SimplifyCFG.cpp revision d3a1788da15311781f661c1cbfe48cd5f98ae778
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Transforms/Utils/BasicBlockUtils.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ConstantRange.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/IRBuilder.h"
36#include "llvm/Support/NoFolder.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <set>
40#include <map>
41using namespace llvm;
42
43static cl::opt<unsigned>
44PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
45   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
46
47static cl::opt<bool>
48DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
49       cl::desc("Duplicate return instructions into unconditional branches"));
50
51STATISTIC(NumSpeculations, "Number of speculative executed instructions");
52
53namespace {
54class SimplifyCFGOpt {
55  const TargetData *const TD;
56
57  Value *isValueEqualityComparison(TerminatorInst *TI);
58  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
59    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
60  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
61                                                     BasicBlock *Pred,
62                                                     IRBuilder<> &Builder);
63  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
64                                           IRBuilder<> &Builder);
65
66  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
67  bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
68  bool SimplifyUnreachable(UnreachableInst *UI);
69  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
70  bool SimplifyIndirectBr(IndirectBrInst *IBI);
71  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
72  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
73
74public:
75  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
76  bool run(BasicBlock *BB);
77};
78}
79
80/// SafeToMergeTerminators - Return true if it is safe to merge these two
81/// terminator instructions together.
82///
83static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
84  if (SI1 == SI2) return false;  // Can't merge with self!
85
86  // It is not safe to merge these two switch instructions if they have a common
87  // successor, and if that successor has a PHI node, and if *that* PHI node has
88  // conflicting incoming values from the two switch blocks.
89  BasicBlock *SI1BB = SI1->getParent();
90  BasicBlock *SI2BB = SI2->getParent();
91  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
92
93  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
94    if (SI1Succs.count(*I))
95      for (BasicBlock::iterator BBI = (*I)->begin();
96           isa<PHINode>(BBI); ++BBI) {
97        PHINode *PN = cast<PHINode>(BBI);
98        if (PN->getIncomingValueForBlock(SI1BB) !=
99            PN->getIncomingValueForBlock(SI2BB))
100          return false;
101      }
102
103  return true;
104}
105
106/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
107/// now be entries in it from the 'NewPred' block.  The values that will be
108/// flowing into the PHI nodes will be the same as those coming in from
109/// ExistPred, an existing predecessor of Succ.
110static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
111                                  BasicBlock *ExistPred) {
112  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
113
114  PHINode *PN;
115  for (BasicBlock::iterator I = Succ->begin();
116       (PN = dyn_cast<PHINode>(I)); ++I)
117    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
118}
119
120
121/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
122/// least one PHI node in it), check to see if the merge at this block is due
123/// to an "if condition".  If so, return the boolean condition that determines
124/// which entry into BB will be taken.  Also, return by references the block
125/// that will be entered from if the condition is true, and the block that will
126/// be entered if the condition is false.
127///
128/// This does no checking to see if the true/false blocks have large or unsavory
129/// instructions in them.
130static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
131                             BasicBlock *&IfFalse) {
132  PHINode *SomePHI = cast<PHINode>(BB->begin());
133  assert(SomePHI->getNumIncomingValues() == 2 &&
134         "Function can only handle blocks with 2 predecessors!");
135  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
136  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
137
138  // We can only handle branches.  Other control flow will be lowered to
139  // branches if possible anyway.
140  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
141  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
142  if (Pred1Br == 0 || Pred2Br == 0)
143    return 0;
144
145  // Eliminate code duplication by ensuring that Pred1Br is conditional if
146  // either are.
147  if (Pred2Br->isConditional()) {
148    // If both branches are conditional, we don't have an "if statement".  In
149    // reality, we could transform this case, but since the condition will be
150    // required anyway, we stand no chance of eliminating it, so the xform is
151    // probably not profitable.
152    if (Pred1Br->isConditional())
153      return 0;
154
155    std::swap(Pred1, Pred2);
156    std::swap(Pred1Br, Pred2Br);
157  }
158
159  if (Pred1Br->isConditional()) {
160    // The only thing we have to watch out for here is to make sure that Pred2
161    // doesn't have incoming edges from other blocks.  If it does, the condition
162    // doesn't dominate BB.
163    if (Pred2->getSinglePredecessor() == 0)
164      return 0;
165
166    // If we found a conditional branch predecessor, make sure that it branches
167    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
168    if (Pred1Br->getSuccessor(0) == BB &&
169        Pred1Br->getSuccessor(1) == Pred2) {
170      IfTrue = Pred1;
171      IfFalse = Pred2;
172    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
173               Pred1Br->getSuccessor(1) == BB) {
174      IfTrue = Pred2;
175      IfFalse = Pred1;
176    } else {
177      // We know that one arm of the conditional goes to BB, so the other must
178      // go somewhere unrelated, and this must not be an "if statement".
179      return 0;
180    }
181
182    return Pred1Br->getCondition();
183  }
184
185  // Ok, if we got here, both predecessors end with an unconditional branch to
186  // BB.  Don't panic!  If both blocks only have a single (identical)
187  // predecessor, and THAT is a conditional branch, then we're all ok!
188  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
189  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
190    return 0;
191
192  // Otherwise, if this is a conditional branch, then we can use it!
193  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
194  if (BI == 0) return 0;
195
196  assert(BI->isConditional() && "Two successors but not conditional?");
197  if (BI->getSuccessor(0) == Pred1) {
198    IfTrue = Pred1;
199    IfFalse = Pred2;
200  } else {
201    IfTrue = Pred2;
202    IfFalse = Pred1;
203  }
204  return BI->getCondition();
205}
206
207/// DominatesMergePoint - If we have a merge point of an "if condition" as
208/// accepted above, return true if the specified value dominates the block.  We
209/// don't handle the true generality of domination here, just a special case
210/// which works well enough for us.
211///
212/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
213/// see if V (which must be an instruction) and its recursive operands
214/// that do not dominate BB have a combined cost lower than CostRemaining and
215/// are non-trapping.  If both are true, the instruction is inserted into the
216/// set and true is returned.
217///
218/// The cost for most non-trapping instructions is defined as 1 except for
219/// Select whose cost is 2.
220///
221/// After this function returns, CostRemaining is decreased by the cost of
222/// V plus its non-dominating operands.  If that cost is greater than
223/// CostRemaining, false is returned and CostRemaining is undefined.
224static bool DominatesMergePoint(Value *V, BasicBlock *BB,
225                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
226                                unsigned &CostRemaining) {
227  Instruction *I = dyn_cast<Instruction>(V);
228  if (!I) {
229    // Non-instructions all dominate instructions, but not all constantexprs
230    // can be executed unconditionally.
231    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
232      if (C->canTrap())
233        return false;
234    return true;
235  }
236  BasicBlock *PBB = I->getParent();
237
238  // We don't want to allow weird loops that might have the "if condition" in
239  // the bottom of this block.
240  if (PBB == BB) return false;
241
242  // If this instruction is defined in a block that contains an unconditional
243  // branch to BB, then it must be in the 'conditional' part of the "if
244  // statement".  If not, it definitely dominates the region.
245  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
246  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
247    return true;
248
249  // If we aren't allowing aggressive promotion anymore, then don't consider
250  // instructions in the 'if region'.
251  if (AggressiveInsts == 0) return false;
252
253  // If we have seen this instruction before, don't count it again.
254  if (AggressiveInsts->count(I)) return true;
255
256  // Okay, it looks like the instruction IS in the "condition".  Check to
257  // see if it's a cheap instruction to unconditionally compute, and if it
258  // only uses stuff defined outside of the condition.  If so, hoist it out.
259  if (!I->isSafeToSpeculativelyExecute())
260    return false;
261
262  unsigned Cost = 0;
263
264  switch (I->getOpcode()) {
265  default: return false;  // Cannot hoist this out safely.
266  case Instruction::Load:
267    // We have to check to make sure there are no instructions before the
268    // load in its basic block, as we are going to hoist the load out to its
269    // predecessor.
270    if (PBB->getFirstNonPHIOrDbg() != I)
271      return false;
272    Cost = 1;
273    break;
274  case Instruction::GetElementPtr:
275    // GEPs are cheap if all indices are constant.
276    if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
277      return false;
278    Cost = 1;
279    break;
280  case Instruction::Add:
281  case Instruction::Sub:
282  case Instruction::And:
283  case Instruction::Or:
284  case Instruction::Xor:
285  case Instruction::Shl:
286  case Instruction::LShr:
287  case Instruction::AShr:
288  case Instruction::ICmp:
289  case Instruction::Trunc:
290  case Instruction::ZExt:
291  case Instruction::SExt:
292    Cost = 1;
293    break;   // These are all cheap and non-trapping instructions.
294
295  case Instruction::Select:
296    Cost = 2;
297    break;
298  }
299
300  if (Cost > CostRemaining)
301    return false;
302
303  CostRemaining -= Cost;
304
305  // Okay, we can only really hoist these out if their operands do
306  // not take us over the cost threshold.
307  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
308    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
309      return false;
310  // Okay, it's safe to do this!  Remember this instruction.
311  AggressiveInsts->insert(I);
312  return true;
313}
314
315/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
316/// and PointerNullValue. Return NULL if value is not a constant int.
317static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
318  // Normal constant int.
319  ConstantInt *CI = dyn_cast<ConstantInt>(V);
320  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
321    return CI;
322
323  // This is some kind of pointer constant. Turn it into a pointer-sized
324  // ConstantInt if possible.
325  const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
326
327  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
328  if (isa<ConstantPointerNull>(V))
329    return ConstantInt::get(PtrTy, 0);
330
331  // IntToPtr const int.
332  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
333    if (CE->getOpcode() == Instruction::IntToPtr)
334      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
335        // The constant is very likely to have the right type already.
336        if (CI->getType() == PtrTy)
337          return CI;
338        else
339          return cast<ConstantInt>
340            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
341      }
342  return 0;
343}
344
345/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
346/// collection of icmp eq/ne instructions that compare a value against a
347/// constant, return the value being compared, and stick the constant into the
348/// Values vector.
349static Value *
350GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
351                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
352  Instruction *I = dyn_cast<Instruction>(V);
353  if (I == 0) return 0;
354
355  // If this is an icmp against a constant, handle this as one of the cases.
356  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
357    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
358      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
359        UsedICmps++;
360        Vals.push_back(C);
361        return I->getOperand(0);
362      }
363
364      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
365      // the set.
366      ConstantRange Span =
367        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
368
369      // If this is an and/!= check then we want to optimize "x ugt 2" into
370      // x != 0 && x != 1.
371      if (!isEQ)
372        Span = Span.inverse();
373
374      // If there are a ton of values, we don't want to make a ginormous switch.
375      if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
376          // We don't handle wrapped sets yet.
