
255    // If we found a conditional branch predecessor, make sure that it branches
256    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
257    if (Pred1Br->getSuccessor(0) == BB &&
258        Pred1Br->getSuccessor(1) == Pred2) {
259      IfTrue = Pred1;
260      IfFalse = Pred2;
261    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
262               Pred1Br->getSuccessor(1) == BB) {
263      IfTrue = Pred2;
264      IfFalse = Pred1;
265    } else {
266      // We know that one arm of the conditional goes to BB, so the other must
267      // go somewhere unrelated, and this must not be an "if statement".
268      return 0;
269    }
270
271    // The only thing we have to watch out for here is to make sure that Pred2
272    // doesn't have incoming edges from other blocks.  If it does, the condition
273    // doesn't dominate BB.
274    if (++pred_begin(Pred2) != pred_end(Pred2))
275      return 0;
276
277    return Pred1Br->getCondition();
278  }
279
280  // Ok, if we got here, both predecessors end with an unconditional branch to
281  // BB.  Don't panic!  If both blocks only have a single (identical)
282  // predecessor, and THAT is a conditional branch, then we're all ok!
283  if (pred_begin(Pred1) == pred_end(Pred1) ||
284      ++pred_begin(Pred1) != pred_end(Pred1) ||
285      pred_begin(Pred2) == pred_end(Pred2) ||
286      ++pred_begin(Pred2) != pred_end(Pred2) ||
287      *pred_begin(Pred1) != *pred_begin(Pred2))
288    return 0;
289
290  // Otherwise, if this is a conditional branch, then we can use it!
291  BasicBlock *CommonPred = *pred_begin(Pred1);
292  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
293    assert(BI->isConditional() && "Two successors but not conditional?");
294    if (BI->getSuccessor(0) == Pred1) {
295      IfTrue = Pred1;
296      IfFalse = Pred2;
297    } else {
298      IfTrue = Pred2;
299      IfFalse = Pred1;
300    }
301    return BI->getCondition();
302  }
303  return 0;
304}
305
306
307// If we have a merge point of an "if condition" as accepted above, return true
308// if the specified value dominates the block.  We don't handle the true
309// generality of domination here, just a special case which works well enough
310// for us.
311//
312// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
313// see if V (which must be an instruction) is cheap to compute and is
314// non-trapping.  If both are true, the instruction is inserted into the set and
315// true is returned.
316static bool DominatesMergePoint(Value *V, BasicBlock *BB,
317                                std::set<Instruction*> *AggressiveInsts) {
318  Instruction *I = dyn_cast<Instruction>(V);
319  if (!I) return true;    // Non-instructions all dominate instructions.
320  BasicBlock *PBB = I->getParent();
321
322  // We don't want to allow weird loops that might have the "if condition" in
323  // the bottom of this block.
324  if (PBB == BB) return false;
325
326  // If this instruction is defined in a block that contains an unconditional
327  // branch to BB, then it must be in the 'conditional' part of the "if
328  // statement".
329  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
330    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
331      if (!AggressiveInsts) return false;
332      // Okay, it looks like the instruction IS in the "condition".  Check to
333      // see if its a cheap instruction to unconditionally compute, and if it
334      // only uses stuff defined outside of the condition.  If so, hoist it out.
335      switch (I->getOpcode()) {
336      default: return false;  // Cannot hoist this out safely.
337      case Instruction::Load:
338        // We can hoist loads that are non-volatile and obviously cannot trap.
339        if (cast<LoadInst>(I)->isVolatile())
340          return false;
341        if (!isa<AllocaInst>(I->getOperand(0)) &&
342            !isa<Constant>(I->getOperand(0)))
343          return false;
344
345        // Finally, we have to check to make sure there are no instructions
346        // before the load in its basic block, as we are going to hoist the loop
347        // out to its predecessor.
348        if (PBB->begin() != BasicBlock::iterator(I))
349          return false;
350        break;
351      case Instruction::Add:
352      case Instruction::Sub:
353      case Instruction::And:
354      case Instruction::Or:
355      case Instruction::Xor:
356      case Instruction::Shl:
357      case Instruction::Shr:
358      case Instruction::SetEQ:
359      case Instruction::SetNE:
360      case Instruction::SetLT:
361      case Instruction::SetGT:
362      case Instruction::SetLE:
363      case Instruction::SetGE:
364        break;   // These are all cheap and non-trapping instructions.
365      }
366
367      // Okay, we can only really hoist these out if their operands are not
368      // defined in the conditional region.
369      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
370        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
371          return false;
372      // Okay, it's safe to do this!  Remember this instruction.
373      AggressiveInsts->insert(I);
374    }
375
376  return true;
377}
378
379// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
380// instructions that compare a value against a constant, return the value being
381// compared, and stick the constant into the Values vector.
382static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
383  if (Instruction *Inst = dyn_cast<Instruction>(V))
384    if (Inst->getOpcode() == Instruction::SetEQ) {
385      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
386        Values.push_back(C);
387        return Inst->getOperand(0);
388      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
389        Values.push_back(C);
390        return Inst->getOperand(1);
391      }
392    } else if (Inst->getOpcode() == Instruction::Or) {
393      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
394        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
395          if (LHS == RHS)
396            return LHS;
397    }
398  return 0;
399}
400
401// GatherConstantSetNEs - Given a potentially 'and'd together collection of
402// setne instructions that compare a value against a constant, return the value
403// being compared, and stick the constant into the Values vector.
404static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
405  if (Instruction *Inst = dyn_cast<Instruction>(V))
406    if (Inst->getOpcode() == Instruction::SetNE) {
407      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
408        Values.push_back(C);
409        return Inst->getOperand(0);
410      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
411        Values.push_back(C);
412        return Inst->getOperand(1);
413      }
414    } else if (Inst->getOpcode() == Instruction::Cast) {
415      // Cast of X to bool is really a comparison against zero.
416      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
417      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
418      return Inst->getOperand(0);
419    } else if (Inst->getOpcode() == Instruction::And) {
420      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
421        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
422          if (LHS == RHS)
423            return LHS;
424    }
425  return 0;
426}
427
428
429
430/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
431/// bunch of comparisons of one value against constants, return the value and
432/// the constants being compared.
433static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
434                                   std::vector<ConstantInt*> &Values) {
435  if (Cond->getOpcode() == Instruction::Or) {
436    CompVal = GatherConstantSetEQs(Cond, Values);
437
438    // Return true to indicate that the condition is true if the CompVal is
439    // equal to one of the constants.
440    return true;
441  } else if (Cond->getOpcode() == Instruction::And) {
442    CompVal = GatherConstantSetNEs(Cond, Values);
443
444    // Return false to indicate that the condition is false if the CompVal is
445    // equal to one of the constants.
446    return false;
447  }
448  return false;
449}
450
451/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
452/// has no side effects, nuke it.  If it uses any instructions that become dead
453/// because the instruction is now gone, nuke them too.
