SimplifyCFG.cpp revision 59324297650c12a8dccf1a7ad650a9e895fdc17e
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IRBuilder.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/MDBuilder.h"
24#include "llvm/Metadata.h"
25#include "llvm/Operator.h"
26#include "llvm/Type.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/InstructionSimplify.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ConstantRange.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/NoFolder.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include <algorithm>
44#include <set>
45#include <map>
46using namespace llvm;
47
48static cl::opt<unsigned>
49PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
50   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
51
52static cl::opt<bool>
53DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
54       cl::desc("Duplicate return instructions into unconditional branches"));
55
56STATISTIC(NumSpeculations, "Number of speculative executed instructions");
57
58namespace {
59  /// ValueEqualityComparisonCase - Represents a case of a switch.
60  struct ValueEqualityComparisonCase {
61    ConstantInt *Value;
62    BasicBlock *Dest;
63
64    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
65      : Value(Value), Dest(Dest) {}
66
67    bool operator<(ValueEqualityComparisonCase RHS) const {
68      // Comparing pointers is ok as we only rely on the order for uniquing.
69      return Value < RHS.Value;
70    }
71  };
72
73class SimplifyCFGOpt {
74  const TargetData *const TD;
75
76  Value *isValueEqualityComparison(TerminatorInst *TI);
77  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
78                               std::vector<ValueEqualityComparisonCase> &Cases);
79  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
80                                                     BasicBlock *Pred,
81                                                     IRBuilder<> &Builder);
82  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
83                                           IRBuilder<> &Builder);
84
85  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
86  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
87  bool SimplifyUnreachable(UnreachableInst *UI);
88  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
89  bool SimplifyIndirectBr(IndirectBrInst *IBI);
90  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
91  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
92
93public:
94  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
95  bool run(BasicBlock *BB);
96};
97}
98
99/// SafeToMergeTerminators - Return true if it is safe to merge these two
100/// terminator instructions together.
101///
102static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
103  if (SI1 == SI2) return false;  // Can't merge with self!
104
105  // It is not safe to merge these two switch instructions if they have a common
106  // successor, and if that successor has a PHI node, and if *that* PHI node has
107  // conflicting incoming values from the two switch blocks.
108  BasicBlock *SI1BB = SI1->getParent();
109  BasicBlock *SI2BB = SI2->getParent();
110  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
111
112  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
113    if (SI1Succs.count(*I))
114      for (BasicBlock::iterator BBI = (*I)->begin();
115           isa<PHINode>(BBI); ++BBI) {
116        PHINode *PN = cast<PHINode>(BBI);
117        if (PN->getIncomingValueForBlock(SI1BB) !=
118            PN->getIncomingValueForBlock(SI2BB))
119          return false;
120      }
121
122  return true;
123}
124
125/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
126/// to merge these two terminator instructions together, where SI1 is an
127/// unconditional branch. PhiNodes will store all PHI nodes in common
128/// successors.
129///
130static bool isProfitableToFoldUnconditional(BranchInst *SI1,
131                                          BranchInst *SI2,
132                                          Instruction *Cond,
133                                          SmallVectorImpl<PHINode*> &PhiNodes) {
134  if (SI1 == SI2) return false;  // Can't merge with self!
135  assert(SI1->isUnconditional() && SI2->isConditional());
136
137  // We fold the unconditional branch if we can easily update all PHI nodes in
138  // common successors:
139  // 1> We have a constant incoming value for the conditional branch;
140  // 2> We have "Cond" as the incoming value for the unconditional branch;
141  // 3> SI2->getCondition() and Cond have same operands.
142  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
143  if (!Ci2) return false;
144  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
145        Cond->getOperand(1) == Ci2->getOperand(1)) &&
146      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
147        Cond->getOperand(1) == Ci2->getOperand(0)))
148    return false;
149
150  BasicBlock *SI1BB = SI1->getParent();
151  BasicBlock *SI2BB = SI2->getParent();
152  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
153  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
154    if (SI1Succs.count(*I))
155      for (BasicBlock::iterator BBI = (*I)->begin();
156           isa<PHINode>(BBI); ++BBI) {
157        PHINode *PN = cast<PHINode>(BBI);
158        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
159            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
160          return false;
161        PhiNodes.push_back(PN);
162      }
163  return true;
164}
165
166/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
167/// now be entries in it from the 'NewPred' block.  The values that will be
168/// flowing into the PHI nodes will be the same as those coming in from
169/// ExistPred, an existing predecessor of Succ.
170static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
171                                  BasicBlock *ExistPred) {
172  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
173
174  PHINode *PN;
175  for (BasicBlock::iterator I = Succ->begin();
176       (PN = dyn_cast<PHINode>(I)); ++I)
177    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
178}
179
180
181/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
182/// least one PHI node in it), check to see if the merge at this block is due
183/// to an "if condition".  If so, return the boolean condition that determines
184/// which entry into BB will be taken.  Also, return by references the block
185/// that will be entered from if the condition is true, and the block that will
186/// be entered if the condition is false.
187///
188/// This does no checking to see if the true/false blocks have large or unsavory
189/// instructions in them.
190static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
191                             BasicBlock *&IfFalse) {
192  PHINode *SomePHI = cast<PHINode>(BB->begin());
193  assert(SomePHI->getNumIncomingValues() == 2 &&
194         "Function can only handle blocks with 2 predecessors!");
195  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
196  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
197
198  // We can only handle branches.  Other control flow will be lowered to
199  // branches if possible anyway.
200  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
201  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
202  if (Pred1Br == 0 || Pred2Br == 0)
203    return 0;
204
205  // Eliminate code duplication by ensuring that Pred1Br is conditional if
206  // either are.
207  if (Pred2Br->isConditional()) {
208    // If both branches are conditional, we don't have an "if statement".  In
209    // reality, we could transform this case, but since the condition will be
210    // required anyway, we stand no chance of eliminating it, so the xform is
211    // probably not profitable.
212    if (Pred1Br->isConditional())
213      return 0;
214
215    std::swap(Pred1, Pred2);
216    std::swap(Pred1Br, Pred2Br);
217  }
218
219  if (Pred1Br->isConditional()) {
220    // The only thing we have to watch out for here is to make sure that Pred2
221    // doesn't have incoming edges from other blocks.  If it does, the condition
222    // doesn't dominate BB.
223    if (Pred2->getSinglePredecessor() == 0)
224      return 0;
225
226    // If we found a conditional branch predecessor, make sure that it branches
227    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
228    if (Pred1Br->getSuccessor(0) == BB &&
229        Pred1Br->getSuccessor(1) == Pred2) {
230      IfTrue = Pred1;
231      IfFalse = Pred2;
232    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
233               Pred1Br->getSuccessor(1) == BB) {
234      IfTrue = Pred2;
235      IfFalse = Pred1;
236    } else {
237      // We know that one arm of the conditional goes to BB, so the other must
238      // go somewhere unrelated, and this must not be an "if statement".
239      return 0;
240    }
241
242    return Pred1Br->getCondition();
243  }
244
245  // Ok, if we got here, both predecessors end with an unconditional branch to
246  // BB.  Don't panic!  If both blocks only have a single (identical)
247  // predecessor, and THAT is a conditional branch, then we're all ok!
248  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
249  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
250    return 0;
251
252  // Otherwise, if this is a conditional branch, then we can use it!
253  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
254  if (BI == 0) return 0;
255
256  assert(BI->isConditional() && "Two successors but not conditional?");
257  if (BI->getSuccessor(0) == Pred1) {
258    IfTrue = Pred1;
259    IfFalse = Pred2;
260  } else {
261    IfTrue = Pred2;
262    IfFalse = Pred1;
263  }
264  return BI->getCondition();
265}
266
267/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
268/// given instruction, which is assumed to be safe to speculate. 1 means
269/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
270static unsigned ComputeSpeculationCost(const User *I) {
271  assert(isSafeToSpeculativelyExecute(I) &&
272         "Instruction is not safe to speculatively execute!");
273  switch (Operator::getOpcode(I)) {
274  default:
275    // In doubt, be conservative.
276    return UINT_MAX;
277  case Instruction::GetElementPtr:
278    // GEPs are cheap if all indices are constant.
279    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
280      return UINT_MAX;
281    return 1;
282  case Instruction::Load:
283  case Instruction::Add:
284  case Instruction::Sub:
285  case Instruction::And:
286  case Instruction::Or:
287  case Instruction::Xor:
288  case Instruction::Shl:
289  case Instruction::LShr:
290  case Instruction::AShr:
291  case Instruction::ICmp:
292  case Instruction::Trunc:
293  case Instruction::ZExt:
294  case Instruction::SExt:
295    return 1; // These are all cheap.
296
297  case Instruction::Call:
298  case Instruction::Select:
299    return 2;
300  }
301}
302
303/// DominatesMergePoint - If we have a merge point of an "if condition" as
304/// accepted above, return true if the specified value dominates the block.  We
305/// don't handle the true generality of domination here, just a special case
306/// which works well enough for us.
307///
308/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
309/// see if V (which must be an instruction) and its recursive operands
310/// that do not dominate BB have a combined cost lower than CostRemaining and
311/// are non-trapping.  If both are true, the instruction is inserted into the
312/// set and true is returned.
313///
314/// The cost for most non-trapping instructions is defined as 1 except for
315/// Select whose cost is 2.
316///
317/// After this function returns, CostRemaining is decreased by the cost of
318/// V plus its non-dominating operands.  If that cost is greater than
319/// CostRemaining, false is returned and CostRemaining is undefined.
320static bool DominatesMergePoint(Value *V, BasicBlock *BB,
321                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
322                                unsigned &CostRemaining) {
323  Instruction *I = dyn_cast<Instruction>(V);
324  if (!I) {
325    // Non-instructions all dominate instructions, but not all constantexprs
326    // can be executed unconditionally.
327    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
328      if (C->canTrap())
329        return false;
330    return true;
331  }
332  BasicBlock *PBB = I->getParent();
333
334  // We don't want to allow weird loops that might have the "if condition" in
335  // the bottom of this block.
336  if (PBB == BB) return false;
337
338  // If this instruction is defined in a block that contains an unconditional
339  // branch to BB, then it must be in the 'conditional' part of the "if
340  // statement".  If not, it definitely dominates the region.
341  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
342  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
343    return true;
344
345  // If we aren't allowing aggressive promotion anymore, then don't consider
346  // instructions in the 'if region'.
347  if (AggressiveInsts == 0) return false;
348
349  // If we have seen this instruction before, don't count it again.
350  if (AggressiveInsts->count(I)) return true;
351
352  // Okay, it looks like the instruction IS in the "condition".  Check to
353  // see if it's a cheap instruction to unconditionally compute, and if it
354  // only uses stuff defined outside of the condition.  If so, hoist it out.
355  if (!isSafeToSpeculativelyExecute(I))
356    return false;
357
358  unsigned Cost = ComputeSpeculationCost(I);
359
360  if (Cost > CostRemaining)
361    return false;
362
363  CostRemaining -= Cost;
364
365  // Okay, we can only really hoist these out if their operands do
366  // not take us over the cost threshold.
367  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
368    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
369      return false;
370  // Okay, it's safe to do this!  Remember this instruction.
371  AggressiveInsts->insert(I);
372  return true;
373}
374
375/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
376/// and PointerNullValue. Return NULL if value is not a constant int.
377static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
378  // Normal constant int.
379  ConstantInt *CI = dyn_cast<ConstantInt>(V);
380  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
381    return CI;
382
383  // This is some kind of pointer constant. Turn it into a pointer-sized
384  // ConstantInt if possible.
385  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
386
387  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
388  if (isa<ConstantPointerNull>(V))
389    return ConstantInt::get(PtrTy, 0);
390
391  // IntToPtr const int.
392  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
393    if (CE->getOpcode() == Instruction::IntToPtr)
394      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
395        // The constant is very likely to have the right type already.
396        if (CI->getType() == PtrTy)
397          return CI;
398        else
399          return cast<ConstantInt>
400            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
401      }
402  return 0;
403}
404
405/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
406/// collection of icmp eq/ne instructions that compare a value against a
407/// constant, return the value being compared, and stick the constant into the
408/// Values vector.
409static Value *
410GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
411                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
412  Instruction *I = dyn_cast<Instruction>(V);
413  if (I == 0) return 0;
414
415  // If this is an icmp against a constant, handle this as one of the cases.
416  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
417    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
418      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
419        UsedICmps++;
420        Vals.push_back(C);
421        return I->getOperand(0);
422      }
423
424      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
425      // the set.
426      ConstantRange Span =
427        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
428
429      // If this is an and/!= check then we want to optimize "x ugt 2" into
430      // x != 0 && x != 1.
431      if (!isEQ)
432        Span = Span.inverse();
433
434      // If there are a ton of values, we don't want to make a ginormous switch.
435      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
436        return 0;
437
438      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
439        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
440      UsedICmps++;
441      return I->getOperand(0);
442    }
443    return 0;
444  }
445
446  // Otherwise, we can only handle an | or &, depending on isEQ.