377          Span.isWrappedSet())
378        return 0;
379
380      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
381        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
382      UsedICmps++;
383      return I->getOperand(0);
384    }
385    return 0;
386  }
387
388  // Otherwise, we can only handle an | or &, depending on isEQ.
389  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
390    return 0;
391
392  unsigned NumValsBeforeLHS = Vals.size();
393  unsigned UsedICmpsBeforeLHS = UsedICmps;
394  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
395                                          isEQ, UsedICmps)) {
396    unsigned NumVals = Vals.size();
397    unsigned UsedICmpsBeforeRHS = UsedICmps;
398    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
399                                            isEQ, UsedICmps)) {
400      if (LHS == RHS)
401        return LHS;
402      Vals.resize(NumVals);
403      UsedICmps = UsedICmpsBeforeRHS;
404    }
405
406    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
407    // set it and return success.
408    if (Extra == 0 || Extra == I->getOperand(1)) {
409      Extra = I->getOperand(1);
410      return LHS;
411    }
412
413    Vals.resize(NumValsBeforeLHS);
414    UsedICmps = UsedICmpsBeforeLHS;
415    return 0;
416  }
417
418  // If the LHS can't be folded in, but Extra is available and RHS can, try to
419  // use LHS as Extra.
420  if (Extra == 0 || Extra == I->getOperand(0)) {
421    Value *OldExtra = Extra;
422    Extra = I->getOperand(0);
423    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
424                                            isEQ, UsedICmps))
425      return RHS;
426    assert(Vals.size() == NumValsBeforeLHS);
427    Extra = OldExtra;
428  }
429
430  return 0;
431}
432
433static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
434  Instruction* Cond = 0;
435  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
436    Cond = dyn_cast<Instruction>(SI->getCondition());
437  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
438    if (BI->isConditional())
439      Cond = dyn_cast<Instruction>(BI->getCondition());
440  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
441    Cond = dyn_cast<Instruction>(IBI->getAddress());
442  }
443
444  TI->eraseFromParent();
445  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
446}
447
448/// isValueEqualityComparison - Return true if the specified terminator checks
449/// to see if a value is equal to constant integer value.
450Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
451  Value *CV = 0;
452  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
453    // Do not permit merging of large switch instructions into their
454    // predecessors unless there is only one predecessor.
455    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
456                                             pred_end(SI->getParent())) <= 128)
457      CV = SI->getCondition();
458  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
459    if (BI->isConditional() && BI->getCondition()->hasOneUse())
460      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
461        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
462             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
463            GetConstantInt(ICI->getOperand(1), TD))
464          CV = ICI->getOperand(0);
465
466  // Unwrap any lossless ptrtoint cast.
467  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
468    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
469      CV = PTII->getOperand(0);
470  return CV;
471}
472
473/// GetValueEqualityComparisonCases - Given a value comparison instruction,
474/// decode all of the 'cases' that it represents and return the 'default' block.
475BasicBlock *SimplifyCFGOpt::
476GetValueEqualityComparisonCases(TerminatorInst *TI,
477                                std::vector<std::pair<ConstantInt*,
478                                                      BasicBlock*> > &Cases) {
479  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
480    Cases.reserve(SI->getNumCases());
481    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
482      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
483    return SI->getDefaultDest();
484  }
485
486  BranchInst *BI = cast<BranchInst>(TI);
487  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
488  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
489                                 BI->getSuccessor(ICI->getPredicate() ==
490                                                  ICmpInst::ICMP_NE)));
491  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
492}
493
494
495/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
496/// in the list that match the specified block.
497static void EliminateBlockCases(BasicBlock *BB,
498               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
499  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
500    if (Cases[i].second == BB) {
501      Cases.erase(Cases.begin()+i);
502      --i; --e;
503    }
504}
505
506/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
507/// well.
508static bool
509ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
510              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
511  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
512
513  // Make V1 be smaller than V2.
514  if (V1->size() > V2->size())
515    std::swap(V1, V2);
516
517  if (V1->size() == 0) return false;
518  if (V1->size() == 1) {
519    // Just scan V2.
520    ConstantInt *TheVal = (*V1)[0].first;
521    for (unsigned i = 0, e = V2->size(); i != e; ++i)
522      if (TheVal == (*V2)[i].first)
523        return true;
524  }
525
526  // Otherwise, just sort both lists and compare element by element.
527  array_pod_sort(V1->begin(), V1->end());
528  array_pod_sort(V2->begin(), V2->end());
529  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
530  while (i1 != e1 && i2 != e2) {
531    if ((*V1)[i1].first == (*V2)[i2].first)
532      return true;
533    if ((*V1)[i1].first < (*V2)[i2].first)
534      ++i1;
535    else
536      ++i2;
537  }
538  return false;
539}
540
541/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
542/// terminator instruction and its block is known to only have a single
543/// predecessor block, check to see if that predecessor is also a value
544/// comparison with the same value, and if that comparison determines the
545/// outcome of this comparison.  If so, simplify TI.  This does a very limited
546/// form of jump threading.
547bool SimplifyCFGOpt::
548SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
549                                              BasicBlock *Pred,
550                                              IRBuilder<> &Builder) {
551  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
552  if (!PredVal) return false;  // Not a value comparison in predecessor.
553
554  Value *ThisVal = isValueEqualityComparison(TI);
555  assert(ThisVal && "This isn't a value comparison!!");
556  if (ThisVal != PredVal) return false;  // Different predicates.
557
558  // Find out information about when control will move from Pred to TI's block.
559  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
560  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
561                                                        PredCases);
562  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
563
564  // Find information about how control leaves this block.
565  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
566  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
567  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
568
569  // If TI's block is the default block from Pred's comparison, potentially
570  // simplify TI based on this knowledge.
571  if (PredDef == TI->getParent()) {
572    // If we are here, we know that the value is none of those cases listed in
573    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
574    // can simplify TI.
575    if (!ValuesOverlap(PredCases, ThisCases))
576      return false;
577
578    if (isa<BranchInst>(TI)) {
579      // Okay, one of the successors of this condbr is dead.  Convert it to a
580      // uncond br.
581      assert(ThisCases.size() == 1 && "Branch can only have one case!");
582      // Insert the new branch.
583      Instruction *NI = Builder.CreateBr(ThisDef);
584      (void) NI;
585
586      // Remove PHI node entries for the dead edge.
587      ThisCases[0].second->removePredecessor(TI->getParent());
588
589      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
590           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
591
592      EraseTerminatorInstAndDCECond(TI);
593      return true;
594    }
595
596    SwitchInst *SI = cast<SwitchInst>(TI);
597    // Okay, TI has cases that are statically dead, prune them away.
598    SmallPtrSet<Constant*, 16> DeadCases;
599    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
600      DeadCases.insert(PredCases[i].first);
601
602    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
603                 << "Through successor TI: " << *TI);
604
605    for (unsigned i = SI->getNumCases()-1; i != 0; --i)
606      if (DeadCases.count(SI->getCaseValue(i))) {
607        SI->getSuccessor(i)->removePredecessor(TI->getParent());
608        SI->removeCase(i);
609      }
610
611    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
612    return true;
613  }
614
615  // Otherwise, TI's block must correspond to some matched value.  Find out
616  // which value (or set of values) this is.
617  ConstantInt *TIV = 0;
618  BasicBlock *TIBB = TI->getParent();
619  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
620    if (PredCases[i].second == TIBB) {
621      if (TIV != 0)
622        return false;  // Cannot handle multiple values coming to this block.
623      TIV = PredCases[i].first;
624    }
625  assert(TIV && "No edge from pred to succ?");
626
627  // Okay, we found the one constant that our value can be if we get into TI's
628  // BB.  Find out which successor will unconditionally be branched to.
629  BasicBlock *TheRealDest = 0;
630  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
631    if (ThisCases[i].first == TIV) {
632      TheRealDest = ThisCases[i].second;
633      break;
634    }
635
636  // If not handled by any explicit cases, it is handled by the default case.
637  if (TheRealDest == 0) TheRealDest = ThisDef;
638
639  // Remove PHI node entries for dead edges.
640  BasicBlock *CheckEdge = TheRealDest;
641  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
642    if (*SI != CheckEdge)
643      (*SI)->removePredecessor(TIBB);
644    else
645      CheckEdge = 0;
646
647  // Insert the new branch.
648  Instruction *NI = Builder.CreateBr(TheRealDest);
649  (void) NI;
650
651  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
652            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
653
654  EraseTerminatorInstAndDCECond(TI);
655  return true;
656}
657
658namespace {
659  /// ConstantIntOrdering - This class implements a stable ordering of constant
660  /// integers that does not depend on their address.  This is important for
661  /// applications that sort ConstantInt's to ensure uniqueness.
662  struct ConstantIntOrdering {
663    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
664      return LHS->getValue().ult(RHS->getValue());
665    }
666  };
667}
668
669static int ConstantIntSortPredicate(const void *P1, const void *P2) {
670  const ConstantInt *LHS = *(const ConstantInt**)P1;
671  const ConstantInt *RHS = *(const ConstantInt**)P2;
672  if (LHS->getValue().ult(RHS->getValue()))
673    return 1;
674  if (LHS->getValue() == RHS->getValue())
675    return 0;
676  return -1;
677}
678
679/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
680/// equality comparison instruction (either a switch or a branch on "X == c").
681/// See if any of the predecessors of the terminator block are value comparisons
682/// on the same value.  If so, and if safe to do so, fold them together.
683bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
684                                                         IRBuilder<> &Builder) {
685  BasicBlock *BB = TI->getParent();
686  Value *CV = isValueEqualityComparison(TI);  // CondVal
687  assert(CV && "Not a comparison?");
688  bool Changed = false;
689
690  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
691  while (!Preds.empty()) {
692    BasicBlock *Pred = Preds.pop_back_val();
693
694    // See if the predecessor is a comparison with the same value.
695    TerminatorInst *PTI = Pred->getTerminator();
696    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
697
698    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
699      // Figure out which 'cases' to copy from SI to PSI.
700      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
701      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
702
703      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
704      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
705
706      // Based on whether the default edge from PTI goes to BB or not, fill in
707      // PredCases and PredDefault with the new switch cases we would like to
708      // build.
709      SmallVector<BasicBlock*, 8> NewSuccessors;
710
711      if (PredDefault == BB) {
712        // If this is the default destination from PTI, only the edges in TI
713        // that don't occur in PTI, or that branch to BB will be activated.
714        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
715        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
716          if (PredCases[i].second != BB)
717            PTIHandled.insert(PredCases[i].first);
718          else {
719            // The default destination is BB, we don't need explicit targets.
720            std::swap(PredCases[i], PredCases.back());
721            PredCases.pop_back();
722            --i; --e;
723          }
724
725        // Reconstruct the new switch statement we will be building.