454static void ErasePossiblyDeadInstructionTree(Instruction *I) {
455  if (isInstructionTriviallyDead(I)) {
456    std::vector<Value*> Operands(I->op_begin(), I->op_end());
457    I->getParent()->getInstList().erase(I);
458    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
459      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
460        ErasePossiblyDeadInstructionTree(OpI);
461  }
462}
463
464// isValueEqualityComparison - Return true if the specified terminator checks to
465// see if a value is equal to constant integer value.
466static Value *isValueEqualityComparison(TerminatorInst *TI) {
467  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
468    // Do not permit merging of large switch instructions into their
469    // predecessors unless there is only one predecessor.
470    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
471                                               pred_end(SI->getParent())) > 128)
472      return 0;
473
474    return SI->getCondition();
475  }
476  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
477    if (BI->isConditional() && BI->getCondition()->hasOneUse())
478      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
479        if ((SCI->getOpcode() == Instruction::SetEQ ||
480             SCI->getOpcode() == Instruction::SetNE) &&
481            isa<ConstantInt>(SCI->getOperand(1)))
482          return SCI->getOperand(0);
483  return 0;
484}
485
486// Given a value comparison instruction, decode all of the 'cases' that it
487// represents and return the 'default' block.
488static BasicBlock *
489GetValueEqualityComparisonCases(TerminatorInst *TI,
490                                std::vector<std::pair<ConstantInt*,
491                                                      BasicBlock*> > &Cases) {
492  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
493    Cases.reserve(SI->getNumCases());
494    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
495      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
496    return SI->getDefaultDest();
497  }
498
499  BranchInst *BI = cast<BranchInst>(TI);
500  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
501  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
502                                 BI->getSuccessor(SCI->getOpcode() ==
503                                                        Instruction::SetNE)));
504  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
505}
506
507
508// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
509// in the list that match the specified block.
510static void EliminateBlockCases(BasicBlock *BB,
511               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
512  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
513    if (Cases[i].second == BB) {
514      Cases.erase(Cases.begin()+i);
515      --i; --e;
516    }
517}
518
519// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
520// well.
521static bool
522ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
523              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
524  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
525
526  // Make V1 be smaller than V2.
527  if (V1->size() > V2->size())
528    std::swap(V1, V2);
529
530  if (V1->size() == 0) return false;
531  if (V1->size() == 1) {
532    // Just scan V2.
533    ConstantInt *TheVal = (*V1)[0].first;
534    for (unsigned i = 0, e = V2->size(); i != e; ++i)
535      if (TheVal == (*V2)[i].first)
536        return true;
537  }
538
539  // Otherwise, just sort both lists and compare element by element.
540  std::sort(V1->begin(), V1->end());
541  std::sort(V2->begin(), V2->end());
542  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
543  while (i1 != e1 && i2 != e2) {
544    if ((*V1)[i1].first == (*V2)[i2].first)
545      return true;
546    if ((*V1)[i1].first < (*V2)[i2].first)
547      ++i1;
548    else
549      ++i2;
550  }
551  return false;
552}
553
554// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
555// terminator instruction and its block is known to only have a single
556// predecessor block, check to see if that predecessor is also a value
557// comparison with the same value, and if that comparison determines the outcome
558// of this comparison.  If so, simplify TI.  This does a very limited form of
559// jump threading.
560static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
561                                                          BasicBlock *Pred) {
562  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
563  if (!PredVal) return false;  // Not a value comparison in predecessor.
564
565  Value *ThisVal = isValueEqualityComparison(TI);
566  assert(ThisVal && "This isn't a value comparison!!");
567  if (ThisVal != PredVal) return false;  // Different predicates.
568
569  // Find out information about when control will move from Pred to TI's block.
570  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
571  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
572                                                        PredCases);
573  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
574
575  // Find information about how control leaves this block.
576  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
577  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
578  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
579
580  // If TI's block is the default block from Pred's comparison, potentially
581  // simplify TI based on this knowledge.
582  if (PredDef == TI->getParent()) {
583    // If we are here, we know that the value is none of those cases listed in
584    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
585    // can simplify TI.
586    if (ValuesOverlap(PredCases, ThisCases)) {
587      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
588        // Okay, one of the successors of this condbr is dead.  Convert it to a
589        // uncond br.
590        assert(ThisCases.size() == 1 && "Branch can only have one case!");
591        Value *Cond = BTI->getCondition();
592        // Insert the new branch.
593        Instruction *NI = new BranchInst(ThisDef, TI);
594
595        // Remove PHI node entries for the dead edge.
596        ThisCases[0].second->removePredecessor(TI->getParent());
597
598        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
599              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
600
601        TI->eraseFromParent();   // Nuke the old one.
602        // If condition is now dead, nuke it.
603        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
604          ErasePossiblyDeadInstructionTree(CondI);
605        return true;
606
607      } else {
608        SwitchInst *SI = cast<SwitchInst>(TI);
609        // Okay, TI has cases that are statically dead, prune them away.
610        std::set<Constant*> DeadCases;
611        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
612          DeadCases.insert(PredCases[i].first);
613
614        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
615                  << "Through successor TI: " << *TI);
616
617        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
618          if (DeadCases.count(SI->getCaseValue(i))) {
619            SI->getSuccessor(i)->removePredecessor(TI->getParent());
620            SI->removeCase(i);
621          }
622
623        DEBUG(std::cerr << "Leaving: " << *TI << "\n");
624        return true;
625      }
626    }
627
628  } else {
629    // Otherwise, TI's block must correspond to some matched value.  Find out
630    // which value (or set of values) this is.
631    ConstantInt *TIV = 0;
632    BasicBlock *TIBB = TI->getParent();
633    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
634      if (PredCases[i].second == TIBB)
635        if (TIV == 0)
636          TIV = PredCases[i].first;
637        else
638          return false;  // Cannot handle multiple values coming to this block.
639    assert(TIV && "No edge from pred to succ?");
640
641    // Okay, we found the one constant that our value can be if we get into TI's
642    // BB.  Find out which successor will unconditionally be branched to.
643    BasicBlock *TheRealDest = 0;
644    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
645      if (ThisCases[i].first == TIV) {
646        TheRealDest = ThisCases[i].second;
647        break;
648      }
649
650    // If not handled by any explicit cases, it is handled by the default case.
651    if (TheRealDest == 0) TheRealDest = ThisDef;
652
653    // Remove PHI node entries for dead edges.
654    BasicBlock *CheckEdge = TheRealDest;
655    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
656      if (*SI != CheckEdge)
657        (*SI)->removePredecessor(TIBB);
658      else
659        CheckEdge = 0;
660
661    // Insert the new branch.