447  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
448    return 0;
449
450  unsigned NumValsBeforeLHS = Vals.size();
451  unsigned UsedICmpsBeforeLHS = UsedICmps;
452  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
453                                          isEQ, UsedICmps)) {
454    unsigned NumVals = Vals.size();
455    unsigned UsedICmpsBeforeRHS = UsedICmps;
456    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
457                                            isEQ, UsedICmps)) {
458      if (LHS == RHS)
459        return LHS;
460      Vals.resize(NumVals);
461      UsedICmps = UsedICmpsBeforeRHS;
462    }
463
464    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
465    // set it and return success.
466    if (Extra == 0 || Extra == I->getOperand(1)) {
467      Extra = I->getOperand(1);
468      return LHS;
469    }
470
471    Vals.resize(NumValsBeforeLHS);
472    UsedICmps = UsedICmpsBeforeLHS;
473    return 0;
474  }
475
476  // If the LHS can't be folded in, but Extra is available and RHS can, try to
477  // use LHS as Extra.
478  if (Extra == 0 || Extra == I->getOperand(0)) {
479    Value *OldExtra = Extra;
480    Extra = I->getOperand(0);
481    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
482                                            isEQ, UsedICmps))
483      return RHS;
484    assert(Vals.size() == NumValsBeforeLHS);
485    Extra = OldExtra;
486  }
487
488  return 0;
489}
490
491static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
492  Instruction *Cond = 0;
493  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
494    Cond = dyn_cast<Instruction>(SI->getCondition());
495  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
496    if (BI->isConditional())
497      Cond = dyn_cast<Instruction>(BI->getCondition());
498  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
499    Cond = dyn_cast<Instruction>(IBI->getAddress());
500  }
501
502  TI->eraseFromParent();
503  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
504}
505
506/// isValueEqualityComparison - Return true if the specified terminator checks
507/// to see if a value is equal to constant integer value.
508Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
509  Value *CV = 0;
510  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
511    // Do not permit merging of large switch instructions into their
512    // predecessors unless there is only one predecessor.
513    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
514                                             pred_end(SI->getParent())) <= 128)
515      CV = SI->getCondition();
516  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
517    if (BI->isConditional() && BI->getCondition()->hasOneUse())
518      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
519        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
520             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
521            GetConstantInt(ICI->getOperand(1), TD))
522          CV = ICI->getOperand(0);
523
524  // Unwrap any lossless ptrtoint cast.
525  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
526    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
527      CV = PTII->getOperand(0);
528  return CV;
529}
530
531/// GetValueEqualityComparisonCases - Given a value comparison instruction,
532/// decode all of the 'cases' that it represents and return the 'default' block.
533BasicBlock *SimplifyCFGOpt::
534GetValueEqualityComparisonCases(TerminatorInst *TI,
535                                std::vector<ValueEqualityComparisonCase>
536                                                                       &Cases) {
537  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
538    Cases.reserve(SI->getNumCases());
539    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
540      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
541                                                  i.getCaseSuccessor()));
542    return SI->getDefaultDest();
543  }
544
545  BranchInst *BI = cast<BranchInst>(TI);
546  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
547  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
548  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
549                                                             TD),
550                                              Succ));
551  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
552}
553
554
555/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
556/// in the list that match the specified block.
557static void EliminateBlockCases(BasicBlock *BB,
558                              std::vector<ValueEqualityComparisonCase> &Cases) {
559  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
560    if (Cases[i].Dest == BB) {
561      Cases.erase(Cases.begin()+i);
562      --i; --e;
563    }
564}
565
566/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
567/// well.
568static bool
569ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
570              std::vector<ValueEqualityComparisonCase > &C2) {
571  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
572
573  // Make V1 be smaller than V2.
574  if (V1->size() > V2->size())
575    std::swap(V1, V2);
576
577  if (V1->size() == 0) return false;
578  if (V1->size() == 1) {
579    // Just scan V2.
580    ConstantInt *TheVal = (*V1)[0].Value;
581    for (unsigned i = 0, e = V2->size(); i != e; ++i)
582      if (TheVal == (*V2)[i].Value)
583        return true;
584  }
585
586  // Otherwise, just sort both lists and compare element by element.
587  array_pod_sort(V1->begin(), V1->end());
588  array_pod_sort(V2->begin(), V2->end());
589  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
590  while (i1 != e1 && i2 != e2) {
591    if ((*V1)[i1].Value == (*V2)[i2].Value)
592      return true;
593    if ((*V1)[i1].Value < (*V2)[i2].Value)
594      ++i1;
595    else
596      ++i2;
597  }
598  return false;
599}
600
601/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
602/// terminator instruction and its block is known to only have a single
603/// predecessor block, check to see if that predecessor is also a value
604/// comparison with the same value, and if that comparison determines the
605/// outcome of this comparison.  If so, simplify TI.  This does a very limited
606/// form of jump threading.
607bool SimplifyCFGOpt::
608SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
609                                              BasicBlock *Pred,
610                                              IRBuilder<> &Builder) {
611  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
612  if (!PredVal) return false;  // Not a value comparison in predecessor.
613
614  Value *ThisVal = isValueEqualityComparison(TI);
615  assert(ThisVal && "This isn't a value comparison!!");
616  if (ThisVal != PredVal) return false;  // Different predicates.
617
618  // TODO: Preserve branch weight metadata, similarly to how
619  // FoldValueComparisonIntoPredecessors preserves it.
620
621  // Find out information about when control will move from Pred to TI's block.
622  std::vector<ValueEqualityComparisonCase> PredCases;
623  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
624                                                        PredCases);
625  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
626
627  // Find information about how control leaves this block.
628  std::vector<ValueEqualityComparisonCase> ThisCases;
629  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
630  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
631
632  // If TI's block is the default block from Pred's comparison, potentially
633  // simplify TI based on this knowledge.
634  if (PredDef == TI->getParent()) {
635    // If we are here, we know that the value is none of those cases listed in
636    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
637    // can simplify TI.
638    if (!ValuesOverlap(PredCases, ThisCases))
639      return false;
640
641    if (isa<BranchInst>(TI)) {
642      // Okay, one of the successors of this condbr is dead.  Convert it to a
643      // uncond br.
644      assert(ThisCases.size() == 1 && "Branch can only have one case!");
645      // Insert the new branch.
646      Instruction *NI = Builder.CreateBr(ThisDef);
647      (void) NI;
648
649      // Remove PHI node entries for the dead edge.
650      ThisCases[0].Dest->removePredecessor(TI->getParent());
651
652      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
653           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
654
655      EraseTerminatorInstAndDCECond(TI);
656      return true;
657    }
658
659    SwitchInst *SI = cast<SwitchInst>(TI);
660    // Okay, TI has cases that are statically dead, prune them away.
661    SmallPtrSet<Constant*, 16> DeadCases;
662    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
663      DeadCases.insert(PredCases[i].Value);
664
665    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
666                 << "Through successor TI: " << *TI);
667
668    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
669      --i;
670      if (DeadCases.count(i.getCaseValue())) {
671        i.getCaseSuccessor()->removePredecessor(TI->getParent());
672        SI->removeCase(i);
673      }
674    }
675
676    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
677    return true;
678  }
679
680  // Otherwise, TI's block must correspond to some matched value.  Find out
681  // which value (or set of values) this is.
682  ConstantInt *TIV = 0;
683  BasicBlock *TIBB = TI->getParent();
684  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
685    if (PredCases[i].Dest == TIBB) {
686      if (TIV != 0)
687        return false;  // Cannot handle multiple values coming to this block.
688      TIV = PredCases[i].Value;
689    }
690  assert(TIV && "No edge from pred to succ?");
691
692  // Okay, we found the one constant that our value can be if we get into TI's
693  // BB.  Find out which successor will unconditionally be branched to.
694  BasicBlock *TheRealDest = 0;
695  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
696    if (ThisCases[i].Value == TIV) {
697      TheRealDest = ThisCases[i].Dest;
698      break;
699    }
700
701  // If not handled by any explicit cases, it is handled by the default case.
702  if (TheRealDest == 0) TheRealDest = ThisDef;
703
704  // Remove PHI node entries for dead edges.
705  BasicBlock *CheckEdge = TheRealDest;
706  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
707    if (*SI != CheckEdge)
708      (*SI)->removePredecessor(TIBB);
709    else
710      CheckEdge = 0;
711
712  // Insert the new branch.
713  Instruction *NI = Builder.CreateBr(TheRealDest);
714  (void) NI;
715
716  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
717            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
718
719  EraseTerminatorInstAndDCECond(TI);
720  return true;
721}
722
723namespace {
724  /// ConstantIntOrdering - This class implements a stable ordering of constant
725  /// integers that does not depend on their address.  This is important for
726  /// applications that sort ConstantInt's to ensure uniqueness.
727  struct ConstantIntOrdering {
728    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
729      return LHS->getValue().ult(RHS->getValue());
730    }
731  };
732}
733
734static int ConstantIntSortPredicate(const void *P1, const void *P2) {
735  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
736  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
737  if (LHS->getValue().ult(RHS->getValue()))
738    return 1;
739  if (LHS->getValue() == RHS->getValue())
740    return 0;
741  return -1;
742}
743
744static inline bool HasBranchWeights(const Instruction* I) {
745  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
746  if (ProfMD && ProfMD->getOperand(0))
747    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
748      return MDS->getString().equals("branch_weights");
749
750  return false;
751}
752
753/// Tries to get a branch weight for the given instruction, returns NULL if it
754/// can't. Pos starts at 0.
755static ConstantInt* GetWeight(Instruction* I, int Pos) {
756  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
757  if (ProfMD && ProfMD->getOperand(0)) {
758    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) {
759      if (MDS->getString().equals("branch_weights")) {
760        assert(ProfMD->getNumOperands() >= 3);
761        return dyn_cast<ConstantInt>(ProfMD->getOperand(1 + Pos));
762      }
763    }
764  }
765
766  return 0;
767}
768
769/// Scale the given weights based on the successor TI's metadata. Scaling is
770/// done by multiplying every weight by the sum of the successor's weights.
771static void ScaleWeights(Instruction* STI, MutableArrayRef<uint64_t> Weights) {
772  // Sum the successor's weights
773  assert(HasBranchWeights(STI));
774  unsigned Scale = 0;
775  MDNode* ProfMD = STI->getMetadata(LLVMContext::MD_prof);
776  for (unsigned i = 1; i < ProfMD->getNumOperands(); ++i) {
777    ConstantInt* CI = dyn_cast<ConstantInt>(ProfMD->getOperand(i));
778    assert(CI);
779    Scale += CI->getValue().getZExtValue();
780  }
781
782  // Skip default, as it's replaced during the folding
783  for (unsigned i = 1; i < Weights.size(); ++i) {
784    Weights[i] *= Scale;
785  }
786}
787
788/// Sees if any of the weights are too big for a uint32_t, and halves all the
789/// weights if any are.
790static void FitWeights(MutableArrayRef<uint64_t> Weights) {
791  bool Halve = false;
792  for (unsigned i = 0; i < Weights.size(); ++i)
793    if (Weights[i] > UINT_MAX) {
794      Halve = true;
795      break;
796    }
797
798  if (! Halve)
799    return;
800
801  for (unsigned i = 0; i < Weights.size(); ++i)
802    Weights[i] /= 2;
803}
804
805/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
806/// equality comparison instruction (either a switch or a branch on "X == c").
807/// See if any of the predecessors of the terminator block are value comparisons
808/// on the same value.  If so, and if safe to do so, fold them together.
809bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
810                                                         IRBuilder<> &Builder) {
811  BasicBlock *BB = TI->getParent();
812  Value *CV = isValueEqualityComparison(TI);  // CondVal
813  assert(CV && "Not a comparison?");
814  bool Changed = false;
815
816  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
817  while (!Preds.empty()) {
818    BasicBlock *Pred = Preds.pop_back_val();
819
820    // See if the predecessor is a comparison with the same value.
821    TerminatorInst *PTI = Pred->getTerminator();
822    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
823
824    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
825      // Figure out which 'cases' to copy from SI to PSI.
826      std::vector<ValueEqualityComparisonCase> BBCases;
827      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
828
829      std::vector<ValueEqualityComparisonCase> PredCases;
830      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
831
832      // Based on whether the default edge from PTI goes to BB or not, fill in
833      // PredCases and PredDefault with the new switch cases we would like to
834      // build.
835      SmallVector<BasicBlock*, 8> NewSuccessors;
836
837      // Update the branch weight metadata along the way
838      SmallVector<uint64_t, 8> Weights;
839      uint64_t PredDefaultWeight = 0;
840      bool PredHasWeights = HasBranchWeights(PTI);
841      bool SuccHasWeights = HasBranchWeights(TI);
842
843      if (PredHasWeights) {
844        MDNode* MD = PTI->getMetadata(LLVMContext::MD_prof);
845        assert(MD);
846        for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
847          ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
848          assert(CI);
849          Weights.push_back(CI->getValue().getZExtValue());
850        }
851
852        // If the predecessor is a conditional eq, then swap the default weight
853        // to be the first entry.
