1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Operator.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified vector Constant node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54    return 0;
55
56  Type *DstEltTy = DstTy->getElementType();
57
58  SmallVector<Constant*, 16> Result;
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61    Constant *C =
62      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
63    C = ConstantExpr::getBitCast(C, DstEltTy);
64    Result.push_back(C);
65  }
66
67  return ConstantVector::get(Result);
68}
69
70/// This function determines which opcode to use to fold two constant cast
71/// expressions together. It uses CastInst::isEliminableCastPair to determine
72/// the opcode. Consequently its just a wrapper around that function.
73/// @brief Determine if it is valid to fold a cast of a cast
74static unsigned
75foldConstantCastPair(
76  unsigned opc,          ///< opcode of the second cast constant expression
77  ConstantExpr *Op,      ///< the first cast constant expression
78  Type *DstTy      ///< desintation type of the first cast
79) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83
84  // The the types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
87  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
88  Instruction::CastOps secondOp = Instruction::CastOps(opc);
89
90  // Let CastInst::isEliminableCastPair do the heavy lifting.
91  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
92                                        Type::getInt64Ty(DstTy->getContext()));
93}
94
95static Constant *FoldBitCast(Constant *V, Type *DestTy) {
96  Type *SrcTy = V->getType();
97  if (SrcTy == DestTy)
98    return V; // no-op cast
99
100  // Check to see if we are casting a pointer to an aggregate to a pointer to
101  // the first element.  If so, return the appropriate GEP instruction.
102  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
103    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
104      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
105          && DPTy->getElementType()->isSized()) {
106        SmallVector<Value*, 8> IdxList;
107        Value *Zero =
108          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
109        IdxList.push_back(Zero);
110        Type *ElTy = PTy->getElementType();
111        while (ElTy != DPTy->getElementType()) {
112          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
113            if (STy->getNumElements() == 0) break;
114            ElTy = STy->getElementType(0);
115            IdxList.push_back(Zero);
116          } else if (SequentialType *STy =
117                     dyn_cast<SequentialType>(ElTy)) {
118            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
119            ElTy = STy->getElementType();
120            IdxList.push_back(Zero);
121          } else {
122            break;
123          }
124        }
125
126        if (ElTy == DPTy->getElementType())
127          // This GEP is inbounds because all indices are zero.
128          return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
129      }
130
131  // Handle casts from one vector constant to another.  We know that the src
132  // and dest type have the same size (otherwise its an illegal cast).
133  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
134    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
135      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
136             "Not cast between same sized vectors!");
137      SrcTy = NULL;
138      // First, check for null.  Undef is already handled.
139      if (isa<ConstantAggregateZero>(V))
140        return Constant::getNullValue(DestTy);
141
142      // Handle ConstantVector and ConstantAggregateVector.
143      return BitCastConstantVector(V, DestPTy);
144    }
145
146    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
147    // This allows for other simplifications (although some of them
148    // can only be handled by Analysis/ConstantFolding.cpp).
149    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
150      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
151  }
152
153  // Finally, implement bitcast folding now.   The code below doesn't handle
154  // bitcast right.
155  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
156    return ConstantPointerNull::get(cast<PointerType>(DestTy));
157
158  // Handle integral constant input.
159  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
160    if (DestTy->isIntegerTy())
161      // Integral -> Integral. This is a no-op because the bit widths must
162      // be the same. Consequently, we just fold to V.
163      return V;
164
165    if (DestTy->isFloatingPointTy())
166      return ConstantFP::get(DestTy->getContext(),
167                             APFloat(CI->getValue(),
168                                     !DestTy->isPPC_FP128Ty()));
169
170    // Otherwise, can't fold this (vector?)
171    return 0;
172  }
173
174  // Handle ConstantFP input: FP -> Integral.
175  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
176    return ConstantInt::get(FP->getContext(),
177                            FP->getValueAPF().bitcastToAPInt());
178
179  return 0;
180}
181
182
183/// ExtractConstantBytes - V is an integer constant which only has a subset of
184/// its bytes used.  The bytes used are indicated by ByteStart (which is the
185/// first byte used, counting from the least significant byte) and ByteSize,
186/// which is the number of bytes used.
187///
188/// This function analyzes the specified constant to see if the specified byte
189/// range can be returned as a simplified constant.  If so, the constant is
190/// returned, otherwise null is returned.
191///
192static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
193                                      unsigned ByteSize) {
194  assert(C->getType()->isIntegerTy() &&
195         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
196         "Non-byte sized integer input");
197  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
198  assert(ByteSize && "Must be accessing some piece");
199  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
200  assert(ByteSize != CSize && "Should not extract everything");
201
202  // Constant Integers are simple.
203  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
204    APInt V = CI->getValue();
205    if (ByteStart)
206      V = V.lshr(ByteStart*8);
207    V = V.trunc(ByteSize*8);
208    return ConstantInt::get(CI->getContext(), V);
209  }
210
211  // In the input is a constant expr, we might be able to recursively simplify.
212  // If not, we definitely can't do anything.
213  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
214  if (CE == 0) return 0;
215
216  switch (CE->getOpcode()) {
217  default: return 0;
218  case Instruction::Or: {
219    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
220    if (RHS == 0)
221      return 0;
222
223    // X | -1 -> -1.
224    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
225      if (RHSC->isAllOnesValue())
226        return RHSC;
227
228    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
229    if (LHS == 0)
230      return 0;
231    return ConstantExpr::getOr(LHS, RHS);
232  }
233  case Instruction::And: {
234    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
235    if (RHS == 0)
236      return 0;
237
238    // X & 0 -> 0.
239    if (RHS->isNullValue())
240      return RHS;
241
242    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
243    if (LHS == 0)
244      return 0;
245    return ConstantExpr::getAnd(LHS, RHS);
246  }
247  case Instruction::LShr: {
248    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
249    if (Amt == 0)
250      return 0;
251    unsigned ShAmt = Amt->getZExtValue();
252    // Cannot analyze non-byte shifts.
253    if ((ShAmt & 7) != 0)
254      return 0;
255    ShAmt >>= 3;
256
257    // If the extract is known to be all zeros, return zero.
258    if (ByteStart >= CSize-ShAmt)
259      return Constant::getNullValue(IntegerType::get(CE->getContext(),
260                                                     ByteSize*8));
261    // If the extract is known to be fully in the input, extract it.
262    if (ByteStart+ByteSize+ShAmt <= CSize)
263      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
264
265    // TODO: Handle the 'partially zero' case.
266    return 0;
267  }
268
269  case Instruction::Shl: {
270    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
271    if (Amt == 0)
272      return 0;
273    unsigned ShAmt = Amt->getZExtValue();
274    // Cannot analyze non-byte shifts.
275    if ((ShAmt & 7) != 0)
276      return 0;
277    ShAmt >>= 3;
278
279    // If the extract is known to be all zeros, return zero.
280    if (ByteStart+ByteSize <= ShAmt)
281      return Constant::getNullValue(IntegerType::get(CE->getContext(),
282                                                     ByteSize*8));
283    // If the extract is known to be fully in the input, extract it.
284    if (ByteStart >= ShAmt)
285      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
286
287    // TODO: Handle the 'partially zero' case.
288    return 0;
289  }
290
291  case Instruction::ZExt: {
292    unsigned SrcBitSize =
293      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
294
295    // If extracting something that is completely zero, return 0.
296    if (ByteStart*8 >= SrcBitSize)
297      return Constant::getNullValue(IntegerType::get(CE->getContext(),
298                                                     ByteSize*8));
299
300    // If exactly extracting the input, return it.
301    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
302      return CE->getOperand(0);
303
304    // If extracting something completely in the input, if if the input is a
305    // multiple of 8 bits, recurse.
306    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
307      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
308
309    // Otherwise, if extracting a subset of the input, which is not multiple of
310    // 8 bits, do a shift and trunc to get the bits.
