SimplifyCFG.cpp revision 542f149f00afaf1125b8f2040cad4fe05ed24c3a
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Local.h"
15#include "llvm/Constants.h"
16#include "llvm/Instructions.h"
17#include "llvm/Type.h"
18#include "llvm/Support/CFG.h"
19#include <algorithm>
20#include <functional>
21#include <set>
22using namespace llvm;
23
24// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
25// predecessors from "BB".  This is a little tricky because "Succ" has PHI
26// nodes, which need to have extra slots added to them to hold the merge edges
27// from BB's predecessors, and BB itself might have had PHI nodes in it.  This
28// function returns true (failure) if the Succ BB already has a predecessor that
29// is a predecessor of BB and incoming PHI arguments would not be discernible.
30//
31// Assumption: Succ is the single successor for BB.
32//
33static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
34  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
35
36  if (!isa<PHINode>(Succ->front()))
37    return false;  // We can make the transformation, no problem.
38
39  // If there is more than one predecessor, and there are PHI nodes in
40  // the successor, then we need to add incoming edges for the PHI nodes
41  //
42  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
43
44  // Check to see if one of the predecessors of BB is already a predecessor of
45  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
46  // with incompatible values coming in from the two edges!
47  //
48  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
49    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
50      // Loop over all of the PHI nodes checking to see if there are
51      // incompatible values coming in.
52      for (BasicBlock::iterator I = Succ->begin();
53           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
54        // Loop up the entries in the PHI node for BB and for *PI if the values
55        // coming in are non-equal, we cannot merge these two blocks (instead we
56        // should insert a conditional move or something, then merge the
57        // blocks).
58        int Idx1 = PN->getBasicBlockIndex(BB);
59        int Idx2 = PN->getBasicBlockIndex(*PI);
60        assert(Idx1 != -1 && Idx2 != -1 &&
61               "Didn't have entries for my predecessors??");
62        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
63          return true;  // Values are not equal...
64      }
65    }
66
67  // Loop over all of the PHI nodes in the successor BB
68  for (BasicBlock::iterator I = Succ->begin();
69       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
70    Value *OldVal = PN->removeIncomingValue(BB, false);
71    assert(OldVal && "No entry in PHI for Pred BB!");
72
73    // If this incoming value is one of the PHI nodes in BB...
74    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
75      PHINode *OldValPN = cast<PHINode>(OldVal);
76      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
77             End = BBPreds.end(); PredI != End; ++PredI) {
78        PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
79      }
80    } else {
81      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
82             End = BBPreds.end(); PredI != End; ++PredI) {
83        // Add an incoming value for each of the new incoming values...
84        PN->addIncoming(OldVal, *PredI);
85      }
86    }
87  }
88  return false;
89}
90
91/// GetIfCondition - Given a basic block (BB) with two predecessors (and
92/// presumably PHI nodes in it), check to see if the merge at this block is due
93/// to an "if condition".  If so, return the boolean condition that determines
94/// which entry into BB will be taken.  Also, return by references the block
95/// that will be entered from if the condition is true, and the block that will
96/// be entered if the condition is false.
97///
98///
99static Value *GetIfCondition(BasicBlock *BB,
100                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
101  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
102         "Function can only handle blocks with 2 predecessors!");
103  BasicBlock *Pred1 = *pred_begin(BB);
104  BasicBlock *Pred2 = *++pred_begin(BB);
105
106  // We can only handle branches.  Other control flow will be lowered to
107  // branches if possible anyway.
108  if (!isa<BranchInst>(Pred1->getTerminator()) ||
109      !isa<BranchInst>(Pred2->getTerminator()))
110    return 0;
111  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
112  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
113
114  // Eliminate code duplication by ensuring that Pred1Br is conditional if
115  // either are.
116  if (Pred2Br->isConditional()) {
117    // If both branches are conditional, we don't have an "if statement".  In
118    // reality, we could transform this case, but since the condition will be
119    // required anyway, we stand no chance of eliminating it, so the xform is
120    // probably not profitable.
