1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33  return EVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36  return EVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39  return EVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42  return !EVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46  if (VT == MVT::iAny)
47    EnforceInteger(TP);
48  else if (VT == MVT::fAny)
49    EnforceFloatingPoint(TP);
50  else if (VT == MVT::vAny)
51    EnforceVector(TP);
52  else {
53    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54            VT == MVT::iPTRAny) && "Not a concrete type!");
55    TypeVec.push_back(VT);
56  }
57}
58
59
60EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
61  assert(!VTList.empty() && "empty list?");
62  TypeVec.append(VTList.begin(), VTList.end());
63
64  if (!VTList.empty())
65    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66           VTList[0] != MVT::fAny);
67
68  // Verify no duplicates.
69  array_pod_sort(TypeVec.begin(), TypeVec.end());
70  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                          bool (*Pred)(MVT::SimpleValueType),
77                                          const char *PredicateName) {
78  assert(isCompletelyUnknown());
79  const std::vector<MVT::SimpleValueType> &LegalTypes =
80    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
83    if (Pred == 0 || Pred(LegalTypes[i]))
84      TypeVec.push_back(LegalTypes[i]);
85
86  // If we have nothing that matches the predicate, bail out.
87  if (TypeVec.empty())
88    TP.error("Type inference contradiction found, no " +
89             std::string(PredicateName) + " types found");
90  // No need to sort with one element.
91  if (TypeVec.size() == 1) return true;
92
93  // Remove duplicates.
94  array_pod_sort(TypeVec.begin(), TypeVec.end());
95  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
96
97  return true;
98}
99
100/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
101/// integer value type.
102bool EEVT::TypeSet::hasIntegerTypes() const {
103  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
104    if (isInteger(TypeVec[i]))
105      return true;
106  return false;
107}
108
109/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
110/// a floating point value type.
111bool EEVT::TypeSet::hasFloatingPointTypes() const {
112  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
113    if (isFloatingPoint(TypeVec[i]))
114      return true;
115  return false;
116}
117
118/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
119/// value type.
120bool EEVT::TypeSet::hasVectorTypes() const {
121  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
122    if (isVector(TypeVec[i]))
123      return true;
124  return false;
125}
126
127
128std::string EEVT::TypeSet::getName() const {
129  if (TypeVec.empty()) return "<empty>";
130
131  std::string Result;
132
133  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
134    std::string VTName = llvm::getEnumName(TypeVec[i]);
135    // Strip off MVT:: prefix if present.
136    if (VTName.substr(0,5) == "MVT::")
137      VTName = VTName.substr(5);
138    if (i) Result += ':';
139    Result += VTName;
140  }
141
142  if (TypeVec.size() == 1)
143    return Result;
144  return "{" + Result + "}";
145}
146
147/// MergeInTypeInfo - This merges in type information from the specified
148/// argument.  If 'this' changes, it returns true.  If the two types are
149/// contradictory (e.g. merge f32 into i32) then this throws an exception.
150bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
151  if (InVT.isCompletelyUnknown() || *this == InVT)
152    return false;
153
154  if (isCompletelyUnknown()) {
155    *this = InVT;
156    return true;
157  }
158
159  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
160
161  // Handle the abstract cases, seeing if we can resolve them better.
162  switch (TypeVec[0]) {
163  default: break;
164  case MVT::iPTR:
165  case MVT::iPTRAny:
166    if (InVT.hasIntegerTypes()) {
167      EEVT::TypeSet InCopy(InVT);
168      InCopy.EnforceInteger(TP);
169      InCopy.EnforceScalar(TP);
170
171      if (InCopy.isConcrete()) {
172        // If the RHS has one integer type, upgrade iPTR to i32.
173        TypeVec[0] = InVT.TypeVec[0];
174        return true;
175      }
176
177      // If the input has multiple scalar integers, this doesn't add any info.
178      if (!InCopy.isCompletelyUnknown())
179        return false;
180    }
181    break;
182  }
183
184  // If the input constraint is iAny/iPTR and this is an integer type list,
185  // remove non-integer types from the list.
186  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
187      hasIntegerTypes()) {
188    bool MadeChange = EnforceInteger(TP);
189
190    // If we're merging in iPTR/iPTRAny and the node currently has a list of
191    // multiple different integer types, replace them with a single iPTR.
192    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
193        TypeVec.size() != 1) {
194      TypeVec.resize(1);
195      TypeVec[0] = InVT.TypeVec[0];
196      MadeChange = true;
197    }
198
199    return MadeChange;
200  }
201
202  // If this is a type list and the RHS is a typelist as well, eliminate entries
203  // from this list that aren't in the other one.
204  bool MadeChange = false;
205  TypeSet InputSet(*this);
206
207  for (unsigned i = 0; i != TypeVec.size(); ++i) {
208    bool InInVT = false;
209    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
210      if (TypeVec[i] == InVT.TypeVec[j]) {
211        InInVT = true;
212        break;
213      }
214
215    if (InInVT) continue;
216    TypeVec.erase(TypeVec.begin()+i--);
217    MadeChange = true;
218  }
219
220  // If we removed all of our types, we have a type contradiction.
221  if (!TypeVec.empty())
222    return MadeChange;
223
224  // FIXME: Really want an SMLoc here!
225  TP.error("Type inference contradiction found, merging '" +
226           InVT.getName() + "' into '" + InputSet.getName() + "'");
227  return true; // unreachable
228}
229
230/// EnforceInteger - Remove all non-integer types from this set.
231bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
232  // If we know nothing, then get the full set.
233  if (TypeVec.empty())
234    return FillWithPossibleTypes(TP, isInteger, "integer");
235  if (!hasFloatingPointTypes())
236    return false;
237
238  TypeSet InputSet(*this);
239
240  // Filter out all the fp types.
241  for (unsigned i = 0; i != TypeVec.size(); ++i)
242    if (!isInteger(TypeVec[i]))
243      TypeVec.erase(TypeVec.begin()+i--);
244
245  if (TypeVec.empty())
246    TP.error("Type inference contradiction found, '" +
247             InputSet.getName() + "' needs to be integer");
248  return true;
249}
250
251/// EnforceFloatingPoint - Remove all integer types from this set.
252bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
253  // If we know nothing, then get the full set.
254  if (TypeVec.empty())
255    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
256
257  if (!hasIntegerTypes())
258    return false;
259
260  TypeSet InputSet(*this);
261
262  // Filter out all the fp types.
263  for (unsigned i = 0; i != TypeVec.size(); ++i)
264    if (!isFloatingPoint(TypeVec[i]))
265      TypeVec.erase(TypeVec.begin()+i--);
266
267  if (TypeVec.empty())
268    TP.error("Type inference contradiction found, '" +
269             InputSet.getName() + "' needs to be floating point");
270  return true;
271}
272
273/// EnforceScalar - Remove all vector types from this.
274bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
275  // If we know nothing, then get the full set.
276  if (TypeVec.empty())
277    return FillWithPossibleTypes(TP, isScalar, "scalar");
278
279  if (!hasVectorTypes())
280    return false;
281
282  TypeSet InputSet(*this);
283
284  // Filter out all the vector types.
285  for (unsigned i = 0; i != TypeVec.size(); ++i)
286    if (!isScalar(TypeVec[i]))
287      TypeVec.erase(TypeVec.begin()+i--);
288
289  if (TypeVec.empty())
290    TP.error("Type inference contradiction found, '" +
291             InputSet.getName() + "' needs to be scalar");
292  return true;
293}
294
295/// EnforceVector - Remove all vector types from this.
296bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
297  // If we know nothing, then get the full set.
298  if (TypeVec.empty())
299    return FillWithPossibleTypes(TP, isVector, "vector");
300
301  TypeSet InputSet(*this);
302  bool MadeChange = false;
303
304  // Filter out all the scalar types.
305  for (unsigned i = 0; i != TypeVec.size(); ++i)
306    if (!isVector(TypeVec[i])) {
307      TypeVec.erase(TypeVec.begin()+i--);
308      MadeChange = true;
309    }
310
311  if (TypeVec.empty())
312    TP.error("Type inference contradiction found, '" +
313             InputSet.getName() + "' needs to be a vector");
314  return MadeChange;
315}
316
317
318
319/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
320/// this an other based on this information.
321bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
322  // Both operands must be integer or FP, but we don't care which.
323  bool MadeChange = false;
324
325  if (isCompletelyUnknown())
326    MadeChange = FillWithPossibleTypes(TP);
327
328  if (Other.isCompletelyUnknown())
329    MadeChange = Other.FillWithPossibleTypes(TP);
330
331  // If one side is known to be integer or known to be FP but the other side has
332  // no information, get at least the type integrality info in there.
333  if (!hasFloatingPointTypes())
334    MadeChange |= Other.EnforceInteger(TP);
335  else if (!hasIntegerTypes())
336    MadeChange |= Other.EnforceFloatingPoint(TP);
337  if (!Other.hasFloatingPointTypes())
338    MadeChange |= EnforceInteger(TP);
339  else if (!Other.hasIntegerTypes())
340    MadeChange |= EnforceFloatingPoint(TP);
341
342  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
343         "Should have a type list now");
344
345  // If one contains vectors but the other doesn't pull vectors out.
346  if (!hasVectorTypes())
347    MadeChange |= Other.EnforceScalar(TP);
348  if (!hasVectorTypes())
349    MadeChange |= EnforceScalar(TP);
350
351  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
352    // If we are down to concrete types, this code does not currently
353    // handle nodes which have multiple types, where some types are
354    // integer, and some are fp.  Assert that this is not the case.
355    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
356           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
357           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
358
359    // Otherwise, if these are both vector types, either this vector
360    // must have a larger bitsize than the other, or this element type
361    // must be larger than the other.
362    EVT Type(TypeVec[0]);
363    EVT OtherType(Other.TypeVec[0]);
364
365    if (hasVectorTypes() && Other.hasVectorTypes()) {
366      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
367        if (Type.getVectorElementType().getSizeInBits()
368            >= OtherType.getVectorElementType().getSizeInBits())
369          TP.error("Type inference contradiction found, '" +
370                   getName() + "' element type not smaller than '" +
371                   Other.getName() +"'!");
372    }
373    else
374      // For scalar types, the bitsize of this type must be larger
375      // than that of the other.
376      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
377        TP.error("Type inference contradiction found, '" +
378                 getName() + "' is not smaller than '" +
379                 Other.getName() +"'!");
380
381  }
382
383
384  // Handle int and fp as disjoint sets.  This won't work for patterns
385  // that have mixed fp/int types but those are likely rare and would
386  // not have been accepted by this code previously.
387
388  // Okay, find the smallest type from the current set and remove it from the
389  // largest set.
390  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
391  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
392    if (isInteger(TypeVec[i])) {
393      SmallestInt = TypeVec[i];
394      break;
395    }
396  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
397    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
398      SmallestInt = TypeVec[i];
399
400  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
401  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
402    if (isFloatingPoint(TypeVec[i])) {
403      SmallestFP = TypeVec[i];
404      break;
405    }
406  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
407    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
408      SmallestFP = TypeVec[i];
409
410  int OtherIntSize = 0;
411  int OtherFPSize = 0;
412  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
413         Other.TypeVec.begin();
414       TVI != Other.TypeVec.end();
415       /* NULL */) {
416    if (isInteger(*TVI)) {
417      ++OtherIntSize;
418      if (*TVI == SmallestInt) {
419        TVI = Other.TypeVec.erase(TVI);
420        --OtherIntSize;
421        MadeChange = true;
422        continue;
423      }
424    }
425    else if (isFloatingPoint(*TVI)) {
426      ++OtherFPSize;
427      if (*TVI == SmallestFP) {
428        TVI = Other.TypeVec.erase(TVI);
429        --OtherFPSize;
430        MadeChange = true;
431        continue;
432      }
433    }
434    ++TVI;
435  }
436
437  // If this is the only type in the large set, the constraint can never be
438  // satisfied.
439  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
440      || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
441    TP.error("Type inference contradiction found, '" +
442             Other.getName() + "' has nothing larger than '" + getName() +"'!");
443
444  // Okay, find the largest type in the Other set and remove it from the
445  // current set.
446  MVT::SimpleValueType LargestInt = MVT::Other;
447  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
448    if (isInteger(Other.TypeVec[i])) {
449      LargestInt = Other.TypeVec[i];
450      break;
451    }
452  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
453    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
454      LargestInt = Other.TypeVec[i];
455
456  MVT::SimpleValueType LargestFP = MVT::Other;
457  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
458    if (isFloatingPoint(Other.TypeVec[i])) {
459      LargestFP = Other.TypeVec[i];
460      break;
461    }
462  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
463    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
464      LargestFP = Other.TypeVec[i];
465
466  int IntSize = 0;
467  int FPSize = 0;
468  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
469         TypeVec.begin();
470       TVI != TypeVec.end();
471       /* NULL */) {
472    if (isInteger(*TVI)) {
473      ++IntSize;
474      if (*TVI == LargestInt) {
475        TVI = TypeVec.erase(TVI);
476        --IntSize;
477        MadeChange = true;
478        continue;
479      }
480    }
481    else if (isFloatingPoint(*TVI)) {
482      ++FPSize;
483      if (*TVI == LargestFP) {
484        TVI = TypeVec.erase(TVI);
485        --FPSize;
486        MadeChange = true;
487        continue;
488      }
489    }
490    ++TVI;
491  }
492
493  // If this is the only type in the small set, the constraint can never be
494  // satisfied.