662    Instruction *NI = new BranchInst(TheRealDest, TI);
663
664    DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
665          << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
666    Instruction *Cond = 0;
667    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
668      Cond = dyn_cast<Instruction>(BI->getCondition());
669    TI->eraseFromParent();   // Nuke the old one.
670
671    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
672    return true;
673  }
674  return false;
675}
676
677// FoldValueComparisonIntoPredecessors - The specified terminator is a value
678// equality comparison instruction (either a switch or a branch on "X == c").
679// See if any of the predecessors of the terminator block are value comparisons
680// on the same value.  If so, and if safe to do so, fold them together.
681static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
682  BasicBlock *BB = TI->getParent();
683  Value *CV = isValueEqualityComparison(TI);  // CondVal
684  assert(CV && "Not a comparison?");
685  bool Changed = false;
686
687  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
688  while (!Preds.empty()) {
689    BasicBlock *Pred = Preds.back();
690    Preds.pop_back();
691
692    // See if the predecessor is a comparison with the same value.
693    TerminatorInst *PTI = Pred->getTerminator();
694    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
695
696    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
697      // Figure out which 'cases' to copy from SI to PSI.
698      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
699      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
700
701      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
702      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
703
704      // Based on whether the default edge from PTI goes to BB or not, fill in
705      // PredCases and PredDefault with the new switch cases we would like to
706      // build.
707      std::vector<BasicBlock*> NewSuccessors;
708
709      if (PredDefault == BB) {
710        // If this is the default destination from PTI, only the edges in TI
711        // that don't occur in PTI, or that branch to BB will be activated.
712        std::set<ConstantInt*> PTIHandled;
713        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
714          if (PredCases[i].second != BB)
715            PTIHandled.insert(PredCases[i].first);
716          else {
717            // The default destination is BB, we don't need explicit targets.
718            std::swap(PredCases[i], PredCases.back());
719            PredCases.pop_back();
720            --i; --e;
721          }
722
723        // Reconstruct the new switch statement we will be building.
724        if (PredDefault != BBDefault) {
725          PredDefault->removePredecessor(Pred);
726          PredDefault = BBDefault;
727          NewSuccessors.push_back(BBDefault);
728        }
729        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
730          if (!PTIHandled.count(BBCases[i].first) &&
731              BBCases[i].second != BBDefault) {
732            PredCases.push_back(BBCases[i]);
733            NewSuccessors.push_back(BBCases[i].second);
734          }
735
736      } else {
737        // If this is not the default destination from PSI, only the edges
738        // in SI that occur in PSI with a destination of BB will be
739        // activated.
740        std::set<ConstantInt*> PTIHandled;
741        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
742          if (PredCases[i].second == BB) {
743            PTIHandled.insert(PredCases[i].first);
744            std::swap(PredCases[i], PredCases.back());
745            PredCases.pop_back();
746            --i; --e;
747          }
748
749        // Okay, now we know which constants were sent to BB from the
750        // predecessor.  Figure out where they will all go now.
751        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
752          if (PTIHandled.count(BBCases[i].first)) {
753            // If this is one we are capable of getting...
754            PredCases.push_back(BBCases[i]);
755            NewSuccessors.push_back(BBCases[i].second);
756            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
757          }
758
759        // If there are any constants vectored to BB that TI doesn't handle,
760        // they must go to the default destination of TI.
761        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
762               E = PTIHandled.end(); I != E; ++I) {
763          PredCases.push_back(std::make_pair(*I, BBDefault));
764          NewSuccessors.push_back(BBDefault);
765        }
766      }
767
768      // Okay, at this point, we know which new successor Pred will get.  Make
769      // sure we update the number of entries in the PHI nodes for these
770      // successors.
771      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
772        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
773
774      // Now that the successors are updated, create the new Switch instruction.
775      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
776      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
777        NewSI->addCase(PredCases[i].first, PredCases[i].second);
778
779      Instruction *DeadCond = 0;
780      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
781        // If PTI is a branch, remember the condition.
782        DeadCond = dyn_cast<Instruction>(BI->getCondition());
783      Pred->getInstList().erase(PTI);
784
785      // If the condition is dead now, remove the instruction tree.
786      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
787
788      // Okay, last check.  If BB is still a successor of PSI, then we must
789      // have an infinite loop case.  If so, add an infinitely looping block
790      // to handle the case to preserve the behavior of the code.
791      BasicBlock *InfLoopBlock = 0;
792      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
793        if (NewSI->getSuccessor(i) == BB) {
794          if (InfLoopBlock == 0) {
795            // Insert it at the end of the loop, because it's either code,
796            // or it won't matter if it's hot. :)
797            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
798            new BranchInst(InfLoopBlock, InfLoopBlock);
799          }
800          NewSI->setSuccessor(i, InfLoopBlock);
801        }
802
803      Changed = true;
804    }
805  }
806  return Changed;
807}
808
809/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
810/// BB2, hoist any common code in the two blocks up into the branch block.  The
811/// caller of this function guarantees that BI's block dominates BB1 and BB2.
812static bool HoistThenElseCodeToIf(BranchInst *BI) {
813  // This does very trivial matching, with limited scanning, to find identical
814  // instructions in the two blocks.  In particular, we don't want to get into
815  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
816  // such, we currently just scan for obviously identical instructions in an
817  // identical order.
818  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
819  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
820
821  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
822  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2) ||
823      isa<PHINode>(I1))
824    return false;
825
826  // If we get here, we can hoist at least one instruction.
827  BasicBlock *BIParent = BI->getParent();
828
829  do {
830    // If we are hoisting the terminator instruction, don't move one (making a
831    // broken BB), instead clone it, and remove BI.
832    if (isa<TerminatorInst>(I1))
833      goto HoistTerminator;
834
835    // For a normal instruction, we just move one to right before the branch,
836    // then replace all uses of the other with the first.  Finally, we remove
837    // the now redundant second instruction.
838    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
839    if (!I2->use_empty())
840      I2->replaceAllUsesWith(I1);
841    BB2->getInstList().erase(I2);
842
843    I1 = BB1->begin();
844    I2 = BB2->begin();
845  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
846
847  return true;
848
849HoistTerminator:
850  // Okay, it is safe to hoist the terminator.
851  Instruction *NT = I1->clone();
852  BIParent->getInstList().insert(BI, NT);
853  if (NT->getType() != Type::VoidTy) {
854    I1->replaceAllUsesWith(NT);
855    I2->replaceAllUsesWith(NT);
856    NT->setName(I1->getName());
857  }
858
859  // Hoisting one of the terminators from our successor is a great thing.
860  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
861  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
862  // nodes, so we insert select instruction to compute the final result.
863  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
864  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
865    PHINode *PN;
866    for (BasicBlock::iterator BBI = SI->begin();
867         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
868      Value *BB1V = PN->getIncomingValueForBlock(BB1);
869      Value *BB2V = PN->getIncomingValueForBlock(BB2);
870      if (BB1V != BB2V) {
871        // These values do not agree.  Insert a select instruction before NT
872        // that determines the right value.
