1/* crypto/sha/sha512.c */ 2/* ==================================================================== 3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved 4 * according to the OpenSSL license [found in ../../LICENSE]. 5 * ==================================================================== 6 */ 7#include <openssl/opensslconf.h> 8#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512) 9/* 10 * IMPLEMENTATION NOTES. 11 * 12 * As you might have noticed 32-bit hash algorithms: 13 * 14 * - permit SHA_LONG to be wider than 32-bit (case on CRAY); 15 * - optimized versions implement two transform functions: one operating 16 * on [aligned] data in host byte order and one - on data in input 17 * stream byte order; 18 * - share common byte-order neutral collector and padding function 19 * implementations, ../md32_common.h; 20 * 21 * Neither of the above applies to this SHA-512 implementations. Reasons 22 * [in reverse order] are: 23 * 24 * - it's the only 64-bit hash algorithm for the moment of this writing, 25 * there is no need for common collector/padding implementation [yet]; 26 * - by supporting only one transform function [which operates on 27 * *aligned* data in input stream byte order, big-endian in this case] 28 * we minimize burden of maintenance in two ways: a) collector/padding 29 * function is simpler; b) only one transform function to stare at; 30 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to 31 * apply a number of optimizations to mitigate potential performance 32 * penalties caused by previous design decision; 33 * 34 * Caveat lector. 35 * 36 * Implementation relies on the fact that "long long" is 64-bit on 37 * both 32- and 64-bit platforms. If some compiler vendor comes up 38 * with 128-bit long long, adjustment to sha.h would be required. 39 * As this implementation relies on 64-bit integer type, it's totally 40 * inappropriate for platforms which don't support it, most notably 41 * 16-bit platforms. 42 * <appro@fy.chalmers.se> 43 */ 44#include <stdlib.h> 45#include <string.h> 46 47#include <openssl/crypto.h> 48#include <openssl/sha.h> 49#include <openssl/opensslv.h> 50 51#include "cryptlib.h" 52 53const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT; 54 55#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ 56 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \ 57 defined(__s390__) || defined(__s390x__) || \ 58 defined(SHA512_ASM) 59#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA 60#endif 61 62fips_md_init_ctx(SHA384, SHA512) 63 { 64 c->h[0]=U64(0xcbbb9d5dc1059ed8); 65 c->h[1]=U64(0x629a292a367cd507); 66 c->h[2]=U64(0x9159015a3070dd17); 67 c->h[3]=U64(0x152fecd8f70e5939); 68 c->h[4]=U64(0x67332667ffc00b31); 69 c->h[5]=U64(0x8eb44a8768581511); 70 c->h[6]=U64(0xdb0c2e0d64f98fa7); 71 c->h[7]=U64(0x47b5481dbefa4fa4); 72 73 c->Nl=0; c->Nh=0; 74 c->num=0; c->md_len=SHA384_DIGEST_LENGTH; 75 return 1; 76 } 77 78fips_md_init(SHA512) 79 { 80 c->h[0]=U64(0x6a09e667f3bcc908); 81 c->h[1]=U64(0xbb67ae8584caa73b); 82 c->h[2]=U64(0x3c6ef372fe94f82b); 83 c->h[3]=U64(0xa54ff53a5f1d36f1); 84 c->h[4]=U64(0x510e527fade682d1); 85 c->h[5]=U64(0x9b05688c2b3e6c1f); 86 c->h[6]=U64(0x1f83d9abfb41bd6b); 87 c->h[7]=U64(0x5be0cd19137e2179); 88 89 c->Nl=0; c->Nh=0; 90 c->num=0; c->md_len=SHA512_DIGEST_LENGTH; 91 return 1; 92 } 93 94#ifndef SHA512_ASM 95static 96#endif 97void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num); 98 99int SHA512_Final (unsigned char *md, SHA512_CTX *c) 100 { 101 unsigned char *p=(unsigned char *)c->u.p; 102 size_t n=c->num; 103 104 p[n]=0x80; /* There always is a room for one */ 105 n++; 106 if (n > (sizeof(c->u)-16)) 107 memset (p+n,0,sizeof(c->u)-n), n=0, 108 sha512_block_data_order (c,p,1); 109 110 memset (p+n,0,sizeof(c->u)-16-n); 111#ifdef B_ENDIAN 112 c->u.d[SHA_LBLOCK-2] = c->Nh; 113 c->u.d[SHA_LBLOCK-1] = c->Nl; 114#else 115 p[sizeof(c->u)-1] = (unsigned char)(c->Nl); 116 p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8); 117 p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16); 118 p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24); 119 p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32); 120 p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40); 121 p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48); 122 p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56); 123 p[sizeof(c->u)-9] = (unsigned char)(c->Nh); 124 p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8); 125 p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16); 126 p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24); 127 p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32); 128 p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40); 129 p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48); 130 p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56); 131#endif 132 133 sha512_block_data_order (c,p,1); 134 135 if (md==0) return 0; 136 137 switch (c->md_len) 138 { 139 /* Let compiler decide if it's appropriate to unroll... */ 140 case SHA384_DIGEST_LENGTH: 