SimplifyCFG.cpp revision a37029cd24105f645a694abbafbc9bf1212708b0
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Transforms/Utils/BasicBlockUtils.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include <algorithm>
35#include <set>
36#include <map>
37using namespace llvm;
38
39STATISTIC(NumSpeculations, "Number of speculative executed instructions");
40
41namespace {
42class SimplifyCFGOpt {
43  const TargetData *const TD;
44
45  Value *isValueEqualityComparison(TerminatorInst *TI);
46  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
47    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
48  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
49                                                     BasicBlock *Pred);
50  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
51
52  bool SimplifyReturn(ReturnInst *RI);
53  bool SimplifyUnwind(UnwindInst *UI);
54  bool SimplifyUnreachable(UnreachableInst *UI);
55  bool SimplifySwitch(SwitchInst *SI);
56  bool SimplifyIndirectBr(IndirectBrInst *IBI);
57  bool SimplifyUncondBranch(BranchInst *BI);
58  bool SimplifyCondBranch(BranchInst *BI);
59
60public:
61  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
62  bool run(BasicBlock *BB);
63};
64}
65
66/// SafeToMergeTerminators - Return true if it is safe to merge these two
67/// terminator instructions together.
68///
69static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
70  if (SI1 == SI2) return false;  // Can't merge with self!
71
72  // It is not safe to merge these two switch instructions if they have a common
73  // successor, and if that successor has a PHI node, and if *that* PHI node has
74  // conflicting incoming values from the two switch blocks.
75  BasicBlock *SI1BB = SI1->getParent();
76  BasicBlock *SI2BB = SI2->getParent();
77  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
78
79  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
80    if (SI1Succs.count(*I))
81      for (BasicBlock::iterator BBI = (*I)->begin();
82           isa<PHINode>(BBI); ++BBI) {
83        PHINode *PN = cast<PHINode>(BBI);
84        if (PN->getIncomingValueForBlock(SI1BB) !=
85            PN->getIncomingValueForBlock(SI2BB))
86          return false;
87      }
88
89  return true;
90}
91
92/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
93/// now be entries in it from the 'NewPred' block.  The values that will be
94/// flowing into the PHI nodes will be the same as those coming in from
95/// ExistPred, an existing predecessor of Succ.
96static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
97                                  BasicBlock *ExistPred) {
98  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
99
100  PHINode *PN;
101  for (BasicBlock::iterator I = Succ->begin();
102       (PN = dyn_cast<PHINode>(I)); ++I)
103    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
104}
105
106
107/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
108/// least one PHI node in it), check to see if the merge at this block is due
109/// to an "if condition".  If so, return the boolean condition that determines
110/// which entry into BB will be taken.  Also, return by references the block
111/// that will be entered from if the condition is true, and the block that will
112/// be entered if the condition is false.
113///
114/// This does no checking to see if the true/false blocks have large or unsavory
115/// instructions in them.
116static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
117                             BasicBlock *&IfFalse) {
118  PHINode *SomePHI = cast<PHINode>(BB->begin());
119  assert(SomePHI->getNumIncomingValues() == 2 &&
120         "Function can only handle blocks with 2 predecessors!");
121  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
122  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
123
124  // We can only handle branches.  Other control flow will be lowered to
125  // branches if possible anyway.
126  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
127  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
128  if (Pred1Br == 0 || Pred2Br == 0)
129    return 0;
130
131  // Eliminate code duplication by ensuring that Pred1Br is conditional if
132  // either are.
133  if (Pred2Br->isConditional()) {
134    // If both branches are conditional, we don't have an "if statement".  In
135    // reality, we could transform this case, but since the condition will be
136    // required anyway, we stand no chance of eliminating it, so the xform is
137    // probably not profitable.
138    if (Pred1Br->isConditional())
139      return 0;
140
141    std::swap(Pred1, Pred2);
142    std::swap(Pred1Br, Pred2Br);
143  }
144
145  if (Pred1Br->isConditional()) {
146    // The only thing we have to watch out for here is to make sure that Pred2
147    // doesn't have incoming edges from other blocks.  If it does, the condition
148    // doesn't dominate BB.
149    if (Pred2->getSinglePredecessor() == 0)
150      return 0;
151
152    // If we found a conditional branch predecessor, make sure that it branches
153    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
154    if (Pred1Br->getSuccessor(0) == BB &&
155        Pred1Br->getSuccessor(1) == Pred2) {
156      IfTrue = Pred1;
157      IfFalse = Pred2;
158    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
159               Pred1Br->getSuccessor(1) == BB) {
160      IfTrue = Pred2;
161      IfFalse = Pred1;
162    } else {
163      // We know that one arm of the conditional goes to BB, so the other must
164      // go somewhere unrelated, and this must not be an "if statement".
165      return 0;
166    }
167
168    return Pred1Br->getCondition();
169  }
170
171  // Ok, if we got here, both predecessors end with an unconditional branch to
172  // BB.  Don't panic!  If both blocks only have a single (identical)
173  // predecessor, and THAT is a conditional branch, then we're all ok!
174  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
175  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
176    return 0;
177
178  // Otherwise, if this is a conditional branch, then we can use it!
179  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
180  if (BI == 0) return 0;
181
182  assert(BI->isConditional() && "Two successors but not conditional?");
183  if (BI->getSuccessor(0) == Pred1) {
184    IfTrue = Pred1;
185    IfFalse = Pred2;
186  } else {
187    IfTrue = Pred2;
188    IfFalse = Pred1;
189  }
190  return BI->getCondition();
191}
192
193/// DominatesMergePoint - If we have a merge point of an "if condition" as
194/// accepted above, return true if the specified value dominates the block.  We
195/// don't handle the true generality of domination here, just a special case
196/// which works well enough for us.
197///
198/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
199/// see if V (which must be an instruction) is cheap to compute and is
200/// non-trapping.  If both are true, the instruction is inserted into the set
201/// and true is returned.
202static bool DominatesMergePoint(Value *V, BasicBlock *BB,
203                                SmallPtrSet<Instruction*, 4> *AggressiveInsts) {
204  Instruction *I = dyn_cast<Instruction>(V);
205  if (!I) {
206    // Non-instructions all dominate instructions, but not all constantexprs
207    // can be executed unconditionally.
208    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
209      if (C->canTrap())
210        return false;
211    return true;
212  }
213  BasicBlock *PBB = I->getParent();
214
215  // We don't want to allow weird loops that might have the "if condition" in
216  // the bottom of this block.
217  if (PBB == BB) return false;
218
219  // If this instruction is defined in a block that contains an unconditional
220  // branch to BB, then it must be in the 'conditional' part of the "if
221  // statement".  If not, it definitely dominates the region.
222  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
223  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
224    return true;
225
226  // If we aren't allowing aggressive promotion anymore, then don't consider
227  // instructions in the 'if region'.
228  if (AggressiveInsts == 0) return false;
229
230  // Okay, it looks like the instruction IS in the "condition".  Check to
231  // see if it's a cheap instruction to unconditionally compute, and if it
232  // only uses stuff defined outside of the condition.  If so, hoist it out.
233  if (!I->isSafeToSpeculativelyExecute())
234    return false;
235
236  switch (I->getOpcode()) {
237  default: return false;  // Cannot hoist this out safely.
238  case Instruction::Load:
239    // We have to check to make sure there are no instructions before the
240    // load in its basic block, as we are going to hoist the load out to its
241    // predecessor.
242    if (PBB->getFirstNonPHIOrDbg() != I)
243      return false;
244    break;
245  case Instruction::Add:
246  case Instruction::Sub:
247  case Instruction::And:
248  case Instruction::Or:
249  case Instruction::Xor:
250  case Instruction::Shl:
251  case Instruction::LShr:
252  case Instruction::AShr:
253  case Instruction::ICmp:
254    break;   // These are all cheap and non-trapping instructions.
255  }
256
257  // Okay, we can only really hoist these out if their operands are not
258  // defined in the conditional region.
259  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
260    if (!DominatesMergePoint(*i, BB, 0))
261      return false;
262  // Okay, it's safe to do this!  Remember this instruction.
263  AggressiveInsts->insert(I);
264  return true;
265}
266
267/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
268/// and PointerNullValue. Return NULL if value is not a constant int.
269static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
270  // Normal constant int.
271  ConstantInt *CI = dyn_cast<ConstantInt>(V);
272  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
273    return CI;
274
275  // This is some kind of pointer constant. Turn it into a pointer-sized
276  // ConstantInt if possible.
277  const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
278
279  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
280  if (isa<ConstantPointerNull>(V))
281    return ConstantInt::get(PtrTy, 0);
282
283  // IntToPtr const int.
284  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
285    if (CE->getOpcode() == Instruction::IntToPtr)
286      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
287        // The constant is very likely to have the right type already.
288        if (CI->getType() == PtrTy)
289          return CI;
290        else
291          return cast<ConstantInt>
292            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
293      }
294  return 0;
295}
296
297/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
298/// collection of icmp eq/ne instructions that compare a value against a
299/// constant, return the value being compared, and stick the constant into the
300/// Values vector.
301static Value *
302GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
303                       const TargetData *TD, bool isEQ) {
304  Instruction *I = dyn_cast<Instruction>(V);
305  if (I == 0) return 0;
306
307  // If this is an icmp against a constant, handle this as one of the cases.
308  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
309    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
310      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
311        Vals.push_back(C);
312        return I->getOperand(0);
313      }
314
315      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
316      // the set.
317      ConstantRange Span =
318        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
319
320      // If this is an and/!= check then we want to optimize "x ugt 2" into
321      // x != 0 && x != 1.
322      if (!isEQ)
323        Span = Span.inverse();
324
325      // If there are a ton of values, we don't want to make a ginormous switch.
326      if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
327          // We don't handle wrapped sets yet.
328          Span.isWrappedSet())
329        return 0;
330
331      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
332        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
333      return I->getOperand(0);
334    }
335    return 0;
336  }
337
338  // Otherwise, we can only handle an | or &, depending on isEQ.
339  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
340    return 0;
341
342  unsigned NumValsBeforeLHS = Vals.size();
343  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
344                                          isEQ)) {
345    unsigned NumVals = Vals.size();
346    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
347                                            isEQ)) {
348      if (LHS == RHS)
349        return LHS;
350      Vals.resize(NumVals);
351    }
352
353    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
354    // set it and return success.