854        if (BranchInst* BI = dyn_cast<BranchInst>(PTI)) {
855          assert(Weights.size() == 2);
856          ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
857
858          if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
859            std::swap(Weights.front(), Weights.back());
860          }
861        }
862
863        PredDefaultWeight = Weights.front();
864      } else if (SuccHasWeights) {
865        // If there are no predecessor weights but there are successor weights,
866        // populate Weights with 1, which will later be scaled to the sum of
867        // successor's weights
868        Weights.assign(1 + PredCases.size(), 1);
869        PredDefaultWeight = 1;
870      }
871
872      uint64_t SuccDefaultWeight = 0;
873      if (SuccHasWeights) {
874        int Index = 0;
875        if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
876          ICmpInst* ICI = dyn_cast<ICmpInst>(BI->getCondition());
877          assert(ICI);
878
879          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
880            Index = 1;
881        }
882
883        SuccDefaultWeight = GetWeight(TI, Index)->getValue().getZExtValue();
884      }
885
886      if (PredDefault == BB) {
887        // If this is the default destination from PTI, only the edges in TI
888        // that don't occur in PTI, or that branch to BB will be activated.
889        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
890        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
891          if (PredCases[i].Dest != BB)
892            PTIHandled.insert(PredCases[i].Value);
893          else {
894            // The default destination is BB, we don't need explicit targets.
895            std::swap(PredCases[i], PredCases.back());
896
897            if (PredHasWeights) {
898              std::swap(Weights[i+1], Weights.back());
899              Weights.pop_back();
900            }
901
902            PredCases.pop_back();
903            --i; --e;
904          }
905
906        // Reconstruct the new switch statement we will be building.
907        if (PredDefault != BBDefault) {
908          PredDefault->removePredecessor(Pred);
909          PredDefault = BBDefault;
910          NewSuccessors.push_back(BBDefault);
911        }
912
913        if (SuccHasWeights) {
914          ScaleWeights(TI, Weights);
915          Weights.front() *= SuccDefaultWeight;
916        } else if (PredHasWeights) {
917          Weights.front() /= (1 + BBCases.size());
918        }
919
920        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
921          if (!PTIHandled.count(BBCases[i].Value) &&
922              BBCases[i].Dest != BBDefault) {
923            PredCases.push_back(BBCases[i]);
924            NewSuccessors.push_back(BBCases[i].Dest);
925            if (SuccHasWeights) {
926              Weights.push_back(PredDefaultWeight *
927                                GetWeight(TI, i)->getValue().getZExtValue());
928            } else if (PredHasWeights) {
929              // Split the old default's weight amongst the children
930              assert(PredDefaultWeight != 0);
931              Weights.push_back(PredDefaultWeight / (1 + BBCases.size()));
932            }
933          }
934
935      } else {
936        // FIXME: preserve branch weight metadata, similarly to the 'then'
937        // above. For now, drop it.
938        PredHasWeights = false;
939        SuccHasWeights = false;
940
941        // If this is not the default destination from PSI, only the edges
942        // in SI that occur in PSI with a destination of BB will be
943        // activated.
944        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
945        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
946          if (PredCases[i].Dest == BB) {
947            PTIHandled.insert(PredCases[i].Value);
948            std::swap(PredCases[i], PredCases.back());
949            PredCases.pop_back();
950            --i; --e;
951          }
952
953        // Okay, now we know which constants were sent to BB from the
954        // predecessor.  Figure out where they will all go now.
955        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
956          if (PTIHandled.count(BBCases[i].Value)) {
957            // If this is one we are capable of getting...
958            PredCases.push_back(BBCases[i]);
959            NewSuccessors.push_back(BBCases[i].Dest);
960            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
961          }
962
963        // If there are any constants vectored to BB that TI doesn't handle,
964        // they must go to the default destination of TI.
965        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
966                                    PTIHandled.begin(),
967               E = PTIHandled.end(); I != E; ++I) {
968          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
969          NewSuccessors.push_back(BBDefault);
970        }
971      }
972
973      // Okay, at this point, we know which new successor Pred will get.  Make
974      // sure we update the number of entries in the PHI nodes for these
975      // successors.
976      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
977        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
978
979      Builder.SetInsertPoint(PTI);
980      // Convert pointer to int before we switch.
981      if (CV->getType()->isPointerTy()) {
982        assert(TD && "Cannot switch on pointer without TargetData");
983        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
984                                    "magicptr");
985      }
986
987      // Now that the successors are updated, create the new Switch instruction.
988      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
989                                               PredCases.size());
990      NewSI->setDebugLoc(PTI->getDebugLoc());
991      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
992        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
993
994      if (PredHasWeights || SuccHasWeights) {
995        // Halve the weights if any of them cannot fit in an uint32_t
996        FitWeights(Weights);
997
998        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
999
1000        NewSI->setMetadata(LLVMContext::MD_prof,
1001                           MDBuilder(BB->getContext()).
1002                           createBranchWeights(MDWeights));
1003      }
1004
1005      EraseTerminatorInstAndDCECond(PTI);
1006
1007      // Okay, last check.  If BB is still a successor of PSI, then we must
1008      // have an infinite loop case.  If so, add an infinitely looping block
1009      // to handle the case to preserve the behavior of the code.
1010      BasicBlock *InfLoopBlock = 0;
1011      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1012        if (NewSI->getSuccessor(i) == BB) {
1013          if (InfLoopBlock == 0) {
1014            // Insert it at the end of the function, because it's either code,
1015            // or it won't matter if it's hot. :)
1016            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1017                                              "infloop", BB->getParent());
1018            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1019          }
1020          NewSI->setSuccessor(i, InfLoopBlock);
1021        }
1022
1023      Changed = true;
1024    }
1025  }
1026  return Changed;
1027}
1028
1029// isSafeToHoistInvoke - If we would need to insert a select that uses the
1030// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1031// would need to do this), we can't hoist the invoke, as there is nowhere
1032// to put the select in this case.
1033static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1034                                Instruction *I1, Instruction *I2) {
1035  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1036    PHINode *PN;
1037    for (BasicBlock::iterator BBI = SI->begin();
1038         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1039      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1040      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1041      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1042        return false;
1043      }
1044    }
1045  }
1046  return true;
1047}
1048
1049/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1050/// BB2, hoist any common code in the two blocks up into the branch block.  The
1051/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1052static bool HoistThenElseCodeToIf(BranchInst *BI) {
1053  // This does very trivial matching, with limited scanning, to find identical
1054  // instructions in the two blocks.  In particular, we don't want to get into
1055  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1056  // such, we currently just scan for obviously identical instructions in an
1057  // identical order.
1058  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1059  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1060
1061  BasicBlock::iterator BB1_Itr = BB1->begin();
1062  BasicBlock::iterator BB2_Itr = BB2->begin();
1063
1064  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1065  // Skip debug info if it is not identical.
1066  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1067  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1068  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1069    while (isa<DbgInfoIntrinsic>(I1))
1070      I1 = BB1_Itr++;
1071    while (isa<DbgInfoIntrinsic>(I2))
1072      I2 = BB2_Itr++;
1073  }
1074  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1075      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1076    return false;
1077
1078  // If we get here, we can hoist at least one instruction.
1079  BasicBlock *BIParent = BI->getParent();
1080
1081  do {
1082    // If we are hoisting the terminator instruction, don't move one (making a
1083    // broken BB), instead clone it, and remove BI.
1084    if (isa<TerminatorInst>(I1))
1085      goto HoistTerminator;
1086
1087    // For a normal instruction, we just move one to right before the branch,
1088    // then replace all uses of the other with the first.  Finally, we remove
1089    // the now redundant second instruction.
1090    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1091    if (!I2->use_empty())
1092      I2->replaceAllUsesWith(I1);
1093    I1->intersectOptionalDataWith(I2);
1094    I2->eraseFromParent();
1095
1096    I1 = BB1_Itr++;
1097    I2 = BB2_Itr++;
1098    // Skip debug info if it is not identical.
1099    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1100    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1101    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1102      while (isa<DbgInfoIntrinsic>(I1))
1103        I1 = BB1_Itr++;
1104      while (isa<DbgInfoIntrinsic>(I2))
1105        I2 = BB2_Itr++;
1106    }
1107  } while (I1->isIdenticalToWhenDefined(I2));
1108
1109  return true;
1110
1111HoistTerminator:
1112  // It may not be possible to hoist an invoke.
1113  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1114    return true;
1115
1116  // Okay, it is safe to hoist the terminator.
1117  Instruction *NT = I1->clone();
1118  BIParent->getInstList().insert(BI, NT);
1119  if (!NT->getType()->isVoidTy()) {
1120    I1->replaceAllUsesWith(NT);
1121    I2->replaceAllUsesWith(NT);
1122    NT->takeName(I1);
1123  }
1124
1125  IRBuilder<true, NoFolder> Builder(NT);
1126  // Hoisting one of the terminators from our successor is a great thing.
1127  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1128  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1129  // nodes, so we insert select instruction to compute the final result.
1130  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1131  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1132    PHINode *PN;
1133    for (BasicBlock::iterator BBI = SI->begin();
1134         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1135      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1136      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1137      if (BB1V == BB2V) continue;
1138
1139      // These values do not agree.  Insert a select instruction before NT
1140      // that determines the right value.
1141      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1142      if (SI == 0)
1143        SI = cast<SelectInst>
1144          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1145                                BB1V->getName()+"."+BB2V->getName()));
1146
1147      // Make the PHI node use the select for all incoming values for BB1/BB2
1148      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1149        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1150          PN->setIncomingValue(i, SI);
1151    }
1152  }
1153
1154  // Update any PHI nodes in our new successors.
1155  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1156    AddPredecessorToBlock(*SI, BIParent, BB1);
1157
1158  EraseTerminatorInstAndDCECond(BI);
1159  return true;
1160}
1161
1162/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1163/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1164/// (for now, restricted to a single instruction that's side effect free) from
1165/// the BB1 into the branch block to speculatively execute it.
1166///
1167/// Turn
1168/// BB:
1169///     %t1 = icmp
1170///     br i1 %t1, label %BB1, label %BB2
1171/// BB1:
1172///     %t3 = add %t2, c
1173///     br label BB2
1174/// BB2:
1175/// =>
1176/// BB:
1177///     %t1 = icmp
1178///     %t4 = add %t2, c
1179///     %t3 = select i1 %t1, %t2, %t3
1180static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1181  // Only speculatively execution a single instruction (not counting the
1182  // terminator) for now.
1183  Instruction *HInst = NULL;
1184  Instruction *Term = BB1->getTerminator();
1185  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1186       BBI != BBE; ++BBI) {
1187    Instruction *I = BBI;
1188    // Skip debug info.
1189    if (isa<DbgInfoIntrinsic>(I)) continue;
1190    if (I == Term) break;
1191
1192    if (HInst)
1193      return false;
1194    HInst = I;
1195  }
1196
1197  BasicBlock *BIParent = BI->getParent();
1198
1199  // Check the instruction to be hoisted, if there is one.
1200  if (HInst) {
1201    // Don't hoist the instruction if it's unsafe or expensive.
1202    if (!isSafeToSpeculativelyExecute(HInst))
1203      return false;
1204    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1205      return false;
1206
1207    // Do not hoist the instruction if any of its operands are defined but not
1208    // used in this BB. The transformation will prevent the operand from
1209    // being sunk into the use block.
1210    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1211         i != e; ++i) {
1212      Instruction *OpI = dyn_cast<Instruction>(*i);
1213      if (OpI && OpI->getParent() == BIParent &&
1214          !OpI->mayHaveSideEffects() &&
1215          !OpI->isUsedInBasicBlock(BIParent))
1216        return false;
1217    }
1218  }
1219
1220  // Be conservative for now. FP select instruction can often be expensive.
1221  Value *BrCond = BI->getCondition();
1222  if (isa<FCmpInst>(BrCond))
1223    return false;
1224
1225  // If BB1 is actually on the false edge of the conditional branch, remember
1226  // to swap the select operands later.
1227  bool Invert = false;
1228  if (BB1 != BI->getSuccessor(0)) {
1229    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1230    Invert = true;
1231  }
1232
1233  // Collect interesting PHIs, and scan for hazards.
1234  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1235  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1236  for (BasicBlock::iterator I = BB2->begin();
1237       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1238    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1239    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1240
1241    // Skip PHIs which are trivial.
1242    if (BB1V == BIParentV)
1243      continue;
1244
1245    // Check for saftey.
1246    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1247      // An unfolded ConstantExpr could end up getting expanded into
1248      // Instructions. Don't speculate this and another instruction at
1249      // the same time.
1250      if (HInst)
1251        return false;
1252      if (!isSafeToSpeculativelyExecute(CE))
1253        return false;
1254      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1255        return false;
1256    }
1257
1258    // Ok, we may insert a select for this PHI.
1259    PHIs.insert(std::make_pair(BB1V, BIParentV));
1260  }
1261
1262  // If there are no PHIs to process, bail early. This helps ensure idempotence
1263  // as well.
1264  if (PHIs.empty())
1265    return false;
1266
1267  // If we get here, we can hoist the instruction and if-convert.
1268  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1269
1270  // Hoist the instruction.
1271  if (HInst)
1272    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1273
1274  // Insert selects and rewrite the PHI operands.