873        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
874        if (SI == 0)
875          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
876                              BB1V->getName()+"."+BB2V->getName(), NT);
877        // Make the PHI node use the select for all incoming values for BB1/BB2
878        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
879          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
880            PN->setIncomingValue(i, SI);
881      }
882    }
883  }
884
885  // Update any PHI nodes in our new successors.
886  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
887    AddPredecessorToBlock(*SI, BIParent, BB1);
888
889  BI->eraseFromParent();
890  return true;
891}
892
893/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
894/// across this block.
895static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
896  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
897  Value *Cond = BI->getCondition();
898
899  unsigned Size = 0;
900
901  // If this basic block contains anything other than a PHI (which controls the
902  // branch) and branch itself, bail out.  FIXME: improve this in the future.
903  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
904    if (Size > 10) return false;  // Don't clone large BB's.
905
906    // We can only support instructions that are do not define values that are
907    // live outside of the current basic block.
908    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
909         UI != E; ++UI) {
910      Instruction *U = cast<Instruction>(*UI);
911      if (U->getParent() != BB || isa<PHINode>(U)) return false;
912    }
913
914    // Looks ok, continue checking.
915  }
916
917  return true;
918}
919
920/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
921/// that is defined in the same block as the branch and if any PHI entries are
922/// constants, thread edges corresponding to that entry to be branches to their
923/// ultimate destination.
924static bool FoldCondBranchOnPHI(BranchInst *BI) {
925  BasicBlock *BB = BI->getParent();
926  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
927  // NOTE: we currently cannot transform this case if the PHI node is used
928  // outside of the block.
929  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
930    return false;
931
932  // Degenerate case of a single entry PHI.
933  if (PN->getNumIncomingValues() == 1) {
934    if (PN->getIncomingValue(0) != PN)
935      PN->replaceAllUsesWith(PN->getIncomingValue(0));
936    else
937      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
938    PN->eraseFromParent();
939    return true;
940  }
941
942  // Now we know that this block has multiple preds and two succs.
943  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
944
945  // Okay, this is a simple enough basic block.  See if any phi values are
946  // constants.
947  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
948    if (ConstantBool *CB = dyn_cast<ConstantBool>(PN->getIncomingValue(i))) {
949      // Okay, we now know that all edges from PredBB should be revectored to
950      // branch to RealDest.
951      BasicBlock *PredBB = PN->getIncomingBlock(i);
952      BasicBlock *RealDest = BI->getSuccessor(!CB->getValue());
953
954      if (RealDest == BB) continue;  // Skip self loops.
955
956      // The dest block might have PHI nodes, other predecessors and other
957      // difficult cases.  Instead of being smart about this, just insert a new
958      // block that jumps to the destination block, effectively splitting
959      // the edge we are about to create.
960      BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
961                                          RealDest->getParent(), RealDest);
962      new BranchInst(RealDest, EdgeBB);
963      PHINode *PN;
964      for (BasicBlock::iterator BBI = RealDest->begin();
965           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
966        Value *V = PN->getIncomingValueForBlock(BB);
967        PN->addIncoming(V, EdgeBB);
968      }
969
970      // BB may have instructions that are being threaded over.  Clone these
971      // instructions into EdgeBB.  We know that there will be no uses of the
972      // cloned instructions outside of EdgeBB.
973      BasicBlock::iterator InsertPt = EdgeBB->begin();
974      std::map<Value*, Value*> TranslateMap;  // Track translated values.
975      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
976        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
977          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
978        } else {
979          // Clone the instruction.
980          Instruction *N = BBI->clone();
981          if (BBI->hasName()) N->setName(BBI->getName()+".c");
982
983          // Update operands due to translation.
984          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
985            std::map<Value*, Value*>::iterator PI =
986              TranslateMap.find(N->getOperand(i));
987            if (PI != TranslateMap.end())
988              N->setOperand(i, PI->second);
989          }
990
991          // Check for trivial simplification.
992          if (Constant *C = ConstantFoldInstruction(N)) {
993            std::cerr << "FOLDED: " << *N;
994            TranslateMap[BBI] = C;
995            delete N;   // Constant folded away, don't need actual inst
996          } else {
997            // Insert the new instruction into its new home.
998            EdgeBB->getInstList().insert(InsertPt, N);
999            if (!BBI->use_empty())
1000              TranslateMap[BBI] = N;
1001          }
1002        }
1003      }
1004
1005      // Loop over all of the edges from PredBB to BB, changing them to branch
1006      // to EdgeBB instead.
1007      TerminatorInst *PredBBTI = PredBB->getTerminator();
1008      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1009        if (PredBBTI->getSuccessor(i) == BB) {
1010          BB->removePredecessor(PredBB);
1011          PredBBTI->setSuccessor(i, EdgeBB);
1012        }
1013
1014      // Recurse, simplifying any other constants.
1015      return FoldCondBranchOnPHI(BI) | true;
1016    }
1017
1018  return false;
1019}
1020
1021/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1022/// PHI node, see if we can eliminate it.
1023static bool FoldTwoEntryPHINode(PHINode *PN) {
1024  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1025  // statement", which has a very simple dominance structure.  Basically, we
1026  // are trying to find the condition that is being branched on, which
1027  // subsequently causes this merge to happen.  We really want control
1028  // dependence information for this check, but simplifycfg can't keep it up
1029  // to date, and this catches most of the cases we care about anyway.
1030  //
1031  BasicBlock *BB = PN->getParent();
1032  BasicBlock *IfTrue, *IfFalse;
1033  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1034  if (!IfCond) return false;
1035
1036  DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1037        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1038
1039  // Loop over the PHI's seeing if we can promote them all to select
1040  // instructions.  While we are at it, keep track of the instructions
1041  // that need to be moved to the dominating block.
1042  std::set<Instruction*> AggressiveInsts;
1043
1044  BasicBlock::iterator AfterPHIIt = BB->begin();
1045  while (isa<PHINode>(AfterPHIIt)) {
1046    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1047    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1048      if (PN->getIncomingValue(0) != PN)
1049        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1050      else
1051        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1052    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1053                                    &AggressiveInsts) ||
1054               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1055                                    &AggressiveInsts)) {
1056      return false;
1057    }
1058  }
1059
1060  // If we all PHI nodes are promotable, check to make sure that all
1061  // instructions in the predecessor blocks can be promoted as well.  If
1062  // not, we won't be able to get rid of the control flow, so it's not
1063  // worth promoting to select instructions.
1064  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1065  PN = cast<PHINode>(BB->begin());
1066  BasicBlock *Pred = PN->getIncomingBlock(0);
1067  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1068    IfBlock1 = Pred;
1069    DomBlock = *pred_begin(Pred);
1070    for (BasicBlock::iterator I = Pred->begin();
1071         !isa<TerminatorInst>(I); ++I)
1072      if (!AggressiveInsts.count(I)) {
1073        // This is not an aggressive instruction that we can promote.