311    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
312      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
313      Constant *Res = CE->getOperand(0);
314      if (ByteStart)
315        Res = ConstantExpr::getLShr(Res,
316                                 ConstantInt::get(Res->getType(), ByteStart*8));
317      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
318                                                          ByteSize*8));
319    }
320
321    // TODO: Handle the 'partially zero' case.
322    return 0;
323  }
324  }
325}
326
327/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
328/// on Ty, with any known factors factored out. If Folded is false,
329/// return null if no factoring was possible, to avoid endlessly
330/// bouncing an unfoldable expression back into the top-level folder.
331///
332static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
333                                 bool Folded) {
334  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
335    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
336    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
337    return ConstantExpr::getNUWMul(E, N);
338  }
339
340  if (StructType *STy = dyn_cast<StructType>(Ty))
341    if (!STy->isPacked()) {
342      unsigned NumElems = STy->getNumElements();
343      // An empty struct has size zero.
344      if (NumElems == 0)
345        return ConstantExpr::getNullValue(DestTy);
346      // Check for a struct with all members having the same size.
347      Constant *MemberSize =
348        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
349      bool AllSame = true;
350      for (unsigned i = 1; i != NumElems; ++i)
351        if (MemberSize !=
352            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
353          AllSame = false;
354          break;
355        }
356      if (AllSame) {
357        Constant *N = ConstantInt::get(DestTy, NumElems);
358        return ConstantExpr::getNUWMul(MemberSize, N);
359      }
360    }
361
362  // Pointer size doesn't depend on the pointee type, so canonicalize them
363  // to an arbitrary pointee.
364  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
365    if (!PTy->getElementType()->isIntegerTy(1))
366      return
367        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
368                                         PTy->getAddressSpace()),
369                        DestTy, true);
370
371  // If there's no interesting folding happening, bail so that we don't create
372  // a constant that looks like it needs folding but really doesn't.
373  if (!Folded)
374    return 0;
375
376  // Base case: Get a regular sizeof expression.
377  Constant *C = ConstantExpr::getSizeOf(Ty);
378  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
379                                                    DestTy, false),
380                            C, DestTy);
381  return C;
382}
383
384/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
385/// on Ty, with any known factors factored out. If Folded is false,
386/// return null if no factoring was possible, to avoid endlessly
387/// bouncing an unfoldable expression back into the top-level folder.
388///
389static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
390                                  bool Folded) {
391  // The alignment of an array is equal to the alignment of the
392  // array element. Note that this is not always true for vectors.
393  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
394    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
395    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
396                                                      DestTy,
397                                                      false),
398                              C, DestTy);
399    return C;
400  }
401
402  if (StructType *STy = dyn_cast<StructType>(Ty)) {
403    // Packed structs always have an alignment of 1.
404    if (STy->isPacked())
405      return ConstantInt::get(DestTy, 1);
406
407    // Otherwise, struct alignment is the maximum alignment of any member.
408    // Without target data, we can't compare much, but we can check to see
409    // if all the members have the same alignment.
410    unsigned NumElems = STy->getNumElements();
411    // An empty struct has minimal alignment.
412    if (NumElems == 0)
413      return ConstantInt::get(DestTy, 1);
414    // Check for a struct with all members having the same alignment.
415    Constant *MemberAlign =
416      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
417    bool AllSame = true;
418    for (unsigned i = 1; i != NumElems; ++i)
419      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
420        AllSame = false;
421        break;
422      }
423    if (AllSame)
424      return MemberAlign;
425  }
426
427  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
428  // to an arbitrary pointee.
429  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
430    if (!PTy->getElementType()->isIntegerTy(1))
431      return
432        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
433                                                           1),
434                                          PTy->getAddressSpace()),
435                         DestTy, true);
436
437  // If there's no interesting folding happening, bail so that we don't create
438  // a constant that looks like it needs folding but really doesn't.
439  if (!Folded)
440    return 0;
441
442  // Base case: Get a regular alignof expression.
443  Constant *C = ConstantExpr::getAlignOf(Ty);
444  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
445                                                    DestTy, false),
446                            C, DestTy);
447  return C;
448}
449
450/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
451/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
452/// return null if no factoring was possible, to avoid endlessly
453/// bouncing an unfoldable expression back into the top-level folder.
454///
455static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
456                                   Type *DestTy,
457                                   bool Folded) {
458  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
459    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
460                                                                DestTy, false),
461                                        FieldNo, DestTy);
462    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
463    return ConstantExpr::getNUWMul(E, N);
464  }
465
466  if (StructType *STy = dyn_cast<StructType>(Ty))
467    if (!STy->isPacked()) {
468      unsigned NumElems = STy->getNumElements();
469      // An empty struct has no members.
470      if (NumElems == 0)
471        return 0;
472      // Check for a struct with all members having the same size.
473      Constant *MemberSize =
474        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
475      bool AllSame = true;
476      for (unsigned i = 1; i != NumElems; ++i)
477        if (MemberSize !=
478            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
479          AllSame = false;
480          break;
481        }
482      if (AllSame) {
483        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
484                                                                    false,
485                                                                    DestTy,
486                                                                    false),
487                                            FieldNo, DestTy);
488        return ConstantExpr::getNUWMul(MemberSize, N);
489      }
490    }
491
492  // If there's no interesting folding happening, bail so that we don't create
493  // a constant that looks like it needs folding but really doesn't.
494  if (!Folded)
495    return 0;
496
497  // Base case: Get a regular offsetof expression.
498  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
499  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
500                                                    DestTy, false),
501                            C, DestTy);
502  return C;
503}
504
505Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
506                                            Type *DestTy) {
507  if (isa<UndefValue>(V)) {
508    // zext(undef) = 0, because the top bits will be zero.
509    // sext(undef) = 0, because the top bits will all be the same.
510    // [us]itofp(undef) = 0, because the result value is bounded.
511    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
512        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
513      return Constant::getNullValue(DestTy);
514    return UndefValue::get(DestTy);
515  }
516
517  // No compile-time operations on this type yet.
518  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
519    return 0;
520
521  if (V->isNullValue() && !DestTy->isX86_MMXTy())
522    return Constant::getNullValue(DestTy);
523
524  // If the cast operand is a constant expression, there's a few things we can
525  // do to try to simplify it.
526  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
527    if (CE->isCast()) {
528      // Try hard to fold cast of cast because they are often eliminable.
529      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
530        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
531    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
532      // If all of the indexes in the GEP are null values, there is no pointer
533      // adjustment going on.  We might as well cast the source pointer.
534      bool isAllNull = true;
535      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
536        if (!CE->getOperand(i)->isNullValue()) {
537          isAllNull = false;
538          break;
539        }
540      if (isAllNull)
541        // This is casting one pointer type to another, always BitCast
542        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
543    }
544  }
545
546  // If the cast operand is a constant vector, perform the cast by
547  // operating on each element. In the cast of bitcasts, the element
548  // count may be mismatched; don't attempt to handle that here.
549  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
550      DestTy->isVectorTy() &&
551      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
552    SmallVector<Constant*, 16> res;
553    VectorType *DestVecTy = cast<VectorType>(DestTy);
554    Type *DstEltTy = DestVecTy->getElementType();
555    Type *Ty = IntegerType::get(V->getContext(), 32);
556    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
557      Constant *C =
558        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
559      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
560    }
561    return ConstantVector::get(res);
562  }
563
564  // We actually have to do a cast now. Perform the cast according to the
565  // opcode specified.
566  switch (opc) {
567  default:
568    llvm_unreachable("Failed to cast constant expression");
569  case Instruction::FPTrunc:
570  case Instruction::FPExt:
571    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
572      bool ignored;
573      APFloat Val = FPC->getValueAPF();
574      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
575                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
576                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
577                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
578                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
579                  APFloat::Bogus,
580                  APFloat::rmNearestTiesToEven, &ignored);
581      return ConstantFP::get(V->getContext(), Val);
582    }
583    return 0; // Can't fold.