1275  IRBuilder<true, NoFolder> Builder(BI);
1276  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1277    Value *TrueV = PHIs[i].first;
1278    Value *FalseV = PHIs[i].second;
1279
1280    // Create a select whose true value is the speculatively executed value and
1281    // false value is the previously determined FalseV.
1282    SelectInst *SI;
1283    if (Invert)
1284      SI = cast<SelectInst>
1285        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1286                              FalseV->getName() + "." + TrueV->getName()));
1287    else
1288      SI = cast<SelectInst>
1289        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1290                              TrueV->getName() + "." + FalseV->getName()));
1291
1292    // Make the PHI node use the select for all incoming values for "then" and
1293    // "if" blocks.
1294    for (BasicBlock::iterator I = BB2->begin();
1295         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1296      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1297      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1298      Value *BB1V = PN->getIncomingValue(BB1I);
1299      Value *BIParentV = PN->getIncomingValue(BIParentI);
1300      if (TrueV == BB1V && FalseV == BIParentV) {
1301        PN->setIncomingValue(BB1I, SI);
1302        PN->setIncomingValue(BIParentI, SI);
1303      }
1304    }
1305  }
1306
1307  ++NumSpeculations;
1308  return true;
1309}
1310
1311/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1312/// across this block.
1313static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1314  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1315  unsigned Size = 0;
1316
1317  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1318    if (isa<DbgInfoIntrinsic>(BBI))
1319      continue;
1320    if (Size > 10) return false;  // Don't clone large BB's.
1321    ++Size;
1322
1323    // We can only support instructions that do not define values that are
1324    // live outside of the current basic block.
1325    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1326         UI != E; ++UI) {
1327      Instruction *U = cast<Instruction>(*UI);
1328      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1329    }
1330
1331    // Looks ok, continue checking.
1332  }
1333
1334  return true;
1335}
1336
1337/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1338/// that is defined in the same block as the branch and if any PHI entries are
1339/// constants, thread edges corresponding to that entry to be branches to their
1340/// ultimate destination.
1341static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1342  BasicBlock *BB = BI->getParent();
1343  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1344  // NOTE: we currently cannot transform this case if the PHI node is used
1345  // outside of the block.
1346  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1347    return false;
1348
1349  // Degenerate case of a single entry PHI.
1350  if (PN->getNumIncomingValues() == 1) {
1351    FoldSingleEntryPHINodes(PN->getParent());
1352    return true;
1353  }
1354
1355  // Now we know that this block has multiple preds and two succs.
1356  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1357
1358  // Okay, this is a simple enough basic block.  See if any phi values are
1359  // constants.
1360  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1361    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1362    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1363
1364    // Okay, we now know that all edges from PredBB should be revectored to
1365    // branch to RealDest.
1366    BasicBlock *PredBB = PN->getIncomingBlock(i);
1367    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1368
1369    if (RealDest == BB) continue;  // Skip self loops.
1370    // Skip if the predecessor's terminator is an indirect branch.
1371    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1372
1373    // The dest block might have PHI nodes, other predecessors and other
1374    // difficult cases.  Instead of being smart about this, just insert a new
1375    // block that jumps to the destination block, effectively splitting
1376    // the edge we are about to create.
1377    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1378                                            RealDest->getName()+".critedge",
1379                                            RealDest->getParent(), RealDest);
1380    BranchInst::Create(RealDest, EdgeBB);
1381
1382    // Update PHI nodes.
1383    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1384
1385    // BB may have instructions that are being threaded over.  Clone these
1386    // instructions into EdgeBB.  We know that there will be no uses of the
1387    // cloned instructions outside of EdgeBB.
1388    BasicBlock::iterator InsertPt = EdgeBB->begin();
1389    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1390    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1391      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1392        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1393        continue;
1394      }
1395      // Clone the instruction.
1396      Instruction *N = BBI->clone();
1397      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1398
1399      // Update operands due to translation.
1400      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1401           i != e; ++i) {
1402        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1403        if (PI != TranslateMap.end())
1404          *i = PI->second;
1405      }
1406
1407      // Check for trivial simplification.
1408      if (Value *V = SimplifyInstruction(N, TD)) {
1409        TranslateMap[BBI] = V;
1410        delete N;   // Instruction folded away, don't need actual inst
1411      } else {
1412        // Insert the new instruction into its new home.
1413        EdgeBB->getInstList().insert(InsertPt, N);
1414        if (!BBI->use_empty())
1415          TranslateMap[BBI] = N;
1416      }
1417    }
1418
1419    // Loop over all of the edges from PredBB to BB, changing them to branch
1420    // to EdgeBB instead.
1421    TerminatorInst *PredBBTI = PredBB->getTerminator();
1422    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1423      if (PredBBTI->getSuccessor(i) == BB) {
1424        BB->removePredecessor(PredBB);
1425        PredBBTI->setSuccessor(i, EdgeBB);
1426      }
1427
1428    // Recurse, simplifying any other constants.
1429    return FoldCondBranchOnPHI(BI, TD) | true;
1430  }
1431
1432  return false;
1433}
1434
1435/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1436/// PHI node, see if we can eliminate it.
1437static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1438  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1439  // statement", which has a very simple dominance structure.  Basically, we
1440  // are trying to find the condition that is being branched on, which
1441  // subsequently causes this merge to happen.  We really want control
1442  // dependence information for this check, but simplifycfg can't keep it up
1443  // to date, and this catches most of the cases we care about anyway.
1444  BasicBlock *BB = PN->getParent();
1445  BasicBlock *IfTrue, *IfFalse;
1446  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1447  if (!IfCond ||
1448      // Don't bother if the branch will be constant folded trivially.
1449      isa<ConstantInt>(IfCond))
1450    return false;
1451
1452  // Okay, we found that we can merge this two-entry phi node into a select.
1453  // Doing so would require us to fold *all* two entry phi nodes in this block.
1454  // At some point this becomes non-profitable (particularly if the target
1455  // doesn't support cmov's).  Only do this transformation if there are two or
1456  // fewer PHI nodes in this block.
1457  unsigned NumPhis = 0;
1458  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1459    if (NumPhis > 2)
1460      return false;
1461
1462  // Loop over the PHI's seeing if we can promote them all to select
1463  // instructions.  While we are at it, keep track of the instructions
1464  // that need to be moved to the dominating block.
1465  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1466  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1467           MaxCostVal1 = PHINodeFoldingThreshold;
1468
1469  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1470    PHINode *PN = cast<PHINode>(II++);
1471    if (Value *V = SimplifyInstruction(PN, TD)) {
1472      PN->replaceAllUsesWith(V);
1473      PN->eraseFromParent();
1474      continue;
1475    }
1476
1477    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1478                             MaxCostVal0) ||
1479        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1480                             MaxCostVal1))
1481      return false;
1482  }
1483
1484  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1485  // we ran out of PHIs then we simplified them all.
1486  PN = dyn_cast<PHINode>(BB->begin());
1487  if (PN == 0) return true;
1488
1489  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1490  // often be turned into switches and other things.
1491  if (PN->getType()->isIntegerTy(1) &&
1492      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1493       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1494       isa<BinaryOperator>(IfCond)))
1495    return false;
1496
1497  // If we all PHI nodes are promotable, check to make sure that all
1498  // instructions in the predecessor blocks can be promoted as well.  If
1499  // not, we won't be able to get rid of the control flow, so it's not
1500  // worth promoting to select instructions.
1501  BasicBlock *DomBlock = 0;
1502  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1503  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1504  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1505    IfBlock1 = 0;
1506  } else {
1507    DomBlock = *pred_begin(IfBlock1);
1508    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1509      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1510        // This is not an aggressive instruction that we can promote.
1511        // Because of this, we won't be able to get rid of the control
1512        // flow, so the xform is not worth it.
1513        return false;
1514      }
1515  }
1516
1517  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1518    IfBlock2 = 0;
1519  } else {
1520    DomBlock = *pred_begin(IfBlock2);
1521    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1522      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1523        // This is not an aggressive instruction that we can promote.
1524        // Because of this, we won't be able to get rid of the control
1525        // flow, so the xform is not worth it.
1526        return false;
1527      }
1528  }
1529
1530  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1531               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1532
1533  // If we can still promote the PHI nodes after this gauntlet of tests,
1534  // do all of the PHI's now.
1535  Instruction *InsertPt = DomBlock->getTerminator();
1536  IRBuilder<true, NoFolder> Builder(InsertPt);
1537
1538  // Move all 'aggressive' instructions, which are defined in the
1539  // conditional parts of the if's up to the dominating block.
1540  if (IfBlock1)
1541    DomBlock->getInstList().splice(InsertPt,
1542                                   IfBlock1->getInstList(), IfBlock1->begin(),
1543                                   IfBlock1->getTerminator());
1544  if (IfBlock2)
1545    DomBlock->getInstList().splice(InsertPt,
1546                                   IfBlock2->getInstList(), IfBlock2->begin(),
1547                                   IfBlock2->getTerminator());
1548
1549  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1550    // Change the PHI node into a select instruction.
1551    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1552    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1553
1554    SelectInst *NV =
1555      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1556    PN->replaceAllUsesWith(NV);
1557    NV->takeName(PN);
1558    PN->eraseFromParent();
1559  }
1560
1561  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1562  // has been flattened.  Change DomBlock to jump directly to our new block to
1563  // avoid other simplifycfg's kicking in on the diamond.
1564  TerminatorInst *OldTI = DomBlock->getTerminator();
1565  Builder.SetInsertPoint(OldTI);
1566  Builder.CreateBr(BB);
1567  OldTI->eraseFromParent();
1568  return true;
1569}
1570
1571/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1572/// to two returning blocks, try to merge them together into one return,
1573/// introducing a select if the return values disagree.
1574static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1575                                           IRBuilder<> &Builder) {
1576  assert(BI->isConditional() && "Must be a conditional branch");
1577  BasicBlock *TrueSucc = BI->getSuccessor(0);
1578  BasicBlock *FalseSucc = BI->getSuccessor(1);
1579  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1580  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1581
1582  // Check to ensure both blocks are empty (just a return) or optionally empty
1583  // with PHI nodes.  If there are other instructions, merging would cause extra
1584  // computation on one path or the other.
1585  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1586    return false;
1587  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1588    return false;
1589
1590  Builder.SetInsertPoint(BI);
1591  // Okay, we found a branch that is going to two return nodes.  If
1592  // there is no return value for this function, just change the
1593  // branch into a return.
1594  if (FalseRet->getNumOperands() == 0) {
1595    TrueSucc->removePredecessor(BI->getParent());
1596    FalseSucc->removePredecessor(BI->getParent());
1597    Builder.CreateRetVoid();
1598    EraseTerminatorInstAndDCECond(BI);
1599    return true;
1600  }
1601
1602  // Otherwise, figure out what the true and false return values are
1603  // so we can insert a new select instruction.
1604  Value *TrueValue = TrueRet->getReturnValue();
1605  Value *FalseValue = FalseRet->getReturnValue();
1606
1607  // Unwrap any PHI nodes in the return blocks.
1608  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1609    if (TVPN->getParent() == TrueSucc)
1610      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1611  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1612    if (FVPN->getParent() == FalseSucc)
1613      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1614
1615  // In order for this transformation to be safe, we must be able to
1616  // unconditionally execute both operands to the return.  This is
1617  // normally the case, but we could have a potentially-trapping
1618  // constant expression that prevents this transformation from being
1619  // safe.
1620  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1621    if (TCV->canTrap())
1622      return false;
1623  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1624    if (FCV->canTrap())
1625      return false;
1626
1627  // Okay, we collected all the mapped values and checked them for sanity, and
1628  // defined to really do this transformation.  First, update the CFG.
1629  TrueSucc->removePredecessor(BI->getParent());
1630  FalseSucc->removePredecessor(BI->getParent());
1631
1632  // Insert select instructions where needed.
1633  Value *BrCond = BI->getCondition();
1634  if (TrueValue) {
1635    // Insert a select if the results differ.
1636    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1637    } else if (isa<UndefValue>(TrueValue)) {
1638      TrueValue = FalseValue;
1639    } else {
1640      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1641                                       FalseValue, "retval");
1642    }
1643  }
1644
1645  Value *RI = !TrueValue ?
1646    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1647
1648  (void) RI;
1649
1650  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1651               << "\n  " << *BI << "NewRet = " << *RI
1652               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1653
1654  EraseTerminatorInstAndDCECond(BI);
1655
1656  return true;
1657}
1658
1659/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1660/// probabilities of the branch taking each edge. Fills in the two APInt
1661/// parameters and return true, or returns false if no or invalid metadata was
1662/// found.
1663static bool ExtractBranchMetadata(BranchInst *BI,
1664                                  APInt &ProbTrue, APInt &ProbFalse) {
1665  assert(BI->isConditional() &&
1666         "Looking for probabilities on unconditional branch?");
1667  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1668  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1669  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1670  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1671  if (!CITrue || !CIFalse) return false;
1672  ProbTrue = CITrue->getValue();
1673  ProbFalse = CIFalse->getValue();
1674  assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1675         "Branch probability metadata must be 32-bit integers");
1676  return true;
1677}
1678
1679/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1680/// the event of overflow, logically-shifts all four inputs right until the
1681/// multiply fits.