726        if (PredDefault != BBDefault) {
727          PredDefault->removePredecessor(Pred);
728          PredDefault = BBDefault;
729          NewSuccessors.push_back(BBDefault);
730        }
731        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
732          if (!PTIHandled.count(BBCases[i].first) &&
733              BBCases[i].second != BBDefault) {
734            PredCases.push_back(BBCases[i]);
735            NewSuccessors.push_back(BBCases[i].second);
736          }
737
738      } else {
739        // If this is not the default destination from PSI, only the edges
740        // in SI that occur in PSI with a destination of BB will be
741        // activated.
742        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
743        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
744          if (PredCases[i].second == BB) {
745            PTIHandled.insert(PredCases[i].first);
746            std::swap(PredCases[i], PredCases.back());
747            PredCases.pop_back();
748            --i; --e;
749          }
750
751        // Okay, now we know which constants were sent to BB from the
752        // predecessor.  Figure out where they will all go now.
753        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
754          if (PTIHandled.count(BBCases[i].first)) {
755            // If this is one we are capable of getting...
756            PredCases.push_back(BBCases[i]);
757            NewSuccessors.push_back(BBCases[i].second);
758            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
759          }
760
761        // If there are any constants vectored to BB that TI doesn't handle,
762        // they must go to the default destination of TI.
763        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
764                                    PTIHandled.begin(),
765               E = PTIHandled.end(); I != E; ++I) {
766          PredCases.push_back(std::make_pair(*I, BBDefault));
767          NewSuccessors.push_back(BBDefault);
768        }
769      }
770
771      // Okay, at this point, we know which new successor Pred will get.  Make
772      // sure we update the number of entries in the PHI nodes for these
773      // successors.
774      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
775        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
776
777      Builder.SetInsertPoint(PTI);
778      // Convert pointer to int before we switch.
779      if (CV->getType()->isPointerTy()) {
780        assert(TD && "Cannot switch on pointer without TargetData");
781        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
782                                    "magicptr");
783      }
784
785      // Now that the successors are updated, create the new Switch instruction.
786      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
787                                               PredCases.size());
788      NewSI->setDebugLoc(PTI->getDebugLoc());
789      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
790        NewSI->addCase(PredCases[i].first, PredCases[i].second);
791
792      EraseTerminatorInstAndDCECond(PTI);
793
794      // Okay, last check.  If BB is still a successor of PSI, then we must
795      // have an infinite loop case.  If so, add an infinitely looping block
796      // to handle the case to preserve the behavior of the code.
797      BasicBlock *InfLoopBlock = 0;
798      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
799        if (NewSI->getSuccessor(i) == BB) {
800          if (InfLoopBlock == 0) {
801            // Insert it at the end of the function, because it's either code,
802            // or it won't matter if it's hot. :)
803            InfLoopBlock = BasicBlock::Create(BB->getContext(),
804                                              "infloop", BB->getParent());
805            BranchInst::Create(InfLoopBlock, InfLoopBlock);
806          }
807          NewSI->setSuccessor(i, InfLoopBlock);
808        }
809
810      Changed = true;
811    }
812  }
813  return Changed;
814}
815
816// isSafeToHoistInvoke - If we would need to insert a select that uses the
817// value of this invoke (comments in HoistThenElseCodeToIf explain why we
818// would need to do this), we can't hoist the invoke, as there is nowhere
819// to put the select in this case.
820static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
821                                Instruction *I1, Instruction *I2) {
822  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
823    PHINode *PN;
824    for (BasicBlock::iterator BBI = SI->begin();
825         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
826      Value *BB1V = PN->getIncomingValueForBlock(BB1);
827      Value *BB2V = PN->getIncomingValueForBlock(BB2);
828      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
829        return false;
830      }
831    }
832  }
833  return true;
834}
835
836/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
837/// BB2, hoist any common code in the two blocks up into the branch block.  The
838/// caller of this function guarantees that BI's block dominates BB1 and BB2.
839static bool HoistThenElseCodeToIf(BranchInst *BI) {
840  // This does very trivial matching, with limited scanning, to find identical
841  // instructions in the two blocks.  In particular, we don't want to get into
842  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
843  // such, we currently just scan for obviously identical instructions in an
844  // identical order.
845  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
846  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
847
848  BasicBlock::iterator BB1_Itr = BB1->begin();
849  BasicBlock::iterator BB2_Itr = BB2->begin();
850
851  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
852  // Skip debug info if it is not identical.
853  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
854  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
855  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
856    while (isa<DbgInfoIntrinsic>(I1))
857      I1 = BB1_Itr++;
858    while (isa<DbgInfoIntrinsic>(I2))
859      I2 = BB2_Itr++;
860  }
861  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
862      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
863    return false;
864
865  // If we get here, we can hoist at least one instruction.
866  BasicBlock *BIParent = BI->getParent();
867
868  do {
869    // If we are hoisting the terminator instruction, don't move one (making a
870    // broken BB), instead clone it, and remove BI.
871    if (isa<TerminatorInst>(I1))
872      goto HoistTerminator;
873
874    // For a normal instruction, we just move one to right before the branch,
875    // then replace all uses of the other with the first.  Finally, we remove
876    // the now redundant second instruction.
877    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
878    if (!I2->use_empty())
879      I2->replaceAllUsesWith(I1);
880    I1->intersectOptionalDataWith(I2);
881    I2->eraseFromParent();
882
883    I1 = BB1_Itr++;
884    I2 = BB2_Itr++;
885    // Skip debug info if it is not identical.
886    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
887    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
888    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
889      while (isa<DbgInfoIntrinsic>(I1))
890        I1 = BB1_Itr++;
891      while (isa<DbgInfoIntrinsic>(I2))
892        I2 = BB2_Itr++;
893    }
894  } while (I1->isIdenticalToWhenDefined(I2));
895
896  return true;
897
898HoistTerminator:
899  // It may not be possible to hoist an invoke.
900  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
901    return true;
902
903  // Okay, it is safe to hoist the terminator.
904  Instruction *NT = I1->clone();
905  BIParent->getInstList().insert(BI, NT);
906  if (!NT->getType()->isVoidTy()) {
907    I1->replaceAllUsesWith(NT);
908    I2->replaceAllUsesWith(NT);
909    NT->takeName(I1);
910  }
911
912  IRBuilder<true, NoFolder> Builder(NT);
913  // Hoisting one of the terminators from our successor is a great thing.
914  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
915  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
916  // nodes, so we insert select instruction to compute the final result.
917  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
918  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
919    PHINode *PN;
920    for (BasicBlock::iterator BBI = SI->begin();
921         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
922      Value *BB1V = PN->getIncomingValueForBlock(BB1);
923      Value *BB2V = PN->getIncomingValueForBlock(BB2);
924      if (BB1V == BB2V) continue;
925
926      // These values do not agree.  Insert a select instruction before NT
927      // that determines the right value.
928      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
929      if (SI == 0)
930        SI = cast<SelectInst>
931          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
932                                BB1V->getName()+"."+BB2V->getName()));
933
934      // Make the PHI node use the select for all incoming values for BB1/BB2
935      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
936        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
937          PN->setIncomingValue(i, SI);
938    }
939  }
940
941  // Update any PHI nodes in our new successors.
942  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
943    AddPredecessorToBlock(*SI, BIParent, BB1);
944
945  EraseTerminatorInstAndDCECond(BI);
946  return true;
947}
948
949/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
950/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
951/// (for now, restricted to a single instruction that's side effect free) from
952/// the BB1 into the branch block to speculatively execute it.
953static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
954  // Only speculatively execution a single instruction (not counting the
955  // terminator) for now.
956  Instruction *HInst = NULL;
957  Instruction *Term = BB1->getTerminator();
958  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
959       BBI != BBE; ++BBI) {
960    Instruction *I = BBI;
961    // Skip debug info.
962    if (isa<DbgInfoIntrinsic>(I)) continue;
963    if (I == Term) break;
964
965    if (HInst)
966      return false;
967    HInst = I;
968  }
969  if (!HInst)
970    return false;
971
972  // Be conservative for now. FP select instruction can often be expensive.
973  Value *BrCond = BI->getCondition();
974  if (isa<FCmpInst>(BrCond))
975    return false;
976
977  // If BB1 is actually on the false edge of the conditional branch, remember
978  // to swap the select operands later.
979  bool Invert = false;
980  if (BB1 != BI->getSuccessor(0)) {
981    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
982    Invert = true;
983  }
984
985  // Turn
986  // BB:
987  //     %t1 = icmp
988  //     br i1 %t1, label %BB1, label %BB2
989  // BB1:
990  //     %t3 = add %t2, c
991  //     br label BB2
992  // BB2:
993  // =>
994  // BB:
995  //     %t1 = icmp
996  //     %t4 = add %t2, c
997  //     %t3 = select i1 %t1, %t2, %t3
998  switch (HInst->getOpcode()) {
999  default: return false;  // Not safe / profitable to hoist.
1000  case Instruction::Add:
1001  case Instruction::Sub:
1002    // Not worth doing for vector ops.
1003    if (HInst->getType()->isVectorTy())
1004      return false;
1005    break;
1006  case Instruction::And:
1007  case Instruction::Or:
1008  case Instruction::Xor:
1009  case Instruction::Shl:
1010  case Instruction::LShr:
1011  case Instruction::AShr:
1012    // Don't mess with vector operations.
1013    if (HInst->getType()->isVectorTy())
1014      return false;
1015    break;   // These are all cheap and non-trapping instructions.
1016  }
1017
1018  // If the instruction is obviously dead, don't try to predicate it.
1019  if (HInst->use_empty()) {
1020    HInst->eraseFromParent();
1021    return true;
1022  }
1023
1024  // Can we speculatively execute the instruction? And what is the value
1025  // if the condition is false? Consider the phi uses, if the incoming value
1026  // from the "if" block are all the same V, then V is the value of the
1027  // select if the condition is false.
1028  BasicBlock *BIParent = BI->getParent();
1029  SmallVector<PHINode*, 4> PHIUses;
1030  Value *FalseV = NULL;
1031
1032  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1033  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1034       UI != E; ++UI) {
1035    // Ignore any user that is not a PHI node in BB2.  These can only occur in
1036    // unreachable blocks, because they would not be dominated by the instr.
1037    PHINode *PN = dyn_cast<PHINode>(*UI);
1038    if (!PN || PN->getParent() != BB2)
1039      return false;
1040    PHIUses.push_back(PN);
1041
1042    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1043    if (!FalseV)
1044      FalseV = PHIV;
1045    else if (FalseV != PHIV)
1046      return false;  // Inconsistent value when condition is false.
1047  }
1048
1049  assert(FalseV && "Must have at least one user, and it must be a PHI");
1050
1051  // Do not hoist the instruction if any of its operands are defined but not
1052  // used in this BB. The transformation will prevent the operand from
1053  // being sunk into the use block.