121    if (Pred1Br->isConditional())
122      return 0;
123
124    std::swap(Pred1, Pred2);
125    std::swap(Pred1Br, Pred2Br);
126  }
127
128  if (Pred1Br->isConditional()) {
129    // If we found a conditional branch predecessor, make sure that it branches
130    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
131    if (Pred1Br->getSuccessor(0) == BB &&
132        Pred1Br->getSuccessor(1) == Pred2) {
133      IfTrue = Pred1;
134      IfFalse = Pred2;
135    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
136               Pred1Br->getSuccessor(1) == BB) {
137      IfTrue = Pred2;
138      IfFalse = Pred1;
139    } else {
140      // We know that one arm of the conditional goes to BB, so the other must
141      // go somewhere unrelated, and this must not be an "if statement".
142      return 0;
143    }
144
145    // The only thing we have to watch out for here is to make sure that Pred2
146    // doesn't have incoming edges from other blocks.  If it does, the condition
147    // doesn't dominate BB.
148    if (++pred_begin(Pred2) != pred_end(Pred2))
149      return 0;
150
151    return Pred1Br->getCondition();
152  }
153
154  // Ok, if we got here, both predecessors end with an unconditional branch to
155  // BB.  Don't panic!  If both blocks only have a single (identical)
156  // predecessor, and THAT is a conditional branch, then we're all ok!
157  if (pred_begin(Pred1) == pred_end(Pred1) ||
158      ++pred_begin(Pred1) != pred_end(Pred1) ||
159      pred_begin(Pred2) == pred_end(Pred2) ||
160      ++pred_begin(Pred2) != pred_end(Pred2) ||
161      *pred_begin(Pred1) != *pred_begin(Pred2))
162    return 0;
163
164  // Otherwise, if this is a conditional branch, then we can use it!
165  BasicBlock *CommonPred = *pred_begin(Pred1);
166  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
167    assert(BI->isConditional() && "Two successors but not conditional?");
168    if (BI->getSuccessor(0) == Pred1) {
169      IfTrue = Pred1;
170      IfFalse = Pred2;
171    } else {
172      IfTrue = Pred2;
173      IfFalse = Pred1;
174    }
175    return BI->getCondition();
176  }
177  return 0;
178}
179
180
181// If we have a merge point of an "if condition" as accepted above, return true
182// if the specified value dominates the block.  We don't handle the true
183// generality of domination here, just a special case which works well enough
184// for us.
185static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
186  if (Instruction *I = dyn_cast<Instruction>(V)) {
187    BasicBlock *PBB = I->getParent();
188    // If this instruction is defined in a block that contains an unconditional
189    // branch to BB, then it must be in the 'conditional' part of the "if
190    // statement".
191    if (isa<BranchInst>(PBB->getTerminator()) &&
192        cast<BranchInst>(PBB->getTerminator())->isUnconditional() &&
193        cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
194      return false;
195
196    // We also don't want to allow wierd loops that might have the "if
197    // condition" in the bottom of this block.
198    if (PBB == BB) return false;
199  }
200
201  // Non-instructions all dominate instructions.
202  return true;
203}
204
205// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
206// instructions that compare a value against a constant, return the value being
207// compared, and stick the constant into the Values vector.
208static Value *GatherConstantSetEQs(Value *V, std::vector<Constant*> &Values) {
209  if (Instruction *Inst = dyn_cast<Instruction>(V))
210    if (Inst->getOpcode() == Instruction::SetEQ) {
211      if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
212        Values.push_back(C);
213        return Inst->getOperand(0);
214      } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
215        Values.push_back(C);
216        return Inst->getOperand(1);
217      }
218    } else if (Inst->getOpcode() == Instruction::Or) {
219      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
220        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
221          if (LHS == RHS)
222            return LHS;
223    }
224  return 0;
225}
226
227// GatherConstantSetNEs - Given a potentially 'and'd together collection of
228// setne instructions that compare a value against a constant, return the value
229// being compared, and stick the constant into the Values vector.
230static Value *GatherConstantSetNEs(Value *V, std::vector<Constant*> &Values) {
231  if (Instruction *Inst = dyn_cast<Instruction>(V))
232    if (Inst->getOpcode() == Instruction::SetNE) {
233      if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
234        Values.push_back(C);
235        return Inst->getOperand(0);
236      } else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
237        Values.push_back(C);
238        return Inst->getOperand(1);
239      }
240    } else if (Inst->getOpcode() == Instruction::Cast) {
241      // Cast of X to bool is really a comparison against zero.