1074        // Because of this, we won't be able to get rid of the control
1075        // flow, so the xform is not worth it.
1076        return false;
1077      }
1078  }
1079
1080  Pred = PN->getIncomingBlock(1);
1081  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1082    IfBlock2 = Pred;
1083    DomBlock = *pred_begin(Pred);
1084    for (BasicBlock::iterator I = Pred->begin();
1085         !isa<TerminatorInst>(I); ++I)
1086      if (!AggressiveInsts.count(I)) {
1087        // This is not an aggressive instruction that we can promote.
1088        // Because of this, we won't be able to get rid of the control
1089        // flow, so the xform is not worth it.
1090        return false;
1091      }
1092  }
1093
1094  // If we can still promote the PHI nodes after this gauntlet of tests,
1095  // do all of the PHI's now.
1096
1097  // Move all 'aggressive' instructions, which are defined in the
1098  // conditional parts of the if's up to the dominating block.
1099  if (IfBlock1) {
1100    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1101                                   IfBlock1->getInstList(),
1102                                   IfBlock1->begin(),
1103                                   IfBlock1->getTerminator());
1104  }
1105  if (IfBlock2) {
1106    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1107                                   IfBlock2->getInstList(),
1108                                   IfBlock2->begin(),
1109                                   IfBlock2->getTerminator());
1110  }
1111
1112  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1113    // Change the PHI node into a select instruction.
1114    Value *TrueVal =
1115      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1116    Value *FalseVal =
1117      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1118
1119    std::string Name = PN->getName(); PN->setName("");
1120    PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
1121                                          Name, AfterPHIIt));
1122    BB->getInstList().erase(PN);
1123  }
1124  return true;
1125}
1126
1127namespace {
1128  /// ConstantIntOrdering - This class implements a stable ordering of constant
1129  /// integers that does not depend on their address.  This is important for
1130  /// applications that sort ConstantInt's to ensure uniqueness.
1131  struct ConstantIntOrdering {
1132    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1133      return LHS->getRawValue() < RHS->getRawValue();
1134    }
1135  };
1136}
1137
1138// SimplifyCFG - This function is used to do simplification of a CFG.  For
1139// example, it adjusts branches to branches to eliminate the extra hop, it
1140// eliminates unreachable basic blocks, and does other "peephole" optimization
1141// of the CFG.  It returns true if a modification was made.
1142//
1143// WARNING:  The entry node of a function may not be simplified.
1144//
1145bool llvm::SimplifyCFG(BasicBlock *BB) {
1146  bool Changed = false;
1147  Function *M = BB->getParent();
1148
1149  assert(BB && BB->getParent() && "Block not embedded in function!");
1150  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1151  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
1152
1153  // Remove basic blocks that have no predecessors... which are unreachable.
1154  if (pred_begin(BB) == pred_end(BB) ||
1155      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
1156    DEBUG(std::cerr << "Removing BB: \n" << *BB);
1157
1158    // Loop through all of our successors and make sure they know that one
1159    // of their predecessors is going away.
1160    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1161      SI->removePredecessor(BB);
1162
1163    while (!BB->empty()) {
1164      Instruction &I = BB->back();
1165      // If this instruction is used, replace uses with an arbitrary
1166      // value.  Because control flow can't get here, we don't care
1167      // what we replace the value with.  Note that since this block is
1168      // unreachable, and all values contained within it must dominate their
1169      // uses, that all uses will eventually be removed.
1170      if (!I.use_empty())
1171        // Make all users of this instruction use undef instead
1172        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1173
1174      // Remove the instruction from the basic block
1175      BB->getInstList().pop_back();
1176    }
1177    M->getBasicBlockList().erase(BB);
1178    return true;
1179  }
1180
1181  // Check to see if we can constant propagate this terminator instruction
1182  // away...
1183  Changed |= ConstantFoldTerminator(BB);
1184
1185  // If this is a returning block with only PHI nodes in it, fold the return
1186  // instruction into any unconditional branch predecessors.
1187  //
1188  // If any predecessor is a conditional branch that just selects among
1189  // different return values, fold the replace the branch/return with a select
1190  // and return.
1191  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1192    BasicBlock::iterator BBI = BB->getTerminator();
1193    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1194      // Find predecessors that end with branches.
1195      std::vector<BasicBlock*> UncondBranchPreds;
1196      std::vector<BranchInst*> CondBranchPreds;
1197      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1198        TerminatorInst *PTI = (*PI)->getTerminator();
1199        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
1200          if (BI->isUnconditional())
1201            UncondBranchPreds.push_back(*PI);
1202          else
1203            CondBranchPreds.push_back(BI);
1204      }
1205
1206      // If we found some, do the transformation!
1207      if (!UncondBranchPreds.empty()) {
1208        while (!UncondBranchPreds.empty()) {
1209          BasicBlock *Pred = UncondBranchPreds.back();
1210          DEBUG(std::cerr << "FOLDING: " << *BB
1211                          << "INTO UNCOND BRANCH PRED: " << *Pred);
1212          UncondBranchPreds.pop_back();
1213          Instruction *UncondBranch = Pred->getTerminator();
1214          // Clone the return and add it to the end of the predecessor.
1215          Instruction *NewRet = RI->clone();
1216          Pred->getInstList().push_back(NewRet);
1217
1218          // If the return instruction returns a value, and if the value was a
1219          // PHI node in "BB", propagate the right value into the return.
1220          if (NewRet->getNumOperands() == 1)
1221            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1222              if (PN->getParent() == BB)
1223                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1224          // Update any PHI nodes in the returning block to realize that we no
1225          // longer branch to them.
1226          BB->removePredecessor(Pred);
1227          Pred->getInstList().erase(UncondBranch);
1228        }
1229
1230        // If we eliminated all predecessors of the block, delete the block now.
1231        if (pred_begin(BB) == pred_end(BB))
1232          // We know there are no successors, so just nuke the block.
1233          M->getBasicBlockList().erase(BB);
1234
1235        return true;
1236      }
1237
1238      // Check out all of the conditional branches going to this return
1239      // instruction.  If any of them just select between returns, change the
1240      // branch itself into a select/return pair.
1241      while (!CondBranchPreds.empty()) {
1242        BranchInst *BI = CondBranchPreds.back();
1243        CondBranchPreds.pop_back();
1244        BasicBlock *TrueSucc = BI->getSuccessor(0);
1245        BasicBlock *FalseSucc = BI->getSuccessor(1);
1246        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
1247
1248        // Check to see if the non-BB successor is also a return block.
1249        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
1250          // Check to see if there are only PHI instructions in this block.
1251          BasicBlock::iterator OSI = OtherSucc->getTerminator();
1252          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
1253            // Okay, we found a branch that is going to two return nodes.  If
1254            // there is no return value for this function, just change the
1255            // branch into a return.