495  if ((hasIntegerTypes() && IntSize == 0)
496      || (hasFloatingPointTypes() && FPSize == 0))
497    TP.error("Type inference contradiction found, '" +
498             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
499
500  return MadeChange;
501}
502
503/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
504/// whose element is specified by VTOperand.
505bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
506                                           TreePattern &TP) {
507  // "This" must be a vector and "VTOperand" must be a scalar.
508  bool MadeChange = false;
509  MadeChange |= EnforceVector(TP);
510  MadeChange |= VTOperand.EnforceScalar(TP);
511
512  // If we know the vector type, it forces the scalar to agree.
513  if (isConcrete()) {
514    EVT IVT = getConcrete();
515    IVT = IVT.getVectorElementType();
516    return MadeChange |
517      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
518  }
519
520  // If the scalar type is known, filter out vector types whose element types
521  // disagree.
522  if (!VTOperand.isConcrete())
523    return MadeChange;
524
525  MVT::SimpleValueType VT = VTOperand.getConcrete();
526
527  TypeSet InputSet(*this);
528
529  // Filter out all the types which don't have the right element type.
530  for (unsigned i = 0; i != TypeVec.size(); ++i) {
531    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
532    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
533      TypeVec.erase(TypeVec.begin()+i--);
534      MadeChange = true;
535    }
536  }
537
538  if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
539    TP.error("Type inference contradiction found, forcing '" +
540             InputSet.getName() + "' to have a vector element");
541  return MadeChange;
542}
543
544/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
545/// vector type specified by VTOperand.
546bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
547                                                 TreePattern &TP) {
548  // "This" must be a vector and "VTOperand" must be a vector.
549  bool MadeChange = false;
550  MadeChange |= EnforceVector(TP);
551  MadeChange |= VTOperand.EnforceVector(TP);
552
553  // "This" must be larger than "VTOperand."
554  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
555
556  // If we know the vector type, it forces the scalar types to agree.
557  if (isConcrete()) {
558    EVT IVT = getConcrete();
559    IVT = IVT.getVectorElementType();
560
561    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
562    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
563  } else if (VTOperand.isConcrete()) {
564    EVT IVT = VTOperand.getConcrete();
565    IVT = IVT.getVectorElementType();
566
567    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
568    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
569  }
570
571  return MadeChange;
572}
573
574//===----------------------------------------------------------------------===//
575// Helpers for working with extended types.
576
577bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
578  return LHS->getID() < RHS->getID();
579}
580
581/// Dependent variable map for CodeGenDAGPattern variant generation
582typedef std::map<std::string, int> DepVarMap;
583
584/// Const iterator shorthand for DepVarMap
585typedef DepVarMap::const_iterator DepVarMap_citer;
586
587static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
588  if (N->isLeaf()) {
589    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
590      DepMap[N->getName()]++;
591  } else {
592    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
593      FindDepVarsOf(N->getChild(i), DepMap);
594  }
595}
596
597/// Find dependent variables within child patterns
598static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
599  DepVarMap depcounts;
600  FindDepVarsOf(N, depcounts);
601  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
602    if (i->second > 1)            // std::pair<std::string, int>
603      DepVars.insert(i->first);
604  }
605}
606
607#ifndef NDEBUG
608/// Dump the dependent variable set:
609static void DumpDepVars(MultipleUseVarSet &DepVars) {
610  if (DepVars.empty()) {
611    DEBUG(errs() << "<empty set>");
612  } else {
613    DEBUG(errs() << "[ ");
614    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
615         e = DepVars.end(); i != e; ++i) {
616      DEBUG(errs() << (*i) << " ");
617    }
618    DEBUG(errs() << "]");
619  }
620}
621#endif
622
623
624//===----------------------------------------------------------------------===//
625// TreePredicateFn Implementation
626//===----------------------------------------------------------------------===//
627
628/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
629TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
630  assert((getPredCode().empty() || getImmCode().empty()) &&
631        ".td file corrupt: can't have a node predicate *and* an imm predicate");
632}
633
634std::string TreePredicateFn::getPredCode() const {
635  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
636}
637
638std::string TreePredicateFn::getImmCode() const {
639  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
640}
641
642
643/// isAlwaysTrue - Return true if this is a noop predicate.
644bool TreePredicateFn::isAlwaysTrue() const {
645  return getPredCode().empty() && getImmCode().empty();
646}
647
648/// Return the name to use in the generated code to reference this, this is
649/// "Predicate_foo" if from a pattern fragment "foo".
650std::string TreePredicateFn::getFnName() const {
651  return "Predicate_" + PatFragRec->getRecord()->getName();
652}
653
654/// getCodeToRunOnSDNode - Return the code for the function body that
655/// evaluates this predicate.  The argument is expected to be in "Node",
656/// not N.  This handles casting and conversion to a concrete node type as
657/// appropriate.
658std::string TreePredicateFn::getCodeToRunOnSDNode() const {
659  // Handle immediate predicates first.
660  std::string ImmCode = getImmCode();
661  if (!ImmCode.empty()) {
662    std::string Result =
663      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
664    return Result + ImmCode;
665  }
666
667  // Handle arbitrary node predicates.
668  assert(!getPredCode().empty() && "Don't have any predicate code!");
669  std::string ClassName;
670  if (PatFragRec->getOnlyTree()->isLeaf())
671    ClassName = "SDNode";
672  else {
673    Record *Op = PatFragRec->getOnlyTree()->getOperator();
674    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
675  }
676  std::string Result;
677  if (ClassName == "SDNode")
678    Result = "    SDNode *N = Node;\n";
679  else
680    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
681
682  return Result + getPredCode();
683}
684
685//===----------------------------------------------------------------------===//
686// PatternToMatch implementation
687//
688
689
690/// getPatternSize - Return the 'size' of this pattern.  We want to match large
691/// patterns before small ones.  This is used to determine the size of a
692/// pattern.
693static unsigned getPatternSize(const TreePatternNode *P,
694                               const CodeGenDAGPatterns &CGP) {
695  unsigned Size = 3;  // The node itself.
696  // If the root node is a ConstantSDNode, increases its size.
697  // e.g. (set R32:$dst, 0).
698  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
699    Size += 2;
700
701  // FIXME: This is a hack to statically increase the priority of patterns
702  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
703  // Later we can allow complexity / cost for each pattern to be (optionally)
704  // specified. To get best possible pattern match we'll need to dynamically
705  // calculate the complexity of all patterns a dag can potentially map to.
706  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
707  if (AM)
708    Size += AM->getNumOperands() * 3;
709
710  // If this node has some predicate function that must match, it adds to the
711  // complexity of this node.
712  if (!P->getPredicateFns().empty())
713    ++Size;
714
715  // Count children in the count if they are also nodes.
716  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
717    TreePatternNode *Child = P->getChild(i);
718    if (!Child->isLeaf() && Child->getNumTypes() &&
719        Child->getType(0) != MVT::Other)
720      Size += getPatternSize(Child, CGP);
721    else if (Child->isLeaf()) {
722      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
723        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
724      else if (Child->getComplexPatternInfo(CGP))
725        Size += getPatternSize(Child, CGP);
726      else if (!Child->getPredicateFns().empty())
727        ++Size;
728    }
729  }
730
731  return Size;
732}
733
734/// Compute the complexity metric for the input pattern.  This roughly
735/// corresponds to the number of nodes that are covered.
736unsigned PatternToMatch::
737getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
738  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
739}
740
741
742/// getPredicateCheck - Return a single string containing all of this
743/// pattern's predicates concatenated with "&&" operators.
744///
745std::string PatternToMatch::getPredicateCheck() const {
746  std::string PredicateCheck;
747  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
748    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
749      Record *Def = Pred->getDef();
750      if (!Def->isSubClassOf("Predicate")) {
751#ifndef NDEBUG
752        Def->dump();
753#endif
754        llvm_unreachable("Unknown predicate type!");
755      }
756      if (!PredicateCheck.empty())
757        PredicateCheck += " && ";
758      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
759    }
760  }
761
762  return PredicateCheck;
763}
764
765//===----------------------------------------------------------------------===//
766// SDTypeConstraint implementation
767//
768
769SDTypeConstraint::SDTypeConstraint(Record *R) {
770  OperandNo = R->getValueAsInt("OperandNum");
771
772  if (R->isSubClassOf("SDTCisVT")) {
773    ConstraintType = SDTCisVT;
774    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
775    if (x.SDTCisVT_Info.VT == MVT::isVoid)
776      throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
777
778  } else if (R->isSubClassOf("SDTCisPtrTy")) {
779    ConstraintType = SDTCisPtrTy;
780  } else if (R->isSubClassOf("SDTCisInt")) {
781    ConstraintType = SDTCisInt;
782  } else if (R->isSubClassOf("SDTCisFP")) {
783    ConstraintType = SDTCisFP;
784  } else if (R->isSubClassOf("SDTCisVec")) {
785    ConstraintType = SDTCisVec;
786  } else if (R->isSubClassOf("SDTCisSameAs")) {
787    ConstraintType = SDTCisSameAs;
788    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
789  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
790    ConstraintType = SDTCisVTSmallerThanOp;
791    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
792      R->getValueAsInt("OtherOperandNum");
793  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
794    ConstraintType = SDTCisOpSmallerThanOp;
795    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
796      R->getValueAsInt("BigOperandNum");
797  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
798    ConstraintType = SDTCisEltOfVec;
799    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
800  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
801    ConstraintType = SDTCisSubVecOfVec;
802    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
803      R->getValueAsInt("OtherOpNum");
804  } else {
805    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
806    exit(1);
807  }
808}
809
810/// getOperandNum - Return the node corresponding to operand #OpNo in tree
811/// N, and the result number in ResNo.
812static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
813                                      const SDNodeInfo &NodeInfo,
814                                      unsigned &ResNo) {
815  unsigned NumResults = NodeInfo.getNumResults();
816  if (OpNo < NumResults) {
817    ResNo = OpNo;
818    return N;
819  }
820
821  OpNo -= NumResults;
822
823  if (OpNo >= N->getNumChildren()) {
824    errs() << "Invalid operand number in type constraint "
825           << (OpNo+NumResults) << " ";
826    N->dump();
827    errs() << '\n';
828    exit(1);
829  }
830
831  return N->getChild(OpNo);
832}
833
834/// ApplyTypeConstraint - Given a node in a pattern, apply this type
835/// constraint to the nodes operands.  This returns true if it makes a
836/// change, false otherwise.  If a type contradiction is found, throw an
837/// exception.
838bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
839                                           const SDNodeInfo &NodeInfo,
840                                           TreePattern &TP) const {
841  unsigned ResNo = 0; // The result number being referenced.
842  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
843
844  switch (ConstraintType) {
845  case SDTCisVT:
846    // Operand must be a particular type.
847    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
848  case SDTCisPtrTy:
849    // Operand must be same as target pointer type.
850    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
851  case SDTCisInt:
852    // Require it to be one of the legal integer VTs.
853    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
854  case SDTCisFP:
855    // Require it to be one of the legal fp VTs.
856    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
857  case SDTCisVec:
858    // Require it to be one of the legal vector VTs.
859    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
860  case SDTCisSameAs: {
861    unsigned OResNo = 0;
862    TreePatternNode *OtherNode =
863      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
864    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
865           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
866  }
867  case SDTCisVTSmallerThanOp: {
868    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
869    // have an integer type that is smaller than the VT.
870    if (!NodeToApply->isLeaf() ||
871        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
872        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
873               ->isSubClassOf("ValueType"))
874      TP.error(N->getOperator()->getName() + " expects a VT operand!");
875    MVT::SimpleValueType VT =
876     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
877
878    EEVT::TypeSet TypeListTmp(VT, TP);
879
880    unsigned OResNo = 0;
881    TreePatternNode *OtherNode =
882      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
883                    OResNo);
884
885    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
886  }
887  case SDTCisOpSmallerThanOp: {
888    unsigned BResNo = 0;
889    TreePatternNode *BigOperand =
890      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
891                    BResNo);
892    return NodeToApply->getExtType(ResNo).
893                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
894  }
895  case SDTCisEltOfVec: {
896    unsigned VResNo = 0;
897    TreePatternNode *VecOperand =
898      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
899                    VResNo);
900
901    // Filter vector types out of VecOperand that don't have the right element
902    // type.
903    return VecOperand->getExtType(VResNo).
904      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
905  }
906  case SDTCisSubVecOfVec: {
907    unsigned VResNo = 0;
908    TreePatternNode *BigVecOperand =
909      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
910                    VResNo);
911
912    // Filter vector types out of BigVecOperand that don't have the
913    // right subvector type.
914    return BigVecOperand->getExtType(VResNo).
915      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
916  }
917  }
918  llvm_unreachable("Invalid ConstraintType!");
919}
920
921//===----------------------------------------------------------------------===//
922// SDNodeInfo implementation
923//
924SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
925  EnumName    = R->getValueAsString("Opcode");
926  SDClassName = R->getValueAsString("SDClass");
927  Record *TypeProfile = R->getValueAsDef("TypeProfile");
928  NumResults = TypeProfile->getValueAsInt("NumResults");
929  NumOperands = TypeProfile->getValueAsInt("NumOperands");
930
931  // Parse the properties.