355    if (Extra == 0 || Extra == I->getOperand(1)) {
356      Extra = I->getOperand(1);
357      return LHS;
358    }
359
360    Vals.resize(NumValsBeforeLHS);
361    return 0;
362  }
363
364  // If the LHS can't be folded in, but Extra is available and RHS can, try to
365  // use LHS as Extra.
366  if (Extra == 0 || Extra == I->getOperand(0)) {
367    Value *OldExtra = Extra;
368    Extra = I->getOperand(0);
369    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
370                                            isEQ))
371      return RHS;
372    assert(Vals.size() == NumValsBeforeLHS);
373    Extra = OldExtra;
374  }
375
376  return 0;
377}
378
379static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
380  Instruction* Cond = 0;
381  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
382    Cond = dyn_cast<Instruction>(SI->getCondition());
383  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
384    if (BI->isConditional())
385      Cond = dyn_cast<Instruction>(BI->getCondition());
386  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
387    Cond = dyn_cast<Instruction>(IBI->getAddress());
388  }
389
390  TI->eraseFromParent();
391  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
392}
393
394/// isValueEqualityComparison - Return true if the specified terminator checks
395/// to see if a value is equal to constant integer value.
396Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
397  Value *CV = 0;
398  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
399    // Do not permit merging of large switch instructions into their
400    // predecessors unless there is only one predecessor.
401    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
402                                             pred_end(SI->getParent())) <= 128)
403      CV = SI->getCondition();
404  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
405    if (BI->isConditional() && BI->getCondition()->hasOneUse())
406      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
407        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
408             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
409            GetConstantInt(ICI->getOperand(1), TD))
410          CV = ICI->getOperand(0);
411
412  // Unwrap any lossless ptrtoint cast.
413  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
414    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
415      CV = PTII->getOperand(0);
416  return CV;
417}
418
419/// GetValueEqualityComparisonCases - Given a value comparison instruction,
420/// decode all of the 'cases' that it represents and return the 'default' block.
421BasicBlock *SimplifyCFGOpt::
422GetValueEqualityComparisonCases(TerminatorInst *TI,
423                                std::vector<std::pair<ConstantInt*,
424                                                      BasicBlock*> > &Cases) {
425  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
426    Cases.reserve(SI->getNumCases());
427    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
428      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
429    return SI->getDefaultDest();
430  }
431
432  BranchInst *BI = cast<BranchInst>(TI);
433  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
434  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
435                                 BI->getSuccessor(ICI->getPredicate() ==
436                                                  ICmpInst::ICMP_NE)));
437  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
438}
439
440
441/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
442/// in the list that match the specified block.
443static void EliminateBlockCases(BasicBlock *BB,
444               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
445  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
446    if (Cases[i].second == BB) {
447      Cases.erase(Cases.begin()+i);
448      --i; --e;
449    }
450}
451
452/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
453/// well.
454static bool
455ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
456              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
457  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
458
459  // Make V1 be smaller than V2.
460  if (V1->size() > V2->size())
461    std::swap(V1, V2);
462
463  if (V1->size() == 0) return false;
464  if (V1->size() == 1) {
465    // Just scan V2.
466    ConstantInt *TheVal = (*V1)[0].first;
467    for (unsigned i = 0, e = V2->size(); i != e; ++i)
468      if (TheVal == (*V2)[i].first)
469        return true;
470  }
471
472  // Otherwise, just sort both lists and compare element by element.
473  array_pod_sort(V1->begin(), V1->end());
474  array_pod_sort(V2->begin(), V2->end());
475  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
476  while (i1 != e1 && i2 != e2) {
477    if ((*V1)[i1].first == (*V2)[i2].first)
478      return true;
479    if ((*V1)[i1].first < (*V2)[i2].first)
480      ++i1;
481    else
482      ++i2;
483  }
484  return false;
485}
486
487/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
488/// terminator instruction and its block is known to only have a single
489/// predecessor block, check to see if that predecessor is also a value
490/// comparison with the same value, and if that comparison determines the
491/// outcome of this comparison.  If so, simplify TI.  This does a very limited
492/// form of jump threading.
493bool SimplifyCFGOpt::
494SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
495                                              BasicBlock *Pred) {
496  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
497  if (!PredVal) return false;  // Not a value comparison in predecessor.
498
499  Value *ThisVal = isValueEqualityComparison(TI);
500  assert(ThisVal && "This isn't a value comparison!!");
501  if (ThisVal != PredVal) return false;  // Different predicates.
502
503  // Find out information about when control will move from Pred to TI's block.
504  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
505  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
506                                                        PredCases);
507  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
508
509  // Find information about how control leaves this block.
510  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
511  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
512  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
513
514  // If TI's block is the default block from Pred's comparison, potentially
515  // simplify TI based on this knowledge.
516  if (PredDef == TI->getParent()) {
517    // If we are here, we know that the value is none of those cases listed in
518    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
519    // can simplify TI.
520    if (!ValuesOverlap(PredCases, ThisCases))
521      return false;
522
523    if (isa<BranchInst>(TI)) {
524      // Okay, one of the successors of this condbr is dead.  Convert it to a
525      // uncond br.
526      assert(ThisCases.size() == 1 && "Branch can only have one case!");
527      // Insert the new branch.
528      Instruction *NI = BranchInst::Create(ThisDef, TI);
529      (void) NI;
530
531      // Remove PHI node entries for the dead edge.
532      ThisCases[0].second->removePredecessor(TI->getParent());
533
534      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
535           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
536
537      EraseTerminatorInstAndDCECond(TI);
538      return true;
539    }
540
541    SwitchInst *SI = cast<SwitchInst>(TI);
542    // Okay, TI has cases that are statically dead, prune them away.
543    SmallPtrSet<Constant*, 16> DeadCases;
544    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
545      DeadCases.insert(PredCases[i].first);
546
547    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
548                 << "Through successor TI: " << *TI);
549
550    for (unsigned i = SI->getNumCases()-1; i != 0; --i)
551      if (DeadCases.count(SI->getCaseValue(i))) {
552        SI->getSuccessor(i)->removePredecessor(TI->getParent());
553        SI->removeCase(i);
554      }
555
556    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
557    return true;
558  }
559
560  // Otherwise, TI's block must correspond to some matched value.  Find out
561  // which value (or set of values) this is.
562  ConstantInt *TIV = 0;
563  BasicBlock *TIBB = TI->getParent();
564  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
565    if (PredCases[i].second == TIBB) {
566      if (TIV != 0)
567        return false;  // Cannot handle multiple values coming to this block.
568      TIV = PredCases[i].first;
569    }
570  assert(TIV && "No edge from pred to succ?");
571
572  // Okay, we found the one constant that our value can be if we get into TI's
573  // BB.  Find out which successor will unconditionally be branched to.
574  BasicBlock *TheRealDest = 0;
575  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
576    if (ThisCases[i].first == TIV) {
577      TheRealDest = ThisCases[i].second;
578      break;
579    }
580
581  // If not handled by any explicit cases, it is handled by the default case.
582  if (TheRealDest == 0) TheRealDest = ThisDef;
583
584  // Remove PHI node entries for dead edges.
585  BasicBlock *CheckEdge = TheRealDest;
586  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
587    if (*SI != CheckEdge)
588      (*SI)->removePredecessor(TIBB);
589    else
590      CheckEdge = 0;
591
592  // Insert the new branch.
593  Instruction *NI = BranchInst::Create(TheRealDest, TI);
594  (void) NI;
595
596  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
597            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
598
599  EraseTerminatorInstAndDCECond(TI);
600  return true;
601}
602
603namespace {
604  /// ConstantIntOrdering - This class implements a stable ordering of constant
605  /// integers that does not depend on their address.  This is important for
606  /// applications that sort ConstantInt's to ensure uniqueness.
607  struct ConstantIntOrdering {
608    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
609      return LHS->getValue().ult(RHS->getValue());
610    }
611  };
612}
613
614static int ConstantIntSortPredicate(const void *P1, const void *P2) {
615  const ConstantInt *LHS = *(const ConstantInt**)P1;
616  const ConstantInt *RHS = *(const ConstantInt**)P2;
617  if (LHS->getValue().ult(RHS->getValue()))
618    return 1;
619  if (LHS->getValue() == RHS->getValue())
620    return 0;
621  return -1;
622}
623
624/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
625/// equality comparison instruction (either a switch or a branch on "X == c").
626/// See if any of the predecessors of the terminator block are value comparisons
627/// on the same value.  If so, and if safe to do so, fold them together.
628bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
629  BasicBlock *BB = TI->getParent();
630  Value *CV = isValueEqualityComparison(TI);  // CondVal
631  assert(CV && "Not a comparison?");
632  bool Changed = false;
633
634  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
635  while (!Preds.empty()) {
636    BasicBlock *Pred = Preds.pop_back_val();
637
638    // See if the predecessor is a comparison with the same value.
639    TerminatorInst *PTI = Pred->getTerminator();
640    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
641
642    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
643      // Figure out which 'cases' to copy from SI to PSI.
644      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
645      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
646
647      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
648      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
649
650      // Based on whether the default edge from PTI goes to BB or not, fill in
651      // PredCases and PredDefault with the new switch cases we would like to
652      // build.
653      SmallVector<BasicBlock*, 8> NewSuccessors;
654
655      if (PredDefault == BB) {
656        // If this is the default destination from PTI, only the edges in TI
657        // that don't occur in PTI, or that branch to BB will be activated.
658        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
659        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
660          if (PredCases[i].second != BB)
661            PTIHandled.insert(PredCases[i].first);
662          else {
663            // The default destination is BB, we don't need explicit targets.
664            std::swap(PredCases[i], PredCases.back());
665            PredCases.pop_back();
666            --i; --e;
667          }
668
669        // Reconstruct the new switch statement we will be building.
670        if (PredDefault != BBDefault) {
671          PredDefault->removePredecessor(Pred);
672          PredDefault = BBDefault;
673          NewSuccessors.push_back(BBDefault);
674        }
675        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
676          if (!PTIHandled.count(BBCases[i].first) &&
677              BBCases[i].second != BBDefault) {
678            PredCases.push_back(BBCases[i]);
679            NewSuccessors.push_back(BBCases[i].second);
680          }
681
682      } else {
683        // If this is not the default destination from PSI, only the edges
684        // in SI that occur in PSI with a destination of BB will be
685        // activated.