1054  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1055       i != e; ++i) {
1056    Instruction *OpI = dyn_cast<Instruction>(*i);
1057    if (OpI && OpI->getParent() == BIParent &&
1058        !OpI->isUsedInBasicBlock(BIParent))
1059      return false;
1060  }
1061
1062  // If we get here, we can hoist the instruction. Try to place it
1063  // before the icmp instruction preceding the conditional branch.
1064  BasicBlock::iterator InsertPos = BI;
1065  if (InsertPos != BIParent->begin())
1066    --InsertPos;
1067  // Skip debug info between condition and branch.
1068  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1069    --InsertPos;
1070  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1071    SmallPtrSet<Instruction *, 4> BB1Insns;
1072    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1073        BB1I != BB1E; ++BB1I)
1074      BB1Insns.insert(BB1I);
1075    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1076        UI != UE; ++UI) {
1077      Instruction *Use = cast<Instruction>(*UI);
1078      if (!BB1Insns.count(Use)) continue;
1079
1080      // If BrCond uses the instruction that place it just before
1081      // branch instruction.
1082      InsertPos = BI;
1083      break;
1084    }
1085  } else
1086    InsertPos = BI;
1087  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1088
1089  // Create a select whose true value is the speculatively executed value and
1090  // false value is the previously determined FalseV.
1091  IRBuilder<true, NoFolder> Builder(BI);
1092  SelectInst *SI;
1093  if (Invert)
1094    SI = cast<SelectInst>
1095      (Builder.CreateSelect(BrCond, FalseV, HInst,
1096                            FalseV->getName() + "." + HInst->getName()));
1097  else
1098    SI = cast<SelectInst>
1099      (Builder.CreateSelect(BrCond, HInst, FalseV,
1100                            HInst->getName() + "." + FalseV->getName()));
1101
1102  // Make the PHI node use the select for all incoming values for "then" and
1103  // "if" blocks.
1104  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1105    PHINode *PN = PHIUses[i];
1106    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1107      if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1108        PN->setIncomingValue(j, SI);
1109  }
1110
1111  ++NumSpeculations;
1112  return true;
1113}
1114
1115/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1116/// across this block.
1117static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1118  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1119  unsigned Size = 0;
1120
1121  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1122    if (isa<DbgInfoIntrinsic>(BBI))
1123      continue;
1124    if (Size > 10) return false;  // Don't clone large BB's.
1125    ++Size;
1126
1127    // We can only support instructions that do not define values that are
1128    // live outside of the current basic block.
1129    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1130         UI != E; ++UI) {
1131      Instruction *U = cast<Instruction>(*UI);
1132      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1133    }
1134
1135    // Looks ok, continue checking.
1136  }
1137
1138  return true;
1139}
1140
1141/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1142/// that is defined in the same block as the branch and if any PHI entries are
1143/// constants, thread edges corresponding to that entry to be branches to their
1144/// ultimate destination.
1145static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1146  BasicBlock *BB = BI->getParent();
1147  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1148  // NOTE: we currently cannot transform this case if the PHI node is used
1149  // outside of the block.
1150  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1151    return false;
1152
1153  // Degenerate case of a single entry PHI.
1154  if (PN->getNumIncomingValues() == 1) {
1155    FoldSingleEntryPHINodes(PN->getParent());
1156    return true;
1157  }
1158
1159  // Now we know that this block has multiple preds and two succs.
1160  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1161
1162  // Okay, this is a simple enough basic block.  See if any phi values are
1163  // constants.
1164  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1165    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1166    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1167
1168    // Okay, we now know that all edges from PredBB should be revectored to
1169    // branch to RealDest.
1170    BasicBlock *PredBB = PN->getIncomingBlock(i);
1171    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1172
1173    if (RealDest == BB) continue;  // Skip self loops.
1174
1175    // The dest block might have PHI nodes, other predecessors and other
1176    // difficult cases.  Instead of being smart about this, just insert a new
1177    // block that jumps to the destination block, effectively splitting
1178    // the edge we are about to create.
1179    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1180                                            RealDest->getName()+".critedge",
1181                                            RealDest->getParent(), RealDest);
1182    BranchInst::Create(RealDest, EdgeBB);
1183
1184    // Update PHI nodes.
1185    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1186
1187    // BB may have instructions that are being threaded over.  Clone these
1188    // instructions into EdgeBB.  We know that there will be no uses of the
1189    // cloned instructions outside of EdgeBB.
1190    BasicBlock::iterator InsertPt = EdgeBB->begin();
1191    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1192    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1193      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1194        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1195        continue;
1196      }
1197      // Clone the instruction.
1198      Instruction *N = BBI->clone();
1199      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1200
1201      // Update operands due to translation.
1202      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1203           i != e; ++i) {
1204        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1205        if (PI != TranslateMap.end())
1206          *i = PI->second;
1207      }
1208
1209      // Check for trivial simplification.
1210      if (Value *V = SimplifyInstruction(N, TD)) {
1211        TranslateMap[BBI] = V;
1212        delete N;   // Instruction folded away, don't need actual inst
1213      } else {
1214        // Insert the new instruction into its new home.
1215        EdgeBB->getInstList().insert(InsertPt, N);
1216        if (!BBI->use_empty())
1217          TranslateMap[BBI] = N;
1218      }
1219    }
1220
1221    // Loop over all of the edges from PredBB to BB, changing them to branch
1222    // to EdgeBB instead.
1223    TerminatorInst *PredBBTI = PredBB->getTerminator();
1224    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1225      if (PredBBTI->getSuccessor(i) == BB) {
1226        BB->removePredecessor(PredBB);
1227        PredBBTI->setSuccessor(i, EdgeBB);
1228      }
1229
1230    // Recurse, simplifying any other constants.
1231    return FoldCondBranchOnPHI(BI, TD) | true;
1232  }
1233
1234  return false;
1235}
1236
1237/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1238/// PHI node, see if we can eliminate it.
1239static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1240  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1241  // statement", which has a very simple dominance structure.  Basically, we
1242  // are trying to find the condition that is being branched on, which
1243  // subsequently causes this merge to happen.  We really want control
1244  // dependence information for this check, but simplifycfg can't keep it up
1245  // to date, and this catches most of the cases we care about anyway.
1246  BasicBlock *BB = PN->getParent();
1247  BasicBlock *IfTrue, *IfFalse;
1248  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1249  if (!IfCond ||
1250      // Don't bother if the branch will be constant folded trivially.
1251      isa<ConstantInt>(IfCond))
1252    return false;
1253
1254  // Okay, we found that we can merge this two-entry phi node into a select.
1255  // Doing so would require us to fold *all* two entry phi nodes in this block.
1256  // At some point this becomes non-profitable (particularly if the target
1257  // doesn't support cmov's).  Only do this transformation if there are two or
1258  // fewer PHI nodes in this block.
1259  unsigned NumPhis = 0;
1260  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1261    if (NumPhis > 2)
1262      return false;
1263
1264  // Loop over the PHI's seeing if we can promote them all to select
1265  // instructions.  While we are at it, keep track of the instructions
1266  // that need to be moved to the dominating block.
1267  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1268  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1269           MaxCostVal1 = PHINodeFoldingThreshold;
1270
1271  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1272    PHINode *PN = cast<PHINode>(II++);
1273    if (Value *V = SimplifyInstruction(PN, TD)) {
1274      PN->replaceAllUsesWith(V);
1275      PN->eraseFromParent();
1276      continue;
1277    }
1278
1279    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1280                             MaxCostVal0) ||
1281        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1282                             MaxCostVal1))
1283      return false;
1284  }
1285
1286  // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1287  // we ran out of PHIs then we simplified them all.
1288  PN = dyn_cast<PHINode>(BB->begin());
1289  if (PN == 0) return true;
1290
1291  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1292  // often be turned into switches and other things.
1293  if (PN->getType()->isIntegerTy(1) &&
1294      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1295       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1296       isa<BinaryOperator>(IfCond)))
1297    return false;
1298
1299  // If we all PHI nodes are promotable, check to make sure that all
1300  // instructions in the predecessor blocks can be promoted as well.  If
1301  // not, we won't be able to get rid of the control flow, so it's not
1302  // worth promoting to select instructions.
1303  BasicBlock *DomBlock = 0;
1304  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1305  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1306  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1307    IfBlock1 = 0;
1308  } else {
1309    DomBlock = *pred_begin(IfBlock1);
1310    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1311      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1312        // This is not an aggressive instruction that we can promote.
1313        // Because of this, we won't be able to get rid of the control
1314        // flow, so the xform is not worth it.
1315        return false;
1316      }
1317  }
1318
1319  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1320    IfBlock2 = 0;
1321  } else {
1322    DomBlock = *pred_begin(IfBlock2);
1323    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1324      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1325        // This is not an aggressive instruction that we can promote.
1326        // Because of this, we won't be able to get rid of the control
1327        // flow, so the xform is not worth it.
1328        return false;
1329      }
1330  }
1331
1332  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1333               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1334
1335  // If we can still promote the PHI nodes after this gauntlet of tests,
1336  // do all of the PHI's now.
1337  Instruction *InsertPt = DomBlock->getTerminator();
1338  IRBuilder<true, NoFolder> Builder(InsertPt);
1339
1340  // Move all 'aggressive' instructions, which are defined in the
1341  // conditional parts of the if's up to the dominating block.
1342  if (IfBlock1)
1343    DomBlock->getInstList().splice(InsertPt,
1344                                   IfBlock1->getInstList(), IfBlock1->begin(),
1345                                   IfBlock1->getTerminator());
1346  if (IfBlock2)
1347    DomBlock->getInstList().splice(InsertPt,
1348                                   IfBlock2->getInstList(), IfBlock2->begin(),
1349                                   IfBlock2->getTerminator());
1350
1351  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1352    // Change the PHI node into a select instruction.
1353    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1354    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1355
1356    SelectInst *NV =
1357      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1358    PN->replaceAllUsesWith(NV);
1359    NV->takeName(PN);
1360    PN->eraseFromParent();
1361  }
1362
1363  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1364  // has been flattened.  Change DomBlock to jump directly to our new block to
1365  // avoid other simplifycfg's kicking in on the diamond.
1366  TerminatorInst *OldTI = DomBlock->getTerminator();
1367  Builder.SetInsertPoint(OldTI);
1368  Builder.CreateBr(BB);
1369  OldTI->eraseFromParent();
1370  return true;
1371}
1372
1373/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1374/// to two returning blocks, try to merge them together into one return,
1375/// introducing a select if the return values disagree.
1376static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1377                                           IRBuilder<> &Builder) {
1378  assert(BI->isConditional() && "Must be a conditional branch");
1379  BasicBlock *TrueSucc = BI->getSuccessor(0);
1380  BasicBlock *FalseSucc = BI->getSuccessor(1);
1381  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1382  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1383
1384  // Check to ensure both blocks are empty (just a return) or optionally empty
1385  // with PHI nodes.  If there are other instructions, merging would cause extra
1386  // computation on one path or the other.