932  Properties = 0;
933  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
934  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
935    if (PropList[i]->getName() == "SDNPCommutative") {
936      Properties |= 1 << SDNPCommutative;
937    } else if (PropList[i]->getName() == "SDNPAssociative") {
938      Properties |= 1 << SDNPAssociative;
939    } else if (PropList[i]->getName() == "SDNPHasChain") {
940      Properties |= 1 << SDNPHasChain;
941    } else if (PropList[i]->getName() == "SDNPOutGlue") {
942      Properties |= 1 << SDNPOutGlue;
943    } else if (PropList[i]->getName() == "SDNPInGlue") {
944      Properties |= 1 << SDNPInGlue;
945    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
946      Properties |= 1 << SDNPOptInGlue;
947    } else if (PropList[i]->getName() == "SDNPMayStore") {
948      Properties |= 1 << SDNPMayStore;
949    } else if (PropList[i]->getName() == "SDNPMayLoad") {
950      Properties |= 1 << SDNPMayLoad;
951    } else if (PropList[i]->getName() == "SDNPSideEffect") {
952      Properties |= 1 << SDNPSideEffect;
953    } else if (PropList[i]->getName() == "SDNPMemOperand") {
954      Properties |= 1 << SDNPMemOperand;
955    } else if (PropList[i]->getName() == "SDNPVariadic") {
956      Properties |= 1 << SDNPVariadic;
957    } else {
958      errs() << "Unknown SD Node property '" << PropList[i]->getName()
959             << "' on node '" << R->getName() << "'!\n";
960      exit(1);
961    }
962  }
963
964
965  // Parse the type constraints.
966  std::vector<Record*> ConstraintList =
967    TypeProfile->getValueAsListOfDefs("Constraints");
968  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
969}
970
971/// getKnownType - If the type constraints on this node imply a fixed type
972/// (e.g. all stores return void, etc), then return it as an
973/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
974MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
975  unsigned NumResults = getNumResults();
976  assert(NumResults <= 1 &&
977         "We only work with nodes with zero or one result so far!");
978  assert(ResNo == 0 && "Only handles single result nodes so far");
979
980  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
981    // Make sure that this applies to the correct node result.
982    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
983      continue;
984
985    switch (TypeConstraints[i].ConstraintType) {
986    default: break;
987    case SDTypeConstraint::SDTCisVT:
988      return TypeConstraints[i].x.SDTCisVT_Info.VT;
989    case SDTypeConstraint::SDTCisPtrTy:
990      return MVT::iPTR;
991    }
992  }
993  return MVT::Other;
994}
995
996//===----------------------------------------------------------------------===//
997// TreePatternNode implementation
998//
999
1000TreePatternNode::~TreePatternNode() {
1001#if 0 // FIXME: implement refcounted tree nodes!
1002  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1003    delete getChild(i);
1004#endif
1005}
1006
1007static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1008  if (Operator->getName() == "set" ||
1009      Operator->getName() == "implicit")
1010    return 0;  // All return nothing.
1011
1012  if (Operator->isSubClassOf("Intrinsic"))
1013    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1014
1015  if (Operator->isSubClassOf("SDNode"))
1016    return CDP.getSDNodeInfo(Operator).getNumResults();
1017
1018  if (Operator->isSubClassOf("PatFrag")) {
1019    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1020    // the forward reference case where one pattern fragment references another
1021    // before it is processed.
1022    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1023      return PFRec->getOnlyTree()->getNumTypes();
1024
1025    // Get the result tree.
1026    DagInit *Tree = Operator->getValueAsDag("Fragment");
1027    Record *Op = 0;
1028    if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
1029      Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
1030    assert(Op && "Invalid Fragment");
1031    return GetNumNodeResults(Op, CDP);
1032  }
1033
1034  if (Operator->isSubClassOf("Instruction")) {
1035    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1036
1037    // FIXME: Should allow access to all the results here.
1038    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1039
1040    // Add on one implicit def if it has a resolvable type.
1041    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1042      ++NumDefsToAdd;
1043    return NumDefsToAdd;
1044  }
1045
1046  if (Operator->isSubClassOf("SDNodeXForm"))
1047    return 1;  // FIXME: Generalize SDNodeXForm
1048
1049  Operator->dump();
1050  errs() << "Unhandled node in GetNumNodeResults\n";
1051  exit(1);
1052}
1053
1054void TreePatternNode::print(raw_ostream &OS) const {
1055  if (isLeaf())
1056    OS << *getLeafValue();
1057  else
1058    OS << '(' << getOperator()->getName();
1059
1060  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1061    OS << ':' << getExtType(i).getName();
1062
1063  if (!isLeaf()) {
1064    if (getNumChildren() != 0) {
1065      OS << " ";
1066      getChild(0)->print(OS);
1067      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1068        OS << ", ";
1069        getChild(i)->print(OS);
1070      }
1071    }
1072    OS << ")";
1073  }
1074
1075  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1076    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1077  if (TransformFn)
1078    OS << "<<X:" << TransformFn->getName() << ">>";
1079  if (!getName().empty())
1080    OS << ":$" << getName();
1081
1082}
1083void TreePatternNode::dump() const {
1084  print(errs());
1085}
1086
1087/// isIsomorphicTo - Return true if this node is recursively
1088/// isomorphic to the specified node.  For this comparison, the node's
1089/// entire state is considered. The assigned name is ignored, since
1090/// nodes with differing names are considered isomorphic. However, if
1091/// the assigned name is present in the dependent variable set, then
1092/// the assigned name is considered significant and the node is
1093/// isomorphic if the names match.
1094bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1095                                     const MultipleUseVarSet &DepVars) const {
1096  if (N == this) return true;
1097  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1098      getPredicateFns() != N->getPredicateFns() ||
1099      getTransformFn() != N->getTransformFn())
1100    return false;
1101
1102  if (isLeaf()) {
1103    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1104      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1105        return ((DI->getDef() == NDI->getDef())
1106                && (DepVars.find(getName()) == DepVars.end()
1107                    || getName() == N->getName()));
1108      }
1109    }
1110    return getLeafValue() == N->getLeafValue();
1111  }
1112
1113  if (N->getOperator() != getOperator() ||
1114      N->getNumChildren() != getNumChildren()) return false;
1115  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1116    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1117      return false;
1118  return true;
1119}
1120
1121/// clone - Make a copy of this tree and all of its children.
1122///
1123TreePatternNode *TreePatternNode::clone() const {
1124  TreePatternNode *New;
1125  if (isLeaf()) {
1126    New = new TreePatternNode(getLeafValue(), getNumTypes());
1127  } else {
1128    std::vector<TreePatternNode*> CChildren;
1129    CChildren.reserve(Children.size());
1130    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1131      CChildren.push_back(getChild(i)->clone());
1132    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1133  }
1134  New->setName(getName());
1135  New->Types = Types;
1136  New->setPredicateFns(getPredicateFns());
1137  New->setTransformFn(getTransformFn());
1138  return New;
1139}
1140
1141/// RemoveAllTypes - Recursively strip all the types of this tree.
1142void TreePatternNode::RemoveAllTypes() {
1143  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1144    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1145  if (isLeaf()) return;
1146  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1147    getChild(i)->RemoveAllTypes();
1148}
1149
1150
1151/// SubstituteFormalArguments - Replace the formal arguments in this tree
1152/// with actual values specified by ArgMap.
1153void TreePatternNode::
1154SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1155  if (isLeaf()) return;
1156
1157  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1158    TreePatternNode *Child = getChild(i);
1159    if (Child->isLeaf()) {
1160      Init *Val = Child->getLeafValue();
1161      if (dynamic_cast<DefInit*>(Val) &&
1162          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1163        // We found a use of a formal argument, replace it with its value.
1164        TreePatternNode *NewChild = ArgMap[Child->getName()];
1165        assert(NewChild && "Couldn't find formal argument!");
1166        assert((Child->getPredicateFns().empty() ||
1167                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1168               "Non-empty child predicate clobbered!");
1169        setChild(i, NewChild);
1170      }
1171    } else {
1172      getChild(i)->SubstituteFormalArguments(ArgMap);
1173    }
1174  }
1175}
1176
1177
1178/// InlinePatternFragments - If this pattern refers to any pattern
1179/// fragments, inline them into place, giving us a pattern without any
1180/// PatFrag references.
1181TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1182  if (isLeaf()) return this;  // nothing to do.
1183  Record *Op = getOperator();
1184
1185  if (!Op->isSubClassOf("PatFrag")) {
1186    // Just recursively inline children nodes.
1187    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1188      TreePatternNode *Child = getChild(i);
1189      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1190
1191      assert((Child->getPredicateFns().empty() ||
1192              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1193             "Non-empty child predicate clobbered!");
1194
1195      setChild(i, NewChild);
1196    }
1197    return this;
1198  }
1199
1200  // Otherwise, we found a reference to a fragment.  First, look up its
1201  // TreePattern record.
1202  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1203
1204  // Verify that we are passing the right number of operands.
1205  if (Frag->getNumArgs() != Children.size())
1206    TP.error("'" + Op->getName() + "' fragment requires " +
1207             utostr(Frag->getNumArgs()) + " operands!");
1208
1209  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1210
1211  TreePredicateFn PredFn(Frag);
1212  if (!PredFn.isAlwaysTrue())
1213    FragTree->addPredicateFn(PredFn);
1214
1215  // Resolve formal arguments to their actual value.
1216  if (Frag->getNumArgs()) {
1217    // Compute the map of formal to actual arguments.
1218    std::map<std::string, TreePatternNode*> ArgMap;
1219    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1220      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1221
1222    FragTree->SubstituteFormalArguments(ArgMap);
1223  }
1224
1225  FragTree->setName(getName());
1226  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1227    FragTree->UpdateNodeType(i, getExtType(i), TP);
1228
1229  // Transfer in the old predicates.
1230  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1231    FragTree->addPredicateFn(getPredicateFns()[i]);
1232
1233  // Get a new copy of this fragment to stitch into here.
1234  //delete this;    // FIXME: implement refcounting!
1235
1236  // The fragment we inlined could have recursive inlining that is needed.  See
1237  // if there are any pattern fragments in it and inline them as needed.
1238  return FragTree->InlinePatternFragments(TP);
1239}
1240
1241/// getImplicitType - Check to see if the specified record has an implicit
1242/// type which should be applied to it.  This will infer the type of register
1243/// references from the register file information, for example.
1244///
1245static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1246                                     bool NotRegisters, TreePattern &TP) {
1247  // Check to see if this is a register operand.
1248  if (R->isSubClassOf("RegisterOperand")) {
1249    assert(ResNo == 0 && "Regoperand ref only has one result!");
1250    if (NotRegisters)
1251      return EEVT::TypeSet(); // Unknown.
1252    Record *RegClass = R->getValueAsDef("RegClass");
1253    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1254    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1255  }
1256
1257  // Check to see if this is a register or a register class.
1258  if (R->isSubClassOf("RegisterClass")) {
1259    assert(ResNo == 0 && "Regclass ref only has one result!");
1260    if (NotRegisters)
1261      return EEVT::TypeSet(); // Unknown.
1262    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1263    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1264  }
1265
1266  if (R->isSubClassOf("PatFrag")) {
1267    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1268    // Pattern fragment types will be resolved when they are inlined.
1269    return EEVT::TypeSet(); // Unknown.
1270  }
1271
1272  if (R->isSubClassOf("Register")) {
1273    assert(ResNo == 0 && "Registers only produce one result!");
1274    if (NotRegisters)
1275      return EEVT::TypeSet(); // Unknown.
1276    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1277    return EEVT::TypeSet(T.getRegisterVTs(R));
1278  }
1279
1280  if (R->isSubClassOf("SubRegIndex")) {
1281    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1282    return EEVT::TypeSet();
1283  }
1284
1285  if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1286    assert(ResNo == 0 && "This node only has one result!");
1287    // Using a VTSDNode or CondCodeSDNode.
1288    return EEVT::TypeSet(MVT::Other, TP);
1289  }
1290
1291  if (R->isSubClassOf("ComplexPattern")) {
1292    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1293    if (NotRegisters)
1294      return EEVT::TypeSet(); // Unknown.
1295   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1296                         TP);
1297  }
1298  if (R->isSubClassOf("PointerLikeRegClass")) {
1299    assert(ResNo == 0 && "Regclass can only have one result!");
1300    return EEVT::TypeSet(MVT::iPTR, TP);
1301  }
1302
1303  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1304      R->getName() == "zero_reg") {
1305    // Placeholder.
1306    return EEVT::TypeSet(); // Unknown.
1307  }
1308
1309  TP.error("Unknown node flavor used in pattern: " + R->getName());
1310  return EEVT::TypeSet(MVT::Other, TP);
1311}
1312
1313
1314/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1315/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1316const CodeGenIntrinsic *TreePatternNode::
1317getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1318  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1319      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1320      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1321    return 0;
1322
1323  unsigned IID =
1324    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1325  return &CDP.getIntrinsicInfo(IID);
1326}
1327
1328/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1329/// return the ComplexPattern information, otherwise return null.
1330const ComplexPattern *
1331TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1332  if (!isLeaf()) return 0;
1333
1334  DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1335  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1336    return &CGP.getComplexPattern(DI->getDef());
1337  return 0;
1338}
1339
1340/// NodeHasProperty - Return true if this node has the specified property.