686        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
687        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
688          if (PredCases[i].second == BB) {
689            PTIHandled.insert(PredCases[i].first);
690            std::swap(PredCases[i], PredCases.back());
691            PredCases.pop_back();
692            --i; --e;
693          }
694
695        // Okay, now we know which constants were sent to BB from the
696        // predecessor.  Figure out where they will all go now.
697        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
698          if (PTIHandled.count(BBCases[i].first)) {
699            // If this is one we are capable of getting...
700            PredCases.push_back(BBCases[i]);
701            NewSuccessors.push_back(BBCases[i].second);
702            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
703          }
704
705        // If there are any constants vectored to BB that TI doesn't handle,
706        // they must go to the default destination of TI.
707        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
708                                    PTIHandled.begin(),
709               E = PTIHandled.end(); I != E; ++I) {
710          PredCases.push_back(std::make_pair(*I, BBDefault));
711          NewSuccessors.push_back(BBDefault);
712        }
713      }
714
715      // Okay, at this point, we know which new successor Pred will get.  Make
716      // sure we update the number of entries in the PHI nodes for these
717      // successors.
718      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
719        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
720
721      // Convert pointer to int before we switch.
722      if (CV->getType()->isPointerTy()) {
723        assert(TD && "Cannot switch on pointer without TargetData");
724        CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()),
725                              "magicptr", PTI);
726      }
727
728      // Now that the successors are updated, create the new Switch instruction.
729      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
730                                             PredCases.size(), PTI);
731      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
732        NewSI->addCase(PredCases[i].first, PredCases[i].second);
733
734      EraseTerminatorInstAndDCECond(PTI);
735
736      // Okay, last check.  If BB is still a successor of PSI, then we must
737      // have an infinite loop case.  If so, add an infinitely looping block
738      // to handle the case to preserve the behavior of the code.
739      BasicBlock *InfLoopBlock = 0;
740      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
741        if (NewSI->getSuccessor(i) == BB) {
742          if (InfLoopBlock == 0) {
743            // Insert it at the end of the function, because it's either code,
744            // or it won't matter if it's hot. :)
745            InfLoopBlock = BasicBlock::Create(BB->getContext(),
746                                              "infloop", BB->getParent());
747            BranchInst::Create(InfLoopBlock, InfLoopBlock);
748          }
749          NewSI->setSuccessor(i, InfLoopBlock);
750        }
751
752      Changed = true;
753    }
754  }
755  return Changed;
756}
757
758// isSafeToHoistInvoke - If we would need to insert a select that uses the
759// value of this invoke (comments in HoistThenElseCodeToIf explain why we
760// would need to do this), we can't hoist the invoke, as there is nowhere
761// to put the select in this case.
762static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
763                                Instruction *I1, Instruction *I2) {
764  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
765    PHINode *PN;
766    for (BasicBlock::iterator BBI = SI->begin();
767         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
768      Value *BB1V = PN->getIncomingValueForBlock(BB1);
769      Value *BB2V = PN->getIncomingValueForBlock(BB2);
770      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
771        return false;
772      }
773    }
774  }
775  return true;
776}
777
778/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
779/// BB2, hoist any common code in the two blocks up into the branch block.  The
780/// caller of this function guarantees that BI's block dominates BB1 and BB2.
781static bool HoistThenElseCodeToIf(BranchInst *BI) {
782  // This does very trivial matching, with limited scanning, to find identical
783  // instructions in the two blocks.  In particular, we don't want to get into
784  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
785  // such, we currently just scan for obviously identical instructions in an
786  // identical order.
787  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
788  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
789
790  BasicBlock::iterator BB1_Itr = BB1->begin();
791  BasicBlock::iterator BB2_Itr = BB2->begin();
792
793  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
794  while (isa<DbgInfoIntrinsic>(I1))
795    I1 = BB1_Itr++;
796  while (isa<DbgInfoIntrinsic>(I2))
797    I2 = BB2_Itr++;
798  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
799      !I1->isIdenticalToWhenDefined(I2) ||
800      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
801    return false;
802
803  // If we get here, we can hoist at least one instruction.
804  BasicBlock *BIParent = BI->getParent();
805
806  do {
807    // If we are hoisting the terminator instruction, don't move one (making a
808    // broken BB), instead clone it, and remove BI.
809    if (isa<TerminatorInst>(I1))
810      goto HoistTerminator;
811
812    // For a normal instruction, we just move one to right before the branch,
813    // then replace all uses of the other with the first.  Finally, we remove
814    // the now redundant second instruction.
815    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
816    if (!I2->use_empty())
817      I2->replaceAllUsesWith(I1);
818    I1->intersectOptionalDataWith(I2);
819    I2->eraseFromParent();
820
821    I1 = BB1_Itr++;
822    while (isa<DbgInfoIntrinsic>(I1))
823      I1 = BB1_Itr++;
824    I2 = BB2_Itr++;
825    while (isa<DbgInfoIntrinsic>(I2))
826      I2 = BB2_Itr++;
827  } while (I1->getOpcode() == I2->getOpcode() &&
828           I1->isIdenticalToWhenDefined(I2));
829
830  return true;
831
832HoistTerminator:
833  // It may not be possible to hoist an invoke.
834  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
835    return true;
836
837  // Okay, it is safe to hoist the terminator.
838  Instruction *NT = I1->clone();
839  BIParent->getInstList().insert(BI, NT);
840  if (!NT->getType()->isVoidTy()) {
841    I1->replaceAllUsesWith(NT);
842    I2->replaceAllUsesWith(NT);
843    NT->takeName(I1);
844  }
845
846  // Hoisting one of the terminators from our successor is a great thing.
847  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
848  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
849  // nodes, so we insert select instruction to compute the final result.
850  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
851  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
852    PHINode *PN;
853    for (BasicBlock::iterator BBI = SI->begin();
854         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
855      Value *BB1V = PN->getIncomingValueForBlock(BB1);
856      Value *BB2V = PN->getIncomingValueForBlock(BB2);
857      if (BB1V == BB2V) continue;
858
859      // These values do not agree.  Insert a select instruction before NT
860      // that determines the right value.
861      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
862      if (SI == 0)
863        SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
864                                BB1V->getName()+"."+BB2V->getName(), NT);
865      // Make the PHI node use the select for all incoming values for BB1/BB2
866      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
867        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
868          PN->setIncomingValue(i, SI);
869    }
870  }
871
872  // Update any PHI nodes in our new successors.
873  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
874    AddPredecessorToBlock(*SI, BIParent, BB1);
875
876  EraseTerminatorInstAndDCECond(BI);
877  return true;
878}
879
880/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
881/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
882/// (for now, restricted to a single instruction that's side effect free) from
883/// the BB1 into the branch block to speculatively execute it.
884static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
885  // Only speculatively execution a single instruction (not counting the
886  // terminator) for now.
887  Instruction *HInst = NULL;
888  Instruction *Term = BB1->getTerminator();
889  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
890       BBI != BBE; ++BBI) {
891    Instruction *I = BBI;
892    // Skip debug info.
893    if (isa<DbgInfoIntrinsic>(I)) continue;
894    if (I == Term) break;
895
896    if (HInst)
897      return false;
898    HInst = I;
899  }
900  if (!HInst)
901    return false;
902
903  // Be conservative for now. FP select instruction can often be expensive.
904  Value *BrCond = BI->getCondition();
905  if (isa<FCmpInst>(BrCond))
906    return false;
907
908  // If BB1 is actually on the false edge of the conditional branch, remember
909  // to swap the select operands later.
910  bool Invert = false;
911  if (BB1 != BI->getSuccessor(0)) {
912    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
913    Invert = true;
914  }
915
916  // Turn
917  // BB:
918  //     %t1 = icmp
919  //     br i1 %t1, label %BB1, label %BB2
920  // BB1:
921  //     %t3 = add %t2, c
922  //     br label BB2
923  // BB2:
924  // =>
925  // BB:
926  //     %t1 = icmp
927  //     %t4 = add %t2, c
928  //     %t3 = select i1 %t1, %t2, %t3
929  switch (HInst->getOpcode()) {
930  default: return false;  // Not safe / profitable to hoist.
931  case Instruction::Add:
932  case Instruction::Sub:
933    // Not worth doing for vector ops.
934    if (HInst->getType()->isVectorTy())
935      return false;
936    break;
937  case Instruction::And:
938  case Instruction::Or:
939  case Instruction::Xor:
940  case Instruction::Shl:
941  case Instruction::LShr:
942  case Instruction::AShr:
943    // Don't mess with vector operations.
944    if (HInst->getType()->isVectorTy())
945      return false;
946    break;   // These are all cheap and non-trapping instructions.
947  }
948
949  // If the instruction is obviously dead, don't try to predicate it.
950  if (HInst->use_empty()) {
951    HInst->eraseFromParent();
952    return true;
953  }
954
955  // Can we speculatively execute the instruction? And what is the value
956  // if the condition is false? Consider the phi uses, if the incoming value
957  // from the "if" block are all the same V, then V is the value of the
958  // select if the condition is false.
959  BasicBlock *BIParent = BI->getParent();
960  SmallVector<PHINode*, 4> PHIUses;
961  Value *FalseV = NULL;
962
963  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
964  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
965       UI != E; ++UI) {
966    // Ignore any user that is not a PHI node in BB2.  These can only occur in
967    // unreachable blocks, because they would not be dominated by the instr.
968    PHINode *PN = dyn_cast<PHINode>(*UI);
969    if (!PN || PN->getParent() != BB2)
970      return false;
971    PHIUses.push_back(PN);
972
973    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
974    if (!FalseV)
975      FalseV = PHIV;
976    else if (FalseV != PHIV)
977      return false;  // Inconsistent value when condition is false.
978  }
979
980  assert(FalseV && "Must have at least one user, and it must be a PHI");
981
982  // Do not hoist the instruction if any of its operands are defined but not
983  // used in this BB. The transformation will prevent the operand from
984  // being sunk into the use block.
985  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
986       i != e; ++i) {
987    Instruction *OpI = dyn_cast<Instruction>(*i);
988    if (OpI && OpI->getParent() == BIParent &&
989        !OpI->isUsedInBasicBlock(BIParent))
990      return false;
991  }
992
993  // If we get here, we can hoist the instruction. Try to place it
994  // before the icmp instruction preceding the conditional branch.