1682static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1683                                      unsigned &BitsLost) {
1684  BitsLost = 0;
1685  bool Overflow = false;
1686  APInt Result = A.umul_ov(B, Overflow);
1687  if (Overflow) {
1688    APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1689    do {
1690      B = B.lshr(1);
1691      ++BitsLost;
1692    } while (B.ugt(MaxB));
1693    A = A.lshr(BitsLost);
1694    C = C.lshr(BitsLost);
1695    D = D.lshr(BitsLost);
1696    Result = A * B;
1697  }
1698  return Result;
1699}
1700
1701/// checkCSEInPredecessor - Return true if the given instruction is available
1702/// in its predecessor block. If yes, the instruction will be removed.
1703///
1704static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1705  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1706    return false;
1707  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1708    Instruction *PBI = &*I;
1709    // Check whether Inst and PBI generate the same value.
1710    if (Inst->isIdenticalTo(PBI)) {
1711      Inst->replaceAllUsesWith(PBI);
1712      Inst->eraseFromParent();
1713      return true;
1714    }
1715  }
1716  return false;
1717}
1718
1719/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1720/// predecessor branches to us and one of our successors, fold the block into
1721/// the predecessor and use logical operations to pick the right destination.
1722bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1723  BasicBlock *BB = BI->getParent();
1724
1725  Instruction *Cond = 0;
1726  if (BI->isConditional())
1727    Cond = dyn_cast<Instruction>(BI->getCondition());
1728  else {
1729    // For unconditional branch, check for a simple CFG pattern, where
1730    // BB has a single predecessor and BB's successor is also its predecessor's
1731    // successor. If such pattern exisits, check for CSE between BB and its
1732    // predecessor.
1733    if (BasicBlock *PB = BB->getSinglePredecessor())
1734      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1735        if (PBI->isConditional() &&
1736            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1737             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1738          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1739               I != E; ) {
1740            Instruction *Curr = I++;
1741            if (isa<CmpInst>(Curr)) {
1742              Cond = Curr;
1743              break;
1744            }
1745            // Quit if we can't remove this instruction.
1746            if (!checkCSEInPredecessor(Curr, PB))
1747              return false;
1748          }
1749        }
1750
1751    if (Cond == 0)
1752      return false;
1753  }
1754
1755  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1756    Cond->getParent() != BB || !Cond->hasOneUse())
1757  return false;
1758
1759  // Only allow this if the condition is a simple instruction that can be
1760  // executed unconditionally.  It must be in the same block as the branch, and
1761  // must be at the front of the block.
1762  BasicBlock::iterator FrontIt = BB->front();
1763
1764  // Ignore dbg intrinsics.
1765  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1766
1767  // Allow a single instruction to be hoisted in addition to the compare
1768  // that feeds the branch.  We later ensure that any values that _it_ uses
1769  // were also live in the predecessor, so that we don't unnecessarily create
1770  // register pressure or inhibit out-of-order execution.
1771  Instruction *BonusInst = 0;
1772  if (&*FrontIt != Cond &&
1773      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1774      isSafeToSpeculativelyExecute(FrontIt)) {
1775    BonusInst = &*FrontIt;
1776    ++FrontIt;
1777
1778    // Ignore dbg intrinsics.
1779    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1780  }
1781
1782  // Only a single bonus inst is allowed.
1783  if (&*FrontIt != Cond)
1784    return false;
1785
1786  // Make sure the instruction after the condition is the cond branch.
1787  BasicBlock::iterator CondIt = Cond; ++CondIt;
1788
1789  // Ingore dbg intrinsics.
1790  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1791
1792  if (&*CondIt != BI)
1793    return false;
1794
1795  // Cond is known to be a compare or binary operator.  Check to make sure that
1796  // neither operand is a potentially-trapping constant expression.
1797  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1798    if (CE->canTrap())
1799      return false;
1800  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1801    if (CE->canTrap())
1802      return false;
1803
1804  // Finally, don't infinitely unroll conditional loops.
1805  BasicBlock *TrueDest  = BI->getSuccessor(0);
1806  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1807  if (TrueDest == BB || FalseDest == BB)
1808    return false;
1809
1810  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1811    BasicBlock *PredBlock = *PI;
1812    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1813
1814    // Check that we have two conditional branches.  If there is a PHI node in
1815    // the common successor, verify that the same value flows in from both
1816    // blocks.
1817    SmallVector<PHINode*, 4> PHIs;
1818    if (PBI == 0 || PBI->isUnconditional() ||
1819        (BI->isConditional() &&
1820         !SafeToMergeTerminators(BI, PBI)) ||
1821        (!BI->isConditional() &&
1822         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1823      continue;
1824
1825    // Determine if the two branches share a common destination.
1826    Instruction::BinaryOps Opc;
1827    bool InvertPredCond = false;
1828
1829    if (BI->isConditional()) {
1830      if (PBI->getSuccessor(0) == TrueDest)
1831        Opc = Instruction::Or;
1832      else if (PBI->getSuccessor(1) == FalseDest)
1833        Opc = Instruction::And;
1834      else if (PBI->getSuccessor(0) == FalseDest)
1835        Opc = Instruction::And, InvertPredCond = true;
1836      else if (PBI->getSuccessor(1) == TrueDest)
1837        Opc = Instruction::Or, InvertPredCond = true;
1838      else
1839        continue;
1840    } else {
1841      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1842        continue;
1843    }
1844
1845    // Ensure that any values used in the bonus instruction are also used
1846    // by the terminator of the predecessor.  This means that those values
1847    // must already have been resolved, so we won't be inhibiting the
1848    // out-of-order core by speculating them earlier.
1849    if (BonusInst) {
1850      // Collect the values used by the bonus inst
1851      SmallPtrSet<Value*, 4> UsedValues;
1852      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1853           OE = BonusInst->op_end(); OI != OE; ++OI) {
1854        Value *V = *OI;
1855        if (!isa<Constant>(V))
1856          UsedValues.insert(V);
1857      }
1858
1859      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1860      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1861
1862      // Walk up to four levels back up the use-def chain of the predecessor's
1863      // terminator to see if all those values were used.  The choice of four
1864      // levels is arbitrary, to provide a compile-time-cost bound.
1865      while (!Worklist.empty()) {
1866        std::pair<Value*, unsigned> Pair = Worklist.back();
1867        Worklist.pop_back();
1868
1869        if (Pair.second >= 4) continue;
1870        UsedValues.erase(Pair.first);
1871        if (UsedValues.empty()) break;
1872
1873        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1874          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1875               OI != OE; ++OI)
1876            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1877        }
1878      }
1879
1880      if (!UsedValues.empty()) return false;
1881    }
1882
1883    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1884    IRBuilder<> Builder(PBI);
1885
1886    // If we need to invert the condition in the pred block to match, do so now.
1887    if (InvertPredCond) {
1888      Value *NewCond = PBI->getCondition();
1889
1890      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1891        CmpInst *CI = cast<CmpInst>(NewCond);
1892        CI->setPredicate(CI->getInversePredicate());
1893      } else {
1894        NewCond = Builder.CreateNot(NewCond,
1895                                    PBI->getCondition()->getName()+".not");
1896      }
1897
1898      PBI->setCondition(NewCond);
1899      PBI->swapSuccessors();
1900    }
1901
1902    // If we have a bonus inst, clone it into the predecessor block.
1903    Instruction *NewBonus = 0;
1904    if (BonusInst) {
1905      NewBonus = BonusInst->clone();
1906      PredBlock->getInstList().insert(PBI, NewBonus);
1907      NewBonus->takeName(BonusInst);
1908      BonusInst->setName(BonusInst->getName()+".old");
1909    }
1910
1911    // Clone Cond into the predecessor basic block, and or/and the
1912    // two conditions together.
1913    Instruction *New = Cond->clone();
1914    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1915    PredBlock->getInstList().insert(PBI, New);
1916    New->takeName(Cond);
1917    Cond->setName(New->getName()+".old");
1918
1919    if (BI->isConditional()) {
1920      Instruction *NewCond =
1921        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1922                                            New, "or.cond"));
1923      PBI->setCondition(NewCond);
1924
1925      if (PBI->getSuccessor(0) == BB) {
1926        AddPredecessorToBlock(TrueDest, PredBlock, BB);
1927        PBI->setSuccessor(0, TrueDest);
1928      }
1929      if (PBI->getSuccessor(1) == BB) {
1930        AddPredecessorToBlock(FalseDest, PredBlock, BB);
1931        PBI->setSuccessor(1, FalseDest);
1932      }
1933    } else {
1934      // Update PHI nodes in the common successors.
1935      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1936        ConstantInt *PBI_C = cast<ConstantInt>(
1937          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1938        assert(PBI_C->getType()->isIntegerTy(1));
1939        Instruction *MergedCond = 0;
1940        if (PBI->getSuccessor(0) == TrueDest) {
1941          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1942          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1943          //       is false: !PBI_Cond and BI_Value
1944          Instruction *NotCond =
1945            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1946                                "not.cond"));
1947          MergedCond =
1948            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1949                                NotCond, New,
1950                                "and.cond"));
1951          if (PBI_C->isOne())
1952            MergedCond =
1953              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1954                                  PBI->getCondition(), MergedCond,
1955                                  "or.cond"));
1956        } else {
1957          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1958          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1959          //       is false: PBI_Cond and BI_Value
1960          MergedCond =
1961            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1962                                PBI->getCondition(), New,
1963                                "and.cond"));
1964          if (PBI_C->isOne()) {
1965            Instruction *NotCond =
1966              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1967                                  "not.cond"));
1968            MergedCond =
1969              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1970                                  NotCond, MergedCond,
1971                                  "or.cond"));
1972          }
1973        }
1974        // Update PHI Node.
1975        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1976                                  MergedCond);
1977      }
1978      // Change PBI from Conditional to Unconditional.
1979      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1980      EraseTerminatorInstAndDCECond(PBI);
1981      PBI = New_PBI;
1982    }
1983
1984    // TODO: If BB is reachable from all paths through PredBlock, then we
1985    // could replace PBI's branch probabilities with BI's.
1986
1987    // Merge probability data into PredBlock's branch.
1988    APInt A, B, C, D;
1989    if (PBI->isConditional() && BI->isConditional() &&
1990        ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1991      // Given IR which does:
1992      //   bbA:
1993      //     br i1 %x, label %bbB, label %bbC
1994      //   bbB:
1995      //     br i1 %y, label %bbD, label %bbC
1996      // Let's call the probability that we take the edge from %bbA to %bbB
1997      // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1998      // %bbC probability 'd'.
1999      //
2000      // We transform the IR into:
2001      //   bbA:
2002      //     br i1 %z, label %bbD, label %bbC
2003      // where the probability of going to %bbD is (a*c) and going to bbC is
2004      // (b+a*d).
2005      //
2006      // Probabilities aren't stored as ratios directly. Using branch weights,
2007      // we get:
2008      // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
2009
2010      // In the event of overflow, we want to drop the LSB of the input
2011      // probabilities.
2012      unsigned BitsLost;
2013
2014      // Ignore overflow result on ProbTrue.
2015      APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
2016
2017      APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
2018      if (BitsLost) {
2019        ProbTrue = ProbTrue.lshr(BitsLost*2);
2020      }
2021
2022      APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
2023      if (BitsLost) {
2024        ProbTrue = ProbTrue.lshr(BitsLost*2);
2025        Tmp1 = Tmp1.lshr(BitsLost*2);
2026      }
2027
2028      APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
2029      if (BitsLost) {
2030        ProbTrue = ProbTrue.lshr(BitsLost*2);
2031        Tmp1 = Tmp1.lshr(BitsLost*2);
2032        Tmp2 = Tmp2.lshr(BitsLost*2);
2033      }
2034
2035      bool Overflow1 = false, Overflow2 = false;
2036      APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
2037      APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
2038
2039      if (Overflow1 || Overflow2) {
2040        ProbTrue = ProbTrue.lshr(1);
2041        Tmp1 = Tmp1.lshr(1);
2042        Tmp2 = Tmp2.lshr(1);
2043        Tmp3 = Tmp3.lshr(1);
2044        Tmp4 = Tmp2 + Tmp3;
2045        ProbFalse = Tmp4 + Tmp1;
2046      }
2047
2048      // The sum of branch weights must fit in 32-bits.
2049      if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
2050        ProbTrue = ProbTrue.lshr(1);
2051        ProbFalse = ProbFalse.lshr(1);
2052      }
2053
2054      if (ProbTrue != ProbFalse) {
2055        // Normalize the result.
2056        APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
2057        ProbTrue = ProbTrue.udiv(GCD);
2058        ProbFalse = ProbFalse.udiv(GCD);
2059
2060        MDBuilder MDB(BI->getContext());
2061        MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
2062                                            ProbFalse.getZExtValue());
2063        PBI->setMetadata(LLVMContext::MD_prof, N);
2064      } else {
2065        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2066      }
2067    } else {
2068      PBI->setMetadata(LLVMContext::MD_prof, NULL);
2069    }
2070
2071    // Copy any debug value intrinsics into the end of PredBlock.