584  case Instruction::FPToUI:
585  case Instruction::FPToSI:
586    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
587      const APFloat &V = FPC->getValueAPF();
588      bool ignored;
589      uint64_t x[2];
590      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
591      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
592                                APFloat::rmTowardZero, &ignored);
593      APInt Val(DestBitWidth, x);
594      return ConstantInt::get(FPC->getContext(), Val);
595    }
596    return 0; // Can't fold.
597  case Instruction::IntToPtr:   //always treated as unsigned
598    if (V->isNullValue())       // Is it an integral null value?
599      return ConstantPointerNull::get(cast<PointerType>(DestTy));
600    return 0;                   // Other pointer types cannot be casted
601  case Instruction::PtrToInt:   // always treated as unsigned
602    // Is it a null pointer value?
603    if (V->isNullValue())
604      return ConstantInt::get(DestTy, 0);
605    // If this is a sizeof-like expression, pull out multiplications by
606    // known factors to expose them to subsequent folding. If it's an
607    // alignof-like expression, factor out known factors.
608    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
609      if (CE->getOpcode() == Instruction::GetElementPtr &&
610          CE->getOperand(0)->isNullValue()) {
611        Type *Ty =
612          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
613        if (CE->getNumOperands() == 2) {
614          // Handle a sizeof-like expression.
615          Constant *Idx = CE->getOperand(1);
616          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
617          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
618            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
619                                                                DestTy, false),
620                                        Idx, DestTy);
621            return ConstantExpr::getMul(C, Idx);
622          }
623        } else if (CE->getNumOperands() == 3 &&
624                   CE->getOperand(1)->isNullValue()) {
625          // Handle an alignof-like expression.
626          if (StructType *STy = dyn_cast<StructType>(Ty))
627            if (!STy->isPacked()) {
628              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
629              if (CI->isOne() &&
630                  STy->getNumElements() == 2 &&
631                  STy->getElementType(0)->isIntegerTy(1)) {
632                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
633              }
634            }
635          // Handle an offsetof-like expression.
636          if (Ty->isStructTy() || Ty->isArrayTy()) {
637            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
638                                                DestTy, false))
639              return C;
640          }
641        }
642      }
643    // Other pointer types cannot be casted
644    return 0;
645  case Instruction::UIToFP:
646  case Instruction::SIToFP:
647    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
648      APInt api = CI->getValue();
649      APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
650      (void)apf.convertFromAPInt(api,
651                                 opc==Instruction::SIToFP,
652                                 APFloat::rmNearestTiesToEven);
653      return ConstantFP::get(V->getContext(), apf);
654    }
655    return 0;
656  case Instruction::ZExt:
657    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
658      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
659      return ConstantInt::get(V->getContext(),
660                              CI->getValue().zext(BitWidth));
661    }
662    return 0;
663  case Instruction::SExt:
664    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
665      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
666      return ConstantInt::get(V->getContext(),
667                              CI->getValue().sext(BitWidth));
668    }
669    return 0;
670  case Instruction::Trunc: {
671    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
672    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
673      return ConstantInt::get(V->getContext(),
674                              CI->getValue().trunc(DestBitWidth));
675    }
676
677    // The input must be a constantexpr.  See if we can simplify this based on
678    // the bytes we are demanding.  Only do this if the source and dest are an
679    // even multiple of a byte.
680    if ((DestBitWidth & 7) == 0 &&
681        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
682      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
683        return Res;
684
685    return 0;
686  }
687  case Instruction::BitCast:
688    return FoldBitCast(V, DestTy);
689  }
690}
691
692Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
693                                              Constant *V1, Constant *V2) {
694  // Check for i1 and vector true/false conditions.
695  if (Cond->isNullValue()) return V2;
696  if (Cond->isAllOnesValue()) return V1;
697
698  // If the condition is a vector constant, fold the result elementwise.
699  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
700    SmallVector<Constant*, 16> Result;
701    Type *Ty = IntegerType::get(CondV->getContext(), 32);
702    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
703      ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
704      if (Cond == 0) break;
705
706      Constant *V = Cond->isNullValue() ? V2 : V1;
707      Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
708      Result.push_back(Res);
709    }
710
711    // If we were able to build the vector, return it.
712    if (Result.size() == V1->getType()->getVectorNumElements())
713      return ConstantVector::get(Result);
714  }
715
716  if (isa<UndefValue>(Cond)) {
717    if (isa<UndefValue>(V1)) return V1;
718    return V2;
719  }
720  if (isa<UndefValue>(V1)) return V2;
721  if (isa<UndefValue>(V2)) return V1;
722  if (V1 == V2) return V1;
723
724  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
725    if (TrueVal->getOpcode() == Instruction::Select)
726      if (TrueVal->getOperand(0) == Cond)
727        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
728  }
729  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
730    if (FalseVal->getOpcode() == Instruction::Select)
731      if (FalseVal->getOperand(0) == Cond)
732        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
733  }
734
735  return 0;
736}
737
738Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
739                                                      Constant *Idx) {
740  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
741    return UndefValue::get(Val->getType()->getVectorElementType());
742  if (Val->isNullValue())  // ee(zero, x) -> zero
743    return Constant::getNullValue(Val->getType()->getVectorElementType());
744  // ee({w,x,y,z}, undef) -> undef
745  if (isa<UndefValue>(Idx))
746    return UndefValue::get(Val->getType()->getVectorElementType());
747
748  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
749    uint64_t Index = CIdx->getZExtValue();
750    // ee({w,x,y,z}, wrong_value) -> undef
751    if (Index >= Val->getType()->getVectorNumElements())
752      return UndefValue::get(Val->getType()->getVectorElementType());
753    return Val->getAggregateElement(Index);
754  }
755  return 0;
756}
757
758Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
759                                                     Constant *Elt,
760                                                     Constant *Idx) {
761  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
762  if (!CIdx) return 0;
763  const APInt &IdxVal = CIdx->getValue();
764
765  SmallVector<Constant*, 16> Result;
766  Type *Ty = IntegerType::get(Val->getContext(), 32);
767  for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
768    if (i == IdxVal) {
769      Result.push_back(Elt);
770      continue;
771    }
772
773    Constant *C =
774      ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
775    Result.push_back(C);
776  }
777
778  return ConstantVector::get(Result);
779}
780
781Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
782                                                     Constant *V2,
783                                                     Constant *Mask) {
784  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
785  Type *EltTy = V1->getType()->getVectorElementType();
786
787  // Undefined shuffle mask -> undefined value.
788  if (isa<UndefValue>(Mask))
789    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
790
791  // Don't break the bitcode reader hack.
792  if (isa<ConstantExpr>(Mask)) return 0;
793
794  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
795
796  // Loop over the shuffle mask, evaluating each element.
797  SmallVector<Constant*, 32> Result;
798  for (unsigned i = 0; i != MaskNumElts; ++i) {
799    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
800    if (Elt == -1) {
801      Result.push_back(UndefValue::get(EltTy));
802      continue;
803    }
804    Constant *InElt;
805    if (unsigned(Elt) >= SrcNumElts*2)
806      InElt = UndefValue::get(EltTy);
807    else if (unsigned(Elt) >= SrcNumElts) {
808      Type *Ty = IntegerType::get(V2->getContext(), 32);
809      InElt =
810        ConstantExpr::getExtractElement(V2,
811                                        ConstantInt::get(Ty, Elt - SrcNumElts));
812    } else {
813      Type *Ty = IntegerType::get(V1->getContext(), 32);
814      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
815    }
816    Result.push_back(InElt);
817  }
818
819  return ConstantVector::get(Result);
820}
821
822Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
823                                                    ArrayRef<unsigned> Idxs) {
824  // Base case: no indices, so return the entire value.