1256            if (RI->getNumOperands() == 0) {
1257              TrueSucc->removePredecessor(BI->getParent());
1258              FalseSucc->removePredecessor(BI->getParent());
1259              new ReturnInst(0, BI);
1260              BI->getParent()->getInstList().erase(BI);
1261              return true;
1262            }
1263
1264            // Otherwise, figure out what the true and false return values are
1265            // so we can insert a new select instruction.
1266            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1267            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1268
1269            // Unwrap any PHI nodes in the return blocks.
1270            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1271              if (TVPN->getParent() == TrueSucc)
1272                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1273            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1274              if (FVPN->getParent() == FalseSucc)
1275                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1276
1277            TrueSucc->removePredecessor(BI->getParent());
1278            FalseSucc->removePredecessor(BI->getParent());
1279
1280            // Insert a new select instruction.
1281            Value *NewRetVal;
1282            Value *BrCond = BI->getCondition();
1283            if (TrueValue != FalseValue)
1284              NewRetVal = new SelectInst(BrCond, TrueValue,
1285                                         FalseValue, "retval", BI);
1286            else
1287              NewRetVal = TrueValue;
1288
1289            new ReturnInst(NewRetVal, BI);
1290            BI->getParent()->getInstList().erase(BI);
1291            if (BrCond->use_empty())
1292              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1293                BrCondI->getParent()->getInstList().erase(BrCondI);
1294            return true;
1295          }
1296        }
1297      }
1298    }
1299  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
1300    // Check to see if the first instruction in this block is just an unwind.
1301    // If so, replace any invoke instructions which use this as an exception
1302    // destination with call instructions, and any unconditional branch
1303    // predecessor with an unwind.
1304    //
1305    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1306    while (!Preds.empty()) {
1307      BasicBlock *Pred = Preds.back();
1308      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1309        if (BI->isUnconditional()) {
1310          Pred->getInstList().pop_back();  // nuke uncond branch
1311          new UnwindInst(Pred);            // Use unwind.
1312          Changed = true;
1313        }
1314      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1315        if (II->getUnwindDest() == BB) {
1316          // Insert a new branch instruction before the invoke, because this
1317          // is now a fall through...
1318          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1319          Pred->getInstList().remove(II);   // Take out of symbol table
1320
1321          // Insert the call now...
1322          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1323          CallInst *CI = new CallInst(II->getCalledValue(), Args,
1324                                      II->getName(), BI);
1325          CI->setCallingConv(II->getCallingConv());
1326          // If the invoke produced a value, the Call now does instead
1327          II->replaceAllUsesWith(CI);
1328          delete II;
1329          Changed = true;
1330        }
1331
1332      Preds.pop_back();
1333    }
1334
1335    // If this block is now dead, remove it.
1336    if (pred_begin(BB) == pred_end(BB)) {
1337      // We know there are no successors, so just nuke the block.
1338      M->getBasicBlockList().erase(BB);
1339      return true;
1340    }
1341
1342  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1343    if (isValueEqualityComparison(SI)) {
1344      // If we only have one predecessor, and if it is a branch on this value,
1345      // see if that predecessor totally determines the outcome of this switch.
1346      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1347        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1348          return SimplifyCFG(BB) || 1;
1349
1350      // If the block only contains the switch, see if we can fold the block
1351      // away into any preds.
1352      if (SI == &BB->front())
1353        if (FoldValueComparisonIntoPredecessors(SI))
1354          return SimplifyCFG(BB) || 1;
1355    }
1356  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1357    if (BI->isUnconditional()) {
1358      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
1359      while (isa<PHINode>(*BBI)) ++BBI;
1360
1361      BasicBlock *Succ = BI->getSuccessor(0);
1362      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1363          Succ != BB)             // Don't hurt infinite loops!
1364        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1365          return 1;
1366
1367    } else {  // Conditional branch
1368      if (Value *CompVal = isValueEqualityComparison(BI)) {
1369        // If we only have one predecessor, and if it is a branch on this value,
1370        // see if that predecessor totally determines the outcome of this
1371        // switch.
1372        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1373          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1374            return SimplifyCFG(BB) || 1;
1375
1376        // This block must be empty, except for the setcond inst, if it exists.
1377        BasicBlock::iterator I = BB->begin();
1378        if (&*I == BI ||
1379            (&*I == cast<Instruction>(BI->getCondition()) &&
1380             &*++I == BI))
1381          if (FoldValueComparisonIntoPredecessors(BI))
1382            return SimplifyCFG(BB) | true;
1383      }
1384
1385      // If this is a branch on a phi node in the current block, thread control
1386      // through this block if any PHI node entries are constants.
1387      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1388        if (PN->getParent() == BI->getParent())
1389          if (FoldCondBranchOnPHI(BI))
1390            return SimplifyCFG(BB) | true;
1391
1392      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1393      // branches to us and one of our successors, fold the setcc into the
1394      // predecessor and use logical operations to pick the right destination.
1395      BasicBlock *TrueDest  = BI->getSuccessor(0);
1396      BasicBlock *FalseDest = BI->getSuccessor(1);
1397      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
1398        if (Cond->getParent() == BB && &BB->front() == Cond &&
1399            Cond->getNext() == BI && Cond->hasOneUse() &&
1400            TrueDest != BB && FalseDest != BB)
1401          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1402            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1403              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1404                BasicBlock *PredBlock = *PI;
1405                if (PBI->getSuccessor(0) == FalseDest ||
1406                    PBI->getSuccessor(1) == TrueDest) {
1407                  // Invert the predecessors condition test (xor it with true),
1408                  // which allows us to write this code once.
1409                  Value *NewCond =
1410                    BinaryOperator::createNot(PBI->getCondition(),
1411                                    PBI->getCondition()->getName()+".not", PBI);
1412                  PBI->setCondition(NewCond);
1413                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1414                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1415                  PBI->setSuccessor(0, OldFalse);
1416                  PBI->setSuccessor(1, OldTrue);
1417                }
1418
1419                if (PBI->getSuccessor(0) == TrueDest ||
1420                    PBI->getSuccessor(1) == FalseDest) {
1421                  // Clone Cond into the predecessor basic block, and or/and the
1422                  // two conditions together.
1423                  Instruction *New = Cond->clone();
1424                  New->setName(Cond->getName());
1425                  Cond->setName(Cond->getName()+".old");
1426                  PredBlock->getInstList().insert(PBI, New);
1427                  Instruction::BinaryOps Opcode =
1428                    PBI->getSuccessor(0) == TrueDest ?
1429                    Instruction::Or : Instruction::And;
1430                  Value *NewCond =
1431                    BinaryOperator::create(Opcode, PBI->getCondition(),
1432                                           New, "bothcond", PBI);
1433                  PBI->setCondition(NewCond);
1434                  if (PBI->getSuccessor(0) == BB) {
1435                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1436                    PBI->setSuccessor(0, TrueDest);
1437                  }
1438                  if (PBI->getSuccessor(1) == BB) {
1439                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1440                    PBI->setSuccessor(1, FalseDest);
1441                  }
1442                  return SimplifyCFG(BB) | 1;
1443                }
1444              }
1445
1446      // Scan predessor blocks for conditional branchs.