995  BasicBlock::iterator InsertPos = BI;
996  if (InsertPos != BIParent->begin())
997    --InsertPos;
998  // Skip debug info between condition and branch.
999  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1000    --InsertPos;
1001  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1002    SmallPtrSet<Instruction *, 4> BB1Insns;
1003    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1004        BB1I != BB1E; ++BB1I)
1005      BB1Insns.insert(BB1I);
1006    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1007        UI != UE; ++UI) {
1008      Instruction *Use = cast<Instruction>(*UI);
1009      if (!BB1Insns.count(Use)) continue;
1010
1011      // If BrCond uses the instruction that place it just before
1012      // branch instruction.
1013      InsertPos = BI;
1014      break;
1015    }
1016  } else
1017    InsertPos = BI;
1018  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1019
1020  // Create a select whose true value is the speculatively executed value and
1021  // false value is the previously determined FalseV.
1022  SelectInst *SI;
1023  if (Invert)
1024    SI = SelectInst::Create(BrCond, FalseV, HInst,
1025                            FalseV->getName() + "." + HInst->getName(), BI);
1026  else
1027    SI = SelectInst::Create(BrCond, HInst, FalseV,
1028                            HInst->getName() + "." + FalseV->getName(), BI);
1029
1030  // Make the PHI node use the select for all incoming values for "then" and
1031  // "if" blocks.
1032  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1033    PHINode *PN = PHIUses[i];
1034    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1035      if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1036        PN->setIncomingValue(j, SI);
1037  }
1038
1039  ++NumSpeculations;
1040  return true;
1041}
1042
1043/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1044/// across this block.
1045static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1046  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1047  unsigned Size = 0;
1048
1049  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1050    if (isa<DbgInfoIntrinsic>(BBI))
1051      continue;
1052    if (Size > 10) return false;  // Don't clone large BB's.
1053    ++Size;
1054
1055    // We can only support instructions that do not define values that are
1056    // live outside of the current basic block.
1057    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1058         UI != E; ++UI) {
1059      Instruction *U = cast<Instruction>(*UI);
1060      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1061    }
1062
1063    // Looks ok, continue checking.
1064  }
1065
1066  return true;
1067}
1068
1069/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1070/// that is defined in the same block as the branch and if any PHI entries are
1071/// constants, thread edges corresponding to that entry to be branches to their
1072/// ultimate destination.
1073static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1074  BasicBlock *BB = BI->getParent();
1075  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1076  // NOTE: we currently cannot transform this case if the PHI node is used
1077  // outside of the block.
1078  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1079    return false;
1080
1081  // Degenerate case of a single entry PHI.
1082  if (PN->getNumIncomingValues() == 1) {
1083    FoldSingleEntryPHINodes(PN->getParent());
1084    return true;
1085  }
1086
1087  // Now we know that this block has multiple preds and two succs.
1088  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1089
1090  // Okay, this is a simple enough basic block.  See if any phi values are
1091  // constants.
1092  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1093    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1094    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1095
1096    // Okay, we now know that all edges from PredBB should be revectored to
1097    // branch to RealDest.
1098    BasicBlock *PredBB = PN->getIncomingBlock(i);
1099    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1100
1101    if (RealDest == BB) continue;  // Skip self loops.
1102
1103    // The dest block might have PHI nodes, other predecessors and other
1104    // difficult cases.  Instead of being smart about this, just insert a new
1105    // block that jumps to the destination block, effectively splitting
1106    // the edge we are about to create.
1107    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1108                                            RealDest->getName()+".critedge",
1109                                            RealDest->getParent(), RealDest);
1110    BranchInst::Create(RealDest, EdgeBB);
1111
1112    // Update PHI nodes.
1113    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1114
1115    // BB may have instructions that are being threaded over.  Clone these
1116    // instructions into EdgeBB.  We know that there will be no uses of the
1117    // cloned instructions outside of EdgeBB.
1118    BasicBlock::iterator InsertPt = EdgeBB->begin();
1119    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1120    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1121      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1122        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1123        continue;
1124      }
1125      // Clone the instruction.
1126      Instruction *N = BBI->clone();
1127      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1128
1129      // Update operands due to translation.
1130      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1131           i != e; ++i) {
1132        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1133        if (PI != TranslateMap.end())
1134          *i = PI->second;
1135      }
1136
1137      // Check for trivial simplification.
1138      if (Value *V = SimplifyInstruction(N, TD)) {
1139        TranslateMap[BBI] = V;
1140        delete N;   // Instruction folded away, don't need actual inst
1141      } else {
1142        // Insert the new instruction into its new home.
1143        EdgeBB->getInstList().insert(InsertPt, N);
1144        if (!BBI->use_empty())
1145          TranslateMap[BBI] = N;
1146      }
1147    }
1148
1149    // Loop over all of the edges from PredBB to BB, changing them to branch
1150    // to EdgeBB instead.
1151    TerminatorInst *PredBBTI = PredBB->getTerminator();
1152    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1153      if (PredBBTI->getSuccessor(i) == BB) {
1154        BB->removePredecessor(PredBB);
1155        PredBBTI->setSuccessor(i, EdgeBB);
1156      }
1157
1158    // Recurse, simplifying any other constants.
1159    return FoldCondBranchOnPHI(BI, TD) | true;
1160  }
1161
1162  return false;
1163}
1164
1165/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1166/// PHI node, see if we can eliminate it.
1167static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1168  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1169  // statement", which has a very simple dominance structure.  Basically, we
1170  // are trying to find the condition that is being branched on, which
1171  // subsequently causes this merge to happen.  We really want control
1172  // dependence information for this check, but simplifycfg can't keep it up
1173  // to date, and this catches most of the cases we care about anyway.
1174  BasicBlock *BB = PN->getParent();
1175  BasicBlock *IfTrue, *IfFalse;
1176  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1177  if (!IfCond ||
1178      // Don't bother if the branch will be constant folded trivially.
1179      isa<ConstantInt>(IfCond))
1180    return false;
1181
1182  // Okay, we found that we can merge this two-entry phi node into a select.
1183  // Doing so would require us to fold *all* two entry phi nodes in this block.
1184  // At some point this becomes non-profitable (particularly if the target
1185  // doesn't support cmov's).  Only do this transformation if there are two or
1186  // fewer PHI nodes in this block.
1187  unsigned NumPhis = 0;
1188  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1189    if (NumPhis > 2)
1190      return false;
1191
1192  // Loop over the PHI's seeing if we can promote them all to select
1193  // instructions.  While we are at it, keep track of the instructions
1194  // that need to be moved to the dominating block.
1195  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1196
1197  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1198    PHINode *PN = cast<PHINode>(II++);
1199    if (Value *V = SimplifyInstruction(PN, TD)) {
1200      PN->replaceAllUsesWith(V);
1201      PN->eraseFromParent();
1202      continue;
1203    }
1204
1205    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts) ||
1206        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts))
1207      return false;
1208  }
1209
1210  // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1211  // we ran out of PHIs then we simplified them all.
1212  PN = dyn_cast<PHINode>(BB->begin());
1213  if (PN == 0) return true;
1214
1215  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1216  // often be turned into switches and other things.
1217  if (PN->getType()->isIntegerTy(1) &&
1218      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1219       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1220       isa<BinaryOperator>(IfCond)))
1221    return false;
1222
1223  // If we all PHI nodes are promotable, check to make sure that all
1224  // instructions in the predecessor blocks can be promoted as well.  If
1225  // not, we won't be able to get rid of the control flow, so it's not
1226  // worth promoting to select instructions.
1227  BasicBlock *DomBlock = 0;
1228  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1229  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1230  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1231    IfBlock1 = 0;
1232  } else {
1233    DomBlock = *pred_begin(IfBlock1);
1234    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1235      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1236        // This is not an aggressive instruction that we can promote.
1237        // Because of this, we won't be able to get rid of the control
1238        // flow, so the xform is not worth it.
1239        return false;
1240      }
1241  }
1242
1243  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1244    IfBlock2 = 0;
1245  } else {
1246    DomBlock = *pred_begin(IfBlock2);
1247    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1248      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1249        // This is not an aggressive instruction that we can promote.
1250        // Because of this, we won't be able to get rid of the control
1251        // flow, so the xform is not worth it.
1252        return false;
1253      }
1254  }
1255
1256  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1257               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1258
1259  // If we can still promote the PHI nodes after this gauntlet of tests,
1260  // do all of the PHI's now.
1261  Instruction *InsertPt = DomBlock->getTerminator();
1262
1263  // Move all 'aggressive' instructions, which are defined in the
1264  // conditional parts of the if's up to the dominating block.
1265  if (IfBlock1)
1266    DomBlock->getInstList().splice(InsertPt,
1267                                   IfBlock1->getInstList(), IfBlock1->begin(),
1268                                   IfBlock1->getTerminator());
1269  if (IfBlock2)
1270    DomBlock->getInstList().splice(InsertPt,
1271                                   IfBlock2->getInstList(), IfBlock2->begin(),
1272                                   IfBlock2->getTerminator());
1273
1274  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1275    // Change the PHI node into a select instruction.
1276    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1277    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1278
1279    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", InsertPt);
1280    PN->replaceAllUsesWith(NV);
1281    NV->takeName(PN);
1282    PN->eraseFromParent();
1283  }
1284
1285  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1286  // has been flattened.  Change DomBlock to jump directly to our new block to
1287  // avoid other simplifycfg's kicking in on the diamond.
1288  TerminatorInst *OldTI = DomBlock->getTerminator();
1289  BranchInst::Create(BB, OldTI);
1290  OldTI->eraseFromParent();
1291  return true;
1292}
1293
1294/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1295/// to two returning blocks, try to merge them together into one return,
1296/// introducing a select if the return values disagree.
1297static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1298  assert(BI->isConditional() && "Must be a conditional branch");
1299  BasicBlock *TrueSucc = BI->getSuccessor(0);
1300  BasicBlock *FalseSucc = BI->getSuccessor(1);
1301  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1302  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1303
1304  // Check to ensure both blocks are empty (just a return) or optionally empty
1305  // with PHI nodes.  If there are other instructions, merging would cause extra
1306  // computation on one path or the other.