242      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
243      Values.push_back(Constant::getNullValue(Inst->getOperand(0)->getType()));
244      return Inst->getOperand(0);
245    } else if (Inst->getOpcode() == Instruction::And) {
246      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
247        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
248          if (LHS == RHS)
249            return LHS;
250    }
251  return 0;
252}
253
254
255
256/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
257/// bunch of comparisons of one value against constants, return the value and
258/// the constants being compared.
259static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
260                                   std::vector<Constant*> &Values) {
261  if (Cond->getOpcode() == Instruction::Or) {
262    CompVal = GatherConstantSetEQs(Cond, Values);
263
264    // Return true to indicate that the condition is true if the CompVal is
265    // equal to one of the constants.
266    return true;
267  } else if (Cond->getOpcode() == Instruction::And) {
268    CompVal = GatherConstantSetNEs(Cond, Values);
269
270    // Return false to indicate that the condition is false if the CompVal is
271    // equal to one of the constants.
272    return false;
273  }
274  return false;
275}
276
277/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
278/// has no side effects, nuke it.  If it uses any instructions that become dead
279/// because the instruction is now gone, nuke them too.
280static void ErasePossiblyDeadInstructionTree(Instruction *I) {
281  if (isInstructionTriviallyDead(I)) {
282    std::vector<Value*> Operands(I->op_begin(), I->op_end());
283    I->getParent()->getInstList().erase(I);
284    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
285      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
286        ErasePossiblyDeadInstructionTree(OpI);
287  }
288}
289
290/// SafeToMergeTerminators - Return true if it is safe to merge these two
291/// terminator instructions together.
292///
293static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
294  if (SI1 == SI2) return false;  // Can't merge with self!
295
296  // It is not safe to merge these two switch instructions if they have a common
297  // successor, and if that successor has a PHI node, and if that PHI node has
298  // conflicting incoming values from the two switch blocks.
299  BasicBlock *SI1BB = SI1->getParent();
300  BasicBlock *SI2BB = SI2->getParent();
301  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
302
303  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
304    if (SI1Succs.count(*I))
305      for (BasicBlock::iterator BBI = (*I)->begin();
306           PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI)
307        if (PN->getIncomingValueForBlock(SI1BB) !=
308            PN->getIncomingValueForBlock(SI2BB))
309          return false;
310
311  return true;
312}
313
314/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
315/// now be entries in it from the 'NewPred' block.  The values that will be
316/// flowing into the PHI nodes will be the same as those coming in from
317/// ExistPred, and existing predecessor of Succ.
318static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
319                                  BasicBlock *ExistPred) {
320  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
321         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
322  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
323
324  for (BasicBlock::iterator I = Succ->begin();
325       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
326    Value *V = PN->getIncomingValueForBlock(ExistPred);
327    PN->addIncoming(V, NewPred);
328  }
329}
330
331// isValueEqualityComparison - Return true if the specified terminator checks to
332// see if a value is equal to constant integer value.
333static Value *isValueEqualityComparison(TerminatorInst *TI) {
334  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
335    return SI->getCondition();
336  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
337    if (BI->isConditional() && BI->getCondition()->hasOneUse())
338      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
339        if ((SCI->getOpcode() == Instruction::SetEQ ||
340             SCI->getOpcode() == Instruction::SetNE) &&
341            isa<ConstantInt>(SCI->getOperand(1)))
342          return SCI->getOperand(0);
343  return 0;
344}
345
346// Given a value comparison instruction, decode all of the 'cases' that it
347// represents and return the 'default' block.
348static BasicBlock *
349GetValueEqualityComparisonCases(TerminatorInst *TI,
350                                std::vector<std::pair<ConstantInt*,
351                                                      BasicBlock*> > &Cases) {
352  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
353    Cases.reserve(SI->getNumCases());
354    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
355      Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
356                                     SI->getSuccessor(i)));
357    return SI->getDefaultDest();
358  }
359
360  BranchInst *BI = cast<BranchInst>(TI);
361  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
362  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
363                                 BI->getSuccessor(SCI->getOpcode() ==
364                                                        Instruction::SetNE)));
365  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
366}
367
368
369// FoldValueComparisonIntoPredecessors - The specified terminator is a value
370// equality comparison instruction (either a switch or a branch on "X == c").
