1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class wraps target description classes used by the various code
11// generation TableGen backends.  This makes it easier to access the data and
12// provides a single place that needs to check it for validity.  All of these
13// classes throw exceptions on error conditions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CodeGenTarget.h"
18#include "CodeGenIntrinsics.h"
19#include "CodeGenSchedule.h"
20#include "llvm/TableGen/Record.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/CommandLine.h"
24#include <algorithm>
25using namespace llvm;
26
27static cl::opt<unsigned>
28AsmParserNum("asmparsernum", cl::init(0),
29             cl::desc("Make -gen-asm-parser emit assembly parser #N"));
30
31static cl::opt<unsigned>
32AsmWriterNum("asmwriternum", cl::init(0),
33             cl::desc("Make -gen-asm-writer emit assembly writer #N"));
34
35/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
36/// record corresponds to.
37MVT::SimpleValueType llvm::getValueType(Record *Rec) {
38  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
39}
40
41std::string llvm::getName(MVT::SimpleValueType T) {
42  switch (T) {
43  case MVT::Other:   return "UNKNOWN";
44  case MVT::iPTR:    return "TLI.getPointerTy()";
45  case MVT::iPTRAny: return "TLI.getPointerTy()";
46  default: return getEnumName(T);
47  }
48}
49
50std::string llvm::getEnumName(MVT::SimpleValueType T) {
51  switch (T) {
52  case MVT::Other:    return "MVT::Other";
53  case MVT::i1:       return "MVT::i1";
54  case MVT::i8:       return "MVT::i8";
55  case MVT::i16:      return "MVT::i16";
56  case MVT::i32:      return "MVT::i32";
57  case MVT::i64:      return "MVT::i64";
58  case MVT::i128:     return "MVT::i128";
59  case MVT::iAny:     return "MVT::iAny";
60  case MVT::fAny:     return "MVT::fAny";
61  case MVT::vAny:     return "MVT::vAny";
62  case MVT::f16:      return "MVT::f16";
63  case MVT::f32:      return "MVT::f32";
64  case MVT::f64:      return "MVT::f64";
65  case MVT::f80:      return "MVT::f80";
66  case MVT::f128:     return "MVT::f128";
67  case MVT::ppcf128:  return "MVT::ppcf128";
68  case MVT::x86mmx:   return "MVT::x86mmx";
69  case MVT::Glue:     return "MVT::Glue";
70  case MVT::isVoid:   return "MVT::isVoid";
71  case MVT::v2i8:     return "MVT::v2i8";
72  case MVT::v4i8:     return "MVT::v4i8";
73  case MVT::v8i8:     return "MVT::v8i8";
74  case MVT::v16i8:    return "MVT::v16i8";
75  case MVT::v32i8:    return "MVT::v32i8";
76  case MVT::v2i16:    return "MVT::v2i16";
77  case MVT::v4i16:    return "MVT::v4i16";
78  case MVT::v8i16:    return "MVT::v8i16";
79  case MVT::v16i16:   return "MVT::v16i16";
80  case MVT::v2i32:    return "MVT::v2i32";
81  case MVT::v4i32:    return "MVT::v4i32";
82  case MVT::v8i32:    return "MVT::v8i32";
83  case MVT::v1i64:    return "MVT::v1i64";
84  case MVT::v2i64:    return "MVT::v2i64";
85  case MVT::v4i64:    return "MVT::v4i64";
86  case MVT::v8i64:    return "MVT::v8i64";
87  case MVT::v2f16:    return "MVT::v2f16";
88  case MVT::v2f32:    return "MVT::v2f32";
89  case MVT::v4f32:    return "MVT::v4f32";
90  case MVT::v8f32:    return "MVT::v8f32";
91  case MVT::v2f64:    return "MVT::v2f64";
92  case MVT::v4f64:    return "MVT::v4f64";
93  case MVT::Metadata: return "MVT::Metadata";
94  case MVT::iPTR:     return "MVT::iPTR";
95  case MVT::iPTRAny:  return "MVT::iPTRAny";
96  case MVT::Untyped:  return "MVT::Untyped";
97  default: llvm_unreachable("ILLEGAL VALUE TYPE!");
98  }
99}
100
101/// getQualifiedName - Return the name of the specified record, with a
102/// namespace qualifier if the record contains one.