1341bool TreePatternNode::NodeHasProperty(SDNP Property,
1342                                      const CodeGenDAGPatterns &CGP) const {
1343  if (isLeaf()) {
1344    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1345      return CP->hasProperty(Property);
1346    return false;
1347  }
1348
1349  Record *Operator = getOperator();
1350  if (!Operator->isSubClassOf("SDNode")) return false;
1351
1352  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1353}
1354
1355
1356
1357
1358/// TreeHasProperty - Return true if any node in this tree has the specified
1359/// property.
1360bool TreePatternNode::TreeHasProperty(SDNP Property,
1361                                      const CodeGenDAGPatterns &CGP) const {
1362  if (NodeHasProperty(Property, CGP))
1363    return true;
1364  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1365    if (getChild(i)->TreeHasProperty(Property, CGP))
1366      return true;
1367  return false;
1368}
1369
1370/// isCommutativeIntrinsic - Return true if the node corresponds to a
1371/// commutative intrinsic.
1372bool
1373TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1374  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1375    return Int->isCommutative;
1376  return false;
1377}
1378
1379
1380/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1381/// this node and its children in the tree.  This returns true if it makes a
1382/// change, false otherwise.  If a type contradiction is found, throw an
1383/// exception.
1384bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1385  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1386  if (isLeaf()) {
1387    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1388      // If it's a regclass or something else known, include the type.
1389      bool MadeChange = false;
1390      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1391        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1392                                                        NotRegisters, TP), TP);
1393      return MadeChange;
1394    }
1395
1396    if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1397      assert(Types.size() == 1 && "Invalid IntInit");
1398
1399      // Int inits are always integers. :)
1400      bool MadeChange = Types[0].EnforceInteger(TP);
1401
1402      if (!Types[0].isConcrete())
1403        return MadeChange;
1404
1405      MVT::SimpleValueType VT = getType(0);
1406      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1407        return MadeChange;
1408
1409      unsigned Size = EVT(VT).getSizeInBits();
1410      // Make sure that the value is representable for this type.
1411      if (Size >= 32) return MadeChange;
1412
1413      // Check that the value doesn't use more bits than we have. It must either
1414      // be a sign- or zero-extended equivalent of the original.
1415      int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1416      if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1417        return MadeChange;
1418
1419      TP.error("Integer value '" + itostr(II->getValue()) +
1420               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1421      return MadeChange;
1422    }
1423    return false;
1424  }
1425
1426  // special handling for set, which isn't really an SDNode.
1427  if (getOperator()->getName() == "set") {
1428    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1429    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1430    unsigned NC = getNumChildren();
1431
1432    TreePatternNode *SetVal = getChild(NC-1);
1433    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1434
1435    for (unsigned i = 0; i < NC-1; ++i) {
1436      TreePatternNode *Child = getChild(i);
1437      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1438
1439      // Types of operands must match.
1440      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1441      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1442    }
1443    return MadeChange;
1444  }
1445
1446  if (getOperator()->getName() == "implicit") {
1447    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1448
1449    bool MadeChange = false;
1450    for (unsigned i = 0; i < getNumChildren(); ++i)
1451      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1452    return MadeChange;
1453  }
1454
1455  if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1456    bool MadeChange = false;
1457    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1458    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1459
1460    assert(getChild(0)->getNumTypes() == 1 &&
1461           getChild(1)->getNumTypes() == 1 && "Unhandled case");
1462
1463    // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
1464    // what type it gets, so if it didn't get a concrete type just give it the
1465    // first viable type from the reg class.
1466    if (!getChild(1)->hasTypeSet(0) &&
1467        !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1468      MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1469      MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1470    }
1471    return MadeChange;
1472  }
1473
1474  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1475    bool MadeChange = false;
1476
1477    // Apply the result type to the node.
1478    unsigned NumRetVTs = Int->IS.RetVTs.size();
1479    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1480
1481    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1482      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1483
1484    if (getNumChildren() != NumParamVTs + 1)
1485      TP.error("Intrinsic '" + Int->Name + "' expects " +
1486               utostr(NumParamVTs) + " operands, not " +
1487               utostr(getNumChildren() - 1) + " operands!");
1488
1489    // Apply type info to the intrinsic ID.
1490    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1491
1492    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1493      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1494
1495      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1496      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1497      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1498    }
1499    return MadeChange;
1500  }
1501
1502  if (getOperator()->isSubClassOf("SDNode")) {
1503    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1504
1505    // Check that the number of operands is sane.  Negative operands -> varargs.
1506    if (NI.getNumOperands() >= 0 &&
1507        getNumChildren() != (unsigned)NI.getNumOperands())
1508      TP.error(getOperator()->getName() + " node requires exactly " +
1509               itostr(NI.getNumOperands()) + " operands!");
1510
1511    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1512    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1513      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1514    return MadeChange;
1515  }
1516
1517  if (getOperator()->isSubClassOf("Instruction")) {
1518    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1519    CodeGenInstruction &InstInfo =
1520      CDP.getTargetInfo().getInstruction(getOperator());
1521
1522    bool MadeChange = false;
1523
1524    // Apply the result types to the node, these come from the things in the
1525    // (outs) list of the instruction.
1526    // FIXME: Cap at one result so far.
1527    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1528    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1529      Record *ResultNode = Inst.getResult(ResNo);
1530
1531      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1532        MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1533      } else if (ResultNode->isSubClassOf("RegisterOperand")) {
1534        Record *RegClass = ResultNode->getValueAsDef("RegClass");
1535        const CodeGenRegisterClass &RC =
1536          CDP.getTargetInfo().getRegisterClass(RegClass);
1537        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1538      } else if (ResultNode->getName() == "unknown") {
1539        // Nothing to do.
1540      } else {
1541        assert(ResultNode->isSubClassOf("RegisterClass") &&
1542               "Operands should be register classes!");
1543        const CodeGenRegisterClass &RC =
1544          CDP.getTargetInfo().getRegisterClass(ResultNode);
1545        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1546      }
1547    }
1548
1549    // If the instruction has implicit defs, we apply the first one as a result.
1550    // FIXME: This sucks, it should apply all implicit defs.
1551    if (!InstInfo.ImplicitDefs.empty()) {
1552      unsigned ResNo = NumResultsToAdd;
1553
1554      // FIXME: Generalize to multiple possible types and multiple possible
1555      // ImplicitDefs.
1556      MVT::SimpleValueType VT =
1557        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1558
1559      if (VT != MVT::Other)
1560        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1561    }
1562
1563    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1564    // be the same.
1565    if (getOperator()->getName() == "INSERT_SUBREG") {
1566      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1567      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1568      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1569    }
1570
1571    unsigned ChildNo = 0;
1572    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1573      Record *OperandNode = Inst.getOperand(i);
1574
1575      // If the instruction expects a predicate or optional def operand, we
1576      // codegen this by setting the operand to it's default value if it has a
1577      // non-empty DefaultOps field.
1578      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1579          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1580        continue;
1581
1582      // Verify that we didn't run out of provided operands.
1583      if (ChildNo >= getNumChildren())
1584        TP.error("Instruction '" + getOperator()->getName() +
1585                 "' expects more operands than were provided.");
1586
1587      MVT::SimpleValueType VT;
1588      TreePatternNode *Child = getChild(ChildNo++);
1589      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1590
1591      if (OperandNode->isSubClassOf("RegisterClass")) {
1592        const CodeGenRegisterClass &RC =
1593          CDP.getTargetInfo().getRegisterClass(OperandNode);
1594        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1595      } else if (OperandNode->isSubClassOf("RegisterOperand")) {
1596        Record *RegClass = OperandNode->getValueAsDef("RegClass");
1597        const CodeGenRegisterClass &RC =
1598          CDP.getTargetInfo().getRegisterClass(RegClass);
1599        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1600      } else if (OperandNode->isSubClassOf("Operand")) {
1601        VT = getValueType(OperandNode->getValueAsDef("Type"));
1602        MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1603      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1604        MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1605      } else if (OperandNode->getName() == "unknown") {
1606        // Nothing to do.
1607      } else
1608        llvm_unreachable("Unknown operand type!");
1609
1610      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1611    }
1612
1613    if (ChildNo != getNumChildren())
1614      TP.error("Instruction '" + getOperator()->getName() +
1615               "' was provided too many operands!");
1616
1617    return MadeChange;
1618  }
1619
1620  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1621
1622  // Node transforms always take one operand.
1623  if (getNumChildren() != 1)
1624    TP.error("Node transform '" + getOperator()->getName() +
1625             "' requires one operand!");
1626
1627  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1628
1629
1630  // If either the output or input of the xform does not have exact
1631  // type info. We assume they must be the same. Otherwise, it is perfectly
1632  // legal to transform from one type to a completely different type.
1633#if 0
1634  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1635    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1636    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1637    return MadeChange;
1638  }
1639#endif
1640  return MadeChange;
1641}
1642
1643/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1644/// RHS of a commutative operation, not the on LHS.
1645static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1646  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1647    return true;
1648  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1649    return true;
1650  return false;
1651}
1652
1653
1654/// canPatternMatch - If it is impossible for this pattern to match on this
1655/// target, fill in Reason and return false.  Otherwise, return true.  This is
1656/// used as a sanity check for .td files (to prevent people from writing stuff
1657/// that can never possibly work), and to prevent the pattern permuter from
1658/// generating stuff that is useless.
1659bool TreePatternNode::canPatternMatch(std::string &Reason,
1660                                      const CodeGenDAGPatterns &CDP) {
1661  if (isLeaf()) return true;
1662
1663  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1664    if (!getChild(i)->canPatternMatch(Reason, CDP))
1665      return false;
1666
1667  // If this is an intrinsic, handle cases that would make it not match.  For
1668  // example, if an operand is required to be an immediate.
1669  if (getOperator()->isSubClassOf("Intrinsic")) {
1670    // TODO:
1671    return true;
1672  }
1673
1674  // If this node is a commutative operator, check that the LHS isn't an
1675  // immediate.
1676  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1677  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1678  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1679    // Scan all of the operands of the node and make sure that only the last one
1680    // is a constant node, unless the RHS also is.
1681    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1682      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1683      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1684        if (OnlyOnRHSOfCommutative(getChild(i))) {
1685          Reason="Immediate value must be on the RHS of commutative operators!";
1686          return false;
1687        }
1688    }
1689  }
1690
1691  return true;
1692}
1693
1694//===----------------------------------------------------------------------===//
1695// TreePattern implementation
1696//
1697
1698TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1699                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1700  isInputPattern = isInput;
1701  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1702    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1703}
1704
1705TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1706                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1707  isInputPattern = isInput;
1708  Trees.push_back(ParseTreePattern(Pat, ""));
1709}
1710
1711TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1712                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1713  isInputPattern = isInput;
1714  Trees.push_back(Pat);
1715}
1716
1717void TreePattern::error(const std::string &Msg) const {
1718  dump();
1719  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1720}
1721
1722void TreePattern::ComputeNamedNodes() {
1723  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1724    ComputeNamedNodes(Trees[i]);
1725}
1726
1727void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1728  if (!N->getName().empty())
1729    NamedNodes[N->getName()].push_back(N);
1730
1731  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1732    ComputeNamedNodes(N->getChild(i));
1733}
1734
1735
1736TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1737  if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1738    Record *R = DI->getDef();
1739
1740    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1741    // TreePatternNode of its own.  For example:
1742    ///   (foo GPR, imm) -> (foo GPR, (imm))
1743    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1744      return ParseTreePattern(
1745        DagInit::get(DI, "",
1746                     std::vector<std::pair<Init*, std::string> >()),
1747        OpName);
1748
1749    // Input argument?
1750    TreePatternNode *Res = new TreePatternNode(DI, 1);
1751    if (R->getName() == "node" && !OpName.empty()) {
1752      if (OpName.empty())
1753        error("'node' argument requires a name to match with operand list");
1754      Args.push_back(OpName);
1755    }
1756
1757    Res->setName(OpName);
1758    return Res;
1759  }
1760
1761  if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1762    if (!OpName.empty())
1763      error("Constant int argument should not have a name!");
1764    return new TreePatternNode(II, 1);
1765  }
1766
1767  if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1768    // Turn this into an IntInit.
1769    Init *II = BI->convertInitializerTo(IntRecTy::get());
1770    if (II == 0 || !dynamic_cast<IntInit*>(II))
1771      error("Bits value must be constants!");
1772    return ParseTreePattern(II, OpName);
1773  }
1774
1775  DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1776  if (!Dag) {
1777    TheInit->dump();
1778    error("Pattern has unexpected init kind!");
1779  }
1780  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1781  if (!OpDef) error("Pattern has unexpected operator type!");
1782  Record *Operator = OpDef->getDef();
1783
1784  if (Operator->isSubClassOf("ValueType")) {
1785    // If the operator is a ValueType, then this must be "type cast" of a leaf
1786    // node.
1787    if (Dag->getNumArgs() != 1)
1788      error("Type cast only takes one operand!");
1789
1790    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1791
1792    // Apply the type cast.
1793    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1794    New->UpdateNodeType(0, getValueType(Operator), *this);
1795
1796    if (!OpName.empty())
1797      error("ValueType cast should not have a name!");
1798    return New;
1799  }
1800
1801  // Verify that this is something that makes sense for an operator.