825  if (Idxs.empty())
826    return Agg;
827
828  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
829    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
830
831  return 0;
832}
833
834Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
835                                                   Constant *Val,
836                                                   ArrayRef<unsigned> Idxs) {
837  // Base case: no indices, so replace the entire value.
838  if (Idxs.empty())
839    return Val;
840
841  unsigned NumElts;
842  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
843    NumElts = ST->getNumElements();
844  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
845    NumElts = AT->getNumElements();
846  else
847    NumElts = AT->getVectorNumElements();
848
849  SmallVector<Constant*, 32> Result;
850  for (unsigned i = 0; i != NumElts; ++i) {
851    Constant *C = Agg->getAggregateElement(i);
852    if (C == 0) return 0;
853
854    if (Idxs[0] == i)
855      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
856
857    Result.push_back(C);
858  }
859
860  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
861    return ConstantStruct::get(ST, Result);
862  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
863    return ConstantArray::get(AT, Result);
864  return ConstantVector::get(Result);
865}
866
867
868Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
869                                              Constant *C1, Constant *C2) {
870  // No compile-time operations on this type yet.
871  if (C1->getType()->isPPC_FP128Ty())
872    return 0;
873
874  // Handle UndefValue up front.
875  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
876    switch (Opcode) {
877    case Instruction::Xor:
878      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
879        // Handle undef ^ undef -> 0 special case. This is a common
880        // idiom (misuse).
881        return Constant::getNullValue(C1->getType());
882      // Fallthrough
883    case Instruction::Add:
884    case Instruction::Sub:
885      return UndefValue::get(C1->getType());
886    case Instruction::And:
887      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
888        return C1;
889      return Constant::getNullValue(C1->getType());   // undef & X -> 0
890    case Instruction::Mul: {
891      ConstantInt *CI;
892      // X * undef -> undef   if X is odd or undef
893      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
894          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
895          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
896        return UndefValue::get(C1->getType());
897
898      // X * undef -> 0       otherwise
899      return Constant::getNullValue(C1->getType());
900    }
901    case Instruction::UDiv:
902    case Instruction::SDiv:
903      // undef / 1 -> undef
904      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
905        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
906          if (CI2->isOne())
907            return C1;
908      // FALL THROUGH
909    case Instruction::URem:
910    case Instruction::SRem:
911      if (!isa<UndefValue>(C2))                    // undef / X -> 0
912        return Constant::getNullValue(C1->getType());
913      return C2;                                   // X / undef -> undef
914    case Instruction::Or:                          // X | undef -> -1
915      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
916        return C1;
917      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
918    case Instruction::LShr:
919      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
920        return C1;                                  // undef lshr undef -> undef
921      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
922                                                    // undef lshr X -> 0
923    case Instruction::AShr:
924      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
925        return Constant::getAllOnesValue(C1->getType());
926      else if (isa<UndefValue>(C1))
927        return C1;                                  // undef ashr undef -> undef
928      else
929        return C1;                                  // X ashr undef --> X
930    case Instruction::Shl:
931      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
932        return C1;                                  // undef shl undef -> undef
933      // undef << X -> 0   or   X << undef -> 0
934      return Constant::getNullValue(C1->getType());
935    }
936  }
937
938  // Handle simplifications when the RHS is a constant int.
939  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
940    switch (Opcode) {
941    case Instruction::Add:
942      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
943      break;
944    case Instruction::Sub:
945      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
946      break;
947    case Instruction::Mul:
948      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
949      if (CI2->equalsInt(1))
950        return C1;                                              // X * 1 == X
951      break;
952    case Instruction::UDiv:
953    case Instruction::SDiv:
954      if (CI2->equalsInt(1))
955        return C1;                                            // X / 1 == X
956      if (CI2->equalsInt(0))
957        return UndefValue::get(CI2->getType());               // X / 0 == undef
958      break;
959    case Instruction::URem:
960    case Instruction::SRem:
961      if (CI2->equalsInt(1))
962        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
963      if (CI2->equalsInt(0))
964        return UndefValue::get(CI2->getType());               // X % 0 == undef
965      break;
966    case Instruction::And:
967      if (CI2->isZero()) return C2;                           // X & 0 == 0
968      if (CI2->isAllOnesValue())
969        return C1;                                            // X & -1 == X
970
971      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
972        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
973        if (CE1->getOpcode() == Instruction::ZExt) {
974          unsigned DstWidth = CI2->getType()->getBitWidth();
975          unsigned SrcWidth =
976            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
977          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
978          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
979            return C1;
980        }
981
982        // If and'ing the address of a global with a constant, fold it.
983        if (CE1->getOpcode() == Instruction::PtrToInt &&
984            isa<GlobalValue>(CE1->getOperand(0))) {
985          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
986
987          // Functions are at least 4-byte aligned.
988          unsigned GVAlign = GV->getAlignment();
989          if (isa<Function>(GV))
990            GVAlign = std::max(GVAlign, 4U);
991
992          if (GVAlign > 1) {
993            unsigned DstWidth = CI2->getType()->getBitWidth();
994            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
995            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
996
997            // If checking bits we know are clear, return zero.
998            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
999              return Constant::getNullValue(CI2->getType());
1000          }
1001        }
1002      }
1003      break;
1004    case Instruction::Or:
1005      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1006      if (CI2->isAllOnesValue())
1007        return C2;                         // X | -1 == -1
1008      break;
1009    case Instruction::Xor:
1010      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1011
1012      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1013        switch (CE1->getOpcode()) {
1014        default: break;
1015        case Instruction::ICmp:
1016        case Instruction::FCmp:
1017          // cmp pred ^ true -> cmp !pred
1018          assert(CI2->equalsInt(1));
1019          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1020          pred = CmpInst::getInversePredicate(pred);
1021          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1022                                          CE1->getOperand(1));
1023        }
1024      }
1025      break;
1026    case Instruction::AShr:
1027      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1028      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1029        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1030          return ConstantExpr::getLShr(C1, C2);
1031      break;
1032    }
1033  } else if (isa<ConstantInt>(C1)) {
1034    // If C1 is a ConstantInt and C2 is not, swap the operands.
1035    if (Instruction::isCommutative(Opcode))
1036      return ConstantExpr::get(Opcode, C2, C1);
1037  }
1038
1039  // At this point we know neither constant is an UndefValue.
1040  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1041    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1042      const APInt &C1V = CI1->getValue();
1043      const APInt &C2V = CI2->getValue();
1044      switch (Opcode) {
1045      default:
1046        break;
1047      case Instruction::Add:
1048        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1049      case Instruction::Sub:
1050        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1051      case Instruction::Mul:
1052        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1053      case Instruction::UDiv:
1054        assert(!CI2->isNullValue() && "Div by zero handled above");
1055        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1056      case Instruction::SDiv:
1057        assert(!CI2->isNullValue() && "Div by zero handled above");
1058        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1059          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1060        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1061      case Instruction::URem:
1062        assert(!CI2->isNullValue() && "Div by zero handled above");
1063        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1064      case Instruction::SRem:
1065        assert(!CI2->isNullValue() && "Div by zero handled above");
1066        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1067          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1068        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1069      case Instruction::And:
1070        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1071      case Instruction::Or:
1072        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1073      case Instruction::Xor:
1074        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1075      case Instruction::Shl: {
1076        uint32_t shiftAmt = C2V.getZExtValue();
1077        if (shiftAmt < C1V.getBitWidth())
1078          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1079        else
1080          return UndefValue::get(C1->getType()); // too big shift is undef
1081      }
1082      case Instruction::LShr: {
1083        uint32_t shiftAmt = C2V.getZExtValue();
1084        if (shiftAmt < C1V.getBitWidth())
1085          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1086        else
1087          return UndefValue::get(C1->getType()); // too big shift is undef
1088      }
1089      case Instruction::AShr: {
1090        uint32_t shiftAmt = C2V.getZExtValue();
1091        if (shiftAmt < C1V.getBitWidth())
1092          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1093        else
1094          return UndefValue::get(C1->getType()); // too big shift is undef
1095      }
1096      }
1097    }
1098
1099    switch (Opcode) {
1100    case Instruction::SDiv:
1101    case Instruction::UDiv:
1102    case Instruction::URem:
1103    case Instruction::SRem:
1104    case Instruction::LShr:
1105    case Instruction::AShr:
1106    case Instruction::Shl:
1107      if (CI1->equalsInt(0)) return C1;
1108      break;
1109    default:
1110      break;
1111    }
1112  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1113    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1114      APFloat C1V = CFP1->getValueAPF();
1115      APFloat C2V = CFP2->getValueAPF();
1116      APFloat C3V = C1V;  // copy for modification
1117      switch (Opcode) {
1118      default:
1119        break;
1120      case Instruction::FAdd:
1121        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1122        return ConstantFP::get(C1->getContext(), C3V);
1123      case Instruction::FSub:
1124        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1125        return ConstantFP::get(C1->getContext(), C3V);
1126      case Instruction::FMul:
1127        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1128        return ConstantFP::get(C1->getContext(), C3V);
1129      case Instruction::FDiv:
1130        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1131        return ConstantFP::get(C1->getContext(), C3V);
1132      case Instruction::FRem:
1133        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1134        return ConstantFP::get(C1->getContext(), C3V);
1135      }
1136    }
1137  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1138    // Perform elementwise folding.