2072    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2073      if (isa<DbgInfoIntrinsic>(*I))
2074        I->clone()->insertBefore(PBI);
2075
2076    return true;
2077  }
2078  return false;
2079}
2080
2081/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2082/// predecessor of another block, this function tries to simplify it.  We know
2083/// that PBI and BI are both conditional branches, and BI is in one of the
2084/// successor blocks of PBI - PBI branches to BI.
2085static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2086  assert(PBI->isConditional() && BI->isConditional());
2087  BasicBlock *BB = BI->getParent();
2088
2089  // If this block ends with a branch instruction, and if there is a
2090  // predecessor that ends on a branch of the same condition, make
2091  // this conditional branch redundant.
2092  if (PBI->getCondition() == BI->getCondition() &&
2093      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2094    // Okay, the outcome of this conditional branch is statically
2095    // knowable.  If this block had a single pred, handle specially.
2096    if (BB->getSinglePredecessor()) {
2097      // Turn this into a branch on constant.
2098      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2099      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2100                                        CondIsTrue));
2101      return true;  // Nuke the branch on constant.
2102    }
2103
2104    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2105    // in the constant and simplify the block result.  Subsequent passes of
2106    // simplifycfg will thread the block.
2107    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2108      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2109      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2110                                       std::distance(PB, PE),
2111                                       BI->getCondition()->getName() + ".pr",
2112                                       BB->begin());
2113      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2114      // predecessor, compute the PHI'd conditional value for all of the preds.
2115      // Any predecessor where the condition is not computable we keep symbolic.
2116      for (pred_iterator PI = PB; PI != PE; ++PI) {
2117        BasicBlock *P = *PI;
2118        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2119            PBI != BI && PBI->isConditional() &&
2120            PBI->getCondition() == BI->getCondition() &&
2121            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2122          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2123          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2124                                              CondIsTrue), P);
2125        } else {
2126          NewPN->addIncoming(BI->getCondition(), P);
2127        }
2128      }
2129
2130      BI->setCondition(NewPN);
2131      return true;
2132    }
2133  }
2134
2135  // If this is a conditional branch in an empty block, and if any
2136  // predecessors is a conditional branch to one of our destinations,
2137  // fold the conditions into logical ops and one cond br.
2138  BasicBlock::iterator BBI = BB->begin();
2139  // Ignore dbg intrinsics.
2140  while (isa<DbgInfoIntrinsic>(BBI))
2141    ++BBI;
2142  if (&*BBI != BI)
2143    return false;
2144
2145
2146  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2147    if (CE->canTrap())
2148      return false;
2149
2150  int PBIOp, BIOp;
2151  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2152    PBIOp = BIOp = 0;
2153  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2154    PBIOp = 0, BIOp = 1;
2155  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2156    PBIOp = 1, BIOp = 0;
2157  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2158    PBIOp = BIOp = 1;
2159  else
2160    return false;
2161
2162  // Check to make sure that the other destination of this branch
2163  // isn't BB itself.  If so, this is an infinite loop that will
2164  // keep getting unwound.
2165  if (PBI->getSuccessor(PBIOp) == BB)
2166    return false;
2167
2168  // Do not perform this transformation if it would require
2169  // insertion of a large number of select instructions. For targets
2170  // without predication/cmovs, this is a big pessimization.
2171  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2172
2173  unsigned NumPhis = 0;
2174  for (BasicBlock::iterator II = CommonDest->begin();
2175       isa<PHINode>(II); ++II, ++NumPhis)
2176    if (NumPhis > 2) // Disable this xform.
2177      return false;
2178
2179  // Finally, if everything is ok, fold the branches to logical ops.
2180  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2181
2182  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2183               << "AND: " << *BI->getParent());
2184
2185
2186  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2187  // branch in it, where one edge (OtherDest) goes back to itself but the other
2188  // exits.  We don't *know* that the program avoids the infinite loop
2189  // (even though that seems likely).  If we do this xform naively, we'll end up
2190  // recursively unpeeling the loop.  Since we know that (after the xform is
2191  // done) that the block *is* infinite if reached, we just make it an obviously
2192  // infinite loop with no cond branch.
2193  if (OtherDest == BB) {
2194    // Insert it at the end of the function, because it's either code,
2195    // or it won't matter if it's hot. :)
2196    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2197                                                  "infloop", BB->getParent());
2198    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2199    OtherDest = InfLoopBlock;
2200  }
2201
2202  DEBUG(dbgs() << *PBI->getParent()->getParent());
2203
2204  // BI may have other predecessors.  Because of this, we leave
2205  // it alone, but modify PBI.
2206
2207  // Make sure we get to CommonDest on True&True directions.
2208  Value *PBICond = PBI->getCondition();
2209  IRBuilder<true, NoFolder> Builder(PBI);
2210  if (PBIOp)
2211    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2212
2213  Value *BICond = BI->getCondition();
2214  if (BIOp)
2215    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2216
2217  // Merge the conditions.
2218  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2219
2220  // Modify PBI to branch on the new condition to the new dests.
2221  PBI->setCondition(Cond);
2222  PBI->setSuccessor(0, CommonDest);
2223  PBI->setSuccessor(1, OtherDest);
2224
2225  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2226  // block that are identical to the entries for BI's block.
2227  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2228
2229  // We know that the CommonDest already had an edge from PBI to
2230  // it.  If it has PHIs though, the PHIs may have different
2231  // entries for BB and PBI's BB.  If so, insert a select to make
2232  // them agree.
2233  PHINode *PN;
2234  for (BasicBlock::iterator II = CommonDest->begin();
2235       (PN = dyn_cast<PHINode>(II)); ++II) {
2236    Value *BIV = PN->getIncomingValueForBlock(BB);
2237    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2238    Value *PBIV = PN->getIncomingValue(PBBIdx);
2239    if (BIV != PBIV) {
2240      // Insert a select in PBI to pick the right value.
2241      Value *NV = cast<SelectInst>
2242        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2243      PN->setIncomingValue(PBBIdx, NV);
2244    }
2245  }
2246
2247  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2248  DEBUG(dbgs() << *PBI->getParent()->getParent());
2249
2250  // This basic block is probably dead.  We know it has at least
2251  // one fewer predecessor.
2252  return true;
2253}
2254
2255// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2256// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2257// Takes care of updating the successors and removing the old terminator.
2258// Also makes sure not to introduce new successors by assuming that edges to
2259// non-successor TrueBBs and FalseBBs aren't reachable.
2260static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2261                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
2262  // Remove any superfluous successor edges from the CFG.
2263  // First, figure out which successors to preserve.
2264  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2265  // successor.
2266  BasicBlock *KeepEdge1 = TrueBB;
2267  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2268
2269  // Then remove the rest.
2270  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2271    BasicBlock *Succ = OldTerm->getSuccessor(I);
2272    // Make sure only to keep exactly one copy of each edge.
2273    if (Succ == KeepEdge1)
2274      KeepEdge1 = 0;
2275    else if (Succ == KeepEdge2)
2276      KeepEdge2 = 0;
2277    else
2278      Succ->removePredecessor(OldTerm->getParent());
2279  }
2280
2281  IRBuilder<> Builder(OldTerm);
2282  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2283
2284  // Insert an appropriate new terminator.
2285  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2286    if (TrueBB == FalseBB)
2287      // We were only looking for one successor, and it was present.
2288      // Create an unconditional branch to it.
2289      Builder.CreateBr(TrueBB);
2290    else
2291      // We found both of the successors we were looking for.
2292      // Create a conditional branch sharing the condition of the select.
2293      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2294  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2295    // Neither of the selected blocks were successors, so this
2296    // terminator must be unreachable.
2297    new UnreachableInst(OldTerm->getContext(), OldTerm);
2298  } else {
2299    // One of the selected values was a successor, but the other wasn't.
2300    // Insert an unconditional branch to the one that was found;
2301    // the edge to the one that wasn't must be unreachable.
2302    if (KeepEdge1 == 0)
2303      // Only TrueBB was found.
2304      Builder.CreateBr(TrueBB);
2305    else
2306      // Only FalseBB was found.
2307      Builder.CreateBr(FalseBB);
2308  }
2309
2310  EraseTerminatorInstAndDCECond(OldTerm);
2311  return true;
2312}
2313
2314// SimplifySwitchOnSelect - Replaces
2315//   (switch (select cond, X, Y)) on constant X, Y
2316// with a branch - conditional if X and Y lead to distinct BBs,
2317// unconditional otherwise.
2318static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2319  // Check for constant integer values in the select.
2320  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2321  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2322  if (!TrueVal || !FalseVal)
2323    return false;
2324
2325  // Find the relevant condition and destinations.
2326  Value *Condition = Select->getCondition();
2327  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2328  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2329
2330  // Perform the actual simplification.
2331  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2332}
2333
2334// SimplifyIndirectBrOnSelect - Replaces
2335//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2336//                             blockaddress(@fn, BlockB)))
2337// with
2338//   (br cond, BlockA, BlockB).
2339static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2340  // Check that both operands of the select are block addresses.
2341  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2342  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2343  if (!TBA || !FBA)
2344    return false;
2345
2346  // Extract the actual blocks.
2347  BasicBlock *TrueBB = TBA->getBasicBlock();
2348  BasicBlock *FalseBB = FBA->getBasicBlock();
2349
2350  // Perform the actual simplification.
2351  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2352}
2353
2354/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2355/// instruction (a seteq/setne with a constant) as the only instruction in a
2356/// block that ends with an uncond branch.  We are looking for a very specific
2357/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2358/// this case, we merge the first two "or's of icmp" into a switch, but then the
2359/// default value goes to an uncond block with a seteq in it, we get something
2360/// like:
2361///
2362///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2363/// DEFAULT:
2364///   %tmp = icmp eq i8 %A, 92
2365///   br label %end
2366/// end:
2367///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2368///
2369/// We prefer to split the edge to 'end' so that there is a true/false entry to
2370/// the PHI, merging the third icmp into the switch.
2371static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2372                                                  const TargetData *TD,
2373                                                  IRBuilder<> &Builder) {
2374  BasicBlock *BB = ICI->getParent();
2375
2376  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2377  // complex.
2378  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2379
2380  Value *V = ICI->getOperand(0);
2381  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2382
2383  // The pattern we're looking for is where our only predecessor is a switch on
2384  // 'V' and this block is the default case for the switch.  In this case we can
2385  // fold the compared value into the switch to simplify things.
2386  BasicBlock *Pred = BB->getSinglePredecessor();
2387  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2388
2389  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2390  if (SI->getCondition() != V)
2391    return false;
2392
2393  // If BB is reachable on a non-default case, then we simply know the value of
2394  // V in this block.  Substitute it and constant fold the icmp instruction
2395  // away.
2396  if (SI->getDefaultDest() != BB) {
2397    ConstantInt *VVal = SI->findCaseDest(BB);
2398    assert(VVal && "Should have a unique destination value");
2399    ICI->setOperand(0, VVal);
2400
2401    if (Value *V = SimplifyInstruction(ICI, TD)) {
2402      ICI->replaceAllUsesWith(V);
2403      ICI->eraseFromParent();
2404    }
2405    // BB is now empty, so it is likely to simplify away.
2406    return SimplifyCFG(BB) | true;
2407  }
2408
2409  // Ok, the block is reachable from the default dest.  If the constant we're
2410  // comparing exists in one of the other edges, then we can constant fold ICI
2411  // and zap it.
2412  if (SI->findCaseValue(Cst) != SI->case_default()) {
2413    Value *V;
2414    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2415      V = ConstantInt::getFalse(BB->getContext());
2416    else
2417      V = ConstantInt::getTrue(BB->getContext());
2418
2419    ICI->replaceAllUsesWith(V);
2420    ICI->eraseFromParent();
2421    // BB is now empty, so it is likely to simplify away.
2422    return SimplifyCFG(BB) | true;
2423  }
2424
2425  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2426  // the block.
2427  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2428  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2429  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2430      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2431    return false;
2432
2433  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2434  // true in the PHI.
2435  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2436  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2437
2438  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2439    std::swap(DefaultCst, NewCst);
2440
2441  // Replace ICI (which is used by the PHI for the default value) with true or
2442  // false depending on if it is EQ or NE.
2443  ICI->replaceAllUsesWith(DefaultCst);
2444  ICI->eraseFromParent();
2445
2446  // Okay, the switch goes to this block on a default value.  Add an edge from
2447  // the switch to the merge point on the compared value.
2448  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2449                                         BB->getParent(), BB);
2450  SI->addCase(Cst, NewBB);
2451
2452  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2453  Builder.SetInsertPoint(NewBB);
2454  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2455  Builder.CreateBr(SuccBlock);
2456  PHIUse->addIncoming(NewCst, NewBB);
2457  return true;
2458}
2459
2460/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2461/// Check to see if it is branching on an or/and chain of icmp instructions, and
2462/// fold it into a switch instruction if so.
2463static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2464                                      IRBuilder<> &Builder) {
2465  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2466  if (Cond == 0) return false;
2467
2468
2469  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2470  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2471  // 'setne's and'ed together, collect them.