371// See if any of the predecessors of the terminator block are value comparisons
372// on the same value.  If so, and if safe to do so, fold them together.
373static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
374  BasicBlock *BB = TI->getParent();
375  Value *CV = isValueEqualityComparison(TI);  // CondVal
376  assert(CV && "Not a comparison?");
377  bool Changed = false;
378
379  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
380  while (!Preds.empty()) {
381    BasicBlock *Pred = Preds.back();
382    Preds.pop_back();
383
384    // See if the predecessor is a comparison with the same value.
385    TerminatorInst *PTI = Pred->getTerminator();
386    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
387
388    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
389      // Figure out which 'cases' to copy from SI to PSI.
390      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
391      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
392
393      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
394      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
395
396      // Based on whether the default edge from PTI goes to BB or not, fill in
397      // PredCases and PredDefault with the new switch cases we would like to
398      // build.
399      std::vector<BasicBlock*> NewSuccessors;
400
401      if (PredDefault == BB) {
402        // If this is the default destination from PTI, only the edges in TI
403        // that don't occur in PTI, or that branch to BB will be activated.
404        std::set<ConstantInt*> PTIHandled;
405        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
406          if (PredCases[i].second != BB)
407            PTIHandled.insert(PredCases[i].first);
408          else {
409            // The default destination is BB, we don't need explicit targets.
410            std::swap(PredCases[i], PredCases.back());
411            PredCases.pop_back();
412            --i; --e;
413          }
414
415        // Reconstruct the new switch statement we will be building.
416        if (PredDefault != BBDefault) {
417          PredDefault->removePredecessor(Pred);
418          PredDefault = BBDefault;
419          NewSuccessors.push_back(BBDefault);
420        }
421        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
422          if (!PTIHandled.count(BBCases[i].first) &&
423              BBCases[i].second != BBDefault) {
424            PredCases.push_back(BBCases[i]);
425            NewSuccessors.push_back(BBCases[i].second);
426          }
427
428      } else {
429        // If this is not the default destination from PSI, only the edges
430        // in SI that occur in PSI with a destination of BB will be
431        // activated.
432        std::set<ConstantInt*> PTIHandled;
433        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
434          if (PredCases[i].second == BB) {
435            PTIHandled.insert(PredCases[i].first);
436            std::swap(PredCases[i], PredCases.back());
437            PredCases.pop_back();
438            --i; --e;
439          }
440
441        // Okay, now we know which constants were sent to BB from the
442        // predecessor.  Figure out where they will all go now.
443        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
444          if (PTIHandled.count(BBCases[i].first)) {
445            // If this is one we are capable of getting...
446            PredCases.push_back(BBCases[i]);
447            NewSuccessors.push_back(BBCases[i].second);
448            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
449          }
450
451        // If there are any constants vectored to BB that TI doesn't handle,
452        // they must go to the default destination of TI.
453        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
454               E = PTIHandled.end(); I != E; ++I) {
455          PredCases.push_back(std::make_pair(*I, BBDefault));
456          NewSuccessors.push_back(BBDefault);
457        }
458      }
459
460      // Okay, at this point, we know which new successor Pred will get.  Make
461      // sure we update the number of entries in the PHI nodes for these
462      // successors.
463      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
464        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
465
466      // Now that the successors are updated, create the new Switch instruction.
467      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
468      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
469        NewSI->addCase(PredCases[i].first, PredCases[i].second);
470      Pred->getInstList().erase(PTI);
471
472      // Okay, last check.  If BB is still a successor of PSI, then we must
473      // have an infinite loop case.  If so, add an infinitely looping block
474      // to handle the case to preserve the behavior of the code.