1387  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1388    return false;
1389  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1390    return false;
1391
1392  Builder.SetInsertPoint(BI);
1393  // Okay, we found a branch that is going to two return nodes.  If
1394  // there is no return value for this function, just change the
1395  // branch into a return.
1396  if (FalseRet->getNumOperands() == 0) {
1397    TrueSucc->removePredecessor(BI->getParent());
1398    FalseSucc->removePredecessor(BI->getParent());
1399    Builder.CreateRetVoid();
1400    EraseTerminatorInstAndDCECond(BI);
1401    return true;
1402  }
1403
1404  // Otherwise, figure out what the true and false return values are
1405  // so we can insert a new select instruction.
1406  Value *TrueValue = TrueRet->getReturnValue();
1407  Value *FalseValue = FalseRet->getReturnValue();
1408
1409  // Unwrap any PHI nodes in the return blocks.
1410  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1411    if (TVPN->getParent() == TrueSucc)
1412      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1413  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1414    if (FVPN->getParent() == FalseSucc)
1415      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1416
1417  // In order for this transformation to be safe, we must be able to
1418  // unconditionally execute both operands to the return.  This is
1419  // normally the case, but we could have a potentially-trapping
1420  // constant expression that prevents this transformation from being
1421  // safe.
1422  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1423    if (TCV->canTrap())
1424      return false;
1425  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1426    if (FCV->canTrap())
1427      return false;
1428
1429  // Okay, we collected all the mapped values and checked them for sanity, and
1430  // defined to really do this transformation.  First, update the CFG.
1431  TrueSucc->removePredecessor(BI->getParent());
1432  FalseSucc->removePredecessor(BI->getParent());
1433
1434  // Insert select instructions where needed.
1435  Value *BrCond = BI->getCondition();
1436  if (TrueValue) {
1437    // Insert a select if the results differ.
1438    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1439    } else if (isa<UndefValue>(TrueValue)) {
1440      TrueValue = FalseValue;
1441    } else {
1442      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1443                                       FalseValue, "retval");
1444    }
1445  }
1446
1447  Value *RI = !TrueValue ?
1448    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1449
1450  (void) RI;
1451
1452  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1453               << "\n  " << *BI << "NewRet = " << *RI
1454               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1455
1456  EraseTerminatorInstAndDCECond(BI);
1457
1458  return true;
1459}
1460
1461/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1462/// predecessor branches to us and one of our successors, fold the block into
1463/// the predecessor and use logical operations to pick the right destination.
1464bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1465  BasicBlock *BB = BI->getParent();
1466
1467  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1468  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1469    Cond->getParent() != BB || !Cond->hasOneUse())
1470  return false;
1471
1472  // Only allow this if the condition is a simple instruction that can be
1473  // executed unconditionally.  It must be in the same block as the branch, and
1474  // must be at the front of the block.
1475  BasicBlock::iterator FrontIt = BB->front();
1476
1477  // Ignore dbg intrinsics.
1478  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1479
1480  // Allow a single instruction to be hoisted in addition to the compare
1481  // that feeds the branch.  We later ensure that any values that _it_ uses
1482  // were also live in the predecessor, so that we don't unnecessarily create
1483  // register pressure or inhibit out-of-order execution.
1484  Instruction *BonusInst = 0;
1485  if (&*FrontIt != Cond &&
1486      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1487      FrontIt->isSafeToSpeculativelyExecute()) {
1488    BonusInst = &*FrontIt;
1489    ++FrontIt;
1490
1491    // Ignore dbg intrinsics.
1492    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1493  }
1494
1495  // Only a single bonus inst is allowed.
1496  if (&*FrontIt != Cond)
1497    return false;
1498
1499  // Make sure the instruction after the condition is the cond branch.
1500  BasicBlock::iterator CondIt = Cond; ++CondIt;
1501
1502  // Ingore dbg intrinsics.
1503  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1504
1505  if (&*CondIt != BI)
1506    return false;
1507
1508  // Cond is known to be a compare or binary operator.  Check to make sure that
1509  // neither operand is a potentially-trapping constant expression.
1510  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1511    if (CE->canTrap())
1512      return false;
1513  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1514    if (CE->canTrap())
1515      return false;
1516
1517  // Finally, don't infinitely unroll conditional loops.
1518  BasicBlock *TrueDest  = BI->getSuccessor(0);
1519  BasicBlock *FalseDest = BI->getSuccessor(1);
1520  if (TrueDest == BB || FalseDest == BB)
1521    return false;
1522
1523  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1524    BasicBlock *PredBlock = *PI;
1525    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1526
1527    // Check that we have two conditional branches.  If there is a PHI node in
1528    // the common successor, verify that the same value flows in from both
1529    // blocks.
1530    if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1531      continue;
1532
1533    // Determine if the two branches share a common destination.
1534    Instruction::BinaryOps Opc;
1535    bool InvertPredCond = false;
1536
1537    if (PBI->getSuccessor(0) == TrueDest)
1538      Opc = Instruction::Or;
1539    else if (PBI->getSuccessor(1) == FalseDest)
1540      Opc = Instruction::And;
1541    else if (PBI->getSuccessor(0) == FalseDest)
1542      Opc = Instruction::And, InvertPredCond = true;
1543    else if (PBI->getSuccessor(1) == TrueDest)
1544      Opc = Instruction::Or, InvertPredCond = true;
1545    else
1546      continue;
1547
1548    // Ensure that any values used in the bonus instruction are also used
1549    // by the terminator of the predecessor.  This means that those values
1550    // must already have been resolved, so we won't be inhibiting the
1551    // out-of-order core by speculating them earlier.
1552    if (BonusInst) {
1553      // Collect the values used by the bonus inst
1554      SmallPtrSet<Value*, 4> UsedValues;
1555      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1556           OE = BonusInst->op_end(); OI != OE; ++OI) {
1557        Value* V = *OI;
1558        if (!isa<Constant>(V))
1559          UsedValues.insert(V);
1560      }
1561
1562      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1563      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1564
1565      // Walk up to four levels back up the use-def chain of the predecessor's
1566      // terminator to see if all those values were used.  The choice of four
1567      // levels is arbitrary, to provide a compile-time-cost bound.
1568      while (!Worklist.empty()) {
1569        std::pair<Value*, unsigned> Pair = Worklist.back();
1570        Worklist.pop_back();
1571
1572        if (Pair.second >= 4) continue;
1573        UsedValues.erase(Pair.first);
1574        if (UsedValues.empty()) break;
1575
1576        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1577          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1578               OI != OE; ++OI)
1579            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1580        }
1581      }
1582
1583      if (!UsedValues.empty()) return false;
1584    }
1585
1586    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1587    IRBuilder<> Builder(PBI);
1588
1589    // If we need to invert the condition in the pred block to match, do so now.
1590    if (InvertPredCond) {
1591      Value *NewCond = PBI->getCondition();
1592
1593      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1594        CmpInst *CI = cast<CmpInst>(NewCond);
1595        CI->setPredicate(CI->getInversePredicate());
1596      } else {
1597        NewCond = Builder.CreateNot(NewCond,
1598                                    PBI->getCondition()->getName()+".not");
1599      }
1600
1601      PBI->setCondition(NewCond);
1602      BasicBlock *OldTrue = PBI->getSuccessor(0);
1603      BasicBlock *OldFalse = PBI->getSuccessor(1);
1604      PBI->setSuccessor(0, OldFalse);
1605      PBI->setSuccessor(1, OldTrue);
1606    }
1607
1608    // If we have a bonus inst, clone it into the predecessor block.
1609    Instruction *NewBonus = 0;
1610    if (BonusInst) {
1611      NewBonus = BonusInst->clone();
1612      PredBlock->getInstList().insert(PBI, NewBonus);
1613      NewBonus->takeName(BonusInst);
1614      BonusInst->setName(BonusInst->getName()+".old");
1615    }
1616
1617    // Clone Cond into the predecessor basic block, and or/and the
1618    // two conditions together.
1619    Instruction *New = Cond->clone();
1620    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1621    PredBlock->getInstList().insert(PBI, New);
1622    New->takeName(Cond);
1623    Cond->setName(New->getName()+".old");
1624
1625    Instruction *NewCond =
1626      cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1627                                            New, "or.cond"));
1628    PBI->setCondition(NewCond);
1629    if (PBI->getSuccessor(0) == BB) {
1630      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1631      PBI->setSuccessor(0, TrueDest);
1632    }
1633    if (PBI->getSuccessor(1) == BB) {
1634      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1635      PBI->setSuccessor(1, FalseDest);
1636    }
1637
1638    // Copy any debug value intrinsics into the end of PredBlock.
1639    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1640      if (isa<DbgInfoIntrinsic>(*I))
1641        I->clone()->insertBefore(PBI);
1642
1643    return true;
1644  }
1645  return false;
1646}
1647
1648/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1649/// predecessor of another block, this function tries to simplify it.  We know
1650/// that PBI and BI are both conditional branches, and BI is in one of the
1651/// successor blocks of PBI - PBI branches to BI.
1652static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1653  assert(PBI->isConditional() && BI->isConditional());
1654  BasicBlock *BB = BI->getParent();
1655
1656  // If this block ends with a branch instruction, and if there is a
1657  // predecessor that ends on a branch of the same condition, make
1658  // this conditional branch redundant.
1659  if (PBI->getCondition() == BI->getCondition() &&
1660      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1661    // Okay, the outcome of this conditional branch is statically
1662    // knowable.  If this block had a single pred, handle specially.
1663    if (BB->getSinglePredecessor()) {
1664      // Turn this into a branch on constant.
1665      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1666      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1667                                        CondIsTrue));
1668      return true;  // Nuke the branch on constant.
1669    }
1670
1671    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1672    // in the constant and simplify the block result.  Subsequent passes of
1673    // simplifycfg will thread the block.
1674    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1675      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1676      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1677                                       std::distance(PB, PE),
1678                                       BI->getCondition()->getName() + ".pr",
1679                                       BB->begin());
1680      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1681      // predecessor, compute the PHI'd conditional value for all of the preds.
1682      // Any predecessor where the condition is not computable we keep symbolic.
1683      for (pred_iterator PI = PB; PI != PE; ++PI) {
1684        BasicBlock *P = *PI;
1685        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1686            PBI != BI && PBI->isConditional() &&
1687            PBI->getCondition() == BI->getCondition() &&
1688            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1689          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1690          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1691                                              CondIsTrue), P);
1692        } else {
1693          NewPN->addIncoming(BI->getCondition(), P);
1694        }
1695      }
1696
1697      BI->setCondition(NewPN);
1698      return true;
1699    }
1700  }
1701
1702  // If this is a conditional branch in an empty block, and if any
1703  // predecessors is a conditional branch to one of our destinations,
1704  // fold the conditions into logical ops and one cond br.
1705  BasicBlock::iterator BBI = BB->begin();
1706  // Ignore dbg intrinsics.