103///
104std::string llvm::getQualifiedName(const Record *R) {
105  std::string Namespace;
106  if (R->getValue("Namespace"))
107     Namespace = R->getValueAsString("Namespace");
108  if (Namespace.empty()) return R->getName();
109  return Namespace + "::" + R->getName();
110}
111
112
113/// getTarget - Return the current instance of the Target class.
114///
115CodeGenTarget::CodeGenTarget(RecordKeeper &records)
116  : Records(records), RegBank(0), SchedModels(0) {
117  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
118  if (Targets.size() == 0)
119    throw std::string("ERROR: No 'Target' subclasses defined!");
120  if (Targets.size() != 1)
121    throw std::string("ERROR: Multiple subclasses of Target defined!");
122  TargetRec = Targets[0];
123}
124
125CodeGenTarget::~CodeGenTarget() {
126  delete RegBank;
127  delete SchedModels;
128}
129
130const std::string &CodeGenTarget::getName() const {
131  return TargetRec->getName();
132}
133
134std::string CodeGenTarget::getInstNamespace() const {
135  for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
136    // Make sure not to pick up "TargetOpcode" by accidentally getting
137    // the namespace off the PHI instruction or something.
138    if ((*i)->Namespace != "TargetOpcode")
139      return (*i)->Namespace;
140  }
141
142  return "";
143}
144
145Record *CodeGenTarget::getInstructionSet() const {
146  return TargetRec->getValueAsDef("InstructionSet");
147}
148
149
150/// getAsmParser - Return the AssemblyParser definition for this target.
151///
152Record *CodeGenTarget::getAsmParser() const {
153  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
154  if (AsmParserNum >= LI.size())
155    throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
156  return LI[AsmParserNum];
157}
158
159/// getAsmParserVariant - Return the AssmblyParserVariant definition for
160/// this target.
161///
162Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
163  std::vector<Record*> LI =
164    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
165  if (i >= LI.size())
166    throw "Target does not have an AsmParserVariant #" + utostr(i) + "!";
167  return LI[i];
168}
169
170/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
171/// available for this target.
172///
173unsigned CodeGenTarget::getAsmParserVariantCount() const {
174  std::vector<Record*> LI =
175    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
176  return LI.size();
177}
178
179/// getAsmWriter - Return the AssemblyWriter definition for this target.
180///
181Record *CodeGenTarget::getAsmWriter() const {
182  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
183  if (AsmWriterNum >= LI.size())
184    throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
185  return LI[AsmWriterNum];
186}
187
188CodeGenRegBank &CodeGenTarget::getRegBank() const {
189  if (!RegBank)
190    RegBank = new CodeGenRegBank(Records);
191  return *RegBank;
192}
193
194void CodeGenTarget::ReadRegAltNameIndices() const {
195  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
196  std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
197}
198
199/// getRegisterByName - If there is a register with the specific AsmName,
200/// return it.
201const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
202  const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters();
203  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
204    if (Regs[i]->TheDef->getValueAsString("AsmName") == Name)
205      return Regs[i];
206
207  return 0;
208}
209
210std::vector<MVT::SimpleValueType> CodeGenTarget::
211getRegisterVTs(Record *R) const {
212  const CodeGenRegister *Reg = getRegBank().getReg(R);
213  std::vector<MVT::SimpleValueType> Result;
214  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
215  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
216    const CodeGenRegisterClass &RC = *RCs[i];
217    if (RC.contains(Reg)) {
218      const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
219      Result.insert(Result.end(), InVTs.begin(), InVTs.end());
220    }
221  }
222
223  // Remove duplicates.