1307  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1308    return false;
1309  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1310    return false;
1311
1312  // Okay, we found a branch that is going to two return nodes.  If
1313  // there is no return value for this function, just change the
1314  // branch into a return.
1315  if (FalseRet->getNumOperands() == 0) {
1316    TrueSucc->removePredecessor(BI->getParent());
1317    FalseSucc->removePredecessor(BI->getParent());
1318    ReturnInst::Create(BI->getContext(), 0, BI);
1319    EraseTerminatorInstAndDCECond(BI);
1320    return true;
1321  }
1322
1323  // Otherwise, figure out what the true and false return values are
1324  // so we can insert a new select instruction.
1325  Value *TrueValue = TrueRet->getReturnValue();
1326  Value *FalseValue = FalseRet->getReturnValue();
1327
1328  // Unwrap any PHI nodes in the return blocks.
1329  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1330    if (TVPN->getParent() == TrueSucc)
1331      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1332  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1333    if (FVPN->getParent() == FalseSucc)
1334      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1335
1336  // In order for this transformation to be safe, we must be able to
1337  // unconditionally execute both operands to the return.  This is
1338  // normally the case, but we could have a potentially-trapping
1339  // constant expression that prevents this transformation from being
1340  // safe.
1341  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1342    if (TCV->canTrap())
1343      return false;
1344  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1345    if (FCV->canTrap())
1346      return false;
1347
1348  // Okay, we collected all the mapped values and checked them for sanity, and
1349  // defined to really do this transformation.  First, update the CFG.
1350  TrueSucc->removePredecessor(BI->getParent());
1351  FalseSucc->removePredecessor(BI->getParent());
1352
1353  // Insert select instructions where needed.
1354  Value *BrCond = BI->getCondition();
1355  if (TrueValue) {
1356    // Insert a select if the results differ.
1357    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1358    } else if (isa<UndefValue>(TrueValue)) {
1359      TrueValue = FalseValue;
1360    } else {
1361      TrueValue = SelectInst::Create(BrCond, TrueValue,
1362                                     FalseValue, "retval", BI);
1363    }
1364  }
1365
1366  Value *RI = !TrueValue ?
1367              ReturnInst::Create(BI->getContext(), BI) :
1368              ReturnInst::Create(BI->getContext(), TrueValue, BI);
1369  (void) RI;
1370
1371  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1372               << "\n  " << *BI << "NewRet = " << *RI
1373               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1374
1375  EraseTerminatorInstAndDCECond(BI);
1376
1377  return true;
1378}
1379
1380/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1381/// and if a predecessor branches to us and one of our successors, fold the
1382/// setcc into the predecessor and use logical operations to pick the right
1383/// destination.
1384bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1385  BasicBlock *BB = BI->getParent();
1386  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1387  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1388    Cond->getParent() != BB || !Cond->hasOneUse())
1389  return false;
1390
1391  // Only allow this if the condition is a simple instruction that can be
1392  // executed unconditionally.  It must be in the same block as the branch, and
1393  // must be at the front of the block.
1394  BasicBlock::iterator FrontIt = BB->front();
1395  // Ignore dbg intrinsics.
1396  while (isa<DbgInfoIntrinsic>(FrontIt))
1397    ++FrontIt;
1398
1399  // Allow a single instruction to be hoisted in addition to the compare
1400  // that feeds the branch.  We later ensure that any values that _it_ uses
1401  // were also live in the predecessor, so that we don't unnecessarily create
1402  // register pressure or inhibit out-of-order execution.
1403  Instruction *BonusInst = 0;
1404  if (&*FrontIt != Cond &&
1405      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1406      FrontIt->isSafeToSpeculativelyExecute()) {
1407    BonusInst = &*FrontIt;
1408    ++FrontIt;
1409  }
1410
1411  // Only a single bonus inst is allowed.
1412  if (&*FrontIt != Cond)
1413    return false;
1414
1415  // Make sure the instruction after the condition is the cond branch.
1416  BasicBlock::iterator CondIt = Cond; ++CondIt;
1417  // Ingore dbg intrinsics.
1418  while(isa<DbgInfoIntrinsic>(CondIt))
1419    ++CondIt;
1420  if (&*CondIt != BI) {
1421    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1422    return false;
1423  }
1424
1425  // Cond is known to be a compare or binary operator.  Check to make sure that
1426  // neither operand is a potentially-trapping constant expression.
1427  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1428    if (CE->canTrap())
1429      return false;
1430  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1431    if (CE->canTrap())
1432      return false;
1433
1434
1435  // Finally, don't infinitely unroll conditional loops.
1436  BasicBlock *TrueDest  = BI->getSuccessor(0);
1437  BasicBlock *FalseDest = BI->getSuccessor(1);
1438  if (TrueDest == BB || FalseDest == BB)
1439    return false;
1440
1441  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1442    BasicBlock *PredBlock = *PI;
1443    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1444
1445    // Check that we have two conditional branches.  If there is a PHI node in
1446    // the common successor, verify that the same value flows in from both
1447    // blocks.
1448    if (PBI == 0 || PBI->isUnconditional() ||
1449        !SafeToMergeTerminators(BI, PBI))
1450      continue;
1451
1452    // Ensure that any values used in the bonus instruction are also used
1453    // by the terminator of the predecessor.  This means that those values
1454    // must already have been resolved, so we won't be inhibiting the
1455    // out-of-order core by speculating them earlier.
1456    if (BonusInst) {
1457      // Collect the values used by the bonus inst
1458      SmallPtrSet<Value*, 4> UsedValues;
1459      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1460           OE = BonusInst->op_end(); OI != OE; ++OI) {
1461        Value* V = *OI;
1462        if (!isa<Constant>(V))
1463          UsedValues.insert(V);
1464      }
1465
1466      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1467      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1468
1469      // Walk up to four levels back up the use-def chain of the predecessor's
1470      // terminator to see if all those values were used.  The choice of four
1471      // levels is arbitrary, to provide a compile-time-cost bound.
1472      while (!Worklist.empty()) {
1473        std::pair<Value*, unsigned> Pair = Worklist.back();
1474        Worklist.pop_back();
1475
1476        if (Pair.second >= 4) continue;
1477        UsedValues.erase(Pair.first);
1478        if (UsedValues.empty()) break;
1479
1480        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1481          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1482               OI != OE; ++OI)
1483            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1484        }
1485      }
1486
1487      if (!UsedValues.empty()) return false;
1488    }
1489
1490    Instruction::BinaryOps Opc;
1491    bool InvertPredCond = false;
1492
1493    if (PBI->getSuccessor(0) == TrueDest)
1494      Opc = Instruction::Or;
1495    else if (PBI->getSuccessor(1) == FalseDest)
1496      Opc = Instruction::And;
1497    else if (PBI->getSuccessor(0) == FalseDest)
1498      Opc = Instruction::And, InvertPredCond = true;
1499    else if (PBI->getSuccessor(1) == TrueDest)
1500      Opc = Instruction::Or, InvertPredCond = true;
1501    else
1502      continue;
1503
1504    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1505
1506    // If we need to invert the condition in the pred block to match, do so now.
1507    if (InvertPredCond) {
1508      Value *NewCond = PBI->getCondition();
1509
1510      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1511        CmpInst *CI = cast<CmpInst>(NewCond);
1512        CI->setPredicate(CI->getInversePredicate());
1513      } else {
1514        NewCond = BinaryOperator::CreateNot(NewCond,
1515                                  PBI->getCondition()->getName()+".not", PBI);
1516      }
1517
1518      PBI->setCondition(NewCond);
1519      BasicBlock *OldTrue = PBI->getSuccessor(0);
1520      BasicBlock *OldFalse = PBI->getSuccessor(1);
1521      PBI->setSuccessor(0, OldFalse);
1522      PBI->setSuccessor(1, OldTrue);
1523    }
1524
1525    // If we have a bonus inst, clone it into the predecessor block.
1526    Instruction *NewBonus = 0;
1527    if (BonusInst) {
1528      NewBonus = BonusInst->clone();
1529      PredBlock->getInstList().insert(PBI, NewBonus);
1530      NewBonus->takeName(BonusInst);
1531      BonusInst->setName(BonusInst->getName()+".old");
1532    }
1533
1534    // Clone Cond into the predecessor basic block, and or/and the
1535    // two conditions together.
1536    Instruction *New = Cond->clone();
1537    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1538    PredBlock->getInstList().insert(PBI, New);
1539    New->takeName(Cond);
1540    Cond->setName(New->getName()+".old");
1541
1542    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1543                                            New, "or.cond", PBI);
1544    PBI->setCondition(NewCond);
1545    if (PBI->getSuccessor(0) == BB) {
1546      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1547      PBI->setSuccessor(0, TrueDest);
1548    }
1549    if (PBI->getSuccessor(1) == BB) {
1550      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1551      PBI->setSuccessor(1, FalseDest);
1552    }
1553    return true;
1554  }
1555  return false;
1556}
1557
1558/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1559/// predecessor of another block, this function tries to simplify it.  We know
1560/// that PBI and BI are both conditional branches, and BI is in one of the
1561/// successor blocks of PBI - PBI branches to BI.
1562static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1563  assert(PBI->isConditional() && BI->isConditional());
1564  BasicBlock *BB = BI->getParent();
1565
1566  // If this block ends with a branch instruction, and if there is a
1567  // predecessor that ends on a branch of the same condition, make
1568  // this conditional branch redundant.
1569  if (PBI->getCondition() == BI->getCondition() &&
1570      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1571    // Okay, the outcome of this conditional branch is statically
1572    // knowable.  If this block had a single pred, handle specially.
1573    if (BB->getSinglePredecessor()) {
1574      // Turn this into a branch on constant.
1575      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1576      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1577                                        CondIsTrue));
1578      return true;  // Nuke the branch on constant.
1579    }
1580
1581    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1582    // in the constant and simplify the block result.  Subsequent passes of
1583    // simplifycfg will thread the block.
1584    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1585      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1586                                       BI->getCondition()->getName() + ".pr",
1587                                       BB->begin());
1588      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1589      // predecessor, compute the PHI'd conditional value for all of the preds.
1590      // Any predecessor where the condition is not computable we keep symbolic.