1139    SmallVector<Constant*, 16> Result;
1140    Type *Ty = IntegerType::get(VTy->getContext(), 32);
1141    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1142      Constant *LHS =
1143        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1144      Constant *RHS =
1145        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1146
1147      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1148    }
1149
1150    return ConstantVector::get(Result);
1151  }
1152
1153  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1154    // There are many possible foldings we could do here.  We should probably
1155    // at least fold add of a pointer with an integer into the appropriate
1156    // getelementptr.  This will improve alias analysis a bit.
1157
1158    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1159    // (a + (b + c)).
1160    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1161      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1162      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1163        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1164    }
1165  } else if (isa<ConstantExpr>(C2)) {
1166    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1167    // other way if possible.
1168    if (Instruction::isCommutative(Opcode))
1169      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1170  }
1171
1172  // i1 can be simplified in many cases.
1173  if (C1->getType()->isIntegerTy(1)) {
1174    switch (Opcode) {
1175    case Instruction::Add:
1176    case Instruction::Sub:
1177      return ConstantExpr::getXor(C1, C2);
1178    case Instruction::Mul:
1179      return ConstantExpr::getAnd(C1, C2);
1180    case Instruction::Shl:
1181    case Instruction::LShr:
1182    case Instruction::AShr:
1183      // We can assume that C2 == 0.  If it were one the result would be
1184      // undefined because the shift value is as large as the bitwidth.
1185      return C1;
1186    case Instruction::SDiv:
1187    case Instruction::UDiv:
1188      // We can assume that C2 == 1.  If it were zero the result would be
1189      // undefined through division by zero.
1190      return C1;
1191    case Instruction::URem:
1192    case Instruction::SRem:
1193      // We can assume that C2 == 1.  If it were zero the result would be
1194      // undefined through division by zero.
1195      return ConstantInt::getFalse(C1->getContext());
1196    default:
1197      break;
1198    }
1199  }
1200
1201  // We don't know how to fold this.
1202  return 0;
1203}
1204
1205/// isZeroSizedType - This type is zero sized if its an array or structure of
1206/// zero sized types.  The only leaf zero sized type is an empty structure.
1207static bool isMaybeZeroSizedType(Type *Ty) {
1208  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1209    if (STy->isOpaque()) return true;  // Can't say.
1210
1211    // If all of elements have zero size, this does too.
1212    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1213      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1214    return true;
1215
1216  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1217    return isMaybeZeroSizedType(ATy->getElementType());
1218  }
1219  return false;
1220}
1221
1222/// IdxCompare - Compare the two constants as though they were getelementptr
1223/// indices.  This allows coersion of the types to be the same thing.
1224///
1225/// If the two constants are the "same" (after coersion), return 0.  If the
1226/// first is less than the second, return -1, if the second is less than the
1227/// first, return 1.  If the constants are not integral, return -2.
1228///
1229static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1230  if (C1 == C2) return 0;
1231
1232  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1233  // anything with them.
1234  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1235    return -2; // don't know!
1236
1237  // Ok, we have two differing integer indices.  Sign extend them to be the same
1238  // type.  Long is always big enough, so we use it.
1239  if (!C1->getType()->isIntegerTy(64))
1240    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1241
1242  if (!C2->getType()->isIntegerTy(64))
1243    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1244
1245  if (C1 == C2) return 0;  // They are equal
1246
1247  // If the type being indexed over is really just a zero sized type, there is
1248  // no pointer difference being made here.
1249  if (isMaybeZeroSizedType(ElTy))
1250    return -2; // dunno.
1251
1252  // If they are really different, now that they are the same type, then we
1253  // found a difference!
1254  if (cast<ConstantInt>(C1)->getSExtValue() <
1255      cast<ConstantInt>(C2)->getSExtValue())
1256    return -1;
1257  else
1258    return 1;
1259}
1260
1261/// evaluateFCmpRelation - This function determines if there is anything we can
1262/// decide about the two constants provided.  This doesn't need to handle simple
1263/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1264/// If we can determine that the two constants have a particular relation to
1265/// each other, we should return the corresponding FCmpInst predicate,
1266/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1267/// ConstantFoldCompareInstruction.
1268///
1269/// To simplify this code we canonicalize the relation so that the first
1270/// operand is always the most "complex" of the two.  We consider ConstantFP
1271/// to be the simplest, and ConstantExprs to be the most complex.
1272static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1273  assert(V1->getType() == V2->getType() &&
1274         "Cannot compare values of different types!");
1275
1276  // No compile-time operations on this type yet.
1277  if (V1->getType()->isPPC_FP128Ty())
1278    return FCmpInst::BAD_FCMP_PREDICATE;
1279
1280  // Handle degenerate case quickly
1281  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1282
1283  if (!isa<ConstantExpr>(V1)) {
1284    if (!isa<ConstantExpr>(V2)) {
1285      // We distilled thisUse the standard constant folder for a few cases
1286      ConstantInt *R = 0;
1287      R = dyn_cast<ConstantInt>(
1288                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1289      if (R && !R->isZero())
1290        return FCmpInst::FCMP_OEQ;
1291      R = dyn_cast<ConstantInt>(
1292                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1293      if (R && !R->isZero())
1294        return FCmpInst::FCMP_OLT;
1295      R = dyn_cast<ConstantInt>(
1296                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1297      if (R && !R->isZero())
1298        return FCmpInst::FCMP_OGT;
1299
1300      // Nothing more we can do
1301      return FCmpInst::BAD_FCMP_PREDICATE;
1302    }
1303
1304    // If the first operand is simple and second is ConstantExpr, swap operands.
1305    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1306    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1307      return FCmpInst::getSwappedPredicate(SwappedRelation);
1308  } else {
1309    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1310    // constantexpr or a simple constant.
1311    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1312    switch (CE1->getOpcode()) {
1313    case Instruction::FPTrunc:
1314    case Instruction::FPExt:
1315    case Instruction::UIToFP:
1316    case Instruction::SIToFP:
1317      // We might be able to do something with these but we don't right now.
1318      break;
1319    default:
1320      break;
1321    }
1322  }
1323  // There are MANY other foldings that we could perform here.  They will
1324  // probably be added on demand, as they seem needed.