2472  Value *CompVal = 0;
2473  std::vector<ConstantInt*> Values;
2474  bool TrueWhenEqual = true;
2475  Value *ExtraCase = 0;
2476  unsigned UsedICmps = 0;
2477
2478  if (Cond->getOpcode() == Instruction::Or) {
2479    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2480                                     UsedICmps);
2481  } else if (Cond->getOpcode() == Instruction::And) {
2482    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2483                                     UsedICmps);
2484    TrueWhenEqual = false;
2485  }
2486
2487  // If we didn't have a multiply compared value, fail.
2488  if (CompVal == 0) return false;
2489
2490  // Avoid turning single icmps into a switch.
2491  if (UsedICmps <= 1)
2492    return false;
2493
2494  // There might be duplicate constants in the list, which the switch
2495  // instruction can't handle, remove them now.
2496  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2497  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2498
2499  // If Extra was used, we require at least two switch values to do the
2500  // transformation.  A switch with one value is just an cond branch.
2501  if (ExtraCase && Values.size() < 2) return false;
2502
2503  // TODO: Preserve branch weight metadata, similarly to how
2504  // FoldValueComparisonIntoPredecessors preserves it.
2505
2506  // Figure out which block is which destination.
2507  BasicBlock *DefaultBB = BI->getSuccessor(1);
2508  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2509  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2510
2511  BasicBlock *BB = BI->getParent();
2512
2513  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2514               << " cases into SWITCH.  BB is:\n" << *BB);
2515
2516  // If there are any extra values that couldn't be folded into the switch
2517  // then we evaluate them with an explicit branch first.  Split the block
2518  // right before the condbr to handle it.
2519  if (ExtraCase) {
2520    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2521    // Remove the uncond branch added to the old block.
2522    TerminatorInst *OldTI = BB->getTerminator();
2523    Builder.SetInsertPoint(OldTI);
2524
2525    if (TrueWhenEqual)
2526      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2527    else
2528      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2529
2530    OldTI->eraseFromParent();
2531
2532    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2533    // for the edge we just added.
2534    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2535
2536    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2537          << "\nEXTRABB = " << *BB);
2538    BB = NewBB;
2539  }
2540
2541  Builder.SetInsertPoint(BI);
2542  // Convert pointer to int before we switch.
2543  if (CompVal->getType()->isPointerTy()) {
2544    assert(TD && "Cannot switch on pointer without TargetData");
2545    CompVal = Builder.CreatePtrToInt(CompVal,
2546                                     TD->getIntPtrType(CompVal->getContext()),
2547                                     "magicptr");
2548  }
2549
2550  // Create the new switch instruction now.
2551  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2552
2553  // Add all of the 'cases' to the switch instruction.
2554  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2555    New->addCase(Values[i], EdgeBB);
2556
2557  // We added edges from PI to the EdgeBB.  As such, if there were any
2558  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2559  // the number of edges added.
2560  for (BasicBlock::iterator BBI = EdgeBB->begin();
2561       isa<PHINode>(BBI); ++BBI) {
2562    PHINode *PN = cast<PHINode>(BBI);
2563    Value *InVal = PN->getIncomingValueForBlock(BB);
2564    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2565      PN->addIncoming(InVal, BB);
2566  }
2567
2568  // Erase the old branch instruction.
2569  EraseTerminatorInstAndDCECond(BI);
2570
2571  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2572  return true;
2573}
2574
2575bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2576  // If this is a trivial landing pad that just continues unwinding the caught
2577  // exception then zap the landing pad, turning its invokes into calls.
2578  BasicBlock *BB = RI->getParent();
2579  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2580  if (RI->getValue() != LPInst)
2581    // Not a landing pad, or the resume is not unwinding the exception that
2582    // caused control to branch here.
2583    return false;
2584
2585  // Check that there are no other instructions except for debug intrinsics.
2586  BasicBlock::iterator I = LPInst, E = RI;
2587  while (++I != E)
2588    if (!isa<DbgInfoIntrinsic>(I))
2589      return false;
2590
2591  // Turn all invokes that unwind here into calls and delete the basic block.
2592  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2593    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2594    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2595    // Insert a call instruction before the invoke.
2596    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2597    Call->takeName(II);
2598    Call->setCallingConv(II->getCallingConv());
2599    Call->setAttributes(II->getAttributes());
2600    Call->setDebugLoc(II->getDebugLoc());
2601
2602    // Anything that used the value produced by the invoke instruction now uses
2603    // the value produced by the call instruction.  Note that we do this even
2604    // for void functions and calls with no uses so that the callgraph edge is
2605    // updated.
2606    II->replaceAllUsesWith(Call);
2607    BB->removePredecessor(II->getParent());
2608
2609    // Insert a branch to the normal destination right before the invoke.
2610    BranchInst::Create(II->getNormalDest(), II);
2611
2612    // Finally, delete the invoke instruction!
2613    II->eraseFromParent();
2614  }
2615
2616  // The landingpad is now unreachable.  Zap it.
2617  BB->eraseFromParent();
2618  return true;
2619}
2620
2621bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2622  BasicBlock *BB = RI->getParent();
2623  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2624
2625  // Find predecessors that end with branches.
2626  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2627  SmallVector<BranchInst*, 8> CondBranchPreds;
2628  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2629    BasicBlock *P = *PI;
2630    TerminatorInst *PTI = P->getTerminator();
2631    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2632      if (BI->isUnconditional())
2633        UncondBranchPreds.push_back(P);
2634      else
2635        CondBranchPreds.push_back(BI);
2636    }
2637  }
2638
2639  // If we found some, do the transformation!
2640  if (!UncondBranchPreds.empty() && DupRet) {
2641    while (!UncondBranchPreds.empty()) {
2642      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2643      DEBUG(dbgs() << "FOLDING: " << *BB
2644            << "INTO UNCOND BRANCH PRED: " << *Pred);
2645      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2646    }
2647
2648    // If we eliminated all predecessors of the block, delete the block now.
2649    if (pred_begin(BB) == pred_end(BB))
2650      // We know there are no successors, so just nuke the block.
2651      BB->eraseFromParent();
2652
2653    return true;
2654  }
2655
2656  // Check out all of the conditional branches going to this return
2657  // instruction.  If any of them just select between returns, change the
2658  // branch itself into a select/return pair.
2659  while (!CondBranchPreds.empty()) {
2660    BranchInst *BI = CondBranchPreds.pop_back_val();
2661
2662    // Check to see if the non-BB successor is also a return block.
2663    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2664        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2665        SimplifyCondBranchToTwoReturns(BI, Builder))
2666      return true;
2667  }
2668  return false;
2669}
2670
2671bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2672  BasicBlock *BB = UI->getParent();
2673
2674  bool Changed = false;
2675
2676  // If there are any instructions immediately before the unreachable that can
2677  // be removed, do so.
2678  while (UI != BB->begin()) {
2679    BasicBlock::iterator BBI = UI;
2680    --BBI;
2681    // Do not delete instructions that can have side effects which might cause
2682    // the unreachable to not be reachable; specifically, calls and volatile
2683    // operations may have this effect.
2684    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2685
2686    if (BBI->mayHaveSideEffects()) {
2687      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2688        if (SI->isVolatile())
2689          break;
2690      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2691        if (LI->isVolatile())
2692          break;
2693      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2694        if (RMWI->isVolatile())
2695          break;
2696      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2697        if (CXI->isVolatile())
2698          break;
2699      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2700                 !isa<LandingPadInst>(BBI)) {
2701        break;
2702      }
2703      // Note that deleting LandingPad's here is in fact okay, although it
2704      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2705      // all the predecessors of this block will be the unwind edges of Invokes,
2706      // and we can therefore guarantee this block will be erased.
2707    }
2708
2709    // Delete this instruction (any uses are guaranteed to be dead)
2710    if (!BBI->use_empty())
2711      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2712    BBI->eraseFromParent();
2713    Changed = true;
2714  }
2715
2716  // If the unreachable instruction is the first in the block, take a gander
2717  // at all of the predecessors of this instruction, and simplify them.
2718  if (&BB->front() != UI) return Changed;
2719
2720  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2721  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2722    TerminatorInst *TI = Preds[i]->getTerminator();
2723    IRBuilder<> Builder(TI);
2724    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2725      if (BI->isUnconditional()) {
2726        if (BI->getSuccessor(0) == BB) {
2727          new UnreachableInst(TI->getContext(), TI);
2728          TI->eraseFromParent();
2729          Changed = true;
2730        }
2731      } else {
2732        if (BI->getSuccessor(0) == BB) {
2733          Builder.CreateBr(BI->getSuccessor(1));
2734          EraseTerminatorInstAndDCECond(BI);
2735        } else if (BI->getSuccessor(1) == BB) {
2736          Builder.CreateBr(BI->getSuccessor(0));
2737          EraseTerminatorInstAndDCECond(BI);
2738          Changed = true;
2739        }
2740      }
2741    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2742      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2743           i != e; ++i)
2744        if (i.getCaseSuccessor() == BB) {
2745          BB->removePredecessor(SI->getParent());
2746          SI->removeCase(i);
2747          --i; --e;
2748          Changed = true;
2749        }
2750      // If the default value is unreachable, figure out the most popular
2751      // destination and make it the default.
2752      if (SI->getDefaultDest() == BB) {
2753        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2754        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2755             i != e; ++i) {
2756          std::pair<unsigned, unsigned> &entry =
2757              Popularity[i.getCaseSuccessor()];
2758          if (entry.first == 0) {
2759            entry.first = 1;
2760            entry.second = i.getCaseIndex();
2761          } else {
2762            entry.first++;
2763          }
2764        }
2765
2766        // Find the most popular block.
2767        unsigned MaxPop = 0;
2768        unsigned MaxIndex = 0;
2769        BasicBlock *MaxBlock = 0;
2770        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2771             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2772          if (I->second.first > MaxPop ||
2773              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2774            MaxPop = I->second.first;
2775            MaxIndex = I->second.second;
2776            MaxBlock = I->first;
2777          }
2778        }
2779        if (MaxBlock) {
2780          // Make this the new default, allowing us to delete any explicit
2781          // edges to it.
2782          SI->setDefaultDest(MaxBlock);
2783          Changed = true;
2784
2785          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2786          // it.
2787          if (isa<PHINode>(MaxBlock->begin()))
2788            for (unsigned i = 0; i != MaxPop-1; ++i)
2789              MaxBlock->removePredecessor(SI->getParent());
2790
2791          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2792               i != e; ++i)
2793            if (i.getCaseSuccessor() == MaxBlock) {
2794              SI->removeCase(i);
2795              --i; --e;
2796            }
2797        }
2798      }
2799    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2800      if (II->getUnwindDest() == BB) {
2801        // Convert the invoke to a call instruction.  This would be a good
2802        // place to note that the call does not throw though.
2803        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2804        II->removeFromParent();   // Take out of symbol table
2805
2806        // Insert the call now...
2807        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2808        Builder.SetInsertPoint(BI);
2809        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2810                                          Args, II->getName());
2811        CI->setCallingConv(II->getCallingConv());
2812        CI->setAttributes(II->getAttributes());
2813        // If the invoke produced a value, the call does now instead.
2814        II->replaceAllUsesWith(CI);
2815        delete II;
2816        Changed = true;
2817      }
2818    }
2819  }
2820
2821  // If this block is now dead, remove it.
2822  if (pred_begin(BB) == pred_end(BB) &&
2823      BB != &BB->getParent()->getEntryBlock()) {
2824    // We know there are no successors, so just nuke the block.
2825    BB->eraseFromParent();
2826    return true;
2827  }
2828
2829  return Changed;
2830}
2831
2832/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2833/// integer range comparison into a sub, an icmp and a branch.
2834static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2835  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2836
2837  // Make sure all cases point to the same destination and gather the values.
2838  SmallVector<ConstantInt *, 16> Cases;
2839  SwitchInst::CaseIt I = SI->case_begin();
2840  Cases.push_back(I.getCaseValue());
2841  SwitchInst::CaseIt PrevI = I++;
2842  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2843    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2844      return false;
2845    Cases.push_back(I.getCaseValue());
2846  }
2847  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2848
2849  // Sort the case values, then check if they form a range we can transform.
2850  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2851  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2852    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2853      return false;
2854  }
2855
2856  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2857  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2858
2859  Value *Sub = SI->getCondition();
2860  if (!Offset->isNullValue())
2861    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2862  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2863  Builder.CreateCondBr(
2864      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2865
2866  // Prune obsolete incoming values off the successor's PHI nodes.
2867  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2868       isa<PHINode>(BBI); ++BBI) {
2869    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2870      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2871  }
2872  SI->eraseFromParent();
2873
2874  return true;
2875}
2876
2877/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2878/// and use it to remove dead cases.
2879static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2880  Value *Cond = SI->getCondition();
2881  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2882  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2883  ComputeMaskedBits(Cond, KnownZero, KnownOne);
2884
2885  // Gather dead cases.
2886  SmallVector<ConstantInt*, 8> DeadCases;
2887  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2888    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2889        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2890      DeadCases.push_back(I.getCaseValue());
2891      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2892                   << I.getCaseValue() << "' is dead.\n");
2893    }
2894  }
2895
2896  // Remove dead cases from the switch.
2897  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2898    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2899    assert(Case != SI->case_default() &&
2900           "Case was not found. Probably mistake in DeadCases forming.");
2901    // Prune unused values from PHI nodes.