1707  while (isa<DbgInfoIntrinsic>(BBI))
1708    ++BBI;
1709  if (&*BBI != BI)
1710    return false;
1711
1712
1713  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1714    if (CE->canTrap())
1715      return false;
1716
1717  int PBIOp, BIOp;
1718  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1719    PBIOp = BIOp = 0;
1720  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1721    PBIOp = 0, BIOp = 1;
1722  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1723    PBIOp = 1, BIOp = 0;
1724  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1725    PBIOp = BIOp = 1;
1726  else
1727    return false;
1728
1729  // Check to make sure that the other destination of this branch
1730  // isn't BB itself.  If so, this is an infinite loop that will
1731  // keep getting unwound.
1732  if (PBI->getSuccessor(PBIOp) == BB)
1733    return false;
1734
1735  // Do not perform this transformation if it would require
1736  // insertion of a large number of select instructions. For targets
1737  // without predication/cmovs, this is a big pessimization.
1738  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1739
1740  unsigned NumPhis = 0;
1741  for (BasicBlock::iterator II = CommonDest->begin();
1742       isa<PHINode>(II); ++II, ++NumPhis)
1743    if (NumPhis > 2) // Disable this xform.
1744      return false;
1745
1746  // Finally, if everything is ok, fold the branches to logical ops.
1747  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1748
1749  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1750               << "AND: " << *BI->getParent());
1751
1752
1753  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1754  // branch in it, where one edge (OtherDest) goes back to itself but the other
1755  // exits.  We don't *know* that the program avoids the infinite loop
1756  // (even though that seems likely).  If we do this xform naively, we'll end up
1757  // recursively unpeeling the loop.  Since we know that (after the xform is
1758  // done) that the block *is* infinite if reached, we just make it an obviously
1759  // infinite loop with no cond branch.
1760  if (OtherDest == BB) {
1761    // Insert it at the end of the function, because it's either code,
1762    // or it won't matter if it's hot. :)
1763    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1764                                                  "infloop", BB->getParent());
1765    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1766    OtherDest = InfLoopBlock;
1767  }
1768
1769  DEBUG(dbgs() << *PBI->getParent()->getParent());
1770
1771  // BI may have other predecessors.  Because of this, we leave
1772  // it alone, but modify PBI.
1773
1774  // Make sure we get to CommonDest on True&True directions.
1775  Value *PBICond = PBI->getCondition();
1776  IRBuilder<true, NoFolder> Builder(PBI);
1777  if (PBIOp)
1778    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1779
1780  Value *BICond = BI->getCondition();
1781  if (BIOp)
1782    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1783
1784  // Merge the conditions.
1785  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1786
1787  // Modify PBI to branch on the new condition to the new dests.
1788  PBI->setCondition(Cond);
1789  PBI->setSuccessor(0, CommonDest);
1790  PBI->setSuccessor(1, OtherDest);
1791
1792  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1793  // block that are identical to the entries for BI's block.
1794  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1795
1796  // We know that the CommonDest already had an edge from PBI to
1797  // it.  If it has PHIs though, the PHIs may have different
1798  // entries for BB and PBI's BB.  If so, insert a select to make
1799  // them agree.
1800  PHINode *PN;
1801  for (BasicBlock::iterator II = CommonDest->begin();
1802       (PN = dyn_cast<PHINode>(II)); ++II) {
1803    Value *BIV = PN->getIncomingValueForBlock(BB);
1804    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1805    Value *PBIV = PN->getIncomingValue(PBBIdx);
1806    if (BIV != PBIV) {
1807      // Insert a select in PBI to pick the right value.
1808      Value *NV = cast<SelectInst>
1809        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1810      PN->setIncomingValue(PBBIdx, NV);
1811    }
1812  }
1813
1814  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1815  DEBUG(dbgs() << *PBI->getParent()->getParent());
1816
1817  // This basic block is probably dead.  We know it has at least
1818  // one fewer predecessor.
1819  return true;
1820}
1821
1822// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1823// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1824// Takes care of updating the successors and removing the old terminator.
1825// Also makes sure not to introduce new successors by assuming that edges to
1826// non-successor TrueBBs and FalseBBs aren't reachable.
1827static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1828                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
1829  // Remove any superfluous successor edges from the CFG.
1830  // First, figure out which successors to preserve.
1831  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1832  // successor.
1833  BasicBlock *KeepEdge1 = TrueBB;
1834  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1835
1836  // Then remove the rest.
1837  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1838    BasicBlock *Succ = OldTerm->getSuccessor(I);
1839    // Make sure only to keep exactly one copy of each edge.
1840    if (Succ == KeepEdge1)
1841      KeepEdge1 = 0;
1842    else if (Succ == KeepEdge2)
1843      KeepEdge2 = 0;
1844    else
1845      Succ->removePredecessor(OldTerm->getParent());
1846  }
1847
1848  IRBuilder<> Builder(OldTerm);
1849  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1850
1851  // Insert an appropriate new terminator.
1852  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1853    if (TrueBB == FalseBB)
1854      // We were only looking for one successor, and it was present.
1855      // Create an unconditional branch to it.
1856      Builder.CreateBr(TrueBB);
1857    else
1858      // We found both of the successors we were looking for.
1859      // Create a conditional branch sharing the condition of the select.
1860      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1861  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1862    // Neither of the selected blocks were successors, so this
1863    // terminator must be unreachable.
1864    new UnreachableInst(OldTerm->getContext(), OldTerm);
1865  } else {
1866    // One of the selected values was a successor, but the other wasn't.
1867    // Insert an unconditional branch to the one that was found;
1868    // the edge to the one that wasn't must be unreachable.
1869    if (KeepEdge1 == 0)
1870      // Only TrueBB was found.
1871      Builder.CreateBr(TrueBB);
1872    else
1873      // Only FalseBB was found.
1874      Builder.CreateBr(FalseBB);
1875  }
1876
1877  EraseTerminatorInstAndDCECond(OldTerm);
1878  return true;
1879}
1880
1881// SimplifySwitchOnSelect - Replaces
1882//   (switch (select cond, X, Y)) on constant X, Y
1883// with a branch - conditional if X and Y lead to distinct BBs,
1884// unconditional otherwise.
1885static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1886  // Check for constant integer values in the select.
1887  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1888  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1889  if (!TrueVal || !FalseVal)
1890    return false;
1891
1892  // Find the relevant condition and destinations.
1893  Value *Condition = Select->getCondition();
1894  BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1895  BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1896
1897  // Perform the actual simplification.
1898  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1899}
1900
1901// SimplifyIndirectBrOnSelect - Replaces
1902//   (indirectbr (select cond, blockaddress(@fn, BlockA),
1903//                             blockaddress(@fn, BlockB)))
1904// with
1905//   (br cond, BlockA, BlockB).
1906static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1907  // Check that both operands of the select are block addresses.
1908  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1909  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1910  if (!TBA || !FBA)
1911    return false;
1912
1913  // Extract the actual blocks.
1914  BasicBlock *TrueBB = TBA->getBasicBlock();
1915  BasicBlock *FalseBB = FBA->getBasicBlock();
1916
1917  // Perform the actual simplification.
1918  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1919}
1920
1921/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1922/// instruction (a seteq/setne with a constant) as the only instruction in a
1923/// block that ends with an uncond branch.  We are looking for a very specific
1924/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1925/// this case, we merge the first two "or's of icmp" into a switch, but then the
1926/// default value goes to an uncond block with a seteq in it, we get something
1927/// like:
1928///
1929///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1930/// DEFAULT:
1931///   %tmp = icmp eq i8 %A, 92
1932///   br label %end
1933/// end:
1934///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1935///
1936/// We prefer to split the edge to 'end' so that there is a true/false entry to
1937/// the PHI, merging the third icmp into the switch.
1938static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1939                                                  const TargetData *TD,
1940                                                  IRBuilder<> &Builder) {
1941  BasicBlock *BB = ICI->getParent();
1942
1943  // If the block has any PHIs in it or the icmp has multiple uses, it is too
1944  // complex.
1945  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1946
1947  Value *V = ICI->getOperand(0);
1948  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1949
1950  // The pattern we're looking for is where our only predecessor is a switch on
1951  // 'V' and this block is the default case for the switch.  In this case we can
1952  // fold the compared value into the switch to simplify things.
1953  BasicBlock *Pred = BB->getSinglePredecessor();
1954  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1955
1956  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1957  if (SI->getCondition() != V)
1958    return false;
1959
1960  // If BB is reachable on a non-default case, then we simply know the value of
1961  // V in this block.  Substitute it and constant fold the icmp instruction
1962  // away.
1963  if (SI->getDefaultDest() != BB) {
1964    ConstantInt *VVal = SI->findCaseDest(BB);
1965    assert(VVal && "Should have a unique destination value");
1966    ICI->setOperand(0, VVal);
1967
1968    if (Value *V = SimplifyInstruction(ICI, TD)) {
1969      ICI->replaceAllUsesWith(V);
1970      ICI->eraseFromParent();
1971    }
1972    // BB is now empty, so it is likely to simplify away.
1973    return SimplifyCFG(BB) | true;
1974  }
1975
1976  // Ok, the block is reachable from the default dest.  If the constant we're
1977  // comparing exists in one of the other edges, then we can constant fold ICI
1978  // and zap it.
1979  if (SI->findCaseValue(Cst) != 0) {
1980    Value *V;
1981    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1982      V = ConstantInt::getFalse(BB->getContext());
1983    else
1984      V = ConstantInt::getTrue(BB->getContext());
1985
1986    ICI->replaceAllUsesWith(V);
1987    ICI->eraseFromParent();
1988    // BB is now empty, so it is likely to simplify away.
1989    return SimplifyCFG(BB) | true;
1990  }
1991
1992  // The use of the icmp has to be in the 'end' block, by the only PHI node in
1993  // the block.
1994  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1995  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1996  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1997      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1998    return false;
1999
2000  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2001  // true in the PHI.
2002  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2003  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2004
2005  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2006    std::swap(DefaultCst, NewCst);
2007
2008  // Replace ICI (which is used by the PHI for the default value) with true or
2009  // false depending on if it is EQ or NE.
2010  ICI->replaceAllUsesWith(DefaultCst);
2011  ICI->eraseFromParent();
2012
2013  // Okay, the switch goes to this block on a default value.  Add an edge from
2014  // the switch to the merge point on the compared value.
2015  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2016                                         BB->getParent(), BB);
2017  SI->addCase(Cst, NewBB);
2018
2019  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2020  Builder.SetInsertPoint(NewBB);
2021  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2022  Builder.CreateBr(SuccBlock);
2023  PHIUse->addIncoming(NewCst, NewBB);
2024  return true;
2025}
2026
2027/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2028/// Check to see if it is branching on an or/and chain of icmp instructions, and
2029/// fold it into a switch instruction if so.