1325  return FCmpInst::BAD_FCMP_PREDICATE;
1326}
1327
1328/// evaluateICmpRelation - This function determines if there is anything we can
1329/// decide about the two constants provided.  This doesn't need to handle simple
1330/// things like integer comparisons, but should instead handle ConstantExprs
1331/// and GlobalValues.  If we can determine that the two constants have a
1332/// particular relation to each other, we should return the corresponding ICmp
1333/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1334///
1335/// To simplify this code we canonicalize the relation so that the first
1336/// operand is always the most "complex" of the two.  We consider simple
1337/// constants (like ConstantInt) to be the simplest, followed by
1338/// GlobalValues, followed by ConstantExpr's (the most complex).
1339///
1340static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1341                                                bool isSigned) {
1342  assert(V1->getType() == V2->getType() &&
1343         "Cannot compare different types of values!");
1344  if (V1 == V2) return ICmpInst::ICMP_EQ;
1345
1346  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1347      !isa<BlockAddress>(V1)) {
1348    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1349        !isa<BlockAddress>(V2)) {
1350      // We distilled this down to a simple case, use the standard constant
1351      // folder.
1352      ConstantInt *R = 0;
1353      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1354      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1355      if (R && !R->isZero())
1356        return pred;
1357      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1358      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1359      if (R && !R->isZero())
1360        return pred;
1361      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1362      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1363      if (R && !R->isZero())
1364        return pred;
1365
1366      // If we couldn't figure it out, bail.
1367      return ICmpInst::BAD_ICMP_PREDICATE;
1368    }
1369
1370    // If the first operand is simple, swap operands.
1371    ICmpInst::Predicate SwappedRelation =
1372      evaluateICmpRelation(V2, V1, isSigned);
1373    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1374      return ICmpInst::getSwappedPredicate(SwappedRelation);
1375
1376  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1377    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1378      ICmpInst::Predicate SwappedRelation =
1379        evaluateICmpRelation(V2, V1, isSigned);
1380      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1381        return ICmpInst::getSwappedPredicate(SwappedRelation);
1382      return ICmpInst::BAD_ICMP_PREDICATE;
1383    }
1384
1385    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1386    // constant (which, since the types must match, means that it's a
1387    // ConstantPointerNull).
1388    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1389      // Don't try to decide equality of aliases.
1390      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1391        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1392          return ICmpInst::ICMP_NE;
1393    } else if (isa<BlockAddress>(V2)) {
1394      return ICmpInst::ICMP_NE; // Globals never equal labels.
1395    } else {
1396      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1397      // GlobalVals can never be null unless they have external weak linkage.
1398      // We don't try to evaluate aliases here.
1399      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1400        return ICmpInst::ICMP_NE;
1401    }
1402  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1403    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1404      ICmpInst::Predicate SwappedRelation =
1405        evaluateICmpRelation(V2, V1, isSigned);
1406      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1407        return ICmpInst::getSwappedPredicate(SwappedRelation);
1408      return ICmpInst::BAD_ICMP_PREDICATE;
1409    }
1410
1411    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1412    // constant (which, since the types must match, means that it is a
1413    // ConstantPointerNull).
1414    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1415      // Block address in another function can't equal this one, but block
1416      // addresses in the current function might be the same if blocks are
1417      // empty.
1418      if (BA2->getFunction() != BA->getFunction())
1419        return ICmpInst::ICMP_NE;
1420    } else {
1421      // Block addresses aren't null, don't equal the address of globals.
1422      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1423             "Canonicalization guarantee!");
1424      return ICmpInst::ICMP_NE;
1425    }
1426  } else {
1427    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1428    // constantexpr, a global, block address, or a simple constant.
1429    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1430    Constant *CE1Op0 = CE1->getOperand(0);
1431
1432    switch (CE1->getOpcode()) {
1433    case Instruction::Trunc:
1434    case Instruction::FPTrunc:
1435    case Instruction::FPExt:
1436    case Instruction::FPToUI:
1437    case Instruction::FPToSI:
1438      break; // We can't evaluate floating point casts or truncations.
1439
1440    case Instruction::UIToFP:
1441    case Instruction::SIToFP:
1442    case Instruction::BitCast:
1443    case Instruction::ZExt:
1444    case Instruction::SExt:
1445      // If the cast is not actually changing bits, and the second operand is a
1446      // null pointer, do the comparison with the pre-casted value.
1447      if (V2->isNullValue() &&
1448          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1449        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1450        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1451        return evaluateICmpRelation(CE1Op0,
1452                                    Constant::getNullValue(CE1Op0->getType()),
1453                                    isSigned);
1454      }
1455      break;
1456
1457    case Instruction::GetElementPtr:
1458      // Ok, since this is a getelementptr, we know that the constant has a
1459      // pointer type.  Check the various cases.
1460      if (isa<ConstantPointerNull>(V2)) {
1461        // If we are comparing a GEP to a null pointer, check to see if the base
1462        // of the GEP equals the null pointer.
1463        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1464          if (GV->hasExternalWeakLinkage())
1465            // Weak linkage GVals could be zero or not. We're comparing that
1466            // to null pointer so its greater-or-equal
1467            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1468          else
1469            // If its not weak linkage, the GVal must have a non-zero address
1470            // so the result is greater-than
1471            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1472        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1473          // If we are indexing from a null pointer, check to see if we have any
1474          // non-zero indices.
1475          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1476            if (!CE1->getOperand(i)->isNullValue())
1477              // Offsetting from null, must not be equal.
1478              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1479          // Only zero indexes from null, must still be zero.
1480          return ICmpInst::ICMP_EQ;
1481        }
1482        // Otherwise, we can't really say if the first operand is null or not.
1483      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1484        if (isa<ConstantPointerNull>(CE1Op0)) {
1485          if (GV2->hasExternalWeakLinkage())
1486            // Weak linkage GVals could be zero or not. We're comparing it to
1487            // a null pointer, so its less-or-equal
1488            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1489          else
1490            // If its not weak linkage, the GVal must have a non-zero address
1491            // so the result is less-than
1492            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1493        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1494          if (GV == GV2) {
1495            // If this is a getelementptr of the same global, then it must be
1496            // different.  Because the types must match, the getelementptr could
1497            // only have at most one index, and because we fold getelementptr's
1498            // with a single zero index, it must be nonzero.
1499            assert(CE1->getNumOperands() == 2 &&
1500                   !CE1->getOperand(1)->isNullValue() &&
1501                   "Surprising getelementptr!");
1502            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1503          } else {
1504            // If they are different globals, we don't know what the value is,
1505            // but they can't be equal.
1506            return ICmpInst::ICMP_NE;
1507          }
1508        }
1509      } else {
1510        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1511        Constant *CE2Op0 = CE2->getOperand(0);
1512
1513        // There are MANY other foldings that we could perform here.  They will
1514        // probably be added on demand, as they seem needed.
1515        switch (CE2->getOpcode()) {
1516        default: break;
1517        case Instruction::GetElementPtr:
1518          // By far the most common case to handle is when the base pointers are
1519          // obviously to the same or different globals.
1520          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1521            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1522              return ICmpInst::ICMP_NE;
1523            // Ok, we know that both getelementptr instructions are based on the
1524            // same global.  From this, we can precisely determine the relative
1525            // ordering of the resultant pointers.
1526            unsigned i = 1;
1527
1528            // The logic below assumes that the result of the comparison
1529            // can be determined by finding the first index that differs.
1530            // This doesn't work if there is over-indexing in any
1531            // subsequent indices, so check for that case first.
1532            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1533                !CE2->isGEPWithNoNotionalOverIndexing())
1534               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1535
1536            // Compare all of the operands the GEP's have in common.
1537            gep_type_iterator GTI = gep_type_begin(CE1);
1538            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1539                 ++i, ++GTI)
1540              switch (IdxCompare(CE1->getOperand(i),
1541                                 CE2->getOperand(i), GTI.getIndexedType())) {
1542              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1543              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1544              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1545              }
1546
1547            // Ok, we ran out of things they have in common.  If any leftovers
1548            // are non-zero then we have a difference, otherwise we are equal.