141 for (n=0;n<SHA384_DIGEST_LENGTH/8;n++) 142 { 143 SHA_LONG64 t = c->h[n]; 144 145 *(md++) = (unsigned char)(t>>56); 146 *(md++) = (unsigned char)(t>>48); 147 *(md++) = (unsigned char)(t>>40); 148 *(md++) = (unsigned char)(t>>32); 149 *(md++) = (unsigned char)(t>>24); 150 *(md++) = (unsigned char)(t>>16); 151 *(md++) = (unsigned char)(t>>8); 152 *(md++) = (unsigned char)(t); 153 } 154 break; 155 case SHA512_DIGEST_LENGTH: 156 for (n=0;n<SHA512_DIGEST_LENGTH/8;n++) 157 { 158 SHA_LONG64 t = c->h[n]; 159 160 *(md++) = (unsigned char)(t>>56); 161 *(md++) = (unsigned char)(t>>48); 162 *(md++) = (unsigned char)(t>>40); 163 *(md++) = (unsigned char)(t>>32); 164 *(md++) = (unsigned char)(t>>24); 165 *(md++) = (unsigned char)(t>>16); 166 *(md++) = (unsigned char)(t>>8); 167 *(md++) = (unsigned char)(t); 168 } 169 break; 170 /* ... as well as make sure md_len is not abused. */ 171 default: return 0; 172 } 173 174 return 1; 175 } 176 177int SHA384_Final (unsigned char *md,SHA512_CTX *c) 178{ return SHA512_Final (md,c); } 179 180int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len) 181 { 182 SHA_LONG64 l; 183 unsigned char *p=c->u.p; 184 const unsigned char *data=(const unsigned char *)_data; 185 186 if (len==0) return 1; 187 188 l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff); 189 if (l < c->Nl) c->Nh++; 190 if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61); 191 c->Nl=l; 192 193 if (c->num != 0) 194 { 195 size_t n = sizeof(c->u) - c->num; 196 197 if (len < n) 198 { 199 memcpy (p+c->num,data,len), c->num += (unsigned int)len; 200 return 1; 201 } 202 else { 203 memcpy (p+c->num,data,n), c->num = 0; 204 len-=n, data+=n; 205 sha512_block_data_order (c,p,1); 206 } 207 } 208 209 if (len >= sizeof(c->u)) 210 { 211#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA 212 if ((size_t)data%sizeof(c->u.d[0]) != 0) 213 while (len >= sizeof(c->u)) 214 memcpy (p,data,sizeof(c->u)), 215 sha512_block_data_order (c,p,1), 216 len -= sizeof(c->u), 217 data += sizeof(c->u); 218 else 219#endif 220 sha512_block_data_order (c,data,len/sizeof(c->u)), 221 data += len, 222 len %= sizeof(c->u), 223 data -= len; 224 } 225 226 if (len != 0) memcpy (p,data,len), c->num = (int)len; 227 228 return 1; 229 } 230 231int SHA384_Update (SHA512_CTX *c, const void *data, size_t len) 232{ return SHA512_Update (c,data,len); } 233 234void SHA512_Transform (SHA512_CTX *c, const unsigned char *data) 235{ sha512_block_data_order (c,data,1); } 236 237unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md) 238 { 239 SHA512_CTX c; 240 static unsigned char m[SHA384_DIGEST_LENGTH]; 241 242 if (md == NULL) md=m; 243 SHA384_Init(&c); 244 SHA512_Update(&c,d,n); 245 SHA512_Final(md,&c); 246 OPENSSL_cleanse(&c,sizeof(c)); 247 return(md); 248 } 249 250unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md) 251 { 252 SHA512_CTX c; 253 static unsigned char m[SHA512_DIGEST_LENGTH]; 254 255 if (md == NULL) md=m; 256 SHA512_Init(&c); 257 SHA512_Update(&c,d,n); 258 SHA512_Final(md,&c); 259 OPENSSL_cleanse(&c,sizeof(c)); 260 return(md); 261 } 262 263#ifndef SHA512_ASM 264static const SHA_LONG64 K512[80] = { 265 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd), 266 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc), 267 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019), 268 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118), 269 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe), 270 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2), 271 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1), 272 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694), 273 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3), 274 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65), 275 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483), 276 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5), 277 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210), 278 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4), 279 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725), 280 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70), 281 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926), 282 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df), 283 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8), 284 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b), 285 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001), 286 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30), 287 U64(0xd192e819d6ef5218),U64(0xd69906245565a910), 288 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8), 289 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53), 290 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8), 291 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb), 292 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3), 293 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60), 294 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec), 295 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9), 