1447      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1448        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1449          if (PBI != BI && PBI->isConditional()) {
1450
1451            // If this block ends with a branch instruction, and if there is a
1452            // predecessor that ends on a branch of the same condition, make this
1453            // conditional branch redundant.
1454            if (PBI->getCondition() == BI->getCondition() &&
1455                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1456              // Okay, the outcome of this conditional branch is statically
1457              // knowable.  If this block had a single pred, handle specially.
1458              if (BB->getSinglePredecessor()) {
1459                // Turn this into a branch on constant.
1460                bool CondIsTrue = PBI->getSuccessor(0) == BB;
1461                BI->setCondition(ConstantBool::get(CondIsTrue));
1462                return SimplifyCFG(BB);  // Nuke the branch on constant.
1463              }
1464
1465              // Otherwise, if there are multiple predecessors, insert a PHI that
1466              // merges in the constant and simplify the block result.
1467              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1468                PHINode *NewPN = new PHINode(Type::BoolTy,
1469                                             BI->getCondition()->getName()+".pr",
1470                                             BB->begin());
1471                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1472                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1473                      PBI != BI && PBI->isConditional() &&
1474                      PBI->getCondition() == BI->getCondition() &&
1475                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1476                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
1477                    NewPN->addIncoming(ConstantBool::get(CondIsTrue), *PI);
1478                  } else {
1479                    NewPN->addIncoming(BI->getCondition(), *PI);
1480                  }
1481
1482                BI->setCondition(NewPN);
1483                // This will thread the branch.
1484                return SimplifyCFG(BB) | true;
1485              }
1486            }
1487
1488            // If this is a conditional branch in an empty block, and if any
1489            // predecessors is a conditional branch to one of our destinations,
1490            // fold the conditions into logical ops and one cond br.
1491            if (&BB->front() == BI) {
1492              int PBIOp, BIOp;
1493              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1494                PBIOp = BIOp = 0;
1495              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1496                PBIOp = 0; BIOp = 1;
1497              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1498                PBIOp = 1; BIOp = 0;
1499              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1500                PBIOp = BIOp = 1;
1501              } else {
1502                PBIOp = BIOp = -1;
1503              }
1504
1505              // Finally, if everything is ok, fold the branches to logical ops.
1506              if (PBIOp != -1) {
1507                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1508                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1509
1510                DEBUG(std::cerr << "FOLDING BRs:" << *PBI->getParent()
1511                                << "AND: " << *BI->getParent());
1512
1513                // BI may have other predecessors.  Because of this, we leave
1514                // it alone, but modify PBI.
1515
1516                // Make sure we get to CommonDest on True&True directions.
1517                Value *PBICond = PBI->getCondition();
1518                if (PBIOp)
1519                  PBICond = BinaryOperator::createNot(PBICond,
1520                                                      PBICond->getName()+".not",
1521                                                      PBI);
1522                Value *BICond = BI->getCondition();
1523                if (BIOp)
1524                  BICond = BinaryOperator::createNot(BICond,
1525                                                     BICond->getName()+".not",
1526                                                     PBI);
1527                // Merge the conditions.
1528                Value *Cond =
1529                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1530
1531                // Modify PBI to branch on the new condition to the new dests.
1532                PBI->setCondition(Cond);
1533                PBI->setSuccessor(0, CommonDest);
1534                PBI->setSuccessor(1, OtherDest);
1535
1536                // OtherDest may have phi nodes.  If so, add an entry from PBI's
1537                // block that are identical to the entries for BI's block.
1538                PHINode *PN;
1539                for (BasicBlock::iterator II = OtherDest->begin();
1540                     (PN = dyn_cast<PHINode>(II)); ++II) {
1541                  Value *V = PN->getIncomingValueForBlock(BB);
1542                  PN->addIncoming(V, PBI->getParent());
1543                }
1544
1545                // We know that the CommonDest already had an edge from PBI to
1546                // it.  If it has PHIs though, the PHIs may have different
1547                // entries for BB and PBI's BB.  If so, insert a select to make
1548                // them agree.
1549                for (BasicBlock::iterator II = CommonDest->begin();
1550                     (PN = dyn_cast<PHINode>(II)); ++II) {
1551                  Value * BIV = PN->getIncomingValueForBlock(BB);
1552                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1553                  Value *PBIV = PN->getIncomingValue(PBBIdx);
1554                  if (BIV != PBIV) {
1555                    // Insert a select in PBI to pick the right value.
1556                    Value *NV = new SelectInst(PBICond, PBIV, BIV,
1557                                               PBIV->getName()+".mux", PBI);
1558                    PN->setIncomingValue(PBBIdx, NV);
1559                  }
1560                }
1561
1562                DEBUG(std::cerr << "INTO: " << *PBI->getParent());
1563
1564                // This basic block is probably dead.  We know it has at least
1565                // one fewer predecessor.
1566                return SimplifyCFG(BB) | true;
1567              }
1568            }
1569          }
1570    }
1571  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1572    // If there are any instructions immediately before the unreachable that can
1573    // be removed, do so.
1574    Instruction *Unreachable = BB->getTerminator();
1575    while (Unreachable != BB->begin()) {
1576      BasicBlock::iterator BBI = Unreachable;
1577      --BBI;
1578      if (isa<CallInst>(BBI)) break;
1579      // Delete this instruction
1580      BB->getInstList().erase(BBI);
1581      Changed = true;
1582    }
1583
1584    // If the unreachable instruction is the first in the block, take a gander
1585    // at all of the predecessors of this instruction, and simplify them.
1586    if (&BB->front() == Unreachable) {
1587      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1588      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1589        TerminatorInst *TI = Preds[i]->getTerminator();
1590
1591        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1592          if (BI->isUnconditional()) {
1593            if (BI->getSuccessor(0) == BB) {
1594              new UnreachableInst(TI);
1595              TI->eraseFromParent();
1596              Changed = true;
1597            }
1598          } else {
1599            if (BI->getSuccessor(0) == BB) {
1600              new BranchInst(BI->getSuccessor(1), BI);
1601              BI->eraseFromParent();
1602            } else if (BI->getSuccessor(1) == BB) {
1603              new BranchInst(BI->getSuccessor(0), BI);
1604              BI->eraseFromParent();
1605              Changed = true;
1606            }
1607          }
1608        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1609          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1610            if (SI->getSuccessor(i) == BB) {
1611              BB->removePredecessor(SI->getParent());
1612              SI->removeCase(i);
1613              --i; --e;
1614              Changed = true;
1615            }
1616          // If the default value is unreachable, figure out the most popular
1617          // destination and make it the default.