475      BasicBlock *InfLoopBlock = 0;
476      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
477        if (NewSI->getSuccessor(i) == BB) {
478          if (InfLoopBlock == 0) {
479            // Insert it at the end of the loop, because it's either code,
480            // or it won't matter if it's hot. :)
481            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
482            new BranchInst(InfLoopBlock, InfLoopBlock);
483          }
484          NewSI->setSuccessor(i, InfLoopBlock);
485        }
486
487      Changed = true;
488    }
489  }
490  return Changed;
491}
492
493
494// SimplifyCFG - This function is used to do simplification of a CFG.  For
495// example, it adjusts branches to branches to eliminate the extra hop, it
496// eliminates unreachable basic blocks, and does other "peephole" optimization
497// of the CFG.  It returns true if a modification was made.
498//
499// WARNING:  The entry node of a function may not be simplified.
500//
501bool llvm::SimplifyCFG(BasicBlock *BB) {
502  bool Changed = false;
503  Function *M = BB->getParent();
504
505  assert(BB && BB->getParent() && "Block not embedded in function!");
506  assert(BB->getTerminator() && "Degenerate basic block encountered!");
507  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
508
509  // Remove basic blocks that have no predecessors... which are unreachable.
510  if (pred_begin(BB) == pred_end(BB) ||
511      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
512    //cerr << "Removing BB: \n" << BB;
513
514    // Loop through all of our successors and make sure they know that one
515    // of their predecessors is going away.
516    for_each(succ_begin(BB), succ_end(BB),
517	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
518
519    while (!BB->empty()) {
520      Instruction &I = BB->back();
521      // If this instruction is used, replace uses with an arbitrary
522      // constant value.  Because control flow can't get here, we don't care
523      // what we replace the value with.  Note that since this block is
524      // unreachable, and all values contained within it must dominate their
525      // uses, that all uses will eventually be removed.
526      if (!I.use_empty())
527        // Make all users of this instruction reference the constant instead
528        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
529
530      // Remove the instruction from the basic block
531      BB->getInstList().pop_back();
532    }
533    M->getBasicBlockList().erase(BB);
534    return true;
535  }
536
537  // Check to see if we can constant propagate this terminator instruction
538  // away...
539  Changed |= ConstantFoldTerminator(BB);
540
541  // Check to see if this block has no non-phi instructions and only a single
542  // successor.  If so, replace references to this basic block with references
543  // to the successor.
544  succ_iterator SI(succ_begin(BB));
545  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
546
547    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
548    while (isa<PHINode>(*BBI)) ++BBI;
549
550    if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
551      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
552
553      if (Succ != BB) {   // Arg, don't hurt infinite loops!
554        // If our successor has PHI nodes, then we need to update them to
555        // include entries for BB's predecessors, not for BB itself.
556        // Be careful though, if this transformation fails (returns true) then
557        // we cannot do this transformation!
558        //
559	if (!PropagatePredecessorsForPHIs(BB, Succ)) {
560          //cerr << "Killing Trivial BB: \n" << BB;
561          std::string OldName = BB->getName();
562
563          std::vector<BasicBlock*>
564            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
565
566          // Move all PHI nodes in BB to Succ if they are alive, otherwise
567          // delete them.
568          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
569            if (PN->use_empty())
570              BB->getInstList().erase(BB->begin());  // Nuke instruction...
571            else {
572              // The instruction is alive, so this means that Succ must have
573              // *ONLY* had BB as a predecessor, and the PHI node is still valid
574              // now.  Simply move it into Succ, because we know that BB
575              // strictly dominated Succ.
576              BB->getInstList().remove(BB->begin());
577              Succ->getInstList().push_front(PN);
578
579              // We need to add new entries for the PHI node to account for
580              // predecessors of Succ that the PHI node does not take into
581              // account.  At this point, since we know that BB dominated succ,
582              // this means that we should any newly added incoming edges should
583              // use the PHI node as the value for these edges, because they are
584              // loop back edges.
585
586              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
587                if (OldSuccPreds[i] != BB)
588                  PN->addIncoming(PN, OldSuccPreds[i]);
589            }
590
591          // Everything that jumped to BB now goes to Succ...
592          BB->replaceAllUsesWith(Succ);
593
594          // Delete the old basic block...
595          M->getBasicBlockList().erase(BB);
596
597          if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
598            Succ->setName(OldName);
599
600          //cerr << "Function after removal: \n" << M;
601          return true;
602	}
603      }
604    }
605  }
606
607  // If this is a returning block with only PHI nodes in it, fold the return
608  // instruction into any unconditional branch predecessors.