296 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b), 297 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207), 298 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178), 299 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6), 300 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b), 301 U64(0x28db77f523047d84),U64(0x32caab7b40c72493), 302 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c), 303 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a), 304 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) }; 305 306#ifndef PEDANTIC 307# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 308# if defined(__x86_64) || defined(__x86_64__) 309# define ROTR(a,n) ({ SHA_LONG64 ret; \ 310 asm ("rorq %1,%0" \ 311 : "=r"(ret) \ 312 : "J"(n),"0"(a) \ 313 : "cc"); ret; }) 314# if !defined(B_ENDIAN) 315# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \ 316 asm ("bswapq %0" \ 317 : "=r"(ret) \ 318 : "0"(ret)); ret; }) 319# endif 320# elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN) 321# if defined(I386_ONLY) 322# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ 323 unsigned int hi=p[0],lo=p[1]; \ 324 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ 325 "roll $16,%%eax; roll $16,%%edx; "\ 326 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \ 327 : "=a"(lo),"=d"(hi) \ 328 : "0"(lo),"1"(hi) : "cc"); \ 329 ((SHA_LONG64)hi)<<32|lo; }) 330# else 331# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ 332 unsigned int hi=p[0],lo=p[1]; \ 333 asm ("bswapl %0; bswapl %1;" \ 334 : "=r"(lo),"=r"(hi) \ 335 : "0"(lo),"1"(hi)); \ 336 ((SHA_LONG64)hi)<<32|lo; }) 337# endif 338# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) 339# define ROTR(a,n) ({ SHA_LONG64 ret; \ 340 asm ("rotrdi %0,%1,%2" \ 341 : "=r"(ret) \ 342 : "r"(a),"K"(n)); ret; }) 343# endif 344# elif defined(_MSC_VER) 345# if defined(_WIN64) /* applies to both IA-64 and AMD64 */ 346# pragma intrinsic(_rotr64) 347# define ROTR(a,n) _rotr64((a),n) 348# endif 349# if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 350# if defined(I386_ONLY) 351 static SHA_LONG64 __fastcall __pull64be(const void *x) 352 { _asm mov edx, [ecx + 0] 353 _asm mov eax, [ecx + 4] 354 _asm xchg dh,dl 355 _asm xchg ah,al 356 _asm rol edx,16 357 _asm rol eax,16 358 _asm xchg dh,dl 359 _asm xchg ah,al 360 } 361# else 362 static SHA_LONG64 __fastcall __pull64be(const void *x) 363 { _asm mov edx, [ecx + 0] 364 _asm mov eax, [ecx + 4] 365 _asm bswap edx 366 _asm bswap eax 367 } 368# endif 369# define PULL64(x) __pull64be(&(x)) 370# if _MSC_VER<=1200 371# pragma inline_depth(0) 372# endif 373# endif 374# endif 375#endif 376 377#ifndef PULL64 378#define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8)) 379#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7)) 380#endif 381 382#ifndef ROTR 383#define ROTR(x,s) (((x)>>s) | (x)<<(64-s)) 384#endif 385 386#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) 387#define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) 388#define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) 389#define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) 390 391#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 392#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 393 394 395#if defined(__i386) || defined(__i386__) || defined(_M_IX86) 396/* 397 * This code should give better results on 32-bit CPU with less than 398 * ~24 registers, both size and performance wise... 399 */ 400static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) 401 { 402 const SHA_LONG64 *W=in; 403 SHA_LONG64 A,E,T; 404 SHA_LONG64 X[9+80],*F; 405 int i; 406 407 while (num--) { 408 409 F = X+80; 410 A = ctx->h[0]; F[1] = ctx->h[1]; 411 F[2] = ctx->h[2]; F[3] = ctx->h[3]; 412 E = ctx->h[4]; F[5] = ctx->h[5]; 413 F[6] = ctx->h[6]; F[7] = ctx->h[7]; 414 415 for (i=0;i<16;i++,F--) 416 { 417#ifdef B_ENDIAN 418 T = W[i]; 419#else 420 T = PULL64(W[i]); 421#endif 422 F[0] = A; 423 F[4] = E; 424 F[8] = T; 425 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i]; 426 E = F[3] + T; 427 A = T + Sigma0(A) + Maj(A,F[1],F[2]); 428 } 429 430 for (;i<80;i++,F--) 431 { 432 T = sigma0(F[8+16-1]); 433 T += sigma1(F[8+16-14]); 434 T += F[8+16] + F[8+16-9]; 435 436 F[0] = A; 437 F[4] = E; 438 F[8] = T; 439 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i]; 440 E = F[3] + T; 441 A = T + Sigma0(A) + Maj(A,F[1],F[2]); 442 } 443 444 ctx->h[0] += A; ctx->h[1] += F[1]; 445 ctx->h[2] += F[2]; ctx->h[3] += F[3]; 446 ctx->h[4] += E; ctx->h[5] += F[5]; 447 ctx->h[6] += F[6]; ctx->h[7] += F[7]; 448 449 W+=SHA_LBLOCK; 450 } 451 } 452 453#elif defined(OPENSSL_SMALL_FOOTPRINT) 454 455static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) 456 { 457 const SHA_LONG64 *W=in; 458 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2; 459 SHA_LONG64 X[16]; 460 int i; 461 462 while (num--) { 463 464 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 465 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 466 467 for (i=0;i<16;i++) 468 { 469#ifdef B_ENDIAN 