1618          if (SI->getSuccessor(0) == BB) {
1619            std::map<BasicBlock*, unsigned> Popularity;
1620            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1621              Popularity[SI->getSuccessor(i)]++;
1622
1623            // Find the most popular block.
1624            unsigned MaxPop = 0;
1625            BasicBlock *MaxBlock = 0;
1626            for (std::map<BasicBlock*, unsigned>::iterator
1627                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1628              if (I->second > MaxPop) {
1629                MaxPop = I->second;
1630                MaxBlock = I->first;
1631              }
1632            }
1633            if (MaxBlock) {
1634              // Make this the new default, allowing us to delete any explicit
1635              // edges to it.
1636              SI->setSuccessor(0, MaxBlock);
1637              Changed = true;
1638
1639              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1640              // it.
1641              if (isa<PHINode>(MaxBlock->begin()))
1642                for (unsigned i = 0; i != MaxPop-1; ++i)
1643                  MaxBlock->removePredecessor(SI->getParent());
1644
1645              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1646                if (SI->getSuccessor(i) == MaxBlock) {
1647                  SI->removeCase(i);
1648                  --i; --e;
1649                }
1650            }
1651          }
1652        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1653          if (II->getUnwindDest() == BB) {
1654            // Convert the invoke to a call instruction.  This would be a good
1655            // place to note that the call does not throw though.
1656            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1657            II->removeFromParent();   // Take out of symbol table
1658
1659            // Insert the call now...
1660            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1661            CallInst *CI = new CallInst(II->getCalledValue(), Args,
1662                                        II->getName(), BI);
1663            CI->setCallingConv(II->getCallingConv());
1664            // If the invoke produced a value, the Call does now instead.
1665            II->replaceAllUsesWith(CI);
1666            delete II;
1667            Changed = true;
1668          }
1669        }
1670      }
1671
1672      // If this block is now dead, remove it.
1673      if (pred_begin(BB) == pred_end(BB)) {
1674        // We know there are no successors, so just nuke the block.
1675        M->getBasicBlockList().erase(BB);
1676        return true;
1677      }
1678    }
1679  }
1680
1681  // Merge basic blocks into their predecessor if there is only one distinct
1682  // pred, and if there is only one distinct successor of the predecessor, and
1683  // if there are no PHI nodes.
1684  //
1685  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1686  BasicBlock *OnlyPred = *PI++;
1687  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1688    if (*PI != OnlyPred) {
1689      OnlyPred = 0;       // There are multiple different predecessors...
1690      break;
1691    }
1692
1693  BasicBlock *OnlySucc = 0;
1694  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1695      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1696    // Check to see if there is only one distinct successor...
1697    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1698    OnlySucc = BB;
1699    for (; SI != SE; ++SI)
1700      if (*SI != OnlySucc) {
1701        OnlySucc = 0;     // There are multiple distinct successors!
1702        break;
1703      }
1704  }
1705
1706  if (OnlySucc) {
1707    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
1708    TerminatorInst *Term = OnlyPred->getTerminator();
1709
1710    // Resolve any PHI nodes at the start of the block.  They are all
1711    // guaranteed to have exactly one entry if they exist, unless there are
1712    // multiple duplicate (but guaranteed to be equal) entries for the
1713    // incoming edges.  This occurs when there are multiple edges from
1714    // OnlyPred to OnlySucc.
1715    //
1716    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1717      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1718      BB->getInstList().pop_front();  // Delete the phi node...
1719    }
1720
1721    // Delete the unconditional branch from the predecessor...
1722    OnlyPred->getInstList().pop_back();
1723
1724    // Move all definitions in the successor to the predecessor...
1725    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1726
1727    // Make all PHI nodes that referred to BB now refer to Pred as their
1728    // source...
1729    BB->replaceAllUsesWith(OnlyPred);
1730
1731    std::string OldName = BB->getName();
1732
1733    // Erase basic block from the function...
1734    M->getBasicBlockList().erase(BB);
1735
1736    // Inherit predecessors name if it exists...
1737    if (!OldName.empty() && !OnlyPred->hasName())
1738      OnlyPred->setName(OldName);
1739
1740    return true;
1741  }
1742
1743  // Otherwise, if this block only has a single predecessor, and if that block
1744  // is a conditional branch, see if we can hoist any code from this block up
1745  // into our predecessor.
1746  if (OnlyPred)
1747    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1748      if (BI->isConditional()) {
1749        // Get the other block.
1750        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1751        PI = pred_begin(OtherBB);
1752        ++PI;
1753        if (PI == pred_end(OtherBB)) {
1754          // We have a conditional branch to two blocks that are only reachable
1755          // from the condbr.  We know that the condbr dominates the two blocks,
1756          // so see if there is any identical code in the "then" and "else"
1757          // blocks.  If so, we can hoist it up to the branching block.
1758          Changed |= HoistThenElseCodeToIf(BI);
1759        }
1760      }
1761
1762  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1763    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1764      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1765      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1766        Instruction *Cond = cast<Instruction>(BI->getCondition());
1767        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1768        // 'setne's and'ed together, collect them.
1769        Value *CompVal = 0;
1770        std::vector<ConstantInt*> Values;
1771        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1772        if (CompVal && CompVal->getType()->isInteger()) {
1773          // There might be duplicate constants in the list, which the switch
1774          // instruction can't handle, remove them now.
1775          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1776          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1777
1778          // Figure out which block is which destination.
1779          BasicBlock *DefaultBB = BI->getSuccessor(1);
1780          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1781          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1782
1783          // Create the new switch instruction now.
1784          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1785
1786          // Add all of the 'cases' to the switch instruction.
1787          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1788            New->addCase(Values[i], EdgeBB);
1789
1790          // We added edges from PI to the EdgeBB.  As such, if there were any
1791          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1792          // the number of edges added.
1793          for (BasicBlock::iterator BBI = EdgeBB->begin();
1794               isa<PHINode>(BBI); ++BBI) {
1795            PHINode *PN = cast<PHINode>(BBI);
1796            Value *InVal = PN->getIncomingValueForBlock(*PI);
1797            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1798              PN->addIncoming(InVal, *PI);
1799          }
1800
1801          // Erase the old branch instruction.
1802          (*PI)->getInstList().erase(BI);
1803
1804          // Erase the potentially condition tree that was used to computed the
1805          // branch condition.
1806          ErasePossiblyDeadInstructionTree(Cond);
1807          return true;
1808        }
1809      }
1810
1811  // If there is a trivial two-entry PHI node in this basic block, and we can
1812  // eliminate it, do so now.
1813  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1814    if (PN->getNumIncomingValues() == 2)
1815      Changed |= FoldTwoEntryPHINode(PN);
1816
1817  return Changed;
1818}
1819