SimplifyCFG.cpp revision dc3602bf0d27aac80e08ef8823967850acd05a14
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3// Peephole optimize the CFG.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/Transforms/Utils/Local.h"
8#include "llvm/Constant.h"
9#include "llvm/Intrinsics.h"
10#include "llvm/iPHINode.h"
11#include "llvm/iTerminators.h"
12#include "llvm/iOther.h"
13#include "llvm/Support/CFG.h"
14#include <algorithm>
15#include <functional>
16
17// PropagatePredecessors - This gets "Succ" ready to have the predecessors from
18// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
19// have extra slots added to them to hold the merge edges from BB's
20// predecessors, and BB itself might have had PHI nodes in it.  This function
21// returns true (failure) if the Succ BB already has a predecessor that is a
22// predecessor of BB and incoming PHI arguments would not be discernable.
23//
24// Assumption: Succ is the single successor for BB.
25//
26static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
27  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
28
29  if (!isa<PHINode>(Succ->front()))
30    return false;  // We can make the transformation, no problem.
31
32  // If there is more than one predecessor, and there are PHI nodes in
33  // the successor, then we need to add incoming edges for the PHI nodes
34  //
35  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
36
37  // Check to see if one of the predecessors of BB is already a predecessor of
38  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
39  // with incompatible values coming in from the two edges!
40  //
41  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
42    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
43      // Loop over all of the PHI nodes checking to see if there are
44      // incompatible values coming in.
45      for (BasicBlock::iterator I = Succ->begin();
46           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
47        // Loop up the entries in the PHI node for BB and for *PI if the values
48        // coming in are non-equal, we cannot merge these two blocks (instead we
49        // should insert a conditional move or something, then merge the
50        // blocks).
51        int Idx1 = PN->getBasicBlockIndex(BB);
52        int Idx2 = PN->getBasicBlockIndex(*PI);
53        assert(Idx1 != -1 && Idx2 != -1 &&
54               "Didn't have entries for my predecessors??");
55        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
56          return true;  // Values are not equal...
57      }
58    }
59
60  // Loop over all of the PHI nodes in the successor BB
61  for (BasicBlock::iterator I = Succ->begin();
62       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
63    Value *OldVal = PN->removeIncomingValue(BB, false);
64    assert(OldVal && "No entry in PHI for Pred BB!");
65
66    // If this incoming value is one of the PHI nodes in BB...
67    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
68      PHINode *OldValPN = cast<PHINode>(OldVal);
69      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
70             End = BBPreds.end(); PredI != End; ++PredI) {
71        PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
72      }
73    } else {
74      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
75             End = BBPreds.end(); PredI != End; ++PredI) {
76        // Add an incoming value for each of the new incoming values...
77        PN->addIncoming(OldVal, *PredI);
78      }
79    }
80  }
81  return false;
82}
83
84
85// SimplifyCFG - This function is used to do simplification of a CFG.  For
86// example, it adjusts branches to branches to eliminate the extra hop, it
87// eliminates unreachable basic blocks, and does other "peephole" optimization
88// of the CFG.  It returns true if a modification was made.
89//
90// WARNING:  The entry node of a function may not be simplified.
91//
92bool SimplifyCFG(BasicBlock *BB) {
93  bool Changed = false;
94  Function *M = BB->getParent();
95
96  assert(BB && BB->getParent() && "Block not embedded in function!");
97  assert(BB->getTerminator() && "Degenerate basic block encountered!");
98  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
99
100  // Check to see if the first instruction in this block is just an
101  // 'llvm.unwind'.  If so, replace any invoke instructions which use this as an
102  // exception destination with call instructions.
103  //
104  if (CallInst *CI = dyn_cast<CallInst>(&BB->front()))
105    if (Function *F = CI->getCalledFunction())
106      if (F->getIntrinsicID() == LLVMIntrinsic::unwind) {
107        std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
108        while (!Preds.empty()) {
109          BasicBlock *Pred = Preds.back();
110          if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
111            if (II->getExceptionalDest() == BB) {
112              // Insert a new branch instruction before the invoke, because this
113              // is now a fall through...
114              BranchInst *BI = new BranchInst(II->getNormalDest(), II);
115              Pred->getInstList().remove(II);   // Take out of symbol table
116
117              // Insert the call now...
118              std::vector<Value*> Args(II->op_begin()+3, II->op_end());
119              CallInst *CI = new CallInst(II->getCalledValue(), Args,
120                                          II->getName(), BI);
121              // If the invoke produced a value, the Call now does instead
122              II->replaceAllUsesWith(CI);
123              delete II;
124              Changed = true;
125            }
126
127          Preds.pop_back();
128        }
129      }
130
131  // Remove basic blocks that have no predecessors... which are unreachable.
132  if (pred_begin(BB) == pred_end(BB) &&
133      !BB->hasConstantReferences()) {
134    //cerr << "Removing BB: \n" << BB;
135
136    // Loop through all of our successors and make sure they know that one
137    // of their predecessors is going away.