609  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
610    BasicBlock::iterator BBI = BB->getTerminator();
611    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
612      // Find predecessors that end with unconditional branches.
613      std::vector<BasicBlock*> UncondBranchPreds;
614      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
615        TerminatorInst *PTI = (*PI)->getTerminator();
616        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
617          if (BI->isUnconditional())
618            UncondBranchPreds.push_back(*PI);
619      }
620
621      // If we found some, do the transformation!
622      if (!UncondBranchPreds.empty()) {
623        while (!UncondBranchPreds.empty()) {
624          BasicBlock *Pred = UncondBranchPreds.back();
625          UncondBranchPreds.pop_back();
626          Instruction *UncondBranch = Pred->getTerminator();
627          // Clone the return and add it to the end of the predecessor.
628          Instruction *NewRet = RI->clone();
629          Pred->getInstList().push_back(NewRet);
630
631          // If the return instruction returns a value, and if the value was a
632          // PHI node in "BB", propagate the right value into the return.
633          if (NewRet->getNumOperands() == 1)
634            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
635              if (PN->getParent() == BB)
636                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
637          // Update any PHI nodes in the returning block to realize that we no
638          // longer branch to them.
639          BB->removePredecessor(Pred);
640          Pred->getInstList().erase(UncondBranch);
641        }
642
643        // If we eliminated all predecessors of the block, delete the block now.
644        if (pred_begin(BB) == pred_end(BB))
645          // We know there are no successors, so just nuke the block.
646          M->getBasicBlockList().erase(BB);
647
648        return true;
649      }
650    }
651  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
652    // Check to see if the first instruction in this block is just an unwind.
653    // If so, replace any invoke instructions which use this as an exception
654    // destination with call instructions.
655    //
656    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
657    while (!Preds.empty()) {
658      BasicBlock *Pred = Preds.back();
659      if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
660        if (II->getUnwindDest() == BB) {
661          // Insert a new branch instruction before the invoke, because this
662          // is now a fall through...
663          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
664          Pred->getInstList().remove(II);   // Take out of symbol table
665
666          // Insert the call now...
667          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
668          CallInst *CI = new CallInst(II->getCalledValue(), Args,
669                                      II->getName(), BI);
670          // If the invoke produced a value, the Call now does instead
671          II->replaceAllUsesWith(CI);
672          delete II;
673          Changed = true;
674        }
675
676      Preds.pop_back();
677    }
678
679    // If this block is now dead, remove it.
680    if (pred_begin(BB) == pred_end(BB)) {
681      // We know there are no successors, so just nuke the block.
682      M->getBasicBlockList().erase(BB);
683      return true;
684    }
685
686  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
687    if (FoldValueComparisonIntoPredecessors(SI))
688      return SimplifyCFG(BB) || 1;
689  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
690    if (Value *CompVal = isValueEqualityComparison(BB->getTerminator())) {
691      // This block must be empty, except for the setcond inst, if it exists.
692      BasicBlock::iterator I = BB->begin();
693      if (&*I == BI ||
694          (&*I == cast<Instruction>(BI->getCondition()) &&
695           &*++I == BI))
696        if (FoldValueComparisonIntoPredecessors(BI))
697          return SimplifyCFG(BB) || 1;
698    }
699  }
700
701  // Merge basic blocks into their predecessor if there is only one distinct
702  // pred, and if there is only one distinct successor of the predecessor, and
703  // if there are no PHI nodes.
704  //
705  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
706  BasicBlock *OnlyPred = *PI++;
707  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
708    if (*PI != OnlyPred) {
709      OnlyPred = 0;       // There are multiple different predecessors...
710      break;
711    }
712
713  BasicBlock *OnlySucc = 0;
714  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
715      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
716    // Check to see if there is only one distinct successor...