1802  if (!Operator->isSubClassOf("PatFrag") &&
1803      !Operator->isSubClassOf("SDNode") &&
1804      !Operator->isSubClassOf("Instruction") &&
1805      !Operator->isSubClassOf("SDNodeXForm") &&
1806      !Operator->isSubClassOf("Intrinsic") &&
1807      Operator->getName() != "set" &&
1808      Operator->getName() != "implicit")
1809    error("Unrecognized node '" + Operator->getName() + "'!");
1810
1811  //  Check to see if this is something that is illegal in an input pattern.
1812  if (isInputPattern) {
1813    if (Operator->isSubClassOf("Instruction") ||
1814        Operator->isSubClassOf("SDNodeXForm"))
1815      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1816  } else {
1817    if (Operator->isSubClassOf("Intrinsic"))
1818      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1819
1820    if (Operator->isSubClassOf("SDNode") &&
1821        Operator->getName() != "imm" &&
1822        Operator->getName() != "fpimm" &&
1823        Operator->getName() != "tglobaltlsaddr" &&
1824        Operator->getName() != "tconstpool" &&
1825        Operator->getName() != "tjumptable" &&
1826        Operator->getName() != "tframeindex" &&
1827        Operator->getName() != "texternalsym" &&
1828        Operator->getName() != "tblockaddress" &&
1829        Operator->getName() != "tglobaladdr" &&
1830        Operator->getName() != "bb" &&
1831        Operator->getName() != "vt")
1832      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1833  }
1834
1835  std::vector<TreePatternNode*> Children;
1836
1837  // Parse all the operands.
1838  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1839    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1840
1841  // If the operator is an intrinsic, then this is just syntactic sugar for for
1842  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1843  // convert the intrinsic name to a number.
1844  if (Operator->isSubClassOf("Intrinsic")) {
1845    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1846    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1847
1848    // If this intrinsic returns void, it must have side-effects and thus a
1849    // chain.
1850    if (Int.IS.RetVTs.empty())
1851      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1852    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1853      // Has side-effects, requires chain.
1854      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1855    else // Otherwise, no chain.
1856      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1857
1858    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1859    Children.insert(Children.begin(), IIDNode);
1860  }
1861
1862  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1863  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1864  Result->setName(OpName);
1865
1866  if (!Dag->getName().empty()) {
1867    assert(Result->getName().empty());
1868    Result->setName(Dag->getName());
1869  }
1870  return Result;
1871}
1872
1873/// SimplifyTree - See if we can simplify this tree to eliminate something that
1874/// will never match in favor of something obvious that will.  This is here
1875/// strictly as a convenience to target authors because it allows them to write
1876/// more type generic things and have useless type casts fold away.
1877///
1878/// This returns true if any change is made.
1879static bool SimplifyTree(TreePatternNode *&N) {
1880  if (N->isLeaf())
1881    return false;
1882
1883  // If we have a bitconvert with a resolved type and if the source and
1884  // destination types are the same, then the bitconvert is useless, remove it.
1885  if (N->getOperator()->getName() == "bitconvert" &&
1886      N->getExtType(0).isConcrete() &&
1887      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1888      N->getName().empty()) {
1889    N = N->getChild(0);
1890    SimplifyTree(N);
1891    return true;
1892  }
1893
1894  // Walk all children.
1895  bool MadeChange = false;
1896  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1897    TreePatternNode *Child = N->getChild(i);
1898    MadeChange |= SimplifyTree(Child);
1899    N->setChild(i, Child);
1900  }
1901  return MadeChange;
1902}
1903
1904
1905
1906/// InferAllTypes - Infer/propagate as many types throughout the expression
1907/// patterns as possible.  Return true if all types are inferred, false
1908/// otherwise.  Throw an exception if a type contradiction is found.
1909bool TreePattern::
1910InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1911  if (NamedNodes.empty())
1912    ComputeNamedNodes();
1913
1914  bool MadeChange = true;
1915  while (MadeChange) {
1916    MadeChange = false;
1917    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1918      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1919      MadeChange |= SimplifyTree(Trees[i]);
1920    }
1921
1922    // If there are constraints on our named nodes, apply them.
1923    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1924         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1925      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1926
1927      // If we have input named node types, propagate their types to the named
1928      // values here.
1929      if (InNamedTypes) {
1930        // FIXME: Should be error?
1931        assert(InNamedTypes->count(I->getKey()) &&
1932               "Named node in output pattern but not input pattern?");
1933
1934        const SmallVectorImpl<TreePatternNode*> &InNodes =
1935          InNamedTypes->find(I->getKey())->second;
1936
1937        // The input types should be fully resolved by now.
1938        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1939          // If this node is a register class, and it is the root of the pattern
1940          // then we're mapping something onto an input register.  We allow
1941          // changing the type of the input register in this case.  This allows
1942          // us to match things like:
1943          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1944          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1945            DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1946            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
1947                       DI->getDef()->isSubClassOf("RegisterOperand")))
1948              continue;
1949          }
1950
1951          assert(Nodes[i]->getNumTypes() == 1 &&
1952                 InNodes[0]->getNumTypes() == 1 &&
1953                 "FIXME: cannot name multiple result nodes yet");
1954          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1955                                                 *this);
1956        }
1957      }
1958
1959      // If there are multiple nodes with the same name, they must all have the
1960      // same type.
1961      if (I->second.size() > 1) {
1962        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1963          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1964          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1965                 "FIXME: cannot name multiple result nodes yet");
1966
1967          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1968          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1969        }
1970      }
1971    }
1972  }
1973
1974  bool HasUnresolvedTypes = false;
1975  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1976    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1977  return !HasUnresolvedTypes;
1978}
1979
1980void TreePattern::print(raw_ostream &OS) const {
1981  OS << getRecord()->getName();
1982  if (!Args.empty()) {
1983    OS << "(" << Args[0];
1984    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1985      OS << ", " << Args[i];
1986    OS << ")";
1987  }
1988  OS << ": ";
1989
1990  if (Trees.size() > 1)
1991    OS << "[\n";
1992  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1993    OS << "\t";
1994    Trees[i]->print(OS);
1995    OS << "\n";
1996  }
1997
1998  if (Trees.size() > 1)
1999    OS << "]\n";
2000}
2001
2002void TreePattern::dump() const { print(errs()); }
2003
2004//===----------------------------------------------------------------------===//
2005// CodeGenDAGPatterns implementation
2006//
2007
2008CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2009  Records(R), Target(R) {
2010
2011  Intrinsics = LoadIntrinsics(Records, false);
2012  TgtIntrinsics = LoadIntrinsics(Records, true);
2013  ParseNodeInfo();
2014  ParseNodeTransforms();
2015  ParseComplexPatterns();
2016  ParsePatternFragments();
2017  ParseDefaultOperands();
2018  ParseInstructions();
2019  ParsePatterns();
2020
2021  // Generate variants.  For example, commutative patterns can match
2022  // multiple ways.  Add them to PatternsToMatch as well.
2023  GenerateVariants();
2024
2025  // Infer instruction flags.  For example, we can detect loads,
2026  // stores, and side effects in many cases by examining an
2027  // instruction's pattern.
2028  InferInstructionFlags();
2029
2030  // Verify that instruction flags match the patterns.
2031  VerifyInstructionFlags();
2032}
2033
2034CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2035  for (pf_iterator I = PatternFragments.begin(),
2036       E = PatternFragments.end(); I != E; ++I)
2037    delete I->second;
2038}
2039
2040
2041Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2042  Record *N = Records.getDef(Name);
2043  if (!N || !N->isSubClassOf("SDNode")) {
2044    errs() << "Error getting SDNode '" << Name << "'!\n";
2045    exit(1);
2046  }
2047  return N;
2048}
2049
2050// Parse all of the SDNode definitions for the target, populating SDNodes.
2051void CodeGenDAGPatterns::ParseNodeInfo() {
2052  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2053  while (!Nodes.empty()) {
2054    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2055    Nodes.pop_back();
2056  }
2057
2058  // Get the builtin intrinsic nodes.
2059  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2060  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2061  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2062}
2063
2064/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2065/// map, and emit them to the file as functions.
2066void CodeGenDAGPatterns::ParseNodeTransforms() {
2067  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2068  while (!Xforms.empty()) {
2069    Record *XFormNode = Xforms.back();
2070    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2071    std::string Code = XFormNode->getValueAsString("XFormFunction");
2072    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2073
2074    Xforms.pop_back();
2075  }
2076}
2077
2078void CodeGenDAGPatterns::ParseComplexPatterns() {
2079  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2080  while (!AMs.empty()) {
2081    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2082    AMs.pop_back();
2083  }
2084}
2085
2086
2087/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2088/// file, building up the PatternFragments map.  After we've collected them all,
2089/// inline fragments together as necessary, so that there are no references left
2090/// inside a pattern fragment to a pattern fragment.
2091///
2092void CodeGenDAGPatterns::ParsePatternFragments() {
2093  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2094
2095  // First step, parse all of the fragments.
2096  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2097    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2098    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2099    PatternFragments[Fragments[i]] = P;
2100
2101    // Validate the argument list, converting it to set, to discard duplicates.
2102    std::vector<std::string> &Args = P->getArgList();
2103    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2104
2105    if (OperandsSet.count(""))
2106      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2107
2108    // Parse the operands list.
2109    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2110    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2111    // Special cases: ops == outs == ins. Different names are used to
2112    // improve readability.
2113    if (!OpsOp ||
2114        (OpsOp->getDef()->getName() != "ops" &&
2115         OpsOp->getDef()->getName() != "outs" &&
2116         OpsOp->getDef()->getName() != "ins"))
2117      P->error("Operands list should start with '(ops ... '!");
2118
2119    // Copy over the arguments.
2120    Args.clear();
2121    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2122      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2123          static_cast<DefInit*>(OpsList->getArg(j))->
2124          getDef()->getName() != "node")
2125        P->error("Operands list should all be 'node' values.");
2126      if (OpsList->getArgName(j).empty())
2127        P->error("Operands list should have names for each operand!");
2128      if (!OperandsSet.count(OpsList->getArgName(j)))
2129        P->error("'" + OpsList->getArgName(j) +
2130                 "' does not occur in pattern or was multiply specified!");
2131      OperandsSet.erase(OpsList->getArgName(j));
2132      Args.push_back(OpsList->getArgName(j));
2133    }
2134
2135    if (!OperandsSet.empty())
2136      P->error("Operands list does not contain an entry for operand '" +
2137               *OperandsSet.begin() + "'!");
2138
2139    // If there is a code init for this fragment, keep track of the fact that
2140    // this fragment uses it.
2141    TreePredicateFn PredFn(P);
2142    if (!PredFn.isAlwaysTrue())
2143      P->getOnlyTree()->addPredicateFn(PredFn);
2144
2145    // If there is a node transformation corresponding to this, keep track of
2146    // it.
2147    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2148    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2149      P->getOnlyTree()->setTransformFn(Transform);
2150  }
2151
2152  // Now that we've parsed all of the tree fragments, do a closure on them so
2153  // that there are not references to PatFrags left inside of them.
2154  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2155    TreePattern *ThePat = PatternFragments[Fragments[i]];
2156    ThePat->InlinePatternFragments();
2157
2158    // Infer as many types as possible.  Don't worry about it if we don't infer
2159    // all of them, some may depend on the inputs of the pattern.
2160    try {
2161      ThePat->InferAllTypes();
2162    } catch (...) {
2163      // If this pattern fragment is not supported by this target (no types can
2164      // satisfy its constraints), just ignore it.  If the bogus pattern is
2165      // actually used by instructions, the type consistency error will be
2166      // reported there.
2167    }
2168
2169    // If debugging, print out the pattern fragment result.
2170    DEBUG(ThePat->dump());
2171  }
2172}
2173
2174void CodeGenDAGPatterns::ParseDefaultOperands() {
2175  std::vector<Record*> DefaultOps;
2176  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2177
2178  // Find some SDNode.
2179  assert(!SDNodes.empty() && "No SDNodes parsed?");
2180  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2181
2182  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2183    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2184
2185    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2186    // SomeSDnode so that we can parse this.
2187    std::vector<std::pair<Init*, std::string> > Ops;
2188    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2189      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2190                                   DefaultInfo->getArgName(op)));
2191    DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2192
2193    // Create a TreePattern to parse this.
2194    TreePattern P(DefaultOps[i], DI, false, *this);
2195    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2196
2197    // Copy the operands over into a DAGDefaultOperand.
2198    DAGDefaultOperand DefaultOpInfo;
2199
2200    TreePatternNode *T = P.getTree(0);
2201    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2202      TreePatternNode *TPN = T->getChild(op);
2203      while (TPN->ApplyTypeConstraints(P, false))
2204        /* Resolve all types */;
2205
2206      if (TPN->ContainsUnresolvedType()) {
2207        throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2208          DefaultOps[i]->getName() +"' doesn't have a concrete type!";
2209      }
2210      DefaultOpInfo.DefaultOps.push_back(TPN);
2211    }
2212
2213    // Insert it into the DefaultOperands map so we can find it later.
2214    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2215  }
2216}
2217
2218/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2219/// instruction input.  Return true if this is a real use.
2220static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2221                      std::map<std::string, TreePatternNode*> &InstInputs) {
2222  // No name -> not interesting.