138    for_each(succ_begin(BB), succ_end(BB),
139	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
140
141    while (!BB->empty()) {
142      Instruction &I = BB->back();
143      // If this instruction is used, replace uses with an arbitrary
144      // constant value.  Because control flow can't get here, we don't care
145      // what we replace the value with.  Note that since this block is
146      // unreachable, and all values contained within it must dominate their
147      // uses, that all uses will eventually be removed.
148      if (!I.use_empty())
149        // Make all users of this instruction reference the constant instead
150        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
151
152      // Remove the instruction from the basic block
153      BB->getInstList().pop_back();
154    }
155    M->getBasicBlockList().erase(BB);
156    return true;
157  }
158
159  // Check to see if we can constant propagate this terminator instruction
160  // away...
161  Changed |= ConstantFoldTerminator(BB);
162
163  // Check to see if this block has no non-phi instructions and only a single
164  // successor.  If so, replace references to this basic block with references
165  // to the successor.
166  succ_iterator SI(succ_begin(BB));
167  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
168
169    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
170    while (isa<PHINode>(*BBI)) ++BBI;
171
172    if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
173      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
174
175      if (Succ != BB) {   // Arg, don't hurt infinite loops!
176        // If our successor has PHI nodes, then we need to update them to
177        // include entries for BB's predecessors, not for BB itself.
178        // Be careful though, if this transformation fails (returns true) then
179        // we cannot do this transformation!
180        //
181	if (!PropagatePredecessorsForPHIs(BB, Succ)) {
182          //cerr << "Killing Trivial BB: \n" << BB;
183          std::string OldName = BB->getName();
184
185          std::vector<BasicBlock*>
186            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
187
188          // Move all PHI nodes in BB to Succ if they are alive, otherwise
189          // delete them.
190          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
191            if (PN->use_empty())
192              BB->getInstList().erase(BB->begin());  // Nuke instruction...
193            else {
194              // The instruction is alive, so this means that Succ must have
195              // *ONLY* had BB as a predecessor, and the PHI node is still valid
196              // now.  Simply move it into Succ, because we know that BB
197              // strictly dominated Succ.
198              BB->getInstList().remove(BB->begin());
199              Succ->getInstList().push_front(PN);
200
201              // We need to add new entries for the PHI node to account for
202              // predecessors of Succ that the PHI node does not take into
203              // account.  At this point, since we know that BB dominated succ,
204              // this means that we should any newly added incoming edges should
205              // use the PHI node as the value for these edges, because they are
206              // loop back edges.
207
208              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
209                if (OldSuccPreds[i] != BB)
210                  PN->addIncoming(PN, OldSuccPreds[i]);
211            }
212
213          // Everything that jumped to BB now goes to Succ...
214          BB->replaceAllUsesWith(Succ);
215
216          // Delete the old basic block...
217          M->getBasicBlockList().erase(BB);
218
219          if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
220            Succ->setName(OldName);
221
222          //cerr << "Function after removal: \n" << M;
223          return true;
224	}
225      }
226    }
227  }
228
229  // Merge basic blocks into their predecessor if there is only one distinct
230  // pred, and if there is only one distinct successor of the predecessor, and
231  // if there are no PHI nodes.
232  //
233  if (!BB->hasConstantReferences()) {
234    pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
235    BasicBlock *OnlyPred = *PI++;
236    for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
237      if (*PI != OnlyPred) {
238        OnlyPred = 0;       // There are multiple different predecessors...
239        break;
240      }
241
242    BasicBlock *OnlySucc = 0;
243    if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
244        OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
245      // Check to see if there is only one distinct successor...
246      succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
247      OnlySucc = BB;
248      for (; SI != SE; ++SI)
249        if (*SI != OnlySucc) {
250          OnlySucc = 0;     // There are multiple distinct successors!
251          break;
252        }
253    }
254
255    if (OnlySucc) {
256      //cerr << "Merging: " << BB << "into: " << OnlyPred;
257      TerminatorInst *Term = OnlyPred->getTerminator();
258
259      // Resolve any PHI nodes at the start of the block.  They are all
260      // guaranteed to have exactly one entry if they exist, unless there are
261      // multiple duplicate (but guaranteed to be equal) entries for the
262      // incoming edges.  This occurs when there are multiple edges from
263      // OnlyPred to OnlySucc.
264      //
265      while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
266        PN->replaceAllUsesWith(PN->getIncomingValue(0));
267        BB->getInstList().pop_front();  // Delete the phi node...
268      }
269
270      // Delete the unconditional branch from the predecessor...
271      OnlyPred->getInstList().pop_back();
272
273      // Move all definitions in the succecessor to the predecessor...
274      OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
275
276      // Make all PHI nodes that refered to BB now refer to Pred as their
277      // source...
278      BB->replaceAllUsesWith(OnlyPred);
279
280      std::string OldName = BB->getName();
281
282      // Erase basic block from the function...
283      M->getBasicBlockList().erase(BB);
284
285      // Inherit predecessors name if it exists...
286      if (!OldName.empty() && !OnlyPred->hasName())
287        OnlyPred->setName(OldName);
288
289      return true;
290    }
291  }
292
293  return Changed;
294}
295