717    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
718    OnlySucc = BB;
719    for (; SI != SE; ++SI)
720      if (*SI != OnlySucc) {
721        OnlySucc = 0;     // There are multiple distinct successors!
722        break;
723      }
724  }
725
726  if (OnlySucc) {
727    //cerr << "Merging: " << BB << "into: " << OnlyPred;
728    TerminatorInst *Term = OnlyPred->getTerminator();
729
730    // Resolve any PHI nodes at the start of the block.  They are all
731    // guaranteed to have exactly one entry if they exist, unless there are
732    // multiple duplicate (but guaranteed to be equal) entries for the
733    // incoming edges.  This occurs when there are multiple edges from
734    // OnlyPred to OnlySucc.
735    //
736    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
737      PN->replaceAllUsesWith(PN->getIncomingValue(0));
738      BB->getInstList().pop_front();  // Delete the phi node...
739    }
740
741    // Delete the unconditional branch from the predecessor...
742    OnlyPred->getInstList().pop_back();
743
744    // Move all definitions in the successor to the predecessor...
745    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
746
747    // Make all PHI nodes that referred to BB now refer to Pred as their
748    // source...
749    BB->replaceAllUsesWith(OnlyPred);
750
751    std::string OldName = BB->getName();
752
753    // Erase basic block from the function...
754    M->getBasicBlockList().erase(BB);
755
756    // Inherit predecessors name if it exists...
757    if (!OldName.empty() && !OnlyPred->hasName())
758      OnlyPred->setName(OldName);
759
760    return true;
761  }
762
763  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
764    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
765      // Change br (X == 0 | X == 1), T, F into a switch instruction.
766      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
767        Instruction *Cond = cast<Instruction>(BI->getCondition());
768        // If this is a bunch of seteq's or'd together, or if it's a bunch of
769        // 'setne's and'ed together, collect them.
770        Value *CompVal = 0;
771        std::vector<Constant*> Values;
772        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
773        if (CompVal && CompVal->getType()->isInteger()) {
774          // There might be duplicate constants in the list, which the switch
775          // instruction can't handle, remove them now.
776          std::sort(Values.begin(), Values.end());
777          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
778
779          // Figure out which block is which destination.
780          BasicBlock *DefaultBB = BI->getSuccessor(1);
781          BasicBlock *EdgeBB    = BI->getSuccessor(0);
782          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
783
784          // Create the new switch instruction now.
785          SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
786
787          // Add all of the 'cases' to the switch instruction.
788          for (unsigned i = 0, e = Values.size(); i != e; ++i)
789            New->addCase(Values[i], EdgeBB);
790
791          // We added edges from PI to the EdgeBB.  As such, if there were any
792          // PHI nodes in EdgeBB, they need entries to be added corresponding to
793          // the number of edges added.
794          for (BasicBlock::iterator BBI = EdgeBB->begin();
795               PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
796            Value *InVal = PN->getIncomingValueForBlock(*PI);
797            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
798              PN->addIncoming(InVal, *PI);
799          }
800
801          // Erase the old branch instruction.
802          (*PI)->getInstList().erase(BI);
803
804          // Erase the potentially condition tree that was used to computed the
805          // branch condition.
806          ErasePossiblyDeadInstructionTree(Cond);
807          return true;
808        }
809      }
810
811  // If there is a trivial two-entry PHI node in this basic block, and we can
812  // eliminate it, do so now.
813  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
814    if (PN->getNumIncomingValues() == 2) {
815      // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
816      // statement", which has a very simple dominance structure.  Basically, we
817      // are trying to find the condition that is being branched on, which
818      // subsequently causes this merge to happen.  We really want control
819      // dependence information for this check, but simplifycfg can't keep it up
820      // to date, and this catches most of the cases we care about anyway.
821      //
822      BasicBlock *IfTrue, *IfFalse;
823      if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
824        //std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
825        //       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
826
827        // Figure out where to insert instructions as necessary.
828        BasicBlock::iterator AfterPHIIt = BB->begin();
829        while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
830
831        BasicBlock::iterator I = BB->begin();
832        while (PHINode *PN = dyn_cast<PHINode>(I)) {
833          ++I;
834
835          // If we can eliminate this PHI by directly computing it based on the
836          // condition, do so now.  We can't eliminate PHI nodes where the
837          // incoming values are defined in the conditional parts of the branch,
838          // so check for this.