1591      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1592        BasicBlock *P = *PI;
1593        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1594            PBI != BI && PBI->isConditional() &&
1595            PBI->getCondition() == BI->getCondition() &&
1596            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1597          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1598          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1599                                              CondIsTrue), P);
1600        } else {
1601          NewPN->addIncoming(BI->getCondition(), P);
1602        }
1603      }
1604
1605      BI->setCondition(NewPN);
1606      return true;
1607    }
1608  }
1609
1610  // If this is a conditional branch in an empty block, and if any
1611  // predecessors is a conditional branch to one of our destinations,
1612  // fold the conditions into logical ops and one cond br.
1613  BasicBlock::iterator BBI = BB->begin();
1614  // Ignore dbg intrinsics.
1615  while (isa<DbgInfoIntrinsic>(BBI))
1616    ++BBI;
1617  if (&*BBI != BI)
1618    return false;
1619
1620
1621  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1622    if (CE->canTrap())
1623      return false;
1624
1625  int PBIOp, BIOp;
1626  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1627    PBIOp = BIOp = 0;
1628  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1629    PBIOp = 0, BIOp = 1;
1630  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1631    PBIOp = 1, BIOp = 0;
1632  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1633    PBIOp = BIOp = 1;
1634  else
1635    return false;
1636
1637  // Check to make sure that the other destination of this branch
1638  // isn't BB itself.  If so, this is an infinite loop that will
1639  // keep getting unwound.
1640  if (PBI->getSuccessor(PBIOp) == BB)
1641    return false;
1642
1643  // Do not perform this transformation if it would require
1644  // insertion of a large number of select instructions. For targets
1645  // without predication/cmovs, this is a big pessimization.
1646  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1647
1648  unsigned NumPhis = 0;
1649  for (BasicBlock::iterator II = CommonDest->begin();
1650       isa<PHINode>(II); ++II, ++NumPhis)
1651    if (NumPhis > 2) // Disable this xform.
1652      return false;
1653
1654  // Finally, if everything is ok, fold the branches to logical ops.
1655  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1656
1657  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1658               << "AND: " << *BI->getParent());
1659
1660
1661  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1662  // branch in it, where one edge (OtherDest) goes back to itself but the other
1663  // exits.  We don't *know* that the program avoids the infinite loop
1664  // (even though that seems likely).  If we do this xform naively, we'll end up
1665  // recursively unpeeling the loop.  Since we know that (after the xform is
1666  // done) that the block *is* infinite if reached, we just make it an obviously
1667  // infinite loop with no cond branch.
1668  if (OtherDest == BB) {
1669    // Insert it at the end of the function, because it's either code,
1670    // or it won't matter if it's hot. :)
1671    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1672                                                  "infloop", BB->getParent());
1673    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1674    OtherDest = InfLoopBlock;
1675  }
1676
1677  DEBUG(dbgs() << *PBI->getParent()->getParent());
1678
1679  // BI may have other predecessors.  Because of this, we leave
1680  // it alone, but modify PBI.
1681
1682  // Make sure we get to CommonDest on True&True directions.
1683  Value *PBICond = PBI->getCondition();
1684  if (PBIOp)
1685    PBICond = BinaryOperator::CreateNot(PBICond,
1686                                        PBICond->getName()+".not",
1687                                        PBI);
1688  Value *BICond = BI->getCondition();
1689  if (BIOp)
1690    BICond = BinaryOperator::CreateNot(BICond,
1691                                       BICond->getName()+".not",
1692                                       PBI);
1693  // Merge the conditions.
1694  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1695
1696  // Modify PBI to branch on the new condition to the new dests.
1697  PBI->setCondition(Cond);
1698  PBI->setSuccessor(0, CommonDest);
1699  PBI->setSuccessor(1, OtherDest);
1700
1701  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1702  // block that are identical to the entries for BI's block.
1703  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1704
1705  // We know that the CommonDest already had an edge from PBI to
1706  // it.  If it has PHIs though, the PHIs may have different
1707  // entries for BB and PBI's BB.  If so, insert a select to make
1708  // them agree.
1709  PHINode *PN;
1710  for (BasicBlock::iterator II = CommonDest->begin();
1711       (PN = dyn_cast<PHINode>(II)); ++II) {
1712    Value *BIV = PN->getIncomingValueForBlock(BB);
1713    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1714    Value *PBIV = PN->getIncomingValue(PBBIdx);
1715    if (BIV != PBIV) {
1716      // Insert a select in PBI to pick the right value.
1717      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1718                                     PBIV->getName()+".mux", PBI);
1719      PN->setIncomingValue(PBBIdx, NV);
1720    }
1721  }
1722
1723  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1724  DEBUG(dbgs() << *PBI->getParent()->getParent());
1725
1726  // This basic block is probably dead.  We know it has at least
1727  // one fewer predecessor.
1728  return true;
1729}
1730
1731// SimplifyIndirectBrOnSelect - Replaces
1732//   (indirectbr (select cond, blockaddress(@fn, BlockA),
1733//                             blockaddress(@fn, BlockB)))
1734// with
1735//   (br cond, BlockA, BlockB).
1736static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1737  // Check that both operands of the select are block addresses.
1738  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1739  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1740  if (!TBA || !FBA)
1741    return false;
1742
1743  // Extract the actual blocks.
1744  BasicBlock *TrueBB = TBA->getBasicBlock();
1745  BasicBlock *FalseBB = FBA->getBasicBlock();
1746
1747  // Remove any superfluous successor edges from the CFG.
1748  // First, figure out which successors to preserve.
1749  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1750  // successor.
1751  BasicBlock *KeepEdge1 = TrueBB;
1752  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1753
1754  // Then remove the rest.
1755  for (unsigned I = 0, E = IBI->getNumSuccessors(); I != E; ++I) {
1756    BasicBlock *Succ = IBI->getSuccessor(I);
1757    // Make sure only to keep exactly one copy of each edge.
1758    if (Succ == KeepEdge1)
1759      KeepEdge1 = 0;
1760    else if (Succ == KeepEdge2)
1761      KeepEdge2 = 0;
1762    else
1763      Succ->removePredecessor(IBI->getParent());
1764  }
1765
1766  // Insert an appropriate new terminator.
1767  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1768    if (TrueBB == FalseBB)
1769      // We were only looking for one successor, and it was present.
1770      // Create an unconditional branch to it.
1771      BranchInst::Create(TrueBB, IBI);
1772    else
1773      // We found both of the successors we were looking for.
1774      // Create a conditional branch sharing the condition of the select.
1775      BranchInst::Create(TrueBB, FalseBB, SI->getCondition(), IBI);
1776  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1777    // Neither of the selected blocks were successors, so this
1778    // indirectbr must be unreachable.
1779    new UnreachableInst(IBI->getContext(), IBI);
1780  } else {
1781    // One of the selected values was a successor, but the other wasn't.
1782    // Insert an unconditional branch to the one that was found;
1783    // the edge to the one that wasn't must be unreachable.
1784    if (KeepEdge1 == 0)
1785      // Only TrueBB was found.
1786      BranchInst::Create(TrueBB, IBI);
1787    else
1788      // Only FalseBB was found.
1789      BranchInst::Create(FalseBB, IBI);
1790  }
1791
1792  EraseTerminatorInstAndDCECond(IBI);
1793  return true;
1794}
1795
1796/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1797/// instruction (a seteq/setne with a constant) as the only instruction in a
1798/// block that ends with an uncond branch.  We are looking for a very specific
1799/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1800/// this case, we merge the first two "or's of icmp" into a switch, but then the
1801/// default value goes to an uncond block with a seteq in it, we get something
1802/// like:
1803///
1804///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1805/// DEFAULT:
1806///   %tmp = icmp eq i8 %A, 92
1807///   br label %end
1808/// end:
1809///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1810///
1811/// We prefer to split the edge to 'end' so that there is a true/false entry to
1812/// the PHI, merging the third icmp into the switch.
1813static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1814                                                  const TargetData *TD) {
1815  BasicBlock *BB = ICI->getParent();
1816  // If the block has any PHIs in it or the icmp has multiple uses, it is too
1817  // complex.
1818  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1819
1820  Value *V = ICI->getOperand(0);
1821  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1822
1823  // The pattern we're looking for is where our only predecessor is a switch on
1824  // 'V' and this block is the default case for the switch.  In this case we can
1825  // fold the compared value into the switch to simplify things.
1826  BasicBlock *Pred = BB->getSinglePredecessor();
1827  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1828
1829  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1830  if (SI->getCondition() != V)
1831    return false;
1832
1833  // If BB is reachable on a non-default case, then we simply know the value of
1834  // V in this block.  Substitute it and constant fold the icmp instruction
1835  // away.
1836  if (SI->getDefaultDest() != BB) {
1837    ConstantInt *VVal = SI->findCaseDest(BB);
1838    assert(VVal && "Should have a unique destination value");
1839    ICI->setOperand(0, VVal);
1840
1841    if (Value *V = SimplifyInstruction(ICI, TD)) {
1842      ICI->replaceAllUsesWith(V);
1843      ICI->eraseFromParent();
1844    }
1845    // BB is now empty, so it is likely to simplify away.
1846    return SimplifyCFG(BB) | true;
1847  }
1848
1849  // Ok, the block is reachable from the default dest.  If the constant we're
1850  // comparing exists in one of the other edges, then we can constant fold ICI
1851  // and zap it.
1852  if (SI->findCaseValue(Cst) != 0) {
1853    Value *V;
1854    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1855      V = ConstantInt::getFalse(BB->getContext());
1856    else
1857      V = ConstantInt::getTrue(BB->getContext());
1858
1859    ICI->replaceAllUsesWith(V);
1860    ICI->eraseFromParent();
1861    // BB is now empty, so it is likely to simplify away.
1862    return SimplifyCFG(BB) | true;
1863  }
1864
1865  // The use of the icmp has to be in the 'end' block, by the only PHI node in
1866  // the block.
1867  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1868  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1869  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1870      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1871    return false;
1872
1873  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1874  // true in the PHI.
1875  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
1876  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
1877
1878  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1879    std::swap(DefaultCst, NewCst);
1880
1881  // Replace ICI (which is used by the PHI for the default value) with true or
1882  // false depending on if it is EQ or NE.