224  array_pod_sort(Result.begin(), Result.end());
225  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
226  return Result;
227}
228
229
230void CodeGenTarget::ReadLegalValueTypes() const {
231  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
232  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
233    for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
234      LegalValueTypes.push_back(RCs[i]->VTs[ri]);
235
236  // Remove duplicates.
237  std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
238  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
239                                    LegalValueTypes.end()),
240                        LegalValueTypes.end());
241}
242
243CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
244  if (!SchedModels)
245    SchedModels = new CodeGenSchedModels(Records, *this);
246  return *SchedModels;
247}
248
249void CodeGenTarget::ReadInstructions() const {
250  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
251  if (Insts.size() <= 2)
252    throw std::string("No 'Instruction' subclasses defined!");
253
254  // Parse the instructions defined in the .td file.
255  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
256    Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
257}
258
259static const CodeGenInstruction *
260GetInstByName(const char *Name,
261              const DenseMap<const Record*, CodeGenInstruction*> &Insts,
262              RecordKeeper &Records) {
263  const Record *Rec = Records.getDef(Name);
264
265  DenseMap<const Record*, CodeGenInstruction*>::const_iterator
266    I = Insts.find(Rec);
267  if (Rec == 0 || I == Insts.end())
268    throw std::string("Could not find '") + Name + "' instruction!";
269  return I->second;
270}
271
272namespace {
273/// SortInstByName - Sorting predicate to sort instructions by name.
274///
275struct SortInstByName {
276  bool operator()(const CodeGenInstruction *Rec1,
277                  const CodeGenInstruction *Rec2) const {
278    return Rec1->TheDef->getName() < Rec2->TheDef->getName();
279  }
280};
281}
282
283/// getInstructionsByEnumValue - Return all of the instructions defined by the
284/// target, ordered by their enum value.
285void CodeGenTarget::ComputeInstrsByEnum() const {
286  // The ordering here must match the ordering in TargetOpcodes.h.
287  const char *const FixedInstrs[] = {
288    "PHI",
289    "INLINEASM",
290    "PROLOG_LABEL",
291    "EH_LABEL",
292    "GC_LABEL",
293    "KILL",
294    "EXTRACT_SUBREG",
295    "INSERT_SUBREG",
296    "IMPLICIT_DEF",
297    "SUBREG_TO_REG",
298    "COPY_TO_REGCLASS",
299    "DBG_VALUE",
300    "REG_SEQUENCE",
301    "COPY",
302    "BUNDLE",
303    "LIFETIME_START",
304    "LIFETIME_END",
305    0
306  };
307  const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
308  for (const char *const *p = FixedInstrs; *p; ++p) {
309    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
310    assert(Instr && "Missing target independent instruction");
311    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
312    InstrsByEnum.push_back(Instr);
313  }
314  unsigned EndOfPredefines = InstrsByEnum.size();
315
316  for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
317       I = Insts.begin(), E = Insts.end(); I != E; ++I) {
318    const CodeGenInstruction *CGI = I->second;
319    if (CGI->Namespace != "TargetOpcode")
320      InstrsByEnum.push_back(CGI);
321  }
322
323  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
324
325  // All of the instructions are now in random order based on the map iteration.
326  // Sort them by name.
327  std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
328            SortInstByName());
329}
330
331
332/// isLittleEndianEncoding - Return whether this target encodes its instruction
333/// in little-endian format, i.e. bits laid out in the order [0..n]
334///
335bool CodeGenTarget::isLittleEndianEncoding() const {
336  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
337}
338
339/// guessInstructionProperties - Return true if it's OK to guess instruction
340/// properties instead of raising an error.
341///
342/// This is configurable as a temporary migration aid. It will eventually be
343/// permanently false.