839          //
840          if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
841              DominatesMergePoint(PN->getIncomingValue(1), BB)) {
842            Value *TrueVal =
843              PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
844            Value *FalseVal =
845              PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
846
847            // FIXME: when we have a 'select' statement, we can be completely
848            // generic and clean here and let the instcombine pass clean up
849            // after us, by folding the select instructions away when possible.
850            //
851            if (TrueVal == FalseVal) {
852              // Degenerate case...
853              PN->replaceAllUsesWith(TrueVal);
854              BB->getInstList().erase(PN);
855              Changed = true;
856            } else if (isa<ConstantBool>(TrueVal) &&
857                       isa<ConstantBool>(FalseVal)) {
858              if (TrueVal == ConstantBool::True) {
859                // The PHI node produces the same thing as the condition.
860                PN->replaceAllUsesWith(IfCond);
861              } else {
862                // The PHI node produces the inverse of the condition.  Insert a
863                // "NOT" instruction, which is really a XOR.
864                Value *InverseCond =
865                  BinaryOperator::createNot(IfCond, IfCond->getName()+".inv",
866                                            AfterPHIIt);
867                PN->replaceAllUsesWith(InverseCond);
868              }
869              BB->getInstList().erase(PN);
870              Changed = true;
871            } else if (isa<ConstantInt>(TrueVal) && isa<ConstantInt>(FalseVal)){
872              // If this is a PHI of two constant integers, we insert a cast of
873              // the boolean to the integer type in question, giving us 0 or 1.
874              // Then we multiply this by the difference of the two constants,
875              // giving us 0 if false, and the difference if true.  We add this
876              // result to the base constant, giving us our final value.  We
877              // rely on the instruction combiner to eliminate many special
878              // cases, like turning multiplies into shifts when possible.
879              std::string Name = PN->getName(); PN->setName("");
880              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
881                                            Name, AfterPHIIt);
882              Constant *TheDiff = ConstantExpr::get(Instruction::Sub,
883                                                    cast<Constant>(TrueVal),
884                                                    cast<Constant>(FalseVal));
885              Value *V = TheCast;
886              if (TheDiff != ConstantInt::get(TrueVal->getType(), 1))
887                V = BinaryOperator::create(Instruction::Mul, TheCast,
888                                           TheDiff, TheCast->getName()+".scale",
889                                           AfterPHIIt);
890              if (!cast<Constant>(FalseVal)->isNullValue())
891                V = BinaryOperator::create(Instruction::Add, V, FalseVal,
892                                           V->getName()+".offs", AfterPHIIt);
893              PN->replaceAllUsesWith(V);
894              BB->getInstList().erase(PN);
895              Changed = true;
896            } else if (isa<ConstantInt>(FalseVal) &&
897                       cast<Constant>(FalseVal)->isNullValue()) {
898              // If the false condition is an integral zero value, we can
899              // compute the PHI by multiplying the condition by the other
900              // value.
901              std::string Name = PN->getName(); PN->setName("");
902              Value *TheCast = new CastInst(IfCond, TrueVal->getType(),
903                                            Name+".c", AfterPHIIt);
904              Value *V = BinaryOperator::create(Instruction::Mul, TrueVal,
905                                                TheCast, Name, AfterPHIIt);
906              PN->replaceAllUsesWith(V);
907              BB->getInstList().erase(PN);
908              Changed = true;
909            } else if (isa<ConstantInt>(TrueVal) &&
910                       cast<Constant>(TrueVal)->isNullValue()) {
911              // If the true condition is an integral zero value, we can compute
912              // the PHI by multiplying the inverse condition by the other
913              // value.
914              std::string Name = PN->getName(); PN->setName("");
915              Value *NotCond = BinaryOperator::createNot(IfCond, Name+".inv",
916                                                         AfterPHIIt);
917              Value *TheCast = new CastInst(NotCond, TrueVal->getType(),
918                                            Name+".inv", AfterPHIIt);
919              Value *V = BinaryOperator::create(Instruction::Mul, FalseVal,
920                                                TheCast, Name, AfterPHIIt);
921              PN->replaceAllUsesWith(V);
922              BB->getInstList().erase(PN);
923              Changed = true;
924            }
925          }
926        }
927      }
928    }
929
930  return Changed;
931}
932