1549            for (; i < CE1->getNumOperands(); ++i)
1550              if (!CE1->getOperand(i)->isNullValue()) {
1551                if (isa<ConstantInt>(CE1->getOperand(i)))
1552                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1553                else
1554                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1555              }
1556
1557            for (; i < CE2->getNumOperands(); ++i)
1558              if (!CE2->getOperand(i)->isNullValue()) {
1559                if (isa<ConstantInt>(CE2->getOperand(i)))
1560                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1561                else
1562                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1563              }
1564            return ICmpInst::ICMP_EQ;
1565          }
1566        }
1567      }
1568    default:
1569      break;
1570    }
1571  }
1572
1573  return ICmpInst::BAD_ICMP_PREDICATE;
1574}
1575
1576Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1577                                               Constant *C1, Constant *C2) {
1578  Type *ResultTy;
1579  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1580    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1581                               VT->getNumElements());
1582  else
1583    ResultTy = Type::getInt1Ty(C1->getContext());
1584
1585  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1586  if (pred == FCmpInst::FCMP_FALSE)
1587    return Constant::getNullValue(ResultTy);
1588
1589  if (pred == FCmpInst::FCMP_TRUE)
1590    return Constant::getAllOnesValue(ResultTy);
1591
1592  // Handle some degenerate cases first
1593  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1594    // For EQ and NE, we can always pick a value for the undef to make the
1595    // predicate pass or fail, so we can return undef.
1596    // Also, if both operands are undef, we can return undef.
1597    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
1598        (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1599      return UndefValue::get(ResultTy);
1600    // Otherwise, pick the same value as the non-undef operand, and fold
1601    // it to true or false.
1602    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1603  }
1604
1605  // No compile-time operations on this type yet.
1606  if (C1->getType()->isPPC_FP128Ty())
1607    return 0;
1608
1609  // icmp eq/ne(null,GV) -> false/true
1610  if (C1->isNullValue()) {
1611    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1612      // Don't try to evaluate aliases.  External weak GV can be null.
1613      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1614        if (pred == ICmpInst::ICMP_EQ)
1615          return ConstantInt::getFalse(C1->getContext());
1616        else if (pred == ICmpInst::ICMP_NE)
1617          return ConstantInt::getTrue(C1->getContext());
1618      }
1619  // icmp eq/ne(GV,null) -> false/true
1620  } else if (C2->isNullValue()) {
1621    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1622      // Don't try to evaluate aliases.  External weak GV can be null.
1623      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1624        if (pred == ICmpInst::ICMP_EQ)
1625          return ConstantInt::getFalse(C1->getContext());
1626        else if (pred == ICmpInst::ICMP_NE)
1627          return ConstantInt::getTrue(C1->getContext());
1628      }
1629  }
1630
1631  // If the comparison is a comparison between two i1's, simplify it.
1632  if (C1->getType()->isIntegerTy(1)) {
1633    switch(pred) {
1634    case ICmpInst::ICMP_EQ:
1635      if (isa<ConstantInt>(C2))
1636        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1637      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1638    case ICmpInst::ICMP_NE:
1639      return ConstantExpr::getXor(C1, C2);
1640    default:
1641      break;
1642    }
1643  }
1644
1645  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1646    APInt V1 = cast<ConstantInt>(C1)->getValue();
1647    APInt V2 = cast<ConstantInt>(C2)->getValue();
1648    switch (pred) {
1649    default: llvm_unreachable("Invalid ICmp Predicate");
1650    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1651    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1652    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1653    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1654    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1655    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1656    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1657    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1658    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1659    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1660    }
1661  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1662    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1663    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1664    APFloat::cmpResult R = C1V.compare(C2V);
1665    switch (pred) {
1666    default: llvm_unreachable("Invalid FCmp Predicate");
1667    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1668    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1669    case FCmpInst::FCMP_UNO:
1670      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1671    case FCmpInst::FCMP_ORD:
1672      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1673    case FCmpInst::FCMP_UEQ:
1674      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1675                                        R==APFloat::cmpEqual);
1676    case FCmpInst::FCMP_OEQ:
1677      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1678    case FCmpInst::FCMP_UNE:
1679      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1680    case FCmpInst::FCMP_ONE:
1681      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1682                                        R==APFloat::cmpGreaterThan);
1683    case FCmpInst::FCMP_ULT:
1684      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1685                                        R==APFloat::cmpLessThan);
1686    case FCmpInst::FCMP_OLT:
1687      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1688    case FCmpInst::FCMP_UGT:
1689      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1690                                        R==APFloat::cmpGreaterThan);
1691    case FCmpInst::FCMP_OGT:
1692      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1693    case FCmpInst::FCMP_ULE:
1694      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1695    case FCmpInst::FCMP_OLE:
1696      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1697                                        R==APFloat::cmpEqual);
1698    case FCmpInst::FCMP_UGE:
1699      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1700    case FCmpInst::FCMP_OGE:
1701      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1702                                        R==APFloat::cmpEqual);
1703    }
1704  } else if (C1->getType()->isVectorTy()) {
1705    // If we can constant fold the comparison of each element, constant fold
1706    // the whole vector comparison.
1707    SmallVector<Constant*, 4> ResElts;
1708    Type *Ty = IntegerType::get(C1->getContext(), 32);
1709    // Compare the elements, producing an i1 result or constant expr.
1710    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1711      Constant *C1E =
1712        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1713      Constant *C2E =
1714        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1715
1716      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1717    }
1718
1719    return ConstantVector::get(ResElts);
1720  }
1721
1722  if (C1->getType()->isFloatingPointTy()) {
1723    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1724    switch (evaluateFCmpRelation(C1, C2)) {
1725    default: llvm_unreachable("Unknown relation!");
1726    case FCmpInst::FCMP_UNO:
1727    case FCmpInst::FCMP_ORD:
1728    case FCmpInst::FCMP_UEQ:
1729    case FCmpInst::FCMP_UNE:
1730    case FCmpInst::FCMP_ULT:
1731    case FCmpInst::FCMP_UGT:
1732    case FCmpInst::FCMP_ULE:
1733    case FCmpInst::FCMP_UGE:
1734    case FCmpInst::FCMP_TRUE:
1735    case FCmpInst::FCMP_FALSE:
1736    case FCmpInst::BAD_FCMP_PREDICATE:
1737      break; // Couldn't determine anything about these constants.
1738    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1739      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1740                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1741                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1742      break;
1743    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1744      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1745                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1746                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1747      break;
1748    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1749      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1750                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1751                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1752      break;
1753    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1754      // We can only partially decide this relation.
1755      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1756        Result = 0;
1757      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1758        Result = 1;
1759      break;
1760    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1761      // We can only partially decide this relation.
1762      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1763        Result = 0;
1764      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1765        Result = 1;
1766      break;
1767    case FCmpInst::FCMP_ONE: // We know that C1 != C2
1768      // We can only partially decide this relation.
1769      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1770        Result = 0;
1771      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1772        Result = 1;
1773      break;
1774    }
1775
1776    // If we evaluated the result, return it now.
1777    if (Result != -1)
1778      return ConstantInt::get(ResultTy, Result);
1779
1780  } else {
1781    // Evaluate the relation between the two constants, per the predicate.
1782    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1783    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1784    default: llvm_unreachable("Unknown relational!");
1785    case ICmpInst::BAD_ICMP_PREDICATE:
1786      break;  // Couldn't determine anything about these constants.
1787    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1788      // If we know the constants are equal, we can decide the result of this
1789      // computation precisely.