2902    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2903    SI->removeCase(Case);
2904  }
2905
2906  return !DeadCases.empty();
2907}
2908
2909/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2910/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2911/// by an unconditional branch), look at the phi node for BB in the successor
2912/// block and see if the incoming value is equal to CaseValue. If so, return
2913/// the phi node, and set PhiIndex to BB's index in the phi node.
2914static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2915                                              BasicBlock *BB,
2916                                              int *PhiIndex) {
2917  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2918    return NULL; // BB must be empty to be a candidate for simplification.
2919  if (!BB->getSinglePredecessor())
2920    return NULL; // BB must be dominated by the switch.
2921
2922  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2923  if (!Branch || !Branch->isUnconditional())
2924    return NULL; // Terminator must be unconditional branch.
2925
2926  BasicBlock *Succ = Branch->getSuccessor(0);
2927
2928  BasicBlock::iterator I = Succ->begin();
2929  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2930    int Idx = PHI->getBasicBlockIndex(BB);
2931    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2932
2933    Value *InValue = PHI->getIncomingValue(Idx);
2934    if (InValue != CaseValue) continue;
2935
2936    *PhiIndex = Idx;
2937    return PHI;
2938  }
2939
2940  return NULL;
2941}
2942
2943/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2944/// instruction to a phi node dominated by the switch, if that would mean that
2945/// some of the destination blocks of the switch can be folded away.
2946/// Returns true if a change is made.
2947static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2948  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2949  ForwardingNodesMap ForwardingNodes;
2950
2951  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2952    ConstantInt *CaseValue = I.getCaseValue();
2953    BasicBlock *CaseDest = I.getCaseSuccessor();
2954
2955    int PhiIndex;
2956    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2957                                                 &PhiIndex);
2958    if (!PHI) continue;
2959
2960    ForwardingNodes[PHI].push_back(PhiIndex);
2961  }
2962
2963  bool Changed = false;
2964
2965  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2966       E = ForwardingNodes.end(); I != E; ++I) {
2967    PHINode *Phi = I->first;
2968    SmallVector<int,4> &Indexes = I->second;
2969
2970    if (Indexes.size() < 2) continue;
2971
2972    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2973      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2974    Changed = true;
2975  }
2976
2977  return Changed;
2978}
2979
2980bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2981  // If this switch is too complex to want to look at, ignore it.
2982  if (!isValueEqualityComparison(SI))
2983    return false;
2984
2985  BasicBlock *BB = SI->getParent();
2986
2987  // If we only have one predecessor, and if it is a branch on this value,
2988  // see if that predecessor totally determines the outcome of this switch.
2989  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2990    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2991      return SimplifyCFG(BB) | true;
2992
2993  Value *Cond = SI->getCondition();
2994  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2995    if (SimplifySwitchOnSelect(SI, Select))
2996      return SimplifyCFG(BB) | true;
2997
2998  // If the block only contains the switch, see if we can fold the block
2999  // away into any preds.
3000  BasicBlock::iterator BBI = BB->begin();
3001  // Ignore dbg intrinsics.
3002  while (isa<DbgInfoIntrinsic>(BBI))
3003    ++BBI;
3004  if (SI == &*BBI)
3005    if (FoldValueComparisonIntoPredecessors(SI, Builder))
3006      return SimplifyCFG(BB) | true;
3007
3008  // Try to transform the switch into an icmp and a branch.
3009  if (TurnSwitchRangeIntoICmp(SI, Builder))
3010    return SimplifyCFG(BB) | true;
3011
3012  // Remove unreachable cases.
3013  if (EliminateDeadSwitchCases(SI))
3014    return SimplifyCFG(BB) | true;
3015
3016  if (ForwardSwitchConditionToPHI(SI))
3017    return SimplifyCFG(BB) | true;
3018
3019  return false;
3020}
3021
3022bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3023  BasicBlock *BB = IBI->getParent();
3024  bool Changed = false;
3025
3026  // Eliminate redundant destinations.
3027  SmallPtrSet<Value *, 8> Succs;
3028  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3029    BasicBlock *Dest = IBI->getDestination(i);
3030    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3031      Dest->removePredecessor(BB);
3032      IBI->removeDestination(i);
3033      --i; --e;
3034      Changed = true;
3035    }
3036  }
3037
3038  if (IBI->getNumDestinations() == 0) {
3039    // If the indirectbr has no successors, change it to unreachable.
3040    new UnreachableInst(IBI->getContext(), IBI);
3041    EraseTerminatorInstAndDCECond(IBI);
3042    return true;
3043  }
3044
3045  if (IBI->getNumDestinations() == 1) {
3046    // If the indirectbr has one successor, change it to a direct branch.
3047    BranchInst::Create(IBI->getDestination(0), IBI);
3048    EraseTerminatorInstAndDCECond(IBI);
3049    return true;
3050  }
3051
3052  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3053    if (SimplifyIndirectBrOnSelect(IBI, SI))
3054      return SimplifyCFG(BB) | true;
3055  }
3056  return Changed;
3057}
3058
3059bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3060  BasicBlock *BB = BI->getParent();
3061
3062  // If the Terminator is the only non-phi instruction, simplify the block.
3063  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3064  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3065      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3066    return true;
3067
3068  // If the only instruction in the block is a seteq/setne comparison
3069  // against a constant, try to simplify the block.
3070  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3071    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3072      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3073        ;
3074      if (I->isTerminator() &&
3075          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3076        return true;
3077    }
3078
3079  // If this basic block is ONLY a compare and a branch, and if a predecessor
3080  // branches to us and our successor, fold the comparison into the
3081  // predecessor and use logical operations to update the incoming value
3082  // for PHI nodes in common successor.
3083  if (FoldBranchToCommonDest(BI))
3084    return SimplifyCFG(BB) | true;
3085  return false;
3086}
3087
3088
3089bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3090  BasicBlock *BB = BI->getParent();
3091
3092  // Conditional branch
3093  if (isValueEqualityComparison(BI)) {
3094    // If we only have one predecessor, and if it is a branch on this value,
3095    // see if that predecessor totally determines the outcome of this
3096    // switch.
3097    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3098      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3099        return SimplifyCFG(BB) | true;
3100
3101    // This block must be empty, except for the setcond inst, if it exists.
3102    // Ignore dbg intrinsics.
3103    BasicBlock::iterator I = BB->begin();
3104    // Ignore dbg intrinsics.
3105    while (isa<DbgInfoIntrinsic>(I))
3106      ++I;
3107    if (&*I == BI) {
3108      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3109        return SimplifyCFG(BB) | true;
3110    } else if (&*I == cast<Instruction>(BI->getCondition())){
3111      ++I;
3112      // Ignore dbg intrinsics.
3113      while (isa<DbgInfoIntrinsic>(I))
3114        ++I;
3115      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3116        return SimplifyCFG(BB) | true;
3117    }
3118  }
3119
3120  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3121  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3122    return true;
3123
3124  // If this basic block is ONLY a compare and a branch, and if a predecessor
3125  // branches to us and one of our successors, fold the comparison into the
3126  // predecessor and use logical operations to pick the right destination.
3127  if (FoldBranchToCommonDest(BI))
3128    return SimplifyCFG(BB) | true;
3129
3130  // We have a conditional branch to two blocks that are only reachable
3131  // from BI.  We know that the condbr dominates the two blocks, so see if
3132  // there is any identical code in the "then" and "else" blocks.  If so, we
3133  // can hoist it up to the branching block.
3134  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3135    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3136      if (HoistThenElseCodeToIf(BI))
3137        return SimplifyCFG(BB) | true;
3138    } else {
3139      // If Successor #1 has multiple preds, we may be able to conditionally
3140      // execute Successor #0 if it branches to successor #1.
3141      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3142      if (Succ0TI->getNumSuccessors() == 1 &&
3143          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3144        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3145          return SimplifyCFG(BB) | true;
3146    }
3147  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3148    // If Successor #0 has multiple preds, we may be able to conditionally
3149    // execute Successor #1 if it branches to successor #0.
3150    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3151    if (Succ1TI->getNumSuccessors() == 1 &&
3152        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3153      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3154        return SimplifyCFG(BB) | true;
3155  }
3156
3157  // If this is a branch on a phi node in the current block, thread control
3158  // through this block if any PHI node entries are constants.
3159  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3160    if (PN->getParent() == BI->getParent())
3161      if (FoldCondBranchOnPHI(BI, TD))
3162        return SimplifyCFG(BB) | true;
3163
3164  // Scan predecessor blocks for conditional branches.
3165  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3166    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3167      if (PBI != BI && PBI->isConditional())
3168        if (SimplifyCondBranchToCondBranch(PBI, BI))
3169          return SimplifyCFG(BB) | true;
3170
3171  return false;
3172}
3173
3174/// Check if passing a value to an instruction will cause undefined behavior.
3175static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3176  Constant *C = dyn_cast<Constant>(V);
3177  if (!C)
3178    return false;
3179
3180  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3181    return false;
3182
3183  if (C->isNullValue()) {
3184    Instruction *Use = I->use_back();
3185
3186    // Now make sure that there are no instructions in between that can alter
3187    // control flow (eg. calls)
3188    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3189      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3190        return false;
3191
3192    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3193    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3194      if (GEP->getPointerOperand() == I)
3195        return passingValueIsAlwaysUndefined(V, GEP);
3196
3197    // Look through bitcasts.
3198    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3199      return passingValueIsAlwaysUndefined(V, BC);
3200
3201    // Load from null is undefined.
3202    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3203      return LI->getPointerAddressSpace() == 0;
3204
3205    // Store to null is undefined.
3206    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3207      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3208  }
3209  return false;
3210}
3211
3212/// If BB has an incoming value that will always trigger undefined behavior
3213/// (eg. null pointer dereference), remove the branch leading here.
3214static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3215  for (BasicBlock::iterator i = BB->begin();
3216       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3217    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3218      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3219        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3220        IRBuilder<> Builder(T);
3221        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3222          BB->removePredecessor(PHI->getIncomingBlock(i));
3223          // Turn uncoditional branches into unreachables and remove the dead
3224          // destination from conditional branches.
3225          if (BI->isUnconditional())
3226            Builder.CreateUnreachable();
3227          else
3228            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3229                                                         BI->getSuccessor(0));
3230          BI->eraseFromParent();
3231          return true;
3232        }
3233        // TODO: SwitchInst.
3234      }
3235
3236  return false;
3237}
3238
3239bool SimplifyCFGOpt::run(BasicBlock *BB) {
3240  bool Changed = false;
3241
3242  assert(BB && BB->getParent() && "Block not embedded in function!");
3243  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3244
3245  // Remove basic blocks that have no predecessors (except the entry block)...
3246  // or that just have themself as a predecessor.  These are unreachable.
3247  if ((pred_begin(BB) == pred_end(BB) &&
3248       BB != &BB->getParent()->getEntryBlock()) ||
3249      BB->getSinglePredecessor() == BB) {
3250    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3251    DeleteDeadBlock(BB);
3252    return true;
3253  }
3254
3255  // Check to see if we can constant propagate this terminator instruction
3256  // away...
3257  Changed |= ConstantFoldTerminator(BB, true);
3258
3259  // Check for and eliminate duplicate PHI nodes in this block.
3260  Changed |= EliminateDuplicatePHINodes(BB);
3261
3262  // Check for and remove branches that will always cause undefined behavior.
3263  Changed |= removeUndefIntroducingPredecessor(BB);
3264
3265  // Merge basic blocks into their predecessor if there is only one distinct
3266  // pred, and if there is only one distinct successor of the predecessor, and
3267  // if there are no PHI nodes.
3268  //
3269  if (MergeBlockIntoPredecessor(BB))
3270    return true;
3271
3272  IRBuilder<> Builder(BB);
3273
3274  // If there is a trivial two-entry PHI node in this basic block, and we can
3275  // eliminate it, do so now.
3276  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3277    if (PN->getNumIncomingValues() == 2)
3278      Changed |= FoldTwoEntryPHINode(PN, TD);
3279
3280  Builder.SetInsertPoint(BB->getTerminator());
3281  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3282    if (BI->isUnconditional()) {
3283      if (SimplifyUncondBranch(BI, Builder)) return true;
3284    } else {
3285      if (SimplifyCondBranch(BI, Builder)) return true;
3286    }
3287  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3288    if (SimplifyReturn(RI, Builder)) return true;
3289  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3290    if (SimplifyResume(RI, Builder)) return true;
3291  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3292    if (SimplifySwitch(SI, Builder)) return true;
3293  } else if (UnreachableInst *UI =
3294               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3295    if (SimplifyUnreachable(UI)) return true;
3296  } else if (IndirectBrInst *IBI =
3297               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3298    if (SimplifyIndirectBr(IBI)) return true;
3299  }
3300
3301  return Changed;
3302}
3303
3304/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3305/// example, it adjusts branches to branches to eliminate the extra hop, it
3306/// eliminates unreachable basic blocks, and does other "peephole" optimization
3307/// of the CFG.  It returns true if a modification was made.
3308///
3309bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3310  return SimplifyCFGOpt(TD).run(BB);
3311}
3312