2030static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2031                                      IRBuilder<> &Builder) {
2032  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2033  if (Cond == 0) return false;
2034
2035
2036  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2037  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2038  // 'setne's and'ed together, collect them.
2039  Value *CompVal = 0;
2040  std::vector<ConstantInt*> Values;
2041  bool TrueWhenEqual = true;
2042  Value *ExtraCase = 0;
2043  unsigned UsedICmps = 0;
2044
2045  if (Cond->getOpcode() == Instruction::Or) {
2046    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2047                                     UsedICmps);
2048  } else if (Cond->getOpcode() == Instruction::And) {
2049    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2050                                     UsedICmps);
2051    TrueWhenEqual = false;
2052  }
2053
2054  // If we didn't have a multiply compared value, fail.
2055  if (CompVal == 0) return false;
2056
2057  // Avoid turning single icmps into a switch.
2058  if (UsedICmps <= 1)
2059    return false;
2060
2061  // There might be duplicate constants in the list, which the switch
2062  // instruction can't handle, remove them now.
2063  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2064  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2065
2066  // If Extra was used, we require at least two switch values to do the
2067  // transformation.  A switch with one value is just an cond branch.
2068  if (ExtraCase && Values.size() < 2) return false;
2069
2070  // Figure out which block is which destination.
2071  BasicBlock *DefaultBB = BI->getSuccessor(1);
2072  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2073  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2074
2075  BasicBlock *BB = BI->getParent();
2076
2077  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2078               << " cases into SWITCH.  BB is:\n" << *BB);
2079
2080  // If there are any extra values that couldn't be folded into the switch
2081  // then we evaluate them with an explicit branch first.  Split the block
2082  // right before the condbr to handle it.
2083  if (ExtraCase) {
2084    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2085    // Remove the uncond branch added to the old block.
2086    TerminatorInst *OldTI = BB->getTerminator();
2087    Builder.SetInsertPoint(OldTI);
2088
2089    if (TrueWhenEqual)
2090      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2091    else
2092      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2093
2094    OldTI->eraseFromParent();
2095
2096    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2097    // for the edge we just added.
2098    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2099
2100    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2101          << "\nEXTRABB = " << *BB);
2102    BB = NewBB;
2103  }
2104
2105  Builder.SetInsertPoint(BI);
2106  // Convert pointer to int before we switch.
2107  if (CompVal->getType()->isPointerTy()) {
2108    assert(TD && "Cannot switch on pointer without TargetData");
2109    CompVal = Builder.CreatePtrToInt(CompVal,
2110                                     TD->getIntPtrType(CompVal->getContext()),
2111                                     "magicptr");
2112  }
2113
2114  // Create the new switch instruction now.
2115  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2116
2117  // Add all of the 'cases' to the switch instruction.
2118  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2119    New->addCase(Values[i], EdgeBB);
2120
2121  // We added edges from PI to the EdgeBB.  As such, if there were any
2122  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2123  // the number of edges added.
2124  for (BasicBlock::iterator BBI = EdgeBB->begin();
2125       isa<PHINode>(BBI); ++BBI) {
2126    PHINode *PN = cast<PHINode>(BBI);
2127    Value *InVal = PN->getIncomingValueForBlock(BB);
2128    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2129      PN->addIncoming(InVal, BB);
2130  }
2131
2132  // Erase the old branch instruction.
2133  EraseTerminatorInstAndDCECond(BI);
2134
2135  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2136  return true;
2137}
2138
2139bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2140  BasicBlock *BB = RI->getParent();
2141  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2142
2143  // Find predecessors that end with branches.
2144  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2145  SmallVector<BranchInst*, 8> CondBranchPreds;
2146  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2147    BasicBlock *P = *PI;
2148    TerminatorInst *PTI = P->getTerminator();
2149    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2150      if (BI->isUnconditional())
2151        UncondBranchPreds.push_back(P);
2152      else
2153        CondBranchPreds.push_back(BI);
2154    }
2155  }
2156
2157  // If we found some, do the transformation!
2158  if (!UncondBranchPreds.empty() && DupRet) {
2159    while (!UncondBranchPreds.empty()) {
2160      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2161      DEBUG(dbgs() << "FOLDING: " << *BB
2162            << "INTO UNCOND BRANCH PRED: " << *Pred);
2163      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2164    }
2165
2166    // If we eliminated all predecessors of the block, delete the block now.
2167    if (pred_begin(BB) == pred_end(BB))
2168      // We know there are no successors, so just nuke the block.
2169      BB->eraseFromParent();
2170
2171    return true;
2172  }
2173
2174  // Check out all of the conditional branches going to this return
2175  // instruction.  If any of them just select between returns, change the
2176  // branch itself into a select/return pair.
2177  while (!CondBranchPreds.empty()) {
2178    BranchInst *BI = CondBranchPreds.pop_back_val();
2179
2180    // Check to see if the non-BB successor is also a return block.
2181    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2182        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2183        SimplifyCondBranchToTwoReturns(BI, Builder))
2184      return true;
2185  }
2186  return false;
2187}
2188
2189bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2190  // Check to see if the first instruction in this block is just an unwind.
2191  // If so, replace any invoke instructions which use this as an exception
2192  // destination with call instructions.
2193  BasicBlock *BB = UI->getParent();
2194  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2195
2196  bool Changed = false;
2197  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2198  while (!Preds.empty()) {
2199    BasicBlock *Pred = Preds.back();
2200    InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2201    if (II && II->getUnwindDest() == BB) {
2202      // Insert a new branch instruction before the invoke, because this
2203      // is now a fall through.
2204      Builder.SetInsertPoint(II);
2205      BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2206      Pred->getInstList().remove(II);   // Take out of symbol table
2207
2208      // Insert the call now.
2209      SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2210      Builder.SetInsertPoint(BI);
2211      CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2212                                        Args.begin(), Args.end(),
2213                                        II->getName());
2214      CI->setCallingConv(II->getCallingConv());
2215      CI->setAttributes(II->getAttributes());
2216      // If the invoke produced a value, the Call now does instead.
2217      II->replaceAllUsesWith(CI);
2218      delete II;
2219      Changed = true;
2220    }
2221
2222    Preds.pop_back();
2223  }
2224
2225  // If this block is now dead (and isn't the entry block), remove it.
2226  if (pred_begin(BB) == pred_end(BB) &&
2227      BB != &BB->getParent()->getEntryBlock()) {
2228    // We know there are no successors, so just nuke the block.
2229    BB->eraseFromParent();
2230    return true;
2231  }
2232
2233  return Changed;
2234}
2235
2236bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2237  BasicBlock *BB = UI->getParent();
2238
2239  bool Changed = false;
2240
2241  // If there are any instructions immediately before the unreachable that can
2242  // be removed, do so.
2243  while (UI != BB->begin()) {
2244    BasicBlock::iterator BBI = UI;
2245    --BBI;
2246    // Do not delete instructions that can have side effects, like calls
2247    // (which may never return) and volatile loads and stores.
2248    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2249
2250    if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2251      if (SI->isVolatile())
2252        break;
2253
2254    if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2255      if (LI->isVolatile())
2256        break;
2257
2258    // Delete this instruction (any uses are guaranteed to be dead)
2259    if (!BBI->use_empty())
2260      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2261    BBI->eraseFromParent();
2262    Changed = true;
2263  }
2264
2265  // If the unreachable instruction is the first in the block, take a gander
2266  // at all of the predecessors of this instruction, and simplify them.
2267  if (&BB->front() != UI) return Changed;
2268
2269  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2270  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2271    TerminatorInst *TI = Preds[i]->getTerminator();
2272    IRBuilder<> Builder(TI);
2273    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2274      if (BI->isUnconditional()) {
2275        if (BI->getSuccessor(0) == BB) {
2276          new UnreachableInst(TI->getContext(), TI);
2277          TI->eraseFromParent();
2278          Changed = true;
2279        }
2280      } else {
2281        if (BI->getSuccessor(0) == BB) {
2282          Builder.CreateBr(BI->getSuccessor(1));
2283          EraseTerminatorInstAndDCECond(BI);
2284        } else if (BI->getSuccessor(1) == BB) {
2285          Builder.CreateBr(BI->getSuccessor(0));
2286          EraseTerminatorInstAndDCECond(BI);
2287          Changed = true;
2288        }
2289      }
2290    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2291      for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2292        if (SI->getSuccessor(i) == BB) {
2293          BB->removePredecessor(SI->getParent());
2294          SI->removeCase(i);
2295          --i; --e;
2296          Changed = true;
2297        }
2298      // If the default value is unreachable, figure out the most popular
2299      // destination and make it the default.
2300      if (SI->getSuccessor(0) == BB) {
2301        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2302        for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2303          std::pair<unsigned, unsigned>& entry =
2304              Popularity[SI->getSuccessor(i)];
2305          if (entry.first == 0) {
2306            entry.first = 1;
2307            entry.second = i;
2308          } else {
2309            entry.first++;
2310          }
2311        }
2312
2313        // Find the most popular block.
2314        unsigned MaxPop = 0;
2315        unsigned MaxIndex = 0;
2316        BasicBlock *MaxBlock = 0;
2317        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2318             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2319          if (I->second.first > MaxPop ||
2320              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2321            MaxPop = I->second.first;
2322            MaxIndex = I->second.second;
2323            MaxBlock = I->first;
2324          }
2325        }
2326        if (MaxBlock) {
2327          // Make this the new default, allowing us to delete any explicit
2328          // edges to it.
2329          SI->setSuccessor(0, MaxBlock);
2330          Changed = true;
2331
2332          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2333          // it.
2334          if (isa<PHINode>(MaxBlock->begin()))
2335            for (unsigned i = 0; i != MaxPop-1; ++i)
2336              MaxBlock->removePredecessor(SI->getParent());
2337
2338          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2339            if (SI->getSuccessor(i) == MaxBlock) {
2340              SI->removeCase(i);
2341              --i; --e;
2342            }
2343        }
2344      }
2345    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2346      if (II->getUnwindDest() == BB) {
2347        // Convert the invoke to a call instruction.  This would be a good
2348        // place to note that the call does not throw though.
2349        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2350        II->removeFromParent();   // Take out of symbol table
2351
2352        // Insert the call now...
2353        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2354        Builder.SetInsertPoint(BI);
2355        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2356                                          Args.begin(), Args.end(),
2357                                          II->getName());
2358        CI->setCallingConv(II->getCallingConv());
2359        CI->setAttributes(II->getAttributes());
2360        // If the invoke produced a value, the call does now instead.
2361        II->replaceAllUsesWith(CI);
2362        delete II;
2363        Changed = true;
2364      }
2365    }
2366  }
2367
2368  // If this block is now dead, remove it.
2369  if (pred_begin(BB) == pred_end(BB) &&
2370      BB != &BB->getParent()->getEntryBlock()) {
2371    // We know there are no successors, so just nuke the block.