1790      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1791      break;
1792    case ICmpInst::ICMP_ULT:
1793      switch (pred) {
1794      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1795        Result = 1; break;
1796      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1797        Result = 0; break;
1798      }
1799      break;
1800    case ICmpInst::ICMP_SLT:
1801      switch (pred) {
1802      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1803        Result = 1; break;
1804      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1805        Result = 0; break;
1806      }
1807      break;
1808    case ICmpInst::ICMP_UGT:
1809      switch (pred) {
1810      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1811        Result = 1; break;
1812      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1813        Result = 0; break;
1814      }
1815      break;
1816    case ICmpInst::ICMP_SGT:
1817      switch (pred) {
1818      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1819        Result = 1; break;
1820      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1821        Result = 0; break;
1822      }
1823      break;
1824    case ICmpInst::ICMP_ULE:
1825      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1826      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1827      break;
1828    case ICmpInst::ICMP_SLE:
1829      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1830      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1831      break;
1832    case ICmpInst::ICMP_UGE:
1833      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1834      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1835      break;
1836    case ICmpInst::ICMP_SGE:
1837      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1838      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1839      break;
1840    case ICmpInst::ICMP_NE:
1841      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1842      if (pred == ICmpInst::ICMP_NE) Result = 1;
1843      break;
1844    }
1845
1846    // If we evaluated the result, return it now.
1847    if (Result != -1)
1848      return ConstantInt::get(ResultTy, Result);
1849
1850    // If the right hand side is a bitcast, try using its inverse to simplify
1851    // it by moving it to the left hand side.  We can't do this if it would turn
1852    // a vector compare into a scalar compare or visa versa.
1853    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1854      Constant *CE2Op0 = CE2->getOperand(0);
1855      if (CE2->getOpcode() == Instruction::BitCast &&
1856          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1857        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1858        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1859      }
1860    }
1861
1862    // If the left hand side is an extension, try eliminating it.
1863    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1864      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1865          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1866        Constant *CE1Op0 = CE1->getOperand(0);
1867        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1868        if (CE1Inverse == CE1Op0) {
1869          // Check whether we can safely truncate the right hand side.
1870          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1871          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
1872            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1873          }
1874        }
1875      }
1876    }
1877
1878    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1879        (C1->isNullValue() && !C2->isNullValue())) {
1880      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1881      // other way if possible.
1882      // Also, if C1 is null and C2 isn't, flip them around.
1883      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1884      return ConstantExpr::getICmp(pred, C2, C1);
1885    }
1886  }
1887  return 0;
1888}
1889
1890/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1891/// is "inbounds".
1892template<typename IndexTy>
1893static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1894  // No indices means nothing that could be out of bounds.
1895  if (Idxs.empty()) return true;
1896
1897  // If the first index is zero, it's in bounds.
1898  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1899
1900  // If the first index is one and all the rest are zero, it's in bounds,
1901  // by the one-past-the-end rule.
1902  if (!cast<ConstantInt>(Idxs[0])->isOne())
1903    return false;
1904  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1905    if (!cast<Constant>(Idxs[i])->isNullValue())
1906      return false;
1907  return true;
1908}
1909
1910template<typename IndexTy>
1911static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
1912                                               bool inBounds,
1913                                               ArrayRef<IndexTy> Idxs) {
1914  if (Idxs.empty()) return C;
1915  Constant *Idx0 = cast<Constant>(Idxs[0]);
1916  if ((Idxs.size() == 1 && Idx0->isNullValue()))
1917    return C;
1918
1919  if (isa<UndefValue>(C)) {
1920    PointerType *Ptr = cast<PointerType>(C->getType());
1921    Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1922    assert(Ty != 0 && "Invalid indices for GEP!");
1923    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1924  }
1925
1926  if (C->isNullValue()) {
1927    bool isNull = true;
1928    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1929      if (!cast<Constant>(Idxs[i])->isNullValue()) {
1930        isNull = false;
1931        break;
1932      }
1933    if (isNull) {
1934      PointerType *Ptr = cast<PointerType>(C->getType());
1935      Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1936      assert(Ty != 0 && "Invalid indices for GEP!");
1937      return ConstantPointerNull::get(PointerType::get(Ty,
1938                                                       Ptr->getAddressSpace()));
1939    }
1940  }
1941
1942  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1943    // Combine Indices - If the source pointer to this getelementptr instruction
1944    // is a getelementptr instruction, combine the indices of the two
1945    // getelementptr instructions into a single instruction.
1946    //
1947    if (CE->getOpcode() == Instruction::GetElementPtr) {
1948      Type *LastTy = 0;
1949      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1950           I != E; ++I)
1951        LastTy = *I;
1952
1953      if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
1954        SmallVector<Value*, 16> NewIndices;
1955        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
1956        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1957          NewIndices.push_back(CE->getOperand(i));
1958
1959        // Add the last index of the source with the first index of the new GEP.
1960        // Make sure to handle the case when they are actually different types.
1961        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1962        // Otherwise it must be an array.
1963        if (!Idx0->isNullValue()) {
1964          Type *IdxTy = Combined->getType();
1965          if (IdxTy != Idx0->getType()) {
1966            Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
1967            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
1968            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
1969            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1970          } else {
1971            Combined =
1972              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1973          }
1974        }
1975
1976        NewIndices.push_back(Combined);
1977        NewIndices.append(Idxs.begin() + 1, Idxs.end());
1978        return
1979          ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
1980                                         inBounds &&
1981                                           cast<GEPOperator>(CE)->isInBounds());
1982      }
1983    }
1984
1985    // Implement folding of:
1986    //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
1987    //                        i64 0, i64 0)
1988    // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
1989    //
1990    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
1991      if (PointerType *SPT =
1992          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1993        if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1994          if (ArrayType *CAT =
1995        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1996            if (CAT->getElementType() == SAT->getElementType())
1997              return
1998                ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
1999                                               Idxs, inBounds);
2000    }
2001  }
2002
2003  // Check to see if any array indices are not within the corresponding
2004  // notional array bounds. If so, try to determine if they can be factored
2005  // out into preceding dimensions.
2006  bool Unknown = false;
2007  SmallVector<Constant *, 8> NewIdxs;
2008  Type *Ty = C->getType();
2009  Type *Prev = 0;
2010  for (unsigned i = 0, e = Idxs.size(); i != e;
2011       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2012    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2013      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2014        if (ATy->getNumElements() <= INT64_MAX &&
2015            ATy->getNumElements() != 0 &&
2016            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2017          if (isa<SequentialType>(Prev)) {
2018            // It's out of range, but we can factor it into the prior
2019            // dimension.
2020            NewIdxs.resize(Idxs.size());
2021            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2022                                                   ATy->getNumElements());
2023            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2024
2025            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2026            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2027
2028            // Before adding, extend both operands to i64 to avoid
2029            // overflow trouble.
2030            if (!PrevIdx->getType()->isIntegerTy(64))
2031              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2032                                           Type::getInt64Ty(Div->getContext()));
2033            if (!Div->getType()->isIntegerTy(64))
2034              Div = ConstantExpr::getSExt(Div,
2035                                          Type::getInt64Ty(Div->getContext()));
2036
2037            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2038          } else {
2039            // It's out of range, but the prior dimension is a struct
2040            // so we can't do anything about it.
2041            Unknown = true;
2042          }
2043        }
2044    } else {
2045      // We don't know if it's in range or not.
2046      Unknown = true;
2047    }
2048  }
2049
2050  // If we did any factoring, start over with the adjusted indices.
2051  if (!NewIdxs.empty()) {
2052    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2053      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2054    return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2055  }
2056
2057  // If all indices are known integers and normalized, we can do a simple
2058  // check for the "inbounds" property.
2059  if (!Unknown && !inBounds &&
2060      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2061    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
2062
2063  return 0;
2064}
2065
2066Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2067                                          bool inBounds,
2068                                          ArrayRef<Constant *> Idxs) {
2069  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2070}
2071
2072Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2073                                          bool inBounds,
2074                                          ArrayRef<Value *> Idxs) {
2075  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2076}
2077