2223  if (Pat->getName().empty()) {
2224    if (Pat->isLeaf()) {
2225      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2226      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2227                 DI->getDef()->isSubClassOf("RegisterOperand")))
2228        I->error("Input " + DI->getDef()->getName() + " must be named!");
2229    }
2230    return false;
2231  }
2232
2233  Record *Rec;
2234  if (Pat->isLeaf()) {
2235    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2236    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2237    Rec = DI->getDef();
2238  } else {
2239    Rec = Pat->getOperator();
2240  }
2241
2242  // SRCVALUE nodes are ignored.
2243  if (Rec->getName() == "srcvalue")
2244    return false;
2245
2246  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2247  if (!Slot) {
2248    Slot = Pat;
2249    return true;
2250  }
2251  Record *SlotRec;
2252  if (Slot->isLeaf()) {
2253    SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2254  } else {
2255    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2256    SlotRec = Slot->getOperator();
2257  }
2258
2259  // Ensure that the inputs agree if we've already seen this input.
2260  if (Rec != SlotRec)
2261    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2262  if (Slot->getExtTypes() != Pat->getExtTypes())
2263    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2264  return true;
2265}
2266
2267/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2268/// part of "I", the instruction), computing the set of inputs and outputs of
2269/// the pattern.  Report errors if we see anything naughty.
2270void CodeGenDAGPatterns::
2271FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2272                            std::map<std::string, TreePatternNode*> &InstInputs,
2273                            std::map<std::string, TreePatternNode*>&InstResults,
2274                            std::vector<Record*> &InstImpResults) {
2275  if (Pat->isLeaf()) {
2276    bool isUse = HandleUse(I, Pat, InstInputs);
2277    if (!isUse && Pat->getTransformFn())
2278      I->error("Cannot specify a transform function for a non-input value!");
2279    return;
2280  }
2281
2282  if (Pat->getOperator()->getName() == "implicit") {
2283    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2284      TreePatternNode *Dest = Pat->getChild(i);
2285      if (!Dest->isLeaf())
2286        I->error("implicitly defined value should be a register!");
2287
2288      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2289      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2290        I->error("implicitly defined value should be a register!");
2291      InstImpResults.push_back(Val->getDef());
2292    }
2293    return;
2294  }
2295
2296  if (Pat->getOperator()->getName() != "set") {
2297    // If this is not a set, verify that the children nodes are not void typed,
2298    // and recurse.
2299    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2300      if (Pat->getChild(i)->getNumTypes() == 0)
2301        I->error("Cannot have void nodes inside of patterns!");
2302      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2303                                  InstImpResults);
2304    }
2305
2306    // If this is a non-leaf node with no children, treat it basically as if
2307    // it were a leaf.  This handles nodes like (imm).
2308    bool isUse = HandleUse(I, Pat, InstInputs);
2309
2310    if (!isUse && Pat->getTransformFn())
2311      I->error("Cannot specify a transform function for a non-input value!");
2312    return;
2313  }
2314
2315  // Otherwise, this is a set, validate and collect instruction results.
2316  if (Pat->getNumChildren() == 0)
2317    I->error("set requires operands!");
2318
2319  if (Pat->getTransformFn())
2320    I->error("Cannot specify a transform function on a set node!");
2321
2322  // Check the set destinations.
2323  unsigned NumDests = Pat->getNumChildren()-1;
2324  for (unsigned i = 0; i != NumDests; ++i) {
2325    TreePatternNode *Dest = Pat->getChild(i);
2326    if (!Dest->isLeaf())
2327      I->error("set destination should be a register!");
2328
2329    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2330    if (!Val)
2331      I->error("set destination should be a register!");
2332
2333    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2334        Val->getDef()->isSubClassOf("RegisterOperand") ||
2335        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2336      if (Dest->getName().empty())
2337        I->error("set destination must have a name!");
2338      if (InstResults.count(Dest->getName()))
2339        I->error("cannot set '" + Dest->getName() +"' multiple times");
2340      InstResults[Dest->getName()] = Dest;
2341    } else if (Val->getDef()->isSubClassOf("Register")) {
2342      InstImpResults.push_back(Val->getDef());
2343    } else {
2344      I->error("set destination should be a register!");
2345    }
2346  }
2347
2348  // Verify and collect info from the computation.
2349  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2350                              InstInputs, InstResults, InstImpResults);
2351}
2352
2353//===----------------------------------------------------------------------===//
2354// Instruction Analysis
2355//===----------------------------------------------------------------------===//
2356
2357class InstAnalyzer {
2358  const CodeGenDAGPatterns &CDP;
2359public:
2360  bool hasSideEffects;
2361  bool mayStore;
2362  bool mayLoad;
2363  bool isBitcast;
2364  bool isVariadic;
2365
2366  InstAnalyzer(const CodeGenDAGPatterns &cdp)
2367    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2368      isBitcast(false), isVariadic(false) {}
2369
2370  void Analyze(const TreePattern *Pat) {
2371    // Assume only the first tree is the pattern. The others are clobber nodes.
2372    AnalyzeNode(Pat->getTree(0));
2373  }
2374
2375  void Analyze(const PatternToMatch *Pat) {
2376    AnalyzeNode(Pat->getSrcPattern());
2377  }
2378
2379private:
2380  bool IsNodeBitcast(const TreePatternNode *N) const {
2381    if (hasSideEffects || mayLoad || mayStore || isVariadic)
2382      return false;
2383
2384    if (N->getNumChildren() != 2)
2385      return false;
2386
2387    const TreePatternNode *N0 = N->getChild(0);
2388    if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
2389      return false;
2390
2391    const TreePatternNode *N1 = N->getChild(1);
2392    if (N1->isLeaf())
2393      return false;
2394    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2395      return false;
2396
2397    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2398    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2399      return false;
2400    return OpInfo.getEnumName() == "ISD::BITCAST";
2401  }
2402
2403public:
2404  void AnalyzeNode(const TreePatternNode *N) {
2405    if (N->isLeaf()) {
2406      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2407        Record *LeafRec = DI->getDef();
2408        // Handle ComplexPattern leaves.
2409        if (LeafRec->isSubClassOf("ComplexPattern")) {
2410          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2411          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2412          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2413          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2414        }
2415      }
2416      return;
2417    }
2418
2419    // Analyze children.
2420    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2421      AnalyzeNode(N->getChild(i));
2422
2423    // Ignore set nodes, which are not SDNodes.
2424    if (N->getOperator()->getName() == "set") {
2425      isBitcast = IsNodeBitcast(N);
2426      return;
2427    }
2428
2429    // Get information about the SDNode for the operator.
2430    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2431
2432    // Notice properties of the node.
2433    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2434    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2435    if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2436    if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2437
2438    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2439      // If this is an intrinsic, analyze it.
2440      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2441        mayLoad = true;// These may load memory.
2442
2443      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2444        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2445
2446      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2447        // WriteMem intrinsics can have other strange effects.
2448        hasSideEffects = true;
2449    }
2450  }
2451
2452};
2453
2454static bool InferFromPattern(CodeGenInstruction &InstInfo,
2455                             const InstAnalyzer &PatInfo,
2456                             Record *PatDef) {
2457  bool Error = false;
2458
2459  // Remember where InstInfo got its flags.
2460  if (InstInfo.hasUndefFlags())
2461      InstInfo.InferredFrom = PatDef;
2462
2463  // Check explicitly set flags for consistency.
2464  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2465      !InstInfo.hasSideEffects_Unset) {
2466    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2467    // the pattern has no side effects. That could be useful for div/rem
2468    // instructions that may trap.
2469    if (!InstInfo.hasSideEffects) {
2470      Error = true;
2471      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2472                 Twine(InstInfo.hasSideEffects));
2473    }
2474  }
2475
2476  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2477    Error = true;
2478    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2479               Twine(InstInfo.mayStore));
2480  }
2481
2482  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2483    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2484    // Some targets translate imediates to loads.
2485    if (!InstInfo.mayLoad) {
2486      Error = true;
2487      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2488                 Twine(InstInfo.mayLoad));
2489    }
2490  }
2491
2492  // Transfer inferred flags.
2493  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2494  InstInfo.mayStore |= PatInfo.mayStore;
2495  InstInfo.mayLoad |= PatInfo.mayLoad;
2496
2497  // These flags are silently added without any verification.
2498  InstInfo.isBitcast |= PatInfo.isBitcast;
2499
2500  // Don't infer isVariadic. This flag means something different on SDNodes and
2501  // instructions. For example, a CALL SDNode is variadic because it has the
2502  // call arguments as operands, but a CALL instruction is not variadic - it
2503  // has argument registers as implicit, not explicit uses.
2504
2505  return Error;
2506}
2507
2508/// hasNullFragReference - Return true if the DAG has any reference to the
2509/// null_frag operator.
2510static bool hasNullFragReference(DagInit *DI) {
2511  DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator());
2512  if (!OpDef) return false;
2513  Record *Operator = OpDef->getDef();
2514
2515  // If this is the null fragment, return true.
2516  if (Operator->getName() == "null_frag") return true;
2517  // If any of the arguments reference the null fragment, return true.
2518  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2519    DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i));
2520    if (Arg && hasNullFragReference(Arg))
2521      return true;
2522  }
2523
2524  return false;
2525}
2526
2527/// hasNullFragReference - Return true if any DAG in the list references
2528/// the null_frag operator.
2529static bool hasNullFragReference(ListInit *LI) {
2530  for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2531    DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i));
2532    assert(DI && "non-dag in an instruction Pattern list?!");
2533    if (hasNullFragReference(DI))
2534      return true;
2535  }
2536  return false;
2537}
2538
2539/// Get all the instructions in a tree.
2540static void
2541getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2542  if (Tree->isLeaf())
2543    return;
2544  if (Tree->getOperator()->isSubClassOf("Instruction"))
2545    Instrs.push_back(Tree->getOperator());
2546  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2547    getInstructionsInTree(Tree->getChild(i), Instrs);
2548}
2549
2550/// ParseInstructions - Parse all of the instructions, inlining and resolving
2551/// any fragments involved.  This populates the Instructions list with fully
2552/// resolved instructions.
2553void CodeGenDAGPatterns::ParseInstructions() {
2554  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2555
2556  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2557    ListInit *LI = 0;
2558
2559    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2560      LI = Instrs[i]->getValueAsListInit("Pattern");
2561
2562    // If there is no pattern, only collect minimal information about the
2563    // instruction for its operand list.  We have to assume that there is one
2564    // result, as we have no detailed info. A pattern which references the
2565    // null_frag operator is as-if no pattern were specified. Normally this
2566    // is from a multiclass expansion w/ a SDPatternOperator passed in as
2567    // null_frag.
2568    if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2569      std::vector<Record*> Results;
2570      std::vector<Record*> Operands;
2571
2572      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2573
2574      if (InstInfo.Operands.size() != 0) {
2575        if (InstInfo.Operands.NumDefs == 0) {
2576          // These produce no results
2577          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2578            Operands.push_back(InstInfo.Operands[j].Rec);
2579        } else {
2580          // Assume the first operand is the result.
2581          Results.push_back(InstInfo.Operands[0].Rec);
2582
2583          // The rest are inputs.
2584          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2585            Operands.push_back(InstInfo.Operands[j].Rec);
2586        }
2587      }
2588
2589      // Create and insert the instruction.
2590      std::vector<Record*> ImpResults;
2591      Instructions.insert(std::make_pair(Instrs[i],
2592                          DAGInstruction(0, Results, Operands, ImpResults)));
2593      continue;  // no pattern.
2594    }
2595
2596    // Parse the instruction.
2597    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2598    // Inline pattern fragments into it.
2599    I->InlinePatternFragments();
2600
2601    // Infer as many types as possible.  If we cannot infer all of them, we can
2602    // never do anything with this instruction pattern: report it to the user.
2603    if (!I->InferAllTypes())
2604      I->error("Could not infer all types in pattern!");
2605
2606    // InstInputs - Keep track of all of the inputs of the instruction, along
2607    // with the record they are declared as.
2608    std::map<std::string, TreePatternNode*> InstInputs;
2609
2610    // InstResults - Keep track of all the virtual registers that are 'set'
2611    // in the instruction, including what reg class they are.
2612    std::map<std::string, TreePatternNode*> InstResults;
2613
2614    std::vector<Record*> InstImpResults;
2615
2616    // Verify that the top-level forms in the instruction are of void type, and
2617    // fill in the InstResults map.
2618    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2619      TreePatternNode *Pat = I->getTree(j);
2620      if (Pat->getNumTypes() != 0)
2621        I->error("Top-level forms in instruction pattern should have"
2622                 " void types");
2623
2624      // Find inputs and outputs, and verify the structure of the uses/defs.
2625      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2626                                  InstImpResults);
2627    }
2628
2629    // Now that we have inputs and outputs of the pattern, inspect the operands
2630    // list for the instruction.  This determines the order that operands are
2631    // added to the machine instruction the node corresponds to.
2632    unsigned NumResults = InstResults.size();
2633
2634    // Parse the operands list from the (ops) list, validating it.
2635    assert(I->getArgList().empty() && "Args list should still be empty here!");
2636    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2637
2638    // Check that all of the results occur first in the list.
2639    std::vector<Record*> Results;
2640    TreePatternNode *Res0Node = 0;
2641    for (unsigned i = 0; i != NumResults; ++i) {
2642      if (i == CGI.Operands.size())
2643        I->error("'" + InstResults.begin()->first +
2644                 "' set but does not appear in operand list!");
2645      const std::string &OpName = CGI.Operands[i].Name;
2646
2647      // Check that it exists in InstResults.