344bool CodeGenTarget::guessInstructionProperties() const {
345  return getInstructionSet()->getValueAsBit("guessInstructionProperties");
346}
347
348//===----------------------------------------------------------------------===//
349// ComplexPattern implementation
350//
351ComplexPattern::ComplexPattern(Record *R) {
352  Ty          = ::getValueType(R->getValueAsDef("Ty"));
353  NumOperands = R->getValueAsInt("NumOperands");
354  SelectFunc  = R->getValueAsString("SelectFunc");
355  RootNodes   = R->getValueAsListOfDefs("RootNodes");
356
357  // Parse the properties.
358  Properties = 0;
359  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
360  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
361    if (PropList[i]->getName() == "SDNPHasChain") {
362      Properties |= 1 << SDNPHasChain;
363    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
364      Properties |= 1 << SDNPOptInGlue;
365    } else if (PropList[i]->getName() == "SDNPMayStore") {
366      Properties |= 1 << SDNPMayStore;
367    } else if (PropList[i]->getName() == "SDNPMayLoad") {
368      Properties |= 1 << SDNPMayLoad;
369    } else if (PropList[i]->getName() == "SDNPSideEffect") {
370      Properties |= 1 << SDNPSideEffect;
371    } else if (PropList[i]->getName() == "SDNPMemOperand") {
372      Properties |= 1 << SDNPMemOperand;
373    } else if (PropList[i]->getName() == "SDNPVariadic") {
374      Properties |= 1 << SDNPVariadic;
375    } else if (PropList[i]->getName() == "SDNPWantRoot") {
376      Properties |= 1 << SDNPWantRoot;
377    } else if (PropList[i]->getName() == "SDNPWantParent") {
378      Properties |= 1 << SDNPWantParent;
379    } else {
380      errs() << "Unsupported SD Node property '" << PropList[i]->getName()
381             << "' on ComplexPattern '" << R->getName() << "'!\n";
382      exit(1);
383    }
384}
385
386//===----------------------------------------------------------------------===//
387// CodeGenIntrinsic Implementation
388//===----------------------------------------------------------------------===//
389
390std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
391                                                   bool TargetOnly) {
392  std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
393
394  std::vector<CodeGenIntrinsic> Result;
395
396  for (unsigned i = 0, e = I.size(); i != e; ++i) {
397    bool isTarget = I[i]->getValueAsBit("isTarget");
398    if (isTarget == TargetOnly)
399      Result.push_back(CodeGenIntrinsic(I[i]));
400  }
401  return Result;
402}
403
404CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
405  TheDef = R;
406  std::string DefName = R->getName();
407  ModRef = ReadWriteMem;
408  isOverloaded = false;
409  isCommutative = false;
410  canThrow = false;
411  isNoReturn = false;
412
413  if (DefName.size() <= 4 ||
414      std::string(DefName.begin(), DefName.begin() + 4) != "int_")
415    throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
416
417  EnumName = std::string(DefName.begin()+4, DefName.end());
418
419  if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
420    GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
421
422  TargetPrefix = R->getValueAsString("TargetPrefix");
423  Name = R->getValueAsString("LLVMName");
424
425  if (Name == "") {
426    // If an explicit name isn't specified, derive one from the DefName.
427    Name = "llvm.";
428
429    for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
430      Name += (EnumName[i] == '_') ? '.' : EnumName[i];
431  } else {
432    // Verify it starts with "llvm.".
433    if (Name.size() <= 5 ||
434        std::string(Name.begin(), Name.begin() + 5) != "llvm.")
435      throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
436  }
437
438  // If TargetPrefix is specified, make sure that Name starts with
439  // "llvm.<targetprefix>.".
440  if (!TargetPrefix.empty()) {
441    if (Name.size() < 6+TargetPrefix.size() ||
442        std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
443        != (TargetPrefix + "."))
444      throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
445        TargetPrefix + ".'!";
446  }
447
448  // Parse the list of return types.