1883  ICI->replaceAllUsesWith(DefaultCst);
1884  ICI->eraseFromParent();
1885
1886  // Okay, the switch goes to this block on a default value.  Add an edge from
1887  // the switch to the merge point on the compared value.
1888  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
1889                                         BB->getParent(), BB);
1890  SI->addCase(Cst, NewBB);
1891
1892  // NewBB branches to the phi block, add the uncond branch and the phi entry.
1893  BranchInst::Create(SuccBlock, NewBB);
1894  PHIUse->addIncoming(NewCst, NewBB);
1895  return true;
1896}
1897
1898/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1899/// Check to see if it is branching on an or/and chain of icmp instructions, and
1900/// fold it into a switch instruction if so.
1901static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
1902  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1903  if (Cond == 0) return false;
1904
1905
1906  // Change br (X == 0 | X == 1), T, F into a switch instruction.
1907  // If this is a bunch of seteq's or'd together, or if it's a bunch of
1908  // 'setne's and'ed together, collect them.
1909  Value *CompVal = 0;
1910  std::vector<ConstantInt*> Values;
1911  bool TrueWhenEqual = true;
1912  Value *ExtraCase = 0;
1913
1914  if (Cond->getOpcode() == Instruction::Or) {
1915    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true);
1916  } else if (Cond->getOpcode() == Instruction::And) {
1917    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false);
1918    TrueWhenEqual = false;
1919  }
1920
1921  // If we didn't have a multiply compared value, fail.
1922  if (CompVal == 0) return false;
1923
1924  // There might be duplicate constants in the list, which the switch
1925  // instruction can't handle, remove them now.
1926  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
1927  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1928
1929  // If Extra was used, we require at least two switch values to do the
1930  // transformation.  A switch with one value is just an cond branch.
1931  if (ExtraCase && Values.size() < 2) return false;
1932
1933  // Figure out which block is which destination.
1934  BasicBlock *DefaultBB = BI->getSuccessor(1);
1935  BasicBlock *EdgeBB    = BI->getSuccessor(0);
1936  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1937
1938  BasicBlock *BB = BI->getParent();
1939
1940  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
1941               << " cases into SWITCH.  BB is:\n" << *BB);
1942
1943  // If there are any extra values that couldn't be folded into the switch
1944  // then we evaluate them with an explicit branch first.  Split the block
1945  // right before the condbr to handle it.
1946  if (ExtraCase) {
1947    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
1948    // Remove the uncond branch added to the old block.
1949    TerminatorInst *OldTI = BB->getTerminator();
1950
1951    if (TrueWhenEqual)
1952      BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
1953    else
1954      BranchInst::Create(NewBB, EdgeBB, ExtraCase, OldTI);
1955
1956    OldTI->eraseFromParent();
1957
1958    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
1959    // for the edge we just added.
1960    AddPredecessorToBlock(EdgeBB, BB, NewBB);
1961
1962    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
1963          << "\nEXTRABB = " << *BB);
1964    BB = NewBB;
1965  }
1966
1967  // Convert pointer to int before we switch.
1968  if (CompVal->getType()->isPointerTy()) {
1969    assert(TD && "Cannot switch on pointer without TargetData");
1970    CompVal = new PtrToIntInst(CompVal,
1971                               TD->getIntPtrType(CompVal->getContext()),
1972                               "magicptr", BI);
1973  }
1974
1975  // Create the new switch instruction now.
1976  SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
1977
1978  // Add all of the 'cases' to the switch instruction.
1979  for (unsigned i = 0, e = Values.size(); i != e; ++i)
1980    New->addCase(Values[i], EdgeBB);
1981
1982  // We added edges from PI to the EdgeBB.  As such, if there were any
1983  // PHI nodes in EdgeBB, they need entries to be added corresponding to
1984  // the number of edges added.
1985  for (BasicBlock::iterator BBI = EdgeBB->begin();
1986       isa<PHINode>(BBI); ++BBI) {
1987    PHINode *PN = cast<PHINode>(BBI);
1988    Value *InVal = PN->getIncomingValueForBlock(BB);
1989    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1990      PN->addIncoming(InVal, BB);
1991  }
1992
1993  // Erase the old branch instruction.
1994  EraseTerminatorInstAndDCECond(BI);
1995
1996  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
1997  return true;
1998}
1999
2000bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI) {
2001  BasicBlock *BB = RI->getParent();
2002  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2003
2004  // Find predecessors that end with branches.
2005  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2006  SmallVector<BranchInst*, 8> CondBranchPreds;
2007  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2008    BasicBlock *P = *PI;
2009    TerminatorInst *PTI = P->getTerminator();
2010    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2011      if (BI->isUnconditional())
2012        UncondBranchPreds.push_back(P);
2013      else
2014        CondBranchPreds.push_back(BI);
2015    }
2016  }
2017
2018  // If we found some, do the transformation!
2019  if (!UncondBranchPreds.empty()) {
2020    while (!UncondBranchPreds.empty()) {
2021      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2022      DEBUG(dbgs() << "FOLDING: " << *BB
2023            << "INTO UNCOND BRANCH PRED: " << *Pred);
2024      Instruction *UncondBranch = Pred->getTerminator();
2025      // Clone the return and add it to the end of the predecessor.
2026      Instruction *NewRet = RI->clone();
2027      Pred->getInstList().push_back(NewRet);
2028
2029      // If the return instruction returns a value, and if the value was a
2030      // PHI node in "BB", propagate the right value into the return.
2031      for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
2032           i != e; ++i)
2033        if (PHINode *PN = dyn_cast<PHINode>(*i))
2034          if (PN->getParent() == BB)
2035            *i = PN->getIncomingValueForBlock(Pred);
2036
2037      // Update any PHI nodes in the returning block to realize that we no
2038      // longer branch to them.
2039      BB->removePredecessor(Pred);
2040      UncondBranch->eraseFromParent();
2041    }
2042
2043    // If we eliminated all predecessors of the block, delete the block now.
2044    if (pred_begin(BB) == pred_end(BB))
2045      // We know there are no successors, so just nuke the block.
2046      BB->eraseFromParent();
2047
2048    return true;
2049  }
2050
2051  // Check out all of the conditional branches going to this return
2052  // instruction.  If any of them just select between returns, change the
2053  // branch itself into a select/return pair.
2054  while (!CondBranchPreds.empty()) {
2055    BranchInst *BI = CondBranchPreds.pop_back_val();
2056
2057    // Check to see if the non-BB successor is also a return block.
2058    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2059        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2060        SimplifyCondBranchToTwoReturns(BI))
2061      return true;
2062  }
2063  return false;
2064}
2065
2066bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI) {
2067  // Check to see if the first instruction in this block is just an unwind.
2068  // If so, replace any invoke instructions which use this as an exception
2069  // destination with call instructions.
2070  BasicBlock *BB = UI->getParent();
2071  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2072
2073  bool Changed = false;
2074  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2075  while (!Preds.empty()) {
2076    BasicBlock *Pred = Preds.back();
2077    InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2078    if (II && II->getUnwindDest() == BB) {
2079      // Insert a new branch instruction before the invoke, because this
2080      // is now a fall through.
2081      BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2082      Pred->getInstList().remove(II);   // Take out of symbol table
2083
2084      // Insert the call now.
2085      SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2086      CallInst *CI = CallInst::Create(II->getCalledValue(),
2087                                      Args.begin(), Args.end(),
2088                                      II->getName(), BI);
2089      CI->setCallingConv(II->getCallingConv());
2090      CI->setAttributes(II->getAttributes());
2091      // If the invoke produced a value, the Call now does instead.
2092      II->replaceAllUsesWith(CI);
2093      delete II;
2094      Changed = true;
2095    }
2096
2097    Preds.pop_back();
2098  }
2099
2100  // If this block is now dead (and isn't the entry block), remove it.
2101  if (pred_begin(BB) == pred_end(BB) &&
2102      BB != &BB->getParent()->getEntryBlock()) {
2103    // We know there are no successors, so just nuke the block.
2104    BB->eraseFromParent();
2105    return true;
2106  }
2107
2108  return Changed;
2109}
2110
2111bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2112  BasicBlock *BB = UI->getParent();
2113
2114  bool Changed = false;
2115
2116  // If there are any instructions immediately before the unreachable that can
2117  // be removed, do so.
2118  while (UI != BB->begin()) {
2119    BasicBlock::iterator BBI = UI;
2120    --BBI;
2121    // Do not delete instructions that can have side effects, like calls
2122    // (which may never return) and volatile loads and stores.
2123    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2124
2125    if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2126      if (SI->isVolatile())
2127        break;
2128
2129    if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2130      if (LI->isVolatile())
2131        break;
2132
2133    // Delete this instruction
2134    BBI->eraseFromParent();
2135    Changed = true;
2136  }
2137
2138  // If the unreachable instruction is the first in the block, take a gander
2139  // at all of the predecessors of this instruction, and simplify them.
2140  if (&BB->front() != UI) return Changed;
2141
2142  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2143  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2144    TerminatorInst *TI = Preds[i]->getTerminator();
2145
2146    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2147      if (BI->isUnconditional()) {
2148        if (BI->getSuccessor(0) == BB) {
2149          new UnreachableInst(TI->getContext(), TI);
2150          TI->eraseFromParent();
2151          Changed = true;
2152        }
2153      } else {
2154        if (BI->getSuccessor(0) == BB) {
2155          BranchInst::Create(BI->getSuccessor(1), BI);
2156          EraseTerminatorInstAndDCECond(BI);
2157        } else if (BI->getSuccessor(1) == BB) {
2158          BranchInst::Create(BI->getSuccessor(0), BI);
2159          EraseTerminatorInstAndDCECond(BI);
2160          Changed = true;
2161        }
2162      }
2163    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2164      for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2165        if (SI->getSuccessor(i) == BB) {
2166          BB->removePredecessor(SI->getParent());
2167          SI->removeCase(i);
2168          --i; --e;
2169          Changed = true;
2170        }
2171      // If the default value is unreachable, figure out the most popular
2172      // destination and make it the default.
2173      if (SI->getSuccessor(0) == BB) {
2174        std::map<BasicBlock*, unsigned> Popularity;
2175        for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2176          Popularity[SI->getSuccessor(i)]++;
2177
2178        // Find the most popular block.