2648      TreePatternNode *RNode = InstResults[OpName];
2649      if (RNode == 0)
2650        I->error("Operand $" + OpName + " does not exist in operand list!");
2651
2652      if (i == 0)
2653        Res0Node = RNode;
2654      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2655      if (R == 0)
2656        I->error("Operand $" + OpName + " should be a set destination: all "
2657                 "outputs must occur before inputs in operand list!");
2658
2659      if (CGI.Operands[i].Rec != R)
2660        I->error("Operand $" + OpName + " class mismatch!");
2661
2662      // Remember the return type.
2663      Results.push_back(CGI.Operands[i].Rec);
2664
2665      // Okay, this one checks out.
2666      InstResults.erase(OpName);
2667    }
2668
2669    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2670    // the copy while we're checking the inputs.
2671    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2672
2673    std::vector<TreePatternNode*> ResultNodeOperands;
2674    std::vector<Record*> Operands;
2675    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2676      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2677      const std::string &OpName = Op.Name;
2678      if (OpName.empty())
2679        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2680
2681      if (!InstInputsCheck.count(OpName)) {
2682        // If this is an operand with a DefaultOps set filled in, we can ignore
2683        // this.  When we codegen it, we will do so as always executed.
2684        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2685          // Does it have a non-empty DefaultOps field?  If so, ignore this
2686          // operand.
2687          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2688            continue;
2689        }
2690        I->error("Operand $" + OpName +
2691                 " does not appear in the instruction pattern");
2692      }
2693      TreePatternNode *InVal = InstInputsCheck[OpName];
2694      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2695
2696      if (InVal->isLeaf() &&
2697          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2698        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2699        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2700          I->error("Operand $" + OpName + "'s register class disagrees"
2701                   " between the operand and pattern");
2702      }
2703      Operands.push_back(Op.Rec);
2704
2705      // Construct the result for the dest-pattern operand list.
2706      TreePatternNode *OpNode = InVal->clone();
2707
2708      // No predicate is useful on the result.
2709      OpNode->clearPredicateFns();
2710
2711      // Promote the xform function to be an explicit node if set.
2712      if (Record *Xform = OpNode->getTransformFn()) {
2713        OpNode->setTransformFn(0);
2714        std::vector<TreePatternNode*> Children;
2715        Children.push_back(OpNode);
2716        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2717      }
2718
2719      ResultNodeOperands.push_back(OpNode);
2720    }
2721
2722    if (!InstInputsCheck.empty())
2723      I->error("Input operand $" + InstInputsCheck.begin()->first +
2724               " occurs in pattern but not in operands list!");
2725
2726    TreePatternNode *ResultPattern =
2727      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2728                          GetNumNodeResults(I->getRecord(), *this));
2729    // Copy fully inferred output node type to instruction result pattern.
2730    for (unsigned i = 0; i != NumResults; ++i)
2731      ResultPattern->setType(i, Res0Node->getExtType(i));
2732
2733    // Create and insert the instruction.
2734    // FIXME: InstImpResults should not be part of DAGInstruction.
2735    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2736    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2737
2738    // Use a temporary tree pattern to infer all types and make sure that the
2739    // constructed result is correct.  This depends on the instruction already
2740    // being inserted into the Instructions map.
2741    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2742    Temp.InferAllTypes(&I->getNamedNodesMap());
2743
2744    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2745    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2746
2747    DEBUG(I->dump());
2748  }
2749
2750  // If we can, convert the instructions to be patterns that are matched!
2751  for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
2752        Instructions.begin(),
2753       E = Instructions.end(); II != E; ++II) {
2754    DAGInstruction &TheInst = II->second;
2755    const TreePattern *I = TheInst.getPattern();
2756    if (I == 0) continue;  // No pattern.
2757
2758    // FIXME: Assume only the first tree is the pattern. The others are clobber
2759    // nodes.
2760    TreePatternNode *Pattern = I->getTree(0);
2761    TreePatternNode *SrcPattern;
2762    if (Pattern->getOperator()->getName() == "set") {
2763      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2764    } else{
2765      // Not a set (store or something?)
2766      SrcPattern = Pattern;
2767    }
2768
2769    Record *Instr = II->first;
2770    AddPatternToMatch(I,
2771                      PatternToMatch(Instr,
2772                                     Instr->getValueAsListInit("Predicates"),
2773                                     SrcPattern,
2774                                     TheInst.getResultPattern(),
2775                                     TheInst.getImpResults(),
2776                                     Instr->getValueAsInt("AddedComplexity"),
2777                                     Instr->getID()));
2778  }
2779}
2780
2781
2782typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2783
2784static void FindNames(const TreePatternNode *P,
2785                      std::map<std::string, NameRecord> &Names,
2786                      const TreePattern *PatternTop) {
2787  if (!P->getName().empty()) {
2788    NameRecord &Rec = Names[P->getName()];
2789    // If this is the first instance of the name, remember the node.
2790    if (Rec.second++ == 0)
2791      Rec.first = P;
2792    else if (Rec.first->getExtTypes() != P->getExtTypes())
2793      PatternTop->error("repetition of value: $" + P->getName() +
2794                        " where different uses have different types!");
2795  }
2796
2797  if (!P->isLeaf()) {
2798    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2799      FindNames(P->getChild(i), Names, PatternTop);
2800  }
2801}
2802
2803void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2804                                           const PatternToMatch &PTM) {
2805  // Do some sanity checking on the pattern we're about to match.
2806  std::string Reason;
2807  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
2808    Pattern->error("Pattern can never match: " + Reason);
2809
2810  // If the source pattern's root is a complex pattern, that complex pattern
2811  // must specify the nodes it can potentially match.
2812  if (const ComplexPattern *CP =
2813        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2814    if (CP->getRootNodes().empty())
2815      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2816                     " could match");
2817
2818
2819  // Find all of the named values in the input and output, ensure they have the
2820  // same type.
2821  std::map<std::string, NameRecord> SrcNames, DstNames;
2822  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2823  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2824
2825  // Scan all of the named values in the destination pattern, rejecting them if
2826  // they don't exist in the input pattern.
2827  for (std::map<std::string, NameRecord>::iterator
2828       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2829    if (SrcNames[I->first].first == 0)
2830      Pattern->error("Pattern has input without matching name in output: $" +
2831                     I->first);
2832  }
2833
2834  // Scan all of the named values in the source pattern, rejecting them if the
2835  // name isn't used in the dest, and isn't used to tie two values together.
2836  for (std::map<std::string, NameRecord>::iterator
2837       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2838    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2839      Pattern->error("Pattern has dead named input: $" + I->first);
2840
2841  PatternsToMatch.push_back(PTM);
2842}
2843
2844
2845
2846void CodeGenDAGPatterns::InferInstructionFlags() {
2847  const std::vector<const CodeGenInstruction*> &Instructions =
2848    Target.getInstructionsByEnumValue();
2849
2850  // First try to infer flags from the primary instruction pattern, if any.
2851  SmallVector<CodeGenInstruction*, 8> Revisit;
2852  unsigned Errors = 0;
2853  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2854    CodeGenInstruction &InstInfo =
2855      const_cast<CodeGenInstruction &>(*Instructions[i]);
2856
2857    // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2858    // This flag is obsolete and will be removed.
2859    if (InstInfo.neverHasSideEffects) {
2860      assert(!InstInfo.hasSideEffects);
2861      InstInfo.hasSideEffects_Unset = false;
2862    }
2863
2864    // Get the primary instruction pattern.
2865    const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2866    if (!Pattern) {
2867      if (InstInfo.hasUndefFlags())
2868        Revisit.push_back(&InstInfo);
2869      continue;
2870    }
2871    InstAnalyzer PatInfo(*this);
2872    PatInfo.Analyze(Pattern);
2873    Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
2874  }
2875
2876  // Second, look for single-instruction patterns defined outside the
2877  // instruction.
2878  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2879    const PatternToMatch &PTM = *I;
2880
2881    // We can only infer from single-instruction patterns, otherwise we won't
2882    // know which instruction should get the flags.
2883    SmallVector<Record*, 8> PatInstrs;
2884    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
2885    if (PatInstrs.size() != 1)
2886      continue;
2887
2888    // Get the single instruction.
2889    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
2890
2891    // Only infer properties from the first pattern. We'll verify the others.
2892    if (InstInfo.InferredFrom)
2893      continue;
2894
2895    InstAnalyzer PatInfo(*this);
2896    PatInfo.Analyze(&PTM);
2897    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
2898  }
2899
2900  if (Errors)
2901    throw "pattern conflicts";
2902
2903  // Revisit instructions with undefined flags and no pattern.
2904  if (Target.guessInstructionProperties()) {
2905    for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2906      CodeGenInstruction &InstInfo = *Revisit[i];
2907      if (InstInfo.InferredFrom)
2908        continue;
2909      // The mayLoad and mayStore flags default to false.
2910      // Conservatively assume hasSideEffects if it wasn't explicit.
2911      if (InstInfo.hasSideEffects_Unset)
2912        InstInfo.hasSideEffects = true;
2913    }
2914    return;
2915  }
2916
2917  // Complain about any flags that are still undefined.
2918  for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2919    CodeGenInstruction &InstInfo = *Revisit[i];
2920    if (InstInfo.InferredFrom)
2921      continue;
2922    if (InstInfo.hasSideEffects_Unset)
2923      PrintError(InstInfo.TheDef->getLoc(),
2924                 "Can't infer hasSideEffects from patterns");
2925    if (InstInfo.mayStore_Unset)
2926      PrintError(InstInfo.TheDef->getLoc(),
2927                 "Can't infer mayStore from patterns");
2928    if (InstInfo.mayLoad_Unset)
2929      PrintError(InstInfo.TheDef->getLoc(),
2930                 "Can't infer mayLoad from patterns");
2931  }
2932}
2933
2934
2935/// Verify instruction flags against pattern node properties.
2936void CodeGenDAGPatterns::VerifyInstructionFlags() {
2937  unsigned Errors = 0;
2938  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2939    const PatternToMatch &PTM = *I;
2940    SmallVector<Record*, 8> Instrs;
2941    getInstructionsInTree(PTM.getDstPattern(), Instrs);
2942    if (Instrs.empty())
2943      continue;
2944
2945    // Count the number of instructions with each flag set.
2946    unsigned NumSideEffects = 0;
2947    unsigned NumStores = 0;
2948    unsigned NumLoads = 0;
2949    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2950      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2951      NumSideEffects += InstInfo.hasSideEffects;
2952      NumStores += InstInfo.mayStore;
2953      NumLoads += InstInfo.mayLoad;
2954    }
2955
2956    // Analyze the source pattern.
2957    InstAnalyzer PatInfo(*this);
2958    PatInfo.Analyze(&PTM);
2959
2960    // Collect error messages.
2961    SmallVector<std::string, 4> Msgs;
2962
2963    // Check for missing flags in the output.
2964    // Permit extra flags for now at least.
2965    if (PatInfo.hasSideEffects && !NumSideEffects)
2966      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
2967
2968    // Don't verify store flags on instructions with side effects. At least for
2969    // intrinsics, side effects implies mayStore.
2970    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
2971      Msgs.push_back("pattern may store, but mayStore isn't set");
2972
2973    // Similarly, mayStore implies mayLoad on intrinsics.
2974    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
2975      Msgs.push_back("pattern may load, but mayLoad isn't set");
2976
2977    // Print error messages.
2978    if (Msgs.empty())
2979      continue;
2980    ++Errors;
2981
2982    for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
2983      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
2984                 (Instrs.size() == 1 ?
2985                  "instruction" : "output instructions"));
2986    // Provide the location of the relevant instruction definitions.
2987    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2988      if (Instrs[i] != PTM.getSrcRecord())
2989        PrintError(Instrs[i]->getLoc(), "defined here");
2990      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2991      if (InstInfo.InferredFrom &&
2992          InstInfo.InferredFrom != InstInfo.TheDef &&
2993          InstInfo.InferredFrom != PTM.getSrcRecord())
2994        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
2995    }
2996  }
2997  if (Errors)
2998    throw "Errors in DAG patterns";
2999}
3000
3001/// Given a pattern result with an unresolved type, see if we can find one
3002/// instruction with an unresolved result type.  Force this result type to an
3003/// arbitrary element if it's possible types to converge results.
3004static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3005  if (N->isLeaf())
3006    return false;
3007
3008  // Analyze children.
3009  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3010    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3011      return true;
3012
3013  if (!N->getOperator()->isSubClassOf("Instruction"))
3014    return false;
3015
3016  // If this type is already concrete or completely unknown we can't do
3017  // anything.
3018  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3019    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3020      continue;
3021
3022    // Otherwise, force its type to the first possibility (an arbitrary choice).
3023    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3024      return true;
3025  }
3026
3027  return false;
3028}
3029
3030void CodeGenDAGPatterns::ParsePatterns() {
3031  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3032
3033  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3034    Record *CurPattern = Patterns[i];
3035    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3036
3037    // If the pattern references the null_frag, there's nothing to do.
3038    if (hasNullFragReference(Tree))
3039      continue;
3040
3041    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3042
3043    // Inline pattern fragments into it.
3044    Pattern->InlinePatternFragments();
3045
3046    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3047    if (LI->getSize() == 0) continue;  // no pattern.
3048
3049    // Parse the instruction.