2372    BB->eraseFromParent();
2373    return true;
2374  }
2375
2376  return Changed;
2377}
2378
2379/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2380/// integer range comparison into a sub, an icmp and a branch.
2381static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2382  assert(SI->getNumCases() > 2 && "Degenerate switch?");
2383
2384  // Make sure all cases point to the same destination and gather the values.
2385  SmallVector<ConstantInt *, 16> Cases;
2386  Cases.push_back(SI->getCaseValue(1));
2387  for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2388    if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2389      return false;
2390    Cases.push_back(SI->getCaseValue(I));
2391  }
2392  assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2393
2394  // Sort the case values, then check if they form a range we can transform.
2395  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2396  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2397    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2398      return false;
2399  }
2400
2401  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2402  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2403
2404  Value *Sub = SI->getCondition();
2405  if (!Offset->isNullValue())
2406    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2407  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2408  Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2409
2410  // Prune obsolete incoming values off the successor's PHI nodes.
2411  for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2412       isa<PHINode>(BBI); ++BBI) {
2413    for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2414      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2415  }
2416  SI->eraseFromParent();
2417
2418  return true;
2419}
2420
2421/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2422/// and use it to remove dead cases.
2423static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2424  Value *Cond = SI->getCondition();
2425  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2426  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2427  ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2428
2429  // Gather dead cases.
2430  SmallVector<ConstantInt*, 8> DeadCases;
2431  for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2432    if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2433        (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2434      DeadCases.push_back(SI->getCaseValue(I));
2435      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2436                   << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2437    }
2438  }
2439
2440  // Remove dead cases from the switch.
2441  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2442    unsigned Case = SI->findCaseValue(DeadCases[I]);
2443    // Prune unused values from PHI nodes.
2444    SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2445    SI->removeCase(Case);
2446  }
2447
2448  return !DeadCases.empty();
2449}
2450
2451bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2452  // If this switch is too complex to want to look at, ignore it.
2453  if (!isValueEqualityComparison(SI))
2454    return false;
2455
2456  BasicBlock *BB = SI->getParent();
2457
2458  // If we only have one predecessor, and if it is a branch on this value,
2459  // see if that predecessor totally determines the outcome of this switch.
2460  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2461    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2462      return SimplifyCFG(BB) | true;
2463
2464  Value *Cond = SI->getCondition();
2465  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2466    if (SimplifySwitchOnSelect(SI, Select))
2467      return SimplifyCFG(BB) | true;
2468
2469  // If the block only contains the switch, see if we can fold the block
2470  // away into any preds.
2471  BasicBlock::iterator BBI = BB->begin();
2472  // Ignore dbg intrinsics.
2473  while (isa<DbgInfoIntrinsic>(BBI))
2474    ++BBI;
2475  if (SI == &*BBI)
2476    if (FoldValueComparisonIntoPredecessors(SI, Builder))
2477      return SimplifyCFG(BB) | true;
2478
2479  // Try to transform the switch into an icmp and a branch.
2480  if (TurnSwitchRangeIntoICmp(SI, Builder))
2481    return SimplifyCFG(BB) | true;
2482
2483  // Remove unreachable cases.
2484  if (EliminateDeadSwitchCases(SI))
2485    return SimplifyCFG(BB) | true;
2486
2487  return false;
2488}
2489
2490bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2491  BasicBlock *BB = IBI->getParent();
2492  bool Changed = false;
2493
2494  // Eliminate redundant destinations.
2495  SmallPtrSet<Value *, 8> Succs;
2496  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2497    BasicBlock *Dest = IBI->getDestination(i);
2498    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2499      Dest->removePredecessor(BB);
2500      IBI->removeDestination(i);
2501      --i; --e;
2502      Changed = true;
2503    }
2504  }
2505
2506  if (IBI->getNumDestinations() == 0) {
2507    // If the indirectbr has no successors, change it to unreachable.
2508    new UnreachableInst(IBI->getContext(), IBI);
2509    EraseTerminatorInstAndDCECond(IBI);
2510    return true;
2511  }
2512
2513  if (IBI->getNumDestinations() == 1) {
2514    // If the indirectbr has one successor, change it to a direct branch.
2515    BranchInst::Create(IBI->getDestination(0), IBI);
2516    EraseTerminatorInstAndDCECond(IBI);
2517    return true;
2518  }
2519
2520  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2521    if (SimplifyIndirectBrOnSelect(IBI, SI))
2522      return SimplifyCFG(BB) | true;
2523  }
2524  return Changed;
2525}
2526
2527bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2528  BasicBlock *BB = BI->getParent();
2529
2530  // If the Terminator is the only non-phi instruction, simplify the block.
2531  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2532  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2533      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2534    return true;
2535
2536  // If the only instruction in the block is a seteq/setne comparison
2537  // against a constant, try to simplify the block.
2538  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2539    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2540      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2541        ;
2542      if (I->isTerminator()
2543          && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2544        return true;
2545    }
2546
2547  return false;
2548}
2549
2550
2551bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2552  BasicBlock *BB = BI->getParent();
2553
2554  // Conditional branch
2555  if (isValueEqualityComparison(BI)) {
2556    // If we only have one predecessor, and if it is a branch on this value,
2557    // see if that predecessor totally determines the outcome of this
2558    // switch.
2559    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2560      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2561        return SimplifyCFG(BB) | true;
2562
2563    // This block must be empty, except for the setcond inst, if it exists.
2564    // Ignore dbg intrinsics.
2565    BasicBlock::iterator I = BB->begin();
2566    // Ignore dbg intrinsics.
2567    while (isa<DbgInfoIntrinsic>(I))
2568      ++I;
2569    if (&*I == BI) {
2570      if (FoldValueComparisonIntoPredecessors(BI, Builder))
2571        return SimplifyCFG(BB) | true;
2572    } else if (&*I == cast<Instruction>(BI->getCondition())){
2573      ++I;
2574      // Ignore dbg intrinsics.
2575      while (isa<DbgInfoIntrinsic>(I))
2576        ++I;
2577      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2578        return SimplifyCFG(BB) | true;
2579    }
2580  }
2581
2582  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2583  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2584    return true;
2585
2586  // We have a conditional branch to two blocks that are only reachable
2587  // from BI.  We know that the condbr dominates the two blocks, so see if
2588  // there is any identical code in the "then" and "else" blocks.  If so, we
2589  // can hoist it up to the branching block.
2590  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2591    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2592      if (HoistThenElseCodeToIf(BI))
2593        return SimplifyCFG(BB) | true;
2594    } else {
2595      // If Successor #1 has multiple preds, we may be able to conditionally
2596      // execute Successor #0 if it branches to successor #1.
2597      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2598      if (Succ0TI->getNumSuccessors() == 1 &&
2599          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2600        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2601          return SimplifyCFG(BB) | true;
2602    }
2603  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2604    // If Successor #0 has multiple preds, we may be able to conditionally
2605    // execute Successor #1 if it branches to successor #0.
2606    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2607    if (Succ1TI->getNumSuccessors() == 1 &&
2608        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2609      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2610        return SimplifyCFG(BB) | true;
2611  }
2612
2613  // If this is a branch on a phi node in the current block, thread control
2614  // through this block if any PHI node entries are constants.
2615  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2616    if (PN->getParent() == BI->getParent())
2617      if (FoldCondBranchOnPHI(BI, TD))
2618        return SimplifyCFG(BB) | true;
2619
2620  // If this basic block is ONLY a setcc and a branch, and if a predecessor
2621  // branches to us and one of our successors, fold the setcc into the
2622  // predecessor and use logical operations to pick the right destination.
2623  if (FoldBranchToCommonDest(BI))
2624    return SimplifyCFG(BB) | true;
2625
2626  // Scan predecessor blocks for conditional branches.
2627  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2628    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2629      if (PBI != BI && PBI->isConditional())
2630        if (SimplifyCondBranchToCondBranch(PBI, BI))
2631          return SimplifyCFG(BB) | true;
2632
2633  return false;
2634}
2635
2636bool SimplifyCFGOpt::run(BasicBlock *BB) {
2637  bool Changed = false;
2638
2639  assert(BB && BB->getParent() && "Block not embedded in function!");
2640  assert(BB->getTerminator() && "Degenerate basic block encountered!");
2641
2642  // Remove basic blocks that have no predecessors (except the entry block)...
2643  // or that just have themself as a predecessor.  These are unreachable.
2644  if ((pred_begin(BB) == pred_end(BB) &&
2645       BB != &BB->getParent()->getEntryBlock()) ||
2646      BB->getSinglePredecessor() == BB) {
2647    DEBUG(dbgs() << "Removing BB: \n" << *BB);
2648    DeleteDeadBlock(BB);
2649    return true;
2650  }
2651
2652  // Check to see if we can constant propagate this terminator instruction
2653  // away...
2654  Changed |= ConstantFoldTerminator(BB);
2655
2656  // Check for and eliminate duplicate PHI nodes in this block.
2657  Changed |= EliminateDuplicatePHINodes(BB);
2658
2659  // Merge basic blocks into their predecessor if there is only one distinct
2660  // pred, and if there is only one distinct successor of the predecessor, and
2661  // if there are no PHI nodes.
2662  //
2663  if (MergeBlockIntoPredecessor(BB))
2664    return true;
2665
2666  IRBuilder<> Builder(BB);
2667
2668  // If there is a trivial two-entry PHI node in this basic block, and we can
2669  // eliminate it, do so now.
2670  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2671    if (PN->getNumIncomingValues() == 2)
2672      Changed |= FoldTwoEntryPHINode(PN, TD);
2673
2674  Builder.SetInsertPoint(BB->getTerminator());
2675  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2676    if (BI->isUnconditional()) {
2677      if (SimplifyUncondBranch(BI, Builder)) return true;
2678    } else {
2679      if (SimplifyCondBranch(BI, Builder)) return true;
2680    }
2681  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2682    if (SimplifyReturn(RI, Builder)) return true;
2683  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2684    if (SimplifySwitch(SI, Builder)) return true;
2685  } else if (UnreachableInst *UI =
2686               dyn_cast<UnreachableInst>(BB->getTerminator())) {
2687    if (SimplifyUnreachable(UI)) return true;
2688  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2689    if (SimplifyUnwind(UI, Builder)) return true;
2690  } else if (IndirectBrInst *IBI =
2691               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2692    if (SimplifyIndirectBr(IBI)) return true;
2693  }
2694
2695  return Changed;
2696}
2697
2698/// SimplifyCFG - This function is used to do simplification of a CFG.  For
2699/// example, it adjusts branches to branches to eliminate the extra hop, it
2700/// eliminates unreachable basic blocks, and does other "peephole" optimization
2701/// of the CFG.  It returns true if a modification was made.
2702///
2703bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2704  return SimplifyCFGOpt(TD).run(BB);
2705}
2706