470 T1 = X[i] = W[i]; 471#else 472 T1 = X[i] = PULL64(W[i]); 473#endif 474 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; 475 T2 = Sigma0(a) + Maj(a,b,c); 476 h = g; g = f; f = e; e = d + T1; 477 d = c; c = b; b = a; a = T1 + T2; 478 } 479 480 for (;i<80;i++) 481 { 482 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); 483 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); 484 485 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; 486 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; 487 T2 = Sigma0(a) + Maj(a,b,c); 488 h = g; g = f; f = e; e = d + T1; 489 d = c; c = b; b = a; a = T1 + T2; 490 } 491 492 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 493 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 494 495 W+=SHA_LBLOCK; 496 } 497 } 498 499#else 500 501#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ 502 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \ 503 h = Sigma0(a) + Maj(a,b,c); \ 504 d += T1; h += T1; } while (0) 505 506#define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \ 507 s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \ 508 s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \ 509 T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \ 510 ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0) 511 512static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) 513 { 514 const SHA_LONG64 *W=in; 515 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1; 516 SHA_LONG64 X[16]; 517 int i; 518 519 while (num--) { 520 521 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 522 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 523 524#ifdef B_ENDIAN 525 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); 526 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); 527 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); 528 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); 529 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); 530 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); 531 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); 532 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); 533 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); 534 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); 535 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); 536 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); 537 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); 538 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); 539 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); 540 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); 541#else 542 T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h); 543 T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g); 544 T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f); 545 T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e); 546 T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d); 547 T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c); 548 T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b); 549 T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a); 550 T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h); 551 T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g); 552 T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f); 553 T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e); 554 T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d); 555 T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c); 556 T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b); 557 T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a); 558#endif 559 560 for (i=16;i<80;i+=16) 561 { 562 ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X); 563 ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X); 564 ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X); 565 ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X); 566 ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X); 567 ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X); 568 ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X); 569 ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X); 570 ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X); 571 ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X); 572 ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X); 573 ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X); 574 ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X); 575 ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X); 576 ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X); 577 ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X); 578 } 579 580 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 581 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 582 583 W+=SHA_LBLOCK; 584 } 585 } 586 587#endif 588 589#endif /* SHA512_ASM */ 590 591#else /* !OPENSSL_NO_SHA512 */ 592 593#if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX) 594static void *dummy=&dummy; 595#endif 596 597#endif /* !OPENSSL_NO_SHA512 */ 598