2179        unsigned MaxPop = 0;
2180        BasicBlock *MaxBlock = 0;
2181        for (std::map<BasicBlock*, unsigned>::iterator
2182             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2183          if (I->second > MaxPop) {
2184            MaxPop = I->second;
2185            MaxBlock = I->first;
2186          }
2187        }
2188        if (MaxBlock) {
2189          // Make this the new default, allowing us to delete any explicit
2190          // edges to it.
2191          SI->setSuccessor(0, MaxBlock);
2192          Changed = true;
2193
2194          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2195          // it.
2196          if (isa<PHINode>(MaxBlock->begin()))
2197            for (unsigned i = 0; i != MaxPop-1; ++i)
2198              MaxBlock->removePredecessor(SI->getParent());
2199
2200          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2201            if (SI->getSuccessor(i) == MaxBlock) {
2202              SI->removeCase(i);
2203              --i; --e;
2204            }
2205        }
2206      }
2207    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2208      if (II->getUnwindDest() == BB) {
2209        // Convert the invoke to a call instruction.  This would be a good
2210        // place to note that the call does not throw though.
2211        BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2212        II->removeFromParent();   // Take out of symbol table
2213
2214        // Insert the call now...
2215        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2216        CallInst *CI = CallInst::Create(II->getCalledValue(),
2217                                        Args.begin(), Args.end(),
2218                                        II->getName(), BI);
2219        CI->setCallingConv(II->getCallingConv());
2220        CI->setAttributes(II->getAttributes());
2221        // If the invoke produced a value, the call does now instead.
2222        II->replaceAllUsesWith(CI);
2223        delete II;
2224        Changed = true;
2225      }
2226    }
2227  }
2228
2229  // If this block is now dead, remove it.
2230  if (pred_begin(BB) == pred_end(BB) &&
2231      BB != &BB->getParent()->getEntryBlock()) {
2232    // We know there are no successors, so just nuke the block.
2233    BB->eraseFromParent();
2234    return true;
2235  }
2236
2237  return Changed;
2238}
2239
2240
2241bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI) {
2242  // If this switch is too complex to want to look at, ignore it.
2243  if (!isValueEqualityComparison(SI))
2244    return false;
2245
2246  BasicBlock *BB = SI->getParent();
2247
2248  // If we only have one predecessor, and if it is a branch on this value,
2249  // see if that predecessor totally determines the outcome of this switch.
2250  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2251    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
2252      return SimplifyCFG(BB) | true;
2253
2254  // If the block only contains the switch, see if we can fold the block
2255  // away into any preds.
2256  BasicBlock::iterator BBI = BB->begin();
2257  // Ignore dbg intrinsics.
2258  while (isa<DbgInfoIntrinsic>(BBI))
2259    ++BBI;
2260  if (SI == &*BBI)
2261    if (FoldValueComparisonIntoPredecessors(SI))
2262      return SimplifyCFG(BB) | true;
2263
2264  return false;
2265}
2266
2267bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2268  BasicBlock *BB = IBI->getParent();
2269  bool Changed = false;
2270
2271  // Eliminate redundant destinations.
2272  SmallPtrSet<Value *, 8> Succs;
2273  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2274    BasicBlock *Dest = IBI->getDestination(i);
2275    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2276      Dest->removePredecessor(BB);
2277      IBI->removeDestination(i);
2278      --i; --e;
2279      Changed = true;
2280    }
2281  }
2282
2283  if (IBI->getNumDestinations() == 0) {
2284    // If the indirectbr has no successors, change it to unreachable.
2285    new UnreachableInst(IBI->getContext(), IBI);
2286    EraseTerminatorInstAndDCECond(IBI);
2287    return true;
2288  }
2289
2290  if (IBI->getNumDestinations() == 1) {
2291    // If the indirectbr has one successor, change it to a direct branch.
2292    BranchInst::Create(IBI->getDestination(0), IBI);
2293    EraseTerminatorInstAndDCECond(IBI);
2294    return true;
2295  }
2296
2297  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2298    if (SimplifyIndirectBrOnSelect(IBI, SI))
2299      return SimplifyCFG(BB) | true;
2300  }
2301  return Changed;
2302}
2303
2304bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI) {
2305  BasicBlock *BB = BI->getParent();
2306
2307  // If the Terminator is the only non-phi instruction, simplify the block.
2308  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2309  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2310      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2311    return true;
2312
2313  // If the only instruction in the block is a seteq/setne comparison
2314  // against a constant, try to simplify the block.
2315  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2316    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2317      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2318        ;
2319      if (I->isTerminator() && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD))
2320        return true;
2321    }
2322
2323  return false;
2324}
2325
2326
2327bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI) {
2328  BasicBlock *BB = BI->getParent();
2329
2330  // Conditional branch
2331  if (isValueEqualityComparison(BI)) {
2332    // If we only have one predecessor, and if it is a branch on this value,
2333    // see if that predecessor totally determines the outcome of this
2334    // switch.
2335    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2336      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2337        return SimplifyCFG(BB) | true;
2338
2339    // This block must be empty, except for the setcond inst, if it exists.
2340    // Ignore dbg intrinsics.
2341    BasicBlock::iterator I = BB->begin();
2342    // Ignore dbg intrinsics.
2343    while (isa<DbgInfoIntrinsic>(I))
2344      ++I;
2345    if (&*I == BI) {
2346      if (FoldValueComparisonIntoPredecessors(BI))
2347        return SimplifyCFG(BB) | true;
2348    } else if (&*I == cast<Instruction>(BI->getCondition())){
2349      ++I;
2350      // Ignore dbg intrinsics.
2351      while (isa<DbgInfoIntrinsic>(I))
2352        ++I;
2353      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
2354        return SimplifyCFG(BB) | true;
2355    }
2356  }
2357
2358  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2359  if (SimplifyBranchOnICmpChain(BI, TD))
2360    return true;
2361
2362  // We have a conditional branch to two blocks that are only reachable
2363  // from BI.  We know that the condbr dominates the two blocks, so see if
2364  // there is any identical code in the "then" and "else" blocks.  If so, we
2365  // can hoist it up to the branching block.
2366  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2367    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2368      if (HoistThenElseCodeToIf(BI))
2369        return SimplifyCFG(BB) | true;
2370    } else {
2371      // If Successor #1 has multiple preds, we may be able to conditionally
2372      // execute Successor #0 if it branches to successor #1.
2373      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2374      if (Succ0TI->getNumSuccessors() == 1 &&
2375          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2376        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2377          return SimplifyCFG(BB) | true;
2378    }
2379  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2380    // If Successor #0 has multiple preds, we may be able to conditionally
2381    // execute Successor #1 if it branches to successor #0.
2382    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2383    if (Succ1TI->getNumSuccessors() == 1 &&
2384        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2385      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2386        return SimplifyCFG(BB) | true;
2387  }
2388
2389  // If this is a branch on a phi node in the current block, thread control
2390  // through this block if any PHI node entries are constants.
2391  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2392    if (PN->getParent() == BI->getParent())
2393      if (FoldCondBranchOnPHI(BI, TD))
2394        return SimplifyCFG(BB) | true;
2395
2396  // If this basic block is ONLY a setcc and a branch, and if a predecessor
2397  // branches to us and one of our successors, fold the setcc into the
2398  // predecessor and use logical operations to pick the right destination.
2399  if (FoldBranchToCommonDest(BI))
2400    return SimplifyCFG(BB) | true;
2401
2402  // Scan predecessor blocks for conditional branches.
2403  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2404    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2405      if (PBI != BI && PBI->isConditional())
2406        if (SimplifyCondBranchToCondBranch(PBI, BI))
2407          return SimplifyCFG(BB) | true;
2408
2409  return false;
2410}
2411
2412bool SimplifyCFGOpt::run(BasicBlock *BB) {
2413  bool Changed = false;
2414
2415  assert(BB && BB->getParent() && "Block not embedded in function!");
2416  assert(BB->getTerminator() && "Degenerate basic block encountered!");
2417
2418  // Remove basic blocks that have no predecessors (except the entry block)...
2419  // or that just have themself as a predecessor.  These are unreachable.
2420  if ((pred_begin(BB) == pred_end(BB) &&
2421       BB != &BB->getParent()->getEntryBlock()) ||
2422      BB->getSinglePredecessor() == BB) {
2423    DEBUG(dbgs() << "Removing BB: \n" << *BB);
2424    DeleteDeadBlock(BB);
2425    return true;
2426  }
2427
2428  // Check to see if we can constant propagate this terminator instruction
2429  // away...
2430  Changed |= ConstantFoldTerminator(BB);
2431
2432  // Check for and eliminate duplicate PHI nodes in this block.
2433  Changed |= EliminateDuplicatePHINodes(BB);
2434
2435  // Merge basic blocks into their predecessor if there is only one distinct
2436  // pred, and if there is only one distinct successor of the predecessor, and
2437  // if there are no PHI nodes.
2438  //
2439  if (MergeBlockIntoPredecessor(BB))
2440    return true;
2441
2442  // If there is a trivial two-entry PHI node in this basic block, and we can
2443  // eliminate it, do so now.
2444  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2445    if (PN->getNumIncomingValues() == 2)
2446      Changed |= FoldTwoEntryPHINode(PN, TD);
2447
2448  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2449    if (BI->isUnconditional()) {
2450      if (SimplifyUncondBranch(BI)) return true;
2451    } else {
2452      if (SimplifyCondBranch(BI)) return true;
2453    }
2454  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2455    if (SimplifyReturn(RI)) return true;
2456  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2457    if (SimplifySwitch(SI)) return true;
2458  } else if (UnreachableInst *UI =
2459               dyn_cast<UnreachableInst>(BB->getTerminator())) {
2460    if (SimplifyUnreachable(UI)) return true;
2461  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2462    if (SimplifyUnwind(UI)) return true;
2463  } else if (IndirectBrInst *IBI =
2464               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2465    if (SimplifyIndirectBr(IBI)) return true;
2466  }
2467
2468  return Changed;
2469}
2470
2471/// SimplifyCFG - This function is used to do simplification of a CFG.  For
2472/// example, it adjusts branches to branches to eliminate the extra hop, it
2473/// eliminates unreachable basic blocks, and does other "peephole" optimization
2474/// of the CFG.  It returns true if a modification was made.
2475///
2476bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2477  return SimplifyCFGOpt(TD).run(BB);
2478}
2479