449  std::vector<MVT::SimpleValueType> OverloadedVTs;
450  ListInit *TypeList = R->getValueAsListInit("RetTypes");
451  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
452    Record *TyEl = TypeList->getElementAsRecord(i);
453    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
454    MVT::SimpleValueType VT;
455    if (TyEl->isSubClassOf("LLVMMatchType")) {
456      unsigned MatchTy = TyEl->getValueAsInt("Number");
457      assert(MatchTy < OverloadedVTs.size() &&
458             "Invalid matching number!");
459      VT = OverloadedVTs[MatchTy];
460      // It only makes sense to use the extended and truncated vector element
461      // variants with iAny types; otherwise, if the intrinsic is not
462      // overloaded, all the types can be specified directly.
463      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
464               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
465              VT == MVT::iAny || VT == MVT::vAny) &&
466             "Expected iAny or vAny type");
467    } else {
468      VT = getValueType(TyEl->getValueAsDef("VT"));
469    }
470    if (EVT(VT).isOverloaded()) {
471      OverloadedVTs.push_back(VT);
472      isOverloaded = true;
473    }
474
475    // Reject invalid types.
476    if (VT == MVT::isVoid)
477      throw "Intrinsic '" + DefName + " has void in result type list!";
478
479    IS.RetVTs.push_back(VT);
480    IS.RetTypeDefs.push_back(TyEl);
481  }
482
483  // Parse the list of parameter types.
484  TypeList = R->getValueAsListInit("ParamTypes");
485  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
486    Record *TyEl = TypeList->getElementAsRecord(i);
487    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
488    MVT::SimpleValueType VT;
489    if (TyEl->isSubClassOf("LLVMMatchType")) {
490      unsigned MatchTy = TyEl->getValueAsInt("Number");
491      assert(MatchTy < OverloadedVTs.size() &&
492             "Invalid matching number!");
493      VT = OverloadedVTs[MatchTy];
494      // It only makes sense to use the extended and truncated vector element
495      // variants with iAny types; otherwise, if the intrinsic is not
496      // overloaded, all the types can be specified directly.
497      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
498               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
499              VT == MVT::iAny || VT == MVT::vAny) &&
500             "Expected iAny or vAny type");
501    } else
502      VT = getValueType(TyEl->getValueAsDef("VT"));
503
504    if (EVT(VT).isOverloaded()) {
505      OverloadedVTs.push_back(VT);
506      isOverloaded = true;
507    }
508
509    // Reject invalid types.
510    if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
511      throw "Intrinsic '" + DefName + " has void in result type list!";
512
513    IS.ParamVTs.push_back(VT);
514    IS.ParamTypeDefs.push_back(TyEl);
515  }
516
517  // Parse the intrinsic properties.
518  ListInit *PropList = R->getValueAsListInit("Properties");
519  for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
520    Record *Property = PropList->getElementAsRecord(i);
521    assert(Property->isSubClassOf("IntrinsicProperty") &&
522           "Expected a property!");
523
524    if (Property->getName() == "IntrNoMem")
525      ModRef = NoMem;
526    else if (Property->getName() == "IntrReadArgMem")
527      ModRef = ReadArgMem;
528    else if (Property->getName() == "IntrReadMem")
529      ModRef = ReadMem;
530    else if (Property->getName() == "IntrReadWriteArgMem")
531      ModRef = ReadWriteArgMem;
532    else if (Property->getName() == "Commutative")
533      isCommutative = true;
534    else if (Property->getName() == "Throws")
535      canThrow = true;
536    else if (Property->getName() == "IntrNoReturn")
537      isNoReturn = true;
538    else if (Property->isSubClassOf("NoCapture")) {
539      unsigned ArgNo = Property->getValueAsInt("ArgNo");
540      ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
541    } else
542      llvm_unreachable("Unknown property!");
543  }
544
545  // Sort the argument attributes for later benefit.
546  std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
547}
548