3050    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3051
3052    // Inline pattern fragments into it.
3053    Result->InlinePatternFragments();
3054
3055    if (Result->getNumTrees() != 1)
3056      Result->error("Cannot handle instructions producing instructions "
3057                    "with temporaries yet!");
3058
3059    bool IterateInference;
3060    bool InferredAllPatternTypes, InferredAllResultTypes;
3061    do {
3062      // Infer as many types as possible.  If we cannot infer all of them, we
3063      // can never do anything with this pattern: report it to the user.
3064      InferredAllPatternTypes =
3065        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3066
3067      // Infer as many types as possible.  If we cannot infer all of them, we
3068      // can never do anything with this pattern: report it to the user.
3069      InferredAllResultTypes =
3070        Result->InferAllTypes(&Pattern->getNamedNodesMap());
3071
3072      IterateInference = false;
3073
3074      // Apply the type of the result to the source pattern.  This helps us
3075      // resolve cases where the input type is known to be a pointer type (which
3076      // is considered resolved), but the result knows it needs to be 32- or
3077      // 64-bits.  Infer the other way for good measure.
3078      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3079                                        Pattern->getTree(0)->getNumTypes());
3080           i != e; ++i) {
3081        IterateInference = Pattern->getTree(0)->
3082          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3083        IterateInference |= Result->getTree(0)->
3084          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3085      }
3086
3087      // If our iteration has converged and the input pattern's types are fully
3088      // resolved but the result pattern is not fully resolved, we may have a
3089      // situation where we have two instructions in the result pattern and
3090      // the instructions require a common register class, but don't care about
3091      // what actual MVT is used.  This is actually a bug in our modelling:
3092      // output patterns should have register classes, not MVTs.
3093      //
3094      // In any case, to handle this, we just go through and disambiguate some
3095      // arbitrary types to the result pattern's nodes.
3096      if (!IterateInference && InferredAllPatternTypes &&
3097          !InferredAllResultTypes)
3098        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3099                                                        *Result);
3100    } while (IterateInference);
3101
3102    // Verify that we inferred enough types that we can do something with the
3103    // pattern and result.  If these fire the user has to add type casts.
3104    if (!InferredAllPatternTypes)
3105      Pattern->error("Could not infer all types in pattern!");
3106    if (!InferredAllResultTypes) {
3107      Pattern->dump();
3108      Result->error("Could not infer all types in pattern result!");
3109    }
3110
3111    // Validate that the input pattern is correct.
3112    std::map<std::string, TreePatternNode*> InstInputs;
3113    std::map<std::string, TreePatternNode*> InstResults;
3114    std::vector<Record*> InstImpResults;
3115    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3116      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3117                                  InstInputs, InstResults,
3118                                  InstImpResults);
3119
3120    // Promote the xform function to be an explicit node if set.
3121    TreePatternNode *DstPattern = Result->getOnlyTree();
3122    std::vector<TreePatternNode*> ResultNodeOperands;
3123    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3124      TreePatternNode *OpNode = DstPattern->getChild(ii);
3125      if (Record *Xform = OpNode->getTransformFn()) {
3126        OpNode->setTransformFn(0);
3127        std::vector<TreePatternNode*> Children;
3128        Children.push_back(OpNode);
3129        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3130      }
3131      ResultNodeOperands.push_back(OpNode);
3132    }
3133    DstPattern = Result->getOnlyTree();
3134    if (!DstPattern->isLeaf())
3135      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3136                                       ResultNodeOperands,
3137                                       DstPattern->getNumTypes());
3138
3139    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3140      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3141
3142    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3143    Temp.InferAllTypes();
3144
3145
3146    AddPatternToMatch(Pattern,
3147                    PatternToMatch(CurPattern,
3148                                   CurPattern->getValueAsListInit("Predicates"),
3149                                   Pattern->getTree(0),
3150                                   Temp.getOnlyTree(), InstImpResults,
3151                                   CurPattern->getValueAsInt("AddedComplexity"),
3152                                   CurPattern->getID()));
3153  }
3154}
3155
3156/// CombineChildVariants - Given a bunch of permutations of each child of the
3157/// 'operator' node, put them together in all possible ways.
3158static void CombineChildVariants(TreePatternNode *Orig,
3159               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3160                                 std::vector<TreePatternNode*> &OutVariants,
3161                                 CodeGenDAGPatterns &CDP,
3162                                 const MultipleUseVarSet &DepVars) {
3163  // Make sure that each operand has at least one variant to choose from.
3164  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3165    if (ChildVariants[i].empty())
3166      return;
3167
3168  // The end result is an all-pairs construction of the resultant pattern.
3169  std::vector<unsigned> Idxs;
3170  Idxs.resize(ChildVariants.size());
3171  bool NotDone;
3172  do {
3173#ifndef NDEBUG
3174    DEBUG(if (!Idxs.empty()) {
3175            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3176              for (unsigned i = 0; i < Idxs.size(); ++i) {
3177                errs() << Idxs[i] << " ";
3178            }
3179            errs() << "]\n";
3180          });
3181#endif
3182    // Create the variant and add it to the output list.
3183    std::vector<TreePatternNode*> NewChildren;
3184    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3185      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3186    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3187                                             Orig->getNumTypes());
3188
3189    // Copy over properties.
3190    R->setName(Orig->getName());
3191    R->setPredicateFns(Orig->getPredicateFns());
3192    R->setTransformFn(Orig->getTransformFn());
3193    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3194      R->setType(i, Orig->getExtType(i));
3195
3196    // If this pattern cannot match, do not include it as a variant.
3197    std::string ErrString;
3198    if (!R->canPatternMatch(ErrString, CDP)) {
3199      delete R;
3200    } else {
3201      bool AlreadyExists = false;
3202
3203      // Scan to see if this pattern has already been emitted.  We can get
3204      // duplication due to things like commuting:
3205      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3206      // which are the same pattern.  Ignore the dups.
3207      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3208        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3209          AlreadyExists = true;
3210          break;
3211        }
3212
3213      if (AlreadyExists)
3214        delete R;
3215      else
3216        OutVariants.push_back(R);
3217    }
3218
3219    // Increment indices to the next permutation by incrementing the
3220    // indicies from last index backward, e.g., generate the sequence
3221    // [0, 0], [0, 1], [1, 0], [1, 1].
3222    int IdxsIdx;
3223    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3224      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3225        Idxs[IdxsIdx] = 0;
3226      else
3227        break;
3228    }
3229    NotDone = (IdxsIdx >= 0);
3230  } while (NotDone);
3231}
3232
3233/// CombineChildVariants - A helper function for binary operators.
3234///
3235static void CombineChildVariants(TreePatternNode *Orig,
3236                                 const std::vector<TreePatternNode*> &LHS,
3237                                 const std::vector<TreePatternNode*> &RHS,
3238                                 std::vector<TreePatternNode*> &OutVariants,
3239                                 CodeGenDAGPatterns &CDP,
3240                                 const MultipleUseVarSet &DepVars) {
3241  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3242  ChildVariants.push_back(LHS);
3243  ChildVariants.push_back(RHS);
3244  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3245}
3246
3247
3248static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3249                                     std::vector<TreePatternNode *> &Children) {
3250  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3251  Record *Operator = N->getOperator();
3252
3253  // Only permit raw nodes.
3254  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3255      N->getTransformFn()) {
3256    Children.push_back(N);
3257    return;
3258  }
3259
3260  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3261    Children.push_back(N->getChild(0));
3262  else
3263    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3264
3265  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3266    Children.push_back(N->getChild(1));
3267  else
3268    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3269}
3270
3271/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3272/// the (potentially recursive) pattern by using algebraic laws.
3273///
3274static void GenerateVariantsOf(TreePatternNode *N,
3275                               std::vector<TreePatternNode*> &OutVariants,
3276                               CodeGenDAGPatterns &CDP,
3277                               const MultipleUseVarSet &DepVars) {
3278  // We cannot permute leaves.
3279  if (N->isLeaf()) {
3280    OutVariants.push_back(N);
3281    return;
3282  }
3283
3284  // Look up interesting info about the node.
3285  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3286
3287  // If this node is associative, re-associate.
3288  if (NodeInfo.hasProperty(SDNPAssociative)) {
3289    // Re-associate by pulling together all of the linked operators
3290    std::vector<TreePatternNode*> MaximalChildren;
3291    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3292
3293    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3294    // permutations.
3295    if (MaximalChildren.size() == 3) {
3296      // Find the variants of all of our maximal children.
3297      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3298      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3299      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3300      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3301
3302      // There are only two ways we can permute the tree:
3303      //   (A op B) op C    and    A op (B op C)
3304      // Within these forms, we can also permute A/B/C.
3305
3306      // Generate legal pair permutations of A/B/C.
3307      std::vector<TreePatternNode*> ABVariants;
3308      std::vector<TreePatternNode*> BAVariants;
3309      std::vector<TreePatternNode*> ACVariants;
3310      std::vector<TreePatternNode*> CAVariants;
3311      std::vector<TreePatternNode*> BCVariants;
3312      std::vector<TreePatternNode*> CBVariants;
3313      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3314      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3315      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3316      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3317      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3318      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3319
3320      // Combine those into the result: (x op x) op x
3321      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3322      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3323      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3324      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3325      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3326      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3327
3328      // Combine those into the result: x op (x op x)
3329      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3330      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3331      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3332      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3333      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3334      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3335      return;
3336    }
3337  }
3338
3339  // Compute permutations of all children.
3340  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3341  ChildVariants.resize(N->getNumChildren());
3342  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3343    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3344
3345  // Build all permutations based on how the children were formed.
3346  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3347
3348  // If this node is commutative, consider the commuted order.
3349  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3350  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3351    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3352           "Commutative but doesn't have 2 children!");
3353    // Don't count children which are actually register references.
3354    unsigned NC = 0;
3355    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3356      TreePatternNode *Child = N->getChild(i);
3357      if (Child->isLeaf())
3358        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3359          Record *RR = DI->getDef();
3360          if (RR->isSubClassOf("Register"))
3361            continue;
3362        }
3363      NC++;
3364    }
3365    // Consider the commuted order.
3366    if (isCommIntrinsic) {
3367      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3368      // operands are the commutative operands, and there might be more operands
3369      // after those.
3370      assert(NC >= 3 &&
3371             "Commutative intrinsic should have at least 3 childrean!");
3372      std::vector<std::vector<TreePatternNode*> > Variants;
3373      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3374      Variants.push_back(ChildVariants[2]);
3375      Variants.push_back(ChildVariants[1]);
3376      for (unsigned i = 3; i != NC; ++i)
3377        Variants.push_back(ChildVariants[i]);
3378      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3379    } else if (NC == 2)
3380      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3381                           OutVariants, CDP, DepVars);
3382  }
3383}
3384
3385
3386// GenerateVariants - Generate variants.  For example, commutative patterns can
3387// match multiple ways.  Add them to PatternsToMatch as well.
3388void CodeGenDAGPatterns::GenerateVariants() {
3389  DEBUG(errs() << "Generating instruction variants.\n");
3390
3391  // Loop over all of the patterns we've collected, checking to see if we can
3392  // generate variants of the instruction, through the exploitation of
3393  // identities.  This permits the target to provide aggressive matching without
3394  // the .td file having to contain tons of variants of instructions.
3395  //
3396  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3397  // intentionally do not reconsider these.  Any variants of added patterns have
3398  // already been added.
3399  //
3400  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3401    MultipleUseVarSet             DepVars;
3402    std::vector<TreePatternNode*> Variants;
3403    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3404    DEBUG(errs() << "Dependent/multiply used variables: ");
3405    DEBUG(DumpDepVars(DepVars));
3406    DEBUG(errs() << "\n");
3407    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3408                       DepVars);
3409
3410    assert(!Variants.empty() && "Must create at least original variant!");
3411    Variants.erase(Variants.begin());  // Remove the original pattern.
3412
3413    if (Variants.empty())  // No variants for this pattern.
3414      continue;
3415
3416    DEBUG(errs() << "FOUND VARIANTS OF: ";
3417          PatternsToMatch[i].getSrcPattern()->dump();
3418          errs() << "\n");
3419
3420    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3421      TreePatternNode *Variant = Variants[v];
3422
3423      DEBUG(errs() << "  VAR#" << v <<  ": ";
3424            Variant->dump();
3425            errs() << "\n");
3426
3427      // Scan to see if an instruction or explicit pattern already matches this.
3428      bool AlreadyExists = false;
3429      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3430        // Skip if the top level predicates do not match.
3431        if (PatternsToMatch[i].getPredicates() !=
3432            PatternsToMatch[p].getPredicates())
3433          continue;
3434        // Check to see if this variant already exists.
3435        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3436                                    DepVars)) {
3437          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3438          AlreadyExists = true;
3439          break;
3440        }
3441      }
3442      // If we already have it, ignore the variant.
3443      if (AlreadyExists) continue;
3444
3445      // Otherwise, add it to the list of patterns we have.
3446      PatternsToMatch.
3447        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3448                                 PatternsToMatch[i].getPredicates(),
3449                                 Variant, PatternsToMatch[i].getDstPattern(),
3450                                 PatternsToMatch[i].getDstRegs(),
3451                                 PatternsToMatch[i].getAddedComplexity(),
3452                                 Record::getNewUID()));
3453    }
3454
3455    DEBUG(errs() << "\n");
3